1
|
Dong L, Zhou R, Zhou J, Liu K, Jin C, Wang J, Xue C, Tian M, Zhang H, Zhong Y. Positron emission tomography molecular imaging for pathological visualization in multiple system atrophy. Neurobiol Dis 2025; 206:106828. [PMID: 39900304 DOI: 10.1016/j.nbd.2025.106828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025] Open
Abstract
Multiple system atrophy (MSA) is a complex, heterogeneous neurodegenerative disorder characterized by a multifaceted pathogenesis. Its key pathological hallmark is the abnormal aggregation of α-synuclein, which triggers neuroinflammation, disrupts both dopaminergic and non-dopaminergic systems, and results in metabolic abnormalities in the brain. Positron emission tomography (PET) is a non-invasive technique that enables the visualization, characterization, and quantification of these pathological processes from diverse perspectives using radiolabeled agents. PET imaging of molecular events provides valuable insights into the underlying pathomechanisms of MSA and holds significant promise for the development of imaging biomarkers, which could greatly improve disease assessment and management. In this review, we focused on the pathological mechanisms of MSA, summarized relevant targets and radiopharmaceuticals, and discussed the clinical applications and future perspectives of PET molecular imaging in MSA.
Collapse
Affiliation(s)
- La Dong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Ke Liu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Chenxi Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Human Phenome Institute, Fudan University, Shanghai 200040, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Human Phenome Institute, Fudan University, Shanghai 200040, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310014, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China.
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Bezard E, Gray D, Kozak R, Leoni M, Combs C, Duvvuri S. Rationale and Development of Tavapadon, a D1/D5-Selective Partial Dopamine Agonist for the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:476-487. [PMID: 36999711 PMCID: PMC10909821 DOI: 10.2174/1871527322666230331121028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
Currently, available therapeutics for the treatment of Parkinson's disease (PD) fail to provide sustained and predictable relief from motor symptoms without significant risk of adverse events (AEs). While dopaminergic agents, particularly levodopa, may initially provide strong motor control, this efficacy can vary with disease progression. Patients may suffer from motor fluctuations, including sudden and unpredictable drop-offs in efficacy. Dopamine agonists (DAs) are often prescribed during early-stage PD with the expectation they will delay the development of levodopa-associated complications, but currently available DAs are less effective than levodopa for the treatment of motor symptoms. Furthermore, both levodopa and DAs are associated with a significant risk of AEs, many of which can be linked to strong, repeated stimulation of D2/D3 dopamine receptors. Targeting D1/D5 dopamine receptors has been hypothesized to produce strong motor benefits with a reduced risk of D2/D3-related AEs, but the development of D1-selective agonists has been previously hindered by intolerable cardiovascular AEs and poor pharmacokinetic properties. There is therefore an unmet need in PD treatment for therapeutics that provide sustained and predictable efficacy, with strong relief from motor symptoms and reduced risk of AEs. Partial agonism at D1/D5 has shown promise for providing relief from motor symptoms, potentially without the AEs associated with D2/D3-selective DAs and full D1/D5-selective DAs. Tavapadon is a novel oral partial agonist that is highly selective at D1/D5 receptors and could meet these criteria. This review summarizes currently available evidence of tavapadon's therapeutic potential for the treatment of early through advanced PD.
Collapse
Affiliation(s)
- Erwan Bezard
- Université de Bordeaux, CNRS Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- Motac Neuroscience, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
3
|
Petty A, Garcia-Hidalgo A, Halff EF, Natesan S, Withers DJ, Irvine EE, Kokkinou M, Wells LA, Bonsall DR, Tang SP, Veronese M, Howes OD. Sub-Chronic Ketamine Administration Increases Dopamine Synthesis Capacity in the Mouse Midbrain: a Preclinical In Vivo PET Study. Mol Imaging Biol 2023; 25:1054-1062. [PMID: 37872462 PMCID: PMC10728236 DOI: 10.1007/s11307-023-01865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE There is robust evidence that people with schizophrenia show elevated dopamine (DA) synthesis capacity in the striatum. This finding comes from positron emission tomography (PET) studies using radiolabelled l-3,4-dihydroxyphenylalanine (18F-DOPA). DA synthesis capacity also appears to be elevated in the midbrain of people with schizophrenia compared to healthy controls. We therefore aimed to optimise a method to quantify 18F-DOPA uptake in the midbrain of mice, and to utilise this method to quantify DA synthesis capacity in the midbrain of the sub-chronic ketamine model of schizophrenia-relevant hyperdopaminergia. PROCEDURES Adult male C57Bl6 mice were treated daily with either ketamine (30 mg/kg, i.p.) or vehicle (saline) for 5 days. On day 7, animals were administered 18F-DOPA (i.p.) and scanned in an Inveon PET/CT scanner. Data from the saline-treated group were used to optimise an atlas-based template to position the midbrain region of interest and to determine the analysis parameters which resulted in the greatest intra-group consistency. These parameters were then used to compare midbrain DA synthesis capacity (KiMod) between ketamine- and saline-treated animals. RESULTS Using an atlas-based template to position the 3.7 mm3 midbrain ROI with a T*-Tend window of 15-140 min to estimate KiMod resulted in the lowest intra-group variability and moderate test-retest agreement. Using these parameters, we found that KiMod was elevated in the midbrain of ketamine-treated animals in comparison to saline-treated animals (t(22) = 2.19, p = 0.048). A positive correlation between DA synthesis capacity in the striatum and the midbrain was also evident in the saline-treated animals (r2 = 0.59, p = 0.005) but was absent in ketamine-treated animals (r2 = 0.004, p = 0.83). CONCLUSIONS Using this optimised method for quantifying 18F-DOPA uptake in the midbrain, we found that elevated striatal DA synthesis capacity in the sub-chronic ketamine model extends to the midbrain. Interestingly, the dysconnectivity between the midbrain and striatum seen in this model is also evident in the clinical population. This model may therefore be ideal for assessing novel compounds which are designed to modulate pre-synaptic DA synthesis capacity.
Collapse
Affiliation(s)
- Alice Petty
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK.
| | - Anna Garcia-Hidalgo
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
| | - Els F Halff
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Sridhar Natesan
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Dominic J Withers
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, London, UK
| | - Elaine E Irvine
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, London, UK
| | - Michelle Kokkinou
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
| | - Lisa A Wells
- Invicro, Burlington Danes, Hammersmith Hospital, London, UK
| | | | - Sac-Pham Tang
- Invicro, Burlington Danes, Hammersmith Hospital, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Oliver D Howes
- Faculty of Medicine, Imperial College London, Institute of Clinical Sciences, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, UK
- H. Lundbeck A/S, St Albans, AL1 2PS, UK
| |
Collapse
|
4
|
Lloyd K, Lawton M, Whone A. Practically Defined Off-State Dyskinesia Following Repeated Intraputamenal Glial Cell Line-Derived Neurotrophic Factor Administration. Mov Disord 2023; 38:104-112. [PMID: 36444971 DOI: 10.1002/mds.29262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/09/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND We recently showed that by employing an enhanced drug-delivery approach, repeated administration of glial cell line-derived neurotrophic factor (GDNF) can produce a spatially distributed increased 18 F-DOPA positron emission tomography (PET) uptake, suggesting sprouting of dopaminergic terminals throughout the putamen structure. Despite this, we failed to prove a significant measurable clinical response. Since, however, we have identified a subject demonstrating a temporal relationship between repeated GDNF infusions and dyskinesia arising in the practically defined off (pracoff) state. OBJECTIVES To describe the development of pracoff dyskinesia across our study population and consider its utility as an indicator that trophic factor-induced terminal sprouting can affect enhanced endogenous dopamine levels. METHODS This was a blinded retrospective analysis of videotaped motor assessments at eight weekly study visits. Dyskinesia in the pracoff and supramaximal on state were rated using the Clinical Dyskinesia Rating Scale. Logistic regression was employed to explore the predictors of pracoff dyskinesia. Generalized estimated equations were used to estimate the cumulative effect of repeated GDNF infusions. RESULTS Mild-moderate choreiform dyskinesia in the pracoff state were seen in 47 assessments in 17 (n = 41) subjects. During the 18-month timeframe, each subsequent 8-week period of receiving GDNF increased the risk of demonstrating pracoff state dyskinesia by 34% (odds ratio [OR], 1.34 (95% confidence interval [CI], 1.20, 1.50); P < 0.001). An increasing supramaximal on dyskinesia score (OR, 1.17 [95% CI, 1.07, 1.30]; P = 0.001) also increased the likelihood of pracoff dyskinesia at that visit. CONCLUSIONS We report the first description of increasingly prevalent pracoff-state dyskinesia developing during the course of a trophic factor study. This may provide a surrogate marker that GDNF can enable recovery of endogenous dopamine release even in advanced Parkinson's disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Katherine Lloyd
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.,Department of Neurology, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Michael Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alan Whone
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.,Department of Neurology, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| |
Collapse
|
5
|
Xue J, Wu Y, Bao Y, Zhao M, Li F, Sun J, Sun Y, Wang J, Chen L, Mao Y, Schweitzer JS, Song B. Clinical considerations in Parkinson's disease cell therapy. Ageing Res Rev 2023; 83:101792. [PMID: 36402405 DOI: 10.1016/j.arr.2022.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Cell replacement therapy is an area of increasing interest for treating Parkinson's disease (PD). However, to become a clinically practical option for PD patients, it must first overcome significant barriers, including establishment of safe and standardized surgical procedures, determination of appropriate perioperative medication regimens, demonstration of long-term graft survival and incorporation, and standardized, clinically meaningful follow-up measures. In this review, we will describe the current status of cell therapy for PD with special attention to these critical requirements, to define guideposts on the road to bring the benefit of this therapy to the Parkinson's clinic.
Collapse
Affiliation(s)
- Jun Xue
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Yifan Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Yuting Bao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Minglai Zhao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Fangzhou Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Jing Sun
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yimin Sun
- Institute of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jian Wang
- Institute of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China.
| | - Jeffrey S Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Bin Song
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Functional connectivity of the cortico-subcortical sensorimotor loop is modulated by the severity of nigrostriatal dopaminergic denervation in Parkinson’s Disease. NPJ Parkinsons Dis 2022; 8:122. [PMID: 36171211 PMCID: PMC9519637 DOI: 10.1038/s41531-022-00385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
To assess if the severity of nigrostriatal innervation loss affects the functional connectivity (FC) of the sensorimotor cortico-striato-thalamic-cortical loop (CSTCL) in Parkinson’s Disease (PD), Resting-State functional MRI and 18F-DOPA PET data, simultaneously acquired on a hybrid PET/MRI scanner, were retrospectively analyzed in 39 PD and 16 essential tremor patients. Correlations between posterior Putamen DOPA Uptake (pPDU) and the FC of the main CSTCL hubs were assessed separately in the two groups, analyzing the differences between the two groups by a group-by-pPDU interaction analysis of the resulting clusters’ FC. Unlike in essential tremor, in PD patients pPDU correlated inversely with the FC of the thalamus with the sensorimotor cortices, and of the postcentral gyrus with the dorsal cerebellum, and directly with the FC of pre- and post-central gyri with both the superior and middle temporal gyri and the paracentral lobule, and of the caudate with the superior parietal cortex. The interaction analysis confirmed the significance of the difference between the two groups in these correlations. In PD patients, the post-central cortex FC, in the clusters correlating directly with pPDU, negatively correlated with both UPDRS motor examination score and Hoehn and Yahr stage, independent of the pPDU, suggesting that these FC changes contribute to motor impairment. In PD, nigrostriatal innervation loss correlates with a decrease in the FC within the sensorimotor network and between the sensorimotor network and the superior temporal cortices, possibly contributing to motor impairment, and with a strengthening of the thalamo-cortical FC, that may represent ineffective compensatory phenomena.
Collapse
|
7
|
Delva A, Van Laere K, Vandenberghe W. Longitudinal Positron Emission Tomography Imaging of Presynaptic Terminals in Early Parkinson's Disease. Mov Disord 2022; 37:1883-1892. [PMID: 35819412 DOI: 10.1002/mds.29148] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Imaging tools that allow quantification of Parkinson's disease (PD) progression could facilitate the development of disease-modifying therapies. Cross-sectional studies have shown presynaptic terminal damage in PD patients, but longitudinal data are limited. OBJECTIVES The aim of this study was to longitudinally assess loss of presynaptic terminals in general and dopaminergic presynaptic terminals in particular as measures of disease progression in early PD. METHODS A total of 27 patients with early PD and 18 age- and sex-matched healthy controls underwent positron emission tomography (PET) with 11 C-UCB-J, a ligand for the brain-wide presynaptic terminal marker SV2A, and with 18 F-FE-PE2I, a highly selective dopamine transporter ligand, in combination with a comprehensive motor and non-motor clinical assessment at baseline (BL) and after 26.5 ± 2.1 months (Y2). SUVR-1 images were calculated and volumes of interest were delineated based on individual 3D T1 magnetic resonance imaging (MRI). RESULTS PD patients showed significant 2-year worsening of Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS-III) (off medication) scores, but not of non-motor scores. Motor and non-motor scores in controls did not change significantly over 2 years. 18 F-FE-PE2I binding in caudate and putamen showed significant 2-year decline in the PD group and remained unchanged in controls. Longitudinal decline of striatal 18 F-FE-PE2I binding in PD did not correlate with longitudinal changes in MDS-UPDRS-III scores. 11 C-UCB-J PET did not show any region with significant 2-year change in PD or controls. CONCLUSIONS 18 F-FE-PE2I PET showed robust 2-year decline in early PD, but 11 C-UCB-J PET did not. Longitudinal changes in 18 F-FE-PE2I binding did not correlate with clinical motor progression. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aline Delva
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Schalbroeck R, de Geus-Oei LF, Selten JP, Yaqub M, Schrantee A, van Amelsvoort T, Booij J, van Velden FHP. Cerebral [ 18F]-FDOPA Uptake in Autism Spectrum Disorder and Its Association with Autistic Traits. Diagnostics (Basel) 2021; 11:diagnostics11122404. [PMID: 34943640 PMCID: PMC8700159 DOI: 10.3390/diagnostics11122404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Dopaminergic signaling is believed to be related to autistic traits. We conducted an exploratory 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine positron emission tomography/computed tomography ([18F]-FDOPA PET/CT) study, to examine cerebral [18F]-FDOPA influx constant (kicer min−1), reflecting predominantly striatal dopamine synthesis capacity and a mixed monoaminergic innervation in extrastriatal neurons, in 44 adults diagnosed with autism spectrum disorder (ASD) and 22 controls, aged 18 to 30 years. Autistic traits were assessed with the Autism Spectrum Quotient (AQ). Region-of-interest and voxel-based analyses showed no statistically significant differences in kicer between autistic adults and controls. In autistic adults, striatal kicer was significantly, negatively associated with AQ attention to detail subscale scores, although Bayesian analyses did not support this finding. In conclusion, among autistic adults, specific autistic traits can be associated with reduced striatal dopamine synthesis capacity. However, replication of this finding is necessary.
Collapse
Affiliation(s)
- Rik Schalbroeck
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.-P.S.); (T.v.A.)
- Rivierduinen Institute for Mental Healthcare, 2333 ZZ Leiden, The Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.-F.d.G.-O.); (F.H.P.v.V.)
- Correspondence:
| | - Lioe-Fee de Geus-Oei
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.-F.d.G.-O.); (F.H.P.v.V.)
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Jean-Paul Selten
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.-P.S.); (T.v.A.)
- Rivierduinen Institute for Mental Healthcare, 2333 ZZ Leiden, The Netherlands
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location VU Medical Center, 1081 HV Amsterdam, The Netherlands;
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; (A.S.); (J.B.)
| | - Therese van Amelsvoort
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.-P.S.); (T.v.A.)
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; (A.S.); (J.B.)
| | - Floris H. P. van Velden
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.-F.d.G.-O.); (F.H.P.v.V.)
| |
Collapse
|
9
|
Xu M, Guo Y, Cheng J, Xue K, Yang M, Song X, Feng Y, Cheng J. Brain iron assessment in patients with First-episode schizophrenia using quantitative susceptibility mapping. NEUROIMAGE-CLINICAL 2021; 31:102736. [PMID: 34186296 PMCID: PMC8254125 DOI: 10.1016/j.nicl.2021.102736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
Patients with first-episode schizophrenia had significantly decreased QSM values in the bilateral substantia nigra, left red nucleus and left thalamus. Patients with first-episode schizophrenia had significantly increased regional volumes in the bilateral putamen and bilateral substantia nigra. QSM provides superior sensitivity over R2* mapping in the evaluation of schizophrenia-related iron alterations. QSM values in regions that showed intergroup differences did not exhibited significant correlations with PANSS scores.
Purpose Decreased serum ferritin level was recently found in schizophrenia. Whether the brain iron concentration in schizophrenia exists abnormality is of research significance. Quantitative susceptibility mapping (QSM) was used in this study to assess brain iron changes in the grey matter nuclei of patients with first-episode schizophrenia. Methods The local ethics committee approved the study, and all subjects gave written informed consent. Thirty patients with first-episode schizophrenia and 30 age and gender-matched healthy controls were included in this study. QSM and effective transverse relaxation rate (R2*) maps were reconstructed from a three-dimensional multi-echo gradient-echo sequence. The inter-group differences of regional QSM values, R2* values and volumes were calculated in the grey matter nuclei, including bilateral caudate nucleus, putamen, globus pallidus, substantia nigra, red nucleus, and thalamus. The diagnostic performance of QSM and R2* was evaluated using receiver operating characteristic curve. The correlations between regional iron variations and clinical PANSS (Positive and Negative Syndrome Scale) scores were assessed using partial correlation analysis. Results Compared to healthy controls, patients with first-episode schizophrenia had significantly decreased QSM values (less paramagnetic) in the bilateral substantia nigra, left red nucleus and left thalamus (p < 0.05, FDR correction). QSM proved more sensitive than R2* regarding inter-group differences. The highest diagnostic performance for first-episode schizophrenia was observed in QSM value of the left substantia nigra (area under the curve, AUC = 0.718, p = 0.004). Regional volumes of bilateral putamen and bilateral substantia nigra were increased (p < 0.05, FDR correction) in first-episode schizophrenia. However, both QSM and R2* values did not show significant correlations with PANSS scores (p > 0.05). Conclusion This study reveals decreased iron concentration in grey matter nuclei of patients with first-episode schizophrenia. QSM provides superior sensitivity over R2* in the evaluation of schizophrenia-related brain iron changes. It demonstrated that QSM may be a potential biomarker for further understanding the pathophysiological mechanism of first-episode schizophrenia.
Collapse
Affiliation(s)
- Man Xu
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yihao Guo
- MR Collaboration, Siemens Healthcare Ltd, Guangzhou, China
| | - Junying Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kangkang Xue
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Yang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Key Laboratory of Mental Health of the Ministry of Education & Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Juri C, Kramer V, Riss PJ, Soza-Ried C, Haeger A, Pruzzo R, Rösch F, Amaral H, Chana-Cuevas P. [18F]PR04.MZ PET/CT Imaging for Evaluation of Nigrostriatal Neuron Integrity in Patients With Parkinson Disease. Clin Nucl Med 2021; 46:119-124. [PMID: 33323728 PMCID: PMC7774816 DOI: 10.1097/rlu.0000000000003430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/14/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Degeneration of dopaminergic, nigrostriatal neurons is the hallmark of Parkinson disease (PD), and PET quantification of dopamine transporters is a widely accepted method for differential diagnosis between idiopathic PD and essential tremor. [18F]PR04.MZ is a new PET tracer with excellent imaging properties allowing for precise quantification of striatal and extrastriatal dopamine transporter. Here we describe our initial experience with [18F]PR04.MZ PET/CT in a larger cohort of healthy controls and PD patients as a proof-of-concept study for this tracer. METHODS Eighteen healthy subjects, 19 early PD patients (Hoehn-Yahr I-II), and 13 moderate-advanced PD patients (Hoehn-Yahr III-IV) underwent static PET/CT scans 60 to 90 minutes after injection of 5.16 ± 1.03 mCi (191 ± 38 MBq) [18F]PR04.MZ. Specific binding ratios (SBRs) were calculated for caudate nucleus, anterior putamen, posterior putamen, substantia nigra (SNpc), compared between different groups and correlated with clinical ratings. RESULTS [18F]PR04.MZ showed very high and specific uptake in the putamen, caudate, and substantia nigra pars compacta and very low nonspecific binding in other brain regions, and SBR values for the control group were 22.3 ± 4.1, 19.1 ± 3.5, and 5.4 ± 1.2, respectively. A reduction of SBR values was observed in all regions and in both initial and moderate PD, ranging from 35% to 89% (P < 0.001). The observed pattern of reduction was posterior putamen > anterior putamen > substantia nigra pars compacta > caudate, with contralateral posterior putamen being the most affected region. Rostrocaudal depletion gradient was evident in all PD patients and progression correlated with motor manifestations. CONCLUSIONS [18F]PR04.MZ PET/CT is a highly sensitive imaging modality for the detection of dopaminergic deficit in nigrostriatal pathways in PD.
Collapse
Affiliation(s)
- Carlos Juri
- From the Department of Neurology, Facultad de Medicina, Pontificia Universidad Católica de Chile
- Department of Neurology, Hospital Sotero del Río
| | - Vasko Kramer
- Nuclear Medicine and PET/CT Center PositronMed
- Positronpharma SA, Santiago, Chile
| | | | | | | | | | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Horacio Amaral
- Nuclear Medicine and PET/CT Center PositronMed
- Positronpharma SA, Santiago, Chile
| | - Pedro Chana-Cuevas
- Centro de Trastornos del Movimiento
- Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
11
|
Trifonova OP, Maslov DL, Balashova EE, Urazgildeeva GR, Abaimov DA, Fedotova EY, Poleschuk VV, Illarioshkin SN, Lokhov PG. Parkinson's Disease: Available Clinical and Promising Omics Tests for Diagnostics, Disease Risk Assessment, and Pharmacotherapy Personalization. Diagnostics (Basel) 2020; 10:E339. [PMID: 32466249 PMCID: PMC7277996 DOI: 10.3390/diagnostics10050339] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease is the second most frequent neurodegenerative disease, representing a significant medical and socio-economic problem. Modern medicine still has no answer to the question of why Parkinson's disease develops and whether it is possible to develop an effective system of prevention. Therefore, active work is currently underway to find ways to assess the risks of the disease, as well as a means to extend the life of patients and improve its quality. Modern studies aim to create a method of assessing the risk of occurrence of Parkinson's disease (PD), to search for the specific ways of correction of biochemical disorders occurring in the prodromal stage of Parkinson's disease, and to personalize approaches to antiparkinsonian pharmacotherapy. In this review, we summarized all available clinically approved tests and techniques for PD diagnostics. Then, we reviewed major improvements and recent advancements in genomics, transcriptomics, and proteomics studies and application of metabolomics in PD research, and discussed the major metabolomics findings for diagnostics and therapy of the disease.
Collapse
Affiliation(s)
- Oxana P. Trifonova
- Laboratory of mass spectrometry-based metabolomics diagnostics, Institute of Biomedical Chemistry, 10 building 8, Pogodinskaya street, 119121 Moscow, Russia; (D.L.M.); (E.E.B.); (P.G.L.)
| | - Dmitri L. Maslov
- Laboratory of mass spectrometry-based metabolomics diagnostics, Institute of Biomedical Chemistry, 10 building 8, Pogodinskaya street, 119121 Moscow, Russia; (D.L.M.); (E.E.B.); (P.G.L.)
| | - Elena E. Balashova
- Laboratory of mass spectrometry-based metabolomics diagnostics, Institute of Biomedical Chemistry, 10 building 8, Pogodinskaya street, 119121 Moscow, Russia; (D.L.M.); (E.E.B.); (P.G.L.)
| | - Guzel R. Urazgildeeva
- 5th Neurological Department (Department of Neurogenetics), Research Centre of Neurology, Volokolamskoe shosse, 80, 125367 Moscow, Russia; (G.R.U.); (D.A.A.); (E.Y.F.); (V.V.P.); (S.N.I.)
| | - Denis A. Abaimov
- 5th Neurological Department (Department of Neurogenetics), Research Centre of Neurology, Volokolamskoe shosse, 80, 125367 Moscow, Russia; (G.R.U.); (D.A.A.); (E.Y.F.); (V.V.P.); (S.N.I.)
| | - Ekaterina Yu. Fedotova
- 5th Neurological Department (Department of Neurogenetics), Research Centre of Neurology, Volokolamskoe shosse, 80, 125367 Moscow, Russia; (G.R.U.); (D.A.A.); (E.Y.F.); (V.V.P.); (S.N.I.)
| | - Vsevolod V. Poleschuk
- 5th Neurological Department (Department of Neurogenetics), Research Centre of Neurology, Volokolamskoe shosse, 80, 125367 Moscow, Russia; (G.R.U.); (D.A.A.); (E.Y.F.); (V.V.P.); (S.N.I.)
| | - Sergey N. Illarioshkin
- 5th Neurological Department (Department of Neurogenetics), Research Centre of Neurology, Volokolamskoe shosse, 80, 125367 Moscow, Russia; (G.R.U.); (D.A.A.); (E.Y.F.); (V.V.P.); (S.N.I.)
| | - Petr G. Lokhov
- Laboratory of mass spectrometry-based metabolomics diagnostics, Institute of Biomedical Chemistry, 10 building 8, Pogodinskaya street, 119121 Moscow, Russia; (D.L.M.); (E.E.B.); (P.G.L.)
| |
Collapse
|
12
|
Feng Y, Yan W, Wang J, Song J, Zeng Q, Zhao C. Local White Matter Fiber Clustering Differentiates Parkinson's Disease Diagnoses. Neuroscience 2020; 435:146-160. [PMID: 32272152 DOI: 10.1016/j.neuroscience.2020.03.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Abstract
Scans without evidence of dopaminergic deficit (SWEDD) patients are often misdiagnosed with Parkinson's disease (PD) but have normal dopamine transporter scans. We hypothesised that white matter tracts associated with motor and cognition functions may be affected differently by SWEDD and PD. Automatically annotated fibre clustering (AAFC) is a novel clustering method based on diffusion magnetic resonance imaging (dMRI) tractography that enables highly robust reconstruction of white matter tracts that are composed of corresponding clusters. This study aimed to investigate the white matter properties in the subdivisions of white matter tracts among SWEDD and PD groups. We applied AAFC to identify white matter tracts related to motion and cognition functions in the dataset consisting of SWEDD (n = 22), PD (n = 30) and normal control (NC) (n = 30). Then, we resampled 200 nodes along fibres of cluster, and the diffusion metric values corresponding to each node were calculated and used for comparison. Compared with NC, PD showed significant difference (p < 0.05) in two clusters in thalamo-frontal (TF), one cluster in thalamo-parietal (TP) and one cluster in thalamo-occipital (TO), whereas SWEDD presented no significant difference. Three clusters in cingulum bundle (CB) commonly exhibited significant differences in PD versus SWEDD and NC versus SWEDD. The support vector machine classifier achieved high accuracies in PD-NC, PD-SWEDD and NC-SWEDD classifications. This outcome validated these local white matter differences were useful to separate the three groups. These results suggest that PD exerts more significant effects on thalamo tracts than SWEDD, and unique microstructural changes occur in CB tract in SWEDD.
Collapse
Affiliation(s)
- Yuanjing Feng
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Zhejiang Provincial United Key Laboratory of Embedded Systems, Hangzhou 310023, China.
| | - Wenxuan Yan
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jingqiang Wang
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jiahao Song
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Qingrun Zeng
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Changchen Zhao
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
13
|
Colzato L, Beste C. A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: challenges and future directions. J Neurophysiol 2020; 123:1739-1755. [PMID: 32208895 DOI: 10.1152/jn.00057.2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brain stimulation approaches are important to gain causal mechanistic insights into the relevance of functional brain regions and/or neurophysiological systems for human cognitive functions. In recent years, transcutaneous vagus nerve stimulation (tVNS) has attracted considerable popularity. It is a noninvasive brain stimulation technique based on the stimulation of the vagus nerve. The stimulation of this nerve activates subcortical nuclei, such as the locus coeruleus and the nucleus of the solitary tract, and from there, the activation propagates to the cortex. Since tVNS is a novel stimulation technique, this literature review outlines a brief historical background of tVNS, before detailing underlying neurophysiological mechanisms of action, stimulation parameters, cognitive effects of tVNS on healthy humans, and, lastly, current challenges and future directions of tVNS research in cognitive functions. Although more research is needed, we conclude that tVNS, by increasing norepineprine (NE) and gamma-aminobutyric acid (GABA) levels, affects NE- and GABA-related cognitive performance. The review provides detailed background information how to use tVNS as a neuromodulatory tool in cognitive neuroscience and outlines important future leads of research on tVNS.
Collapse
Affiliation(s)
- Lorenza Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
14
|
Miyamoto M, Miyamoto T, Saitou J, Sato T. Longitudinal study of striatal aromatic l-amino acid decarboxylase activity in patients with idiopathic rapid eye movement sleep behavior disorder. Sleep Med 2020; 68:50-56. [PMID: 32028226 DOI: 10.1016/j.sleep.2019.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
Abstract
STUDY OBJECTIVES To determine if nigrostriatal dopaminergic system function, evaluated by aromatic l-amino acid decarboxylase (AADC) activity using 6-[18F]fluoro-meta-tyrosine brain positron emission tomography (FMT-PET) can accurately and efficiently identify idiopathic rapid-eye-movement behavior disorder (IRBD) individuals at risk for conversion to a clinical diagnosis of Parkinson's disease (PD) or dementia with Lewy bodies (DLB). METHODS We assessed prospectively striatal aromatic l-amino acid decarboxylase activity using FMT brain PET imaging in IRBD patients who were followed systematically every 1-3 months for 1-10 years. IRBD patients (n = 27) were enrolled in this prospective cohort study starting in 2009. Those who underwent follow-up scans between January 2011 and September 2014 (n = 24) were analyzed in the present study. RESULTS Of the 24 IRBD patients with baseline and follow-up FMT-PET scans, 11 (45.8%) developed PD (n = 6) or DLB (n = 5). Compared to IRBD patients who were still disease-free, those who developed PD (n = 5) or DLB with parkinsonism (n = 1) had significantly reduced bilateral putaminal FMT uptake during the follow-up. Furthermore, the rate of FMT decline between baseline and follow-up scans was higher in all converted patients, even for those with DLB without parkinsonism, than in IRBD patients who remained disease-free. CONCLUSIONS FMT-PET, which represents a dynamic change in AADC activity over time, may also be a useful predictor for the risk of conversion to PD or DLB over short-term clinical follow-up periods, or when testing neuroprotective and restorative strategies in the prodromal phases of PD or DLB.
Collapse
Affiliation(s)
- Masayuki Miyamoto
- Department of Neurology, Center of Sleep Medicine, Dokkyo Medical University, Japan
| | - Tomoyuki Miyamoto
- Department of Neurology, Dokkyo Medical University Saitama Medical Center, Japan.
| | | | | |
Collapse
|
15
|
Whone A, Luz M, Boca M, Woolley M, Mooney L, Dharia S, Broadfoot J, Cronin D, Schroers C, Barua NU, Longpre L, Barclay CL, Boiko C, Johnson GA, Fibiger HC, Harrison R, Lewis O, Pritchard G, Howell M, Irving C, Johnson D, Kinch S, Marshall C, Lawrence AD, Blinder S, Sossi V, Stoessl AJ, Skinner P, Mohr E, Gill SS. Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson's disease. Brain 2020; 142:512-525. [PMID: 30808022 PMCID: PMC6391602 DOI: 10.1093/brain/awz023] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/24/2018] [Accepted: 12/12/2018] [Indexed: 01/12/2023] Open
Abstract
We investigated the effects of glial cell line-derived neurotrophic factor (GDNF) in Parkinson’s disease, using intermittent intraputamenal convection-enhanced delivery via a skull-mounted transcutaneous port as a novel administration paradigm to potentially afford putamen-wide therapeutic delivery. This was a single-centre, randomized, double-blind, placebo-controlled trial. Patients were 35–75 years old, had motor symptoms for 5 or more years, and presented with moderate disease severity in the OFF state [Hoehn and Yahr stage 2–3 and Unified Parkinson’s Disease Rating Scale motor score (part III) (UPDRS-III) between 25 and 45] and motor fluctuations. Drug delivery devices were implanted and putamenal volume coverage was required to exceed a predefined threshold at a test infusion prior to randomization. Six pilot stage patients (randomization 2:1) and 35 primary stage patients (randomization 1:1) received bilateral intraputamenal infusions of GDNF (120 µg per putamen) or placebo every 4 weeks for 40 weeks. Efficacy analyses were based on the intention-to-treat principle and included all patients randomized. The primary outcome was the percentage change from baseline to Week 40 in the OFF state (UPDRS-III). The primary analysis was limited to primary stage patients, while further analyses included all patients from both study stages. The mean OFF state UPDRS motor score decreased by 17.3 ± 17.6% in the active group and 11.8 ± 15.8% in the placebo group (least squares mean difference: −4.9%, 95% CI: −16.9, 7.1, P = 0.41). Secondary endpoints did not show significant differences between the groups either. A post hoc analysis found nine (43%) patients in the active group but no placebo patients with a large clinically important motor improvement (≥10 points) in the OFF state (P = 0.0008). 18F-DOPA PET imaging demonstrated a significantly increased uptake throughout the putamen only in the active group, ranging from 25% (left anterior putamen; P = 0.0009) to 100% (both posterior putamina; P < 0.0001). GDNF appeared to be well tolerated and safe, and no drug-related serious adverse events were reported. The study did not meet its primary endpoint. 18F-DOPA imaging, however, suggested that intermittent convection-enhanced delivery of GDNF produced a putamen-wide tissue engagement effect, overcoming prior delivery limitations. Potential reasons for not proving clinical benefit at 40 weeks are discussed.
Collapse
Affiliation(s)
- Alan Whone
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Matthias Luz
- MedGenesis Therapeutix Inc., Victoria, BC, Canada
| | - Mihaela Boca
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Max Woolley
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Lucy Mooney
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Sonali Dharia
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Jack Broadfoot
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - David Cronin
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Christian Schroers
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Neil U Barua
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
| | - Lara Longpre
- MedGenesis Therapeutix Inc., Victoria, BC, Canada
| | | | - Chris Boiko
- MedGenesis Therapeutix Inc., Victoria, BC, Canada
| | | | | | - Rob Harrison
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Owen Lewis
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Gemma Pritchard
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Mike Howell
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Charlie Irving
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - David Johnson
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Suk Kinch
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Christopher Marshall
- The Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), Cardiff University, Cardiff, UK
| | | | - Stephan Blinder
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - Vesna Sossi
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Paul Skinner
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
| | - Erich Mohr
- MedGenesis Therapeutix Inc., Victoria, BC, Canada
| | - Steven S Gill
- Neurological and Musculoskeletal Sciences Division, North Bristol NHS Trust, Bristol, UK
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK
- Correspondence regarding study concept, drug-delivery device and surgical implantation to: Professor Steven S. Gill, FRCS Consultant Neurosurgeon, Department of Neurosurgery, Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK E-mail: Correspondence regarding trial oversight/execution and study data to: Dr Alan Whone, PhD, FRCP Movement Disorders Group, Bristol Brain Centre, Southmead Hospital, Bristol, BS10 5NB, UK E-mail:
| |
Collapse
|
16
|
Knudsen K, Fedorova TD, Hansen AK, Sommerauer M, Otto M, Svendsen KB, Nahimi A, Stokholm MG, Pavese N, Beier CP, Brooks DJ, Borghammer P. In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case-control study. Lancet Neurol 2018; 17:618-628. [PMID: 29866443 DOI: 10.1016/s1474-4422(18)30162-5] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/26/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Accumulating evidence suggests that α-synuclein aggregates-a defining pathology of Parkinson's disease-display cell-to-cell transmission. α-synuclein aggregation is hypothesised to start in autonomic nerve terminals years before the appearance of motor symptoms, and subsequently spread via autonomic nerves to the spinal cord and brainstem. To assess this hypothesis, we investigated sympathetic, parasympathetic, noradrenergic, and dopaminergic innervation in patients with idiopathic rapid eye movement (REM) sleep behaviour disorder, a prodromal phenotype of Parkinson's disease. METHODS In this prospective, case-control study, we recruited patients with idiopathic REM sleep behaviour disorder, confirmed by polysomnography, without clinical signs of parkinsonism or dementia, via advertisement and through sleep clinics in Denmark. We used 11C-donepezil PET and CT to assess cholinergic (parasympathetic) gut innervation, 123I-metaiodobenzylguanidine (MIBG) scintigraphy to measure cardiac sympathetic innervation, neuromelanin-sensitive MRI to measure integrity of pigmented neurons of the locus coeruleus, 11C-methylreboxetine (MeNER) PET to assess noradrenergic nerve terminals originating in the locus coeruleus, and 18F-dihydroxyphenylalanine (DOPA) PET to assess nigrostriatal dopamine storage capacity. For each imaging modality, we compared patients with idiopathic REM sleep behaviour disorder with previously published reference data of controls without neurological disorders or cognitive impairment and with symptomatic patients with Parkinson's disease. We assessed imaging data using one-way ANOVA corrected for multiple comparisons. FINDINGS Between June 3, 2016, and Dec 19, 2017, we recruited 22 consecutive patients with idiopathic REM sleep behaviour disorder to the study. Compared with controls, patients with idiopathic REM sleep behaviour disorder had decreased colonic 11C-donepezil uptake (-0·322, 95% CI -0·112 to -0·531; p=0·0020), 123I-MIBG heart:mediastinum ratio (-0·508, -0·353 to -0·664; p<0·0001), neuromelanin-sensitive MRI locus coeruleus:pons ratio (-0·059, -0·019 to -0·099; p=0·0028), and putaminal 18F-DOPA uptake (Ki; -0·0023, -0·0009 to -0·0037; p=0·0013). No between-group differences were detected between idiopathic REM sleep behaviour disorder and Parkinson's disease groups with respect to 11C-donepezil (p=0·39), 123I-MIBG (p>0·99), neuromelanin-sensitive MRI (p=0·96), and 11C-MeNER (p=0·56). By contrast, 15 (71%) of 21 patients with idiopathic REM sleep behaviour disorder had 18F-DOPA Ki values within normal limits, whereas all patients with Parkinson's disease had significantly decreased 18F-DOPA Ki values when compared with patients with idiopathic REM sleep behaviour disorder (p<0·0001). INTERPRETATION Patients with idiopathic REM sleep behaviour disorder had fully developed pathology in the peripheral autonomic nervous system and the locus coeruleus, equal to that in diagnosed Parkinson's disease. These patients also showed noradrenergic thalamic denervation, but most had normal putaminal dopaminergic storage capacity. This caudorostral gradient of dysfunction supports the hypothesis that α-synuclein pathology in Parkinson's disease initially targets peripheral autonomic nerves and then spreads rostrally to the brainstem. FUNDING Lundbeck Foundation, Jascha Foundation, and the Swiss National Foundation.
Collapse
Affiliation(s)
- Karoline Knudsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Sommerauer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Marit Otto
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Adjmal Nahimi
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Morten G Stokholm
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Nicola Pavese
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Division of Neuroscience, Department of Medicine, Imperial College London, London, UK; Division of Neuroscience, Newcastle University, Newcastle, UK
| | - Christoph P Beier
- Southern University of Denmark, Department of Neurology, Odense, Denmark
| | - David J Brooks
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Division of Neuroscience, Department of Medicine, Imperial College London, London, UK; Division of Neuroscience, Newcastle University, Newcastle, UK
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
17
|
Stokholm MG, Iranzo A, Østergaard K, Serradell M, Otto M, Bacher Svendsen K, Garrido A, Vilas D, Parbo P, Borghammer P, Santamaria J, Møller A, Gaig C, Brooks DJ, Tolosa E, Pavese N. Extrastriatal monoaminergic dysfunction and enhanced microglial activation in idiopathic rapid eye movement sleep behaviour disorder. Neurobiol Dis 2018. [PMID: 29522818 DOI: 10.1016/j.nbd.2018.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND The majority of patients diagnosed with idiopathic rapid eye movement sleep behaviour disorder (iRBD) progress over time to a Lewy-type α-synucleinopathy such as Parkinson's disease or dementia with Lewy bodies. This in vivo molecular imaging study aimed to investigate if extrastriatal monoaminergic systems are affected in iRBD patients and if this coincides with neuroinflammation. METHODS We studied twenty-one polysomnography-confirmed iRBD patients with 18F-DOPA and 11C-PK11195 positron emission tomography (PET) to investigate extrastriatal monoaminergic function and microglial activation. Twenty-nine healthy controls (n = 9 18F-DOPA and n = 20 11C-PK11195) were also investigated. Analyses were performed within predefined regions of interest and at voxel-level with Statistical Parametric Mapping. RESULTS Regions of interest analysis detected monoaminergic dysfunction in iRBD thalamus with a 15% mean reduction of 18F-DOPA Ki values compared to controls (mean difference = -0.00026, 95% confidence interval [-0.00050 to -0.00002], p-value = 0.03). No associated thalamic changes in 11C-PK11195 binding were observed. Other regions sampled showed no 18F-DOPA or 11C-PK11195 PET differences between groups. Voxel-level interrogation of 11C-PK11195 binding identified areas with significantly increased binding within the occipital lobe of iRBD patients. CONCLUSION Thalamic monoaminergic dysfunction in iRBD patients may reflect terminal dysfunction of projecting neurons from the locus coeruleus and dorsal raphe nucleus, two structures that regulate REM sleep and are known to be involved in the early phase of PD. The observation of significantly raised microglial activation in the occipital lobe of these patients might suggest early local Lewy-type α-synuclein pathology and possibly an increased risk for later cognitive dysfunction.
Collapse
Affiliation(s)
| | - Alex Iranzo
- Department of Neurology, Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain; Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain
| | | | - Mónica Serradell
- Department of Neurology, Hospital Clínic de Barcelona, Spain; Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain
| | - Marit Otto
- Department of Clinical Neurophysiology, Aarhus University Hospital, Denmark
| | | | - Alicia Garrido
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain; Parkinson disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Catalonia, Spain
| | - Dolores Vilas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain; Parkinson disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Catalonia, Spain
| | - Peter Parbo
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark
| | - Joan Santamaria
- Department of Neurology, Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain; Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain
| | - Arne Møller
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark
| | - Carles Gaig
- Department of Neurology, Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain; Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain
| | - David J Brooks
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark; Division of Neuroscience, Newcastle University, England, United Kingdom
| | - Eduardo Tolosa
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain; Parkinson disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Catalonia, Spain
| | - Nicola Pavese
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark; Division of Neuroscience, Newcastle University, England, United Kingdom.
| |
Collapse
|
18
|
de Natale ER, Niccolini F, Wilson H, Politis M. Molecular Imaging of the Dopaminergic System in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:131-172. [DOI: 10.1016/bs.irn.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Li W, Lao-Kaim NP, Roussakis AA, Martín-Bastida A, Valle-Guzman N, Paul G, Loane C, Widner H, Politis M, Foltynie T, Barker RA, Piccini P. 11 C-PE2I and 18 F-Dopa PET for assessing progression rate in Parkinson's: A longitudinal study. Mov Disord 2017; 33:117-127. [PMID: 29082547 DOI: 10.1002/mds.27183] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND 18 F-dopa PET measuring aromatic l-amino acid decarboxylase activity is regarded as the gold standard for evaluating dopaminergic function in Parkinson's disease. Radioligands for dopamine transporters are also used in clinical trials and for confirming PD diagnosis. Currently, it is not clear which imaging marker is more reliable for assessing clinical severity and rate of progression. The objective of this study was to directly compare 18 F-dopa with the highly selective dopamine transporter radioligand 11 C-PE2I for the assessment of motor severity and rate of progression in PD. METHODS Thirty-three mild-moderate PD patients underwent 18 F-dopa and 11 C-PE2I PET at baseline. Twenty-three were followed up for 18.8 ± 3.4 months. RESULTS Standard multiple regression at baseline indicated that 11 C-PE2I BPND predicted UPDRS-III and bradykinesia-rigidity scores (P < 0.05), whereas 18 F-dopa Ki did not make significant unique explanatory contributions. Voxel-wise analysis showed negative correlations between 11 C-PE2I BPND and motor severity across the whole striatum bilaterally. 18 F-Dopa Ki clusters were restricted to the most affected putamen and caudate. Longitudinally, negative correlations were found between striatal Δ11 C-PE2I BPND , ΔUPDRS-III, and Δbradykinesia-rigidity, whereas no significant associations were found for Δ18 F-dopa Ki . One cluster in the most affected putamen was identified in the longitudinal voxel-wise analysis showing a negative relationship between Δ11 C-PE2I BPND and Δbradykinesia-rigidity. CONCLUSIONS Striatal 11 C-PE2I appears to show greater sensitivity for detecting differences in motor severity than 18 F-dopa. Furthermore, dopamine transporter decline is closely associated with motor progression over time, whereas no such relationship was found with aromatic l-amino acid decarboxylase. 11 C-PE2I may be more effective for evaluating the efficacy of neuroprotective treatments in PD. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Weihua Li
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | - Nick P Lao-Kaim
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | - Andreas A Roussakis
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | - Antonio Martín-Bastida
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | | | - Gesine Paul
- Translational Neurology Group, Department of Clinical Sciences, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden.,Division of Neurology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Clare Loane
- Memory Research Group, Nuffield Department of Clinical Neurosciences, Medical Science Division. University of Oxford, Oxford, UK
| | - Håkan Widner
- Division of Neurology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tom Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Roger A Barker
- John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Paola Piccini
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
20
|
Wilbertz G, Delgado MR, Tebartz Van Elst L, Maier S, Philipsen A, Blechert J. Neural response during anticipation of monetary loss is elevated in adult attention deficit hyperactivity disorder. World J Biol Psychiatry 2017; 18:268-278. [PMID: 26508322 DOI: 10.3109/15622975.2015.1112032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Risky behaviour seriously impacts the life of adult patients with attention deficit hyperactivity disorder (ADHD). Such behaviours have often been attributed to their exaggerated reward seeking, but dysfunctional anticipation of negative outcomes might also play a role. METHODS The present study compared adult patients with ADHD (n = 28) with matched healthy controls (n = 28) during anticipation of monetary losses versus gains while undergoing functional magnetic resonance imaging (fMRI) and skin conductance recording. RESULTS Skin conductance was higher during anticipation of losses compared to gains in both groups. Affective ratings of predictive cues did not differ between groups. ADHD patients showed increased activity in bilateral amygdalae, left anterior insula (region of interest analysis) and left temporal pole (whole brain analysis) compared to healthy controls during loss versus gain anticipation. In the ADHD group higher insula and temporal pole activations went along with more negative affective ratings. CONCLUSIONS Neural correlates of loss anticipation are not blunted but rather increased in ADHD, possibly due to a life history of repeated failures and the respective environmental sanctions. Behavioural adaptations to such losses, however, might differentiate them from controls: future research should study whether negative affect might drive more risk seeking than risk avoidance.
Collapse
Affiliation(s)
- Gregor Wilbertz
- a Department of Psychology , University of Freiburg , Freiburg , Germany.,b Department of Psychiatry and Psychotherapy, Section for Experimental Neuropsychiatry , University Medical Centre Freiburg , Freiburg , Germany.,c Department of Psychiatry and Psychotherapy , Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Mauricio R Delgado
- d Department of Psychology , Rutgers University , Newark , NJ 07102 , USA
| | - Ludger Tebartz Van Elst
- b Department of Psychiatry and Psychotherapy, Section for Experimental Neuropsychiatry , University Medical Centre Freiburg , Freiburg , Germany
| | - Simon Maier
- b Department of Psychiatry and Psychotherapy, Section for Experimental Neuropsychiatry , University Medical Centre Freiburg , Freiburg , Germany
| | - Alexandra Philipsen
- b Department of Psychiatry and Psychotherapy, Section for Experimental Neuropsychiatry , University Medical Centre Freiburg , Freiburg , Germany.,e Medical Campus University of Oldenburg, School of Medicine and Health Sciences , Psychiatry and Psychotherapy - University Hospital , Karl-Jaspers-Klinik, Bad Zwischenahn , Germany
| | - Jens Blechert
- f Center for Cognitive Neuroscience, University of Salzburg , Salzburg , Austria.,g Department of Psychology, University of Salzburg , Salzburg , Austria
| |
Collapse
|
21
|
Nocker M, Seppi K, Boesch S, Donnemiller E, Virgolini I, Wenning GK, Poewe W, Scherfler C. Topography of Dopamine Transporter Availability in the Cerebellar Variant of Multiple System Atrophy. Mov Disord Clin Pract 2016; 4:389-396. [PMID: 30363469 DOI: 10.1002/mdc3.12446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 11/06/2022] Open
Abstract
Background Voxel-wise comparison of [123I]-2β-carbomethoxy-3beta-(4-iodophenyl)tropane ([123I]β-CIT) radioligand distribution measured by single-photon emission computed tomography (SPECT) revealed distinct patterns of reduced dopamine transporter (DAT) availability in the Parkinson's variant of MSA (MSA-P). The aim of this study was to identify the monoamine transporter distribution pattern in patients with the cerebellar variant of MSA (MSA-C). Additionally, monoamine transporter availability was investigated in a small cohort of patients with sporadic adult-onset ataxia (SAOA). Methods [123I]β-CIT SPECT was performed in patients with MSA-C (n = 12), MSA-P (n = 14), SAOA (n = 5), and controls (n = 15) matched for age. Parametric images of [123I]β-CIT binding potential (BPND) were generated and analyzed by statistical parametric mapping (SPM) and region of interest (ROI) analysis. Results SPM localized significant reductions of [123I]β-CIT BPND in the striatum, midbrain, and pons in MSA-C compared to controls. When compared with MSA-P, the striatal DAT decline was significantly less affected in MSA-C. ROI analysis revealed reductions of striatal and midbrain [123I]β-CIT binding in MSA-C compared to SAOA, whereas no significant difference was apparent between the SAOA and control groups. Conclusions Midbrain and pontine monoaminergic transporter binding was severely impaired in MSA-C, matching the underlying pathological features. Striatal DAT availability was relatively less affected in MSA-C compared to MSA-P, reflecting measureable, but less-profound, degeneration of the nigrostriatal dopaminergic projections. Preliminary results of reduced striatal and midbrain [123I]β-CIT binding in MSA-C, compared to SAOA, suggest that the potential of DAT-SPECT as a surrogate marker in the diagnostic workup of patients with adult-onset cerebellar ataxia should be further investigated.
Collapse
Affiliation(s)
- Michael Nocker
- Department of Neurology Medical University of Innsbruck Innsbruck Austria
| | - Klaus Seppi
- Department of Neurology Medical University of Innsbruck Innsbruck Austria
| | - Sylvia Boesch
- Department of Neurology Medical University of Innsbruck Innsbruck Austria
| | - Eveline Donnemiller
- Department of Nuclear Medicine Medical University of Innsbruck Innsbruck Austria
| | - Irene Virgolini
- Department of Nuclear Medicine Medical University of Innsbruck Innsbruck Austria
| | - Gregor K Wenning
- Department of Neurology Medical University of Innsbruck Innsbruck Austria
| | - Werner Poewe
- Department of Neurology Medical University of Innsbruck Innsbruck Austria
| | | |
Collapse
|
22
|
Gallagher CL, Bell B, Palotti M, Oh J, Christian BT, Okonkwo O, Sojkova J, Buyan-Dent L, Nickles RJ, Harding SJ, Stone CK, Johnson SC, Holden JE. Anterior cingulate dopamine turnover and behavior change in Parkinson's disease. Brain Imaging Behav 2016; 9:821-7. [PMID: 25511521 DOI: 10.1007/s11682-014-9338-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Subtle cognitive and behavioral changes are common in early Parkinson's disease. The cause of these symptoms is probably multifactorial but may in part be related to extra-striatal dopamine levels. 6-[(18) F]-Fluoro-L-dopa (FDOPA) positron emission tomography has been widely used to quantify dopamine metabolism in the brain; the most frequently measured kinetic parameter is the tissue uptake rate constant, Ki. However, estimates of dopamine turnover, which also account for the small rate of FDOPA loss from areas of specific trapping, may be more sensitive than Ki for early disease-related changes in dopamine biosynthesis. The purpose of the present study was to compare effective distribution volume ratio (eDVR), a metric for dopamine turnover, to cognitive and behavioral measures in Parkinson's patients. We chose to focus the investigation on anterior cingulate cortex, which shows highest FDOPA uptake within frontal regions and has known roles in executive function. Fifteen non-demented early-stage PD patients were pretreated with carbidopa and tolcapone, a central catechol-O-methyl transferase (COMT) inhibitor, and then underwent extended imaging with FDOPA PET. Anterior cingulate eDVR was compared with composite scores for language, memory, and executive function measured by neuropsychological testing, and behavior change measured using two informant-based questionnaires, the Cambridge Behavioral Inventory and the Behavior Rating Inventory of Executive Function-Adult Version. Lower mean eDVR (thus higher dopamine turnover) in anterior cingulate cortex was related to lower (more impaired) behavior scores. We conclude that subtle changes in anterior cingulate dopamine metabolism may contribute to dysexecutive behaviors in Parkinson's disease.
Collapse
Affiliation(s)
- Catherine L Gallagher
- William S. Middleton Veterans Hospital, Madison, WI, USA.
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave., Madison, WI, 53705-2281, USA.
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Brian Bell
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave., Madison, WI, 53705-2281, USA
| | - Matthew Palotti
- William S. Middleton Veterans Hospital, Madison, WI, USA
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave., Madison, WI, 53705-2281, USA
| | - Jen Oh
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bradley T Christian
- University of Wisconsin Department of Medical Physics, Madison, WI, USA
- Waisman Laboratory for Brain Imaging and Behavior, Madison, WI, USA
| | - Ozioma Okonkwo
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jitka Sojkova
- William S. Middleton Veterans Hospital, Madison, WI, USA
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave., Madison, WI, 53705-2281, USA
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura Buyan-Dent
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7211 MFCB, 1685 Highland Ave., Madison, WI, 53705-2281, USA
| | - Robert J Nickles
- University of Wisconsin Department of Medical Physics, Madison, WI, USA
| | - Sandra J Harding
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Charles K Stone
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- William S. Middleton Veterans Hospital, Madison, WI, USA
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - James E Holden
- University of Wisconsin Department of Medical Physics, Madison, WI, USA
| |
Collapse
|
23
|
NEUROIMÁGENES EN ENFERMEDAD DE PARKINSON: ROL DE LA RESONANCIA MAGNÉTICA, EL SPECT Y EL PET. REVISTA MÉDICA CLÍNICA LAS CONDES 2016. [DOI: 10.1016/j.rmclc.2016.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
24
|
Algarni MA, Stoessl AJ. The role of biomarkers and imaging in Parkinson’s disease. Expert Rev Neurother 2016; 16:187-203. [DOI: 10.1586/14737175.2016.1135056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Potgieser AR, van der Hoorn A, Meppelink AM, Teune LK, Koerts J, de Jong BM. Anterior Temporal Atrophy and Posterior Progression in Patients with Parkinson's Disease. NEURODEGENER DIS 2014; 14:125-32. [DOI: 10.1159/000363245] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/28/2014] [Indexed: 11/19/2022] Open
|
26
|
Bonoldi I, Howes OD. Presynaptic dopaminergic function: implications for understanding treatment response in psychosis. CNS Drugs 2014; 28:649-63. [PMID: 24919790 DOI: 10.1007/s40263-014-0177-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
All current antipsychotic drugs block dopamine (DA) receptors, but the nature of the DA dysfunction in schizophrenia has not been clear. However, consistent evidence now shows that presynaptic dopaminergic function is altered in schizophrenia, specifically in terms of increased DA synthesis capacity, baseline synaptic DA levels, and DA release. Furthermore, presynaptic dopaminergic function is already elevated in prodromal patients who later developed the disorder. Currently available antipsychotics act on postsynaptic receptors, not targeting presynaptic DA abnormalities. This has implications for understanding response and developing new treatments. The lack of normalization of the abnormal presynaptic function could explain why discontinuation is likely to lead to relapse, because the major dopaminergic function persists, meaning that once treatment stops there is nothing to oppose the dysregulated dopamine function reinstating symptoms. Furthermore, it suggests that drugs that target presynaptic dopaminergic function may constitute new treatment possibilities for schizophrenic patients, in particular, for those in whom antipsychotics are poorly effective. In addition, the longitudinal changes with the onset of psychosis indicate the potential to target a defined dynamic neurochemical abnormality to prevent the onset of psychosis.
Collapse
Affiliation(s)
- I Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, King's College of London, De Crespigny Park 16, London, SE5 8AF, UK,
| | | |
Collapse
|
27
|
Li CT, Palotti M, Holden JE, Oh J, Okonkwo O, Christian BT, Bendlin BB, Buyan-Dent L, Harding SJ, Stone CK, DeJesus OT, Nickles RJ, Gallagher CL. A dual-tracer study of extrastriatal 6-[18F]fluoro-m-tyrosine and 6-[18F]-fluoro-L-dopa uptake in Parkinson's disease. Synapse 2014; 68:325-31. [PMID: 24710997 DOI: 10.1002/syn.21745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/03/2014] [Indexed: 11/08/2022]
Abstract
6-[(18)F]-Fluoro-L-dopa (FDOPA) has been widely used as a biomarker for catecholamine synthesis, storage, and metabolism--its intense uptake in the striatum, and fainter uptake in other brain regions, is correlated with the symptoms and pathophysiology of Parkinson's disease (PD). 6-[(18)F]fluoro-m-tyrosine (FMT), which also targets L-amino acid decarboxylase, has potential advantages over FDOPA as a radiotracer because it does not form catechol-O-methyltransferase (COMT) metabolites. The purpose of the present study was to compare the regional distribution of these radiotracers in the brains of PD patients. Fifteen Parkinson's patients were studied with FMT and FDOPA positron emission tomography (PET) as well as high-resolution structural magnetic resonance imaging (MRI). MRI's were automatically parcellated into neuroanatomical regions of interest (ROIs) in Freesurfer (http://surfer.nmr.mgh.harvard.edu); region-specific uptake rate constants (Kocc) were generated from coregistered PET using a Patlak graphical approach. The essential findings were as follows: (1) regional Kocc were highly correlated between the radiotracers and in agreement with a previous FDOPA studies that used different ROI selection techniques; (2) FMT Kocc were higher in extrastriatal regions of relatively large uptake such as amygdala, pallidum, brainstem, hippocampus, entorhinal cortex, and thalamus, whereas cortical Kocc were similar between radiotracers; (3) while subcortical uptake of both radiotracers was related to disease duration and severity, cortical uptake was not. These results suggest that FMT may have advantages for examining pathologic changes within allocortical loop structures, which may contribute to cognitive and emotional symptoms of PD.
Collapse
Affiliation(s)
- Clarence T Li
- William S. Middleton Veterans Hospital and Geriatric Research Education and Clinical Center, Madison, Wisconsin; Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Lawrence AD, Brooks DJ, Whone AL. Ventral striatal dopamine synthesis capacity predicts financial extravagance in Parkinson's disease. Front Psychol 2013; 4:90. [PMID: 23450713 PMCID: PMC3583186 DOI: 10.3389/fpsyg.2013.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/07/2013] [Indexed: 02/01/2023] Open
Abstract
Impulse control disorders (ICDs), including disordered gambling, can occur in a significant number of patients with Parkinson’s disease (PD) receiving dopaminergic therapy. The neurobiology underlying susceptibility to such problems is unclear, but risk likely results from an interaction between dopaminergic medication and a pre-existing trait vulnerability. Impulse control and addictive disorders form part of a broader psychopathological spectrum of disorders, which share a common underlying genetic vulnerability, referred to as externalizing. The broad externalizing risk factor is a continuously varying trait reflecting vulnerability to various impulse control problems, manifested at the overt level by disinhibitory symptoms and at the personality level by antecedent traits such as impulsivity and novelty/sensation seeking. Trait “disinhibition” is thus a core endophenotype of ICDs, and a key target for neurobiological investigation. The ventral striatal dopamine system has been hypothesized to underlie individual variation in behavioral disinhibition. Here, we examined whether individual differences in ventral striatal dopamine synthesis capacity predicted individual variation in disinhibitory temperament traits in individuals with PD. Eighteen early-stage male PD patients underwent 6-[18F]Fluoro-l-DOPA (FDOPA) positron emission tomography scanning to measure striatal dopamine synthesis capacity, and completed a measure of disinhibited personality. Consistent with our predictions, we found that levels of ventral, but not dorsal, striatal dopamine synthesis capacity predicted disinhibited personality, particularly a propensity for financial extravagance. Our results are consistent with recent preclinical models of vulnerability to behavioral disinhibition and addiction proneness, and provide novel insights into the neurobiology of potential vulnerability to impulse control problems in PD and other disorders.
Collapse
|
30
|
Bonoldi I, Howes O. The Enduring Centrality of Dopamine in the Pathophysiology of Schizophrenia. A NEW ERA OF CATECHOLAMINES IN THE LABORATORY AND CLINIC 2013; 68:199-220. [DOI: 10.1016/b978-0-12-411512-5.00010-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
31
|
Allen P, Luigjes J, Howes OD, Egerton A, Hirao K, Valli I, Kambeitz J, Fusar-Poli P, Broome M, McGuire P. Transition to psychosis associated with prefrontal and subcortical dysfunction in ultra high-risk individuals. Schizophr Bull 2012; 38:1268-76. [PMID: 22290265 PMCID: PMC3494046 DOI: 10.1093/schbul/sbr194] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND People at ultra high risk (UHR) of psychosis have an elevated risk of developing a psychotic disorder, but it is difficult to predict which individuals will make a transition to frank illness. We investigated whether functional magnetic resonance imaging (fMRI) in conjunction with a phonological fluency task at presentation could distinguish subjects who subsequently developed psychosis from those who did not. METHODS Sixty-five subjects (41 with an UHR and 24 healthy controls) were assessed at clinical presentation using fMRI, in conjunction with a verbal fluency task. [18F]-DOPA positron emission tomography (PET) data were also available in a subgroup of 21 UHR and 14 healthy controls subjects. UHR subjects were followed clinically for at least 2 years. RESULTS Compared with UHR subjects who did not become psychotic, UHR subjects who subsequently developed psychosis showed increased activation in bilateral prefrontal cortex (PFC), brainstem (midbrain/basilar pons), the left hippocampus, and greater midbrain-PFC connectivity. Furthermore, exploratory analysis of [18F]-DOPA PET data showed that transition to psychosis was associated with elevated dopaminergic function in the brainstem region. CONCLUSIONS In people at high risk of psychosis, increased activation in a network of cortical and subcortical regions may predict the subsequent onset of illness. Functional neuroimaging, in conjunction with clinical assessment and other investigations, may facilitate the prediction of outcome in subjects who are vulnerable to psychosis.
Collapse
Affiliation(s)
- Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK.
| | - Judy Luigjes
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK,Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK
| | | | - Kazuyuki Hirao
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK,Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Isabel Valli
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK
| | - Joseph Kambeitz
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK,Department of Medicine and Public Health, Section of Psychiatry and Clinical Psychology, University of Verona, Verona, Italy
| | - Matthew Broome
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK,Health Sciences Research Institute, University of Warwick, Coventry, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK
| |
Collapse
|
32
|
Goker-Alpan O, Masdeu JC, Kohn PD, Ianni A, Lopez G, Groden C, Chapman MC, Cropp B, Eisenberg DP, Maniwang ED, Davis J, Wiggs E, Sidransky E, Berman KF. The neurobiology of glucocerebrosidase-associated parkinsonism: a positron emission tomography study of dopamine synthesis and regional cerebral blood flow. ACTA ACUST UNITED AC 2012; 135:2440-8. [PMID: 22843412 DOI: 10.1093/brain/aws174] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutations in GBA, the gene encoding glucocerebrosidase, the enzyme deficient in Gaucher disease, are common risk factors for Parkinson disease, as patients with Parkinson disease are over five times more likely to carry GBA mutations than healthy controls. Patients with GBA mutations generally have an earlier onset of Parkinson disease and more cognitive impairment than those without GBA mutations. We investigated whether GBA mutations alter the neurobiology of Parkinson disease, studying brain dopamine synthesis and resting regional cerebral blood flow in 107 subjects (38 women, 69 men). We measured dopamine synthesis with (18)F-fluorodopa positron emission tomography, and resting regional cerebral blood flow with H(2)(15)O positron emission tomography in the wakeful, resting state in four study groups: (i) patients with Parkinson disease and Gaucher disease (n = 7, average age = 56.6 ± 9.2 years); (ii) patients with Parkinson disease without GBA mutations (n = 11, 62.1 ± 7.1 years); (iii) patients with Gaucher disease without parkinsonism, but with a family history of Parkinson disease (n = 14, 52.6 ± 12.4 years); and (iv) healthy GBA-mutation carriers with a family history of Parkinson disease (n = 7, 50.1 ± 18 years). We compared each study group with a matched control group. Data were analysed with region of interest and voxel-based methods. Disease duration and Parkinson disease functional and staging scores were similar in the two groups with parkinsonism, as was striatal dopamine synthesis: both had greatest loss in the caudal striatum (putamen Ki loss: 44 and 42%, respectively), with less reduction in the caudate (20 and 18% loss). However, the group with both Parkinson and Gaucher diseases showed decreased resting regional cerebral blood flow in the lateral parieto-occipital association cortex and precuneus bilaterally. Furthermore, two subjects with Gaucher disease without parkinsonian manifestations showed diminished striatal dopamine. In conclusion, the pattern of dopamine loss in patients with both Parkinson and Gaucher disease was similar to sporadic Parkinson disease, indicating comparable damage in midbrain neurons. However, H(2)(15)O positron emission tomography studies indicated that these subjects have decreased resting activity in a pattern characteristic of diffuse Lewy body disease. These findings provide insight into the pathophysiology of GBA-associated parkinsonism.
Collapse
Affiliation(s)
- Ozlem Goker-Alpan
- Section on Molecular Neurogenetics, Medical Genetics Branch, NHGRI Intramural Research Program, National Institutes of Health,Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Howes OD, Fusar-Poli P, Bloomfield M, Selvaraj S, McGuire P. From the prodrome to chronic schizophrenia: the neurobiology underlying psychotic symptoms and cognitive impairments. Curr Pharm Des 2012; 18:459-65. [PMID: 22239576 DOI: 10.2174/138161212799316217] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/18/2011] [Indexed: 11/22/2022]
Abstract
Schizophrenia is a chronic psychotic disorder that remains a considerable cause of global disease burden. Cognitive impairments are common and contribute significantly to the morbidity of the disorder. Over the last two decades or so molecular imaging studies have refined understanding of the pathophysiology underlying the development of psychosis and cognitive impairments. Firstly they have consistently implicated presynaptic dopaminergic dysfunction in the disorder, finding that dopamine synthesis capacity, dopamine release and baseline dopamine levels are increased in the illness. Secondly recent findings show that dopamine synthesis capacity is elevated in those that go on to develop psychosis in the following year, but not in those that do not, and appears to increase further with the development of psychosis. Thirdly evidence links greater dopamine synthesis capacity to poorer cognitive performance and altered frontal cortical function measured using functional imaging during cognitive tasks. Finally they have provided data on the nature of other neurofunctional alterations in the disorder, in particular in the serotonergic system and neuroinflammation. We review these findings and discuss their implications for understanding the neurobiology of psychosis and cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- O D Howes
- Psychiatric Imaging Group Cyclotron Building Hammersmith Hospital, London W12 0NN, UK.
| | | | | | | | | |
Collapse
|
34
|
Agarwal PA, Stoessl AJ. Biomarkers for trials of neuroprotection in Parkinson's disease. Mov Disord 2012; 28:71-85. [DOI: 10.1002/mds.25065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/19/2012] [Accepted: 04/23/2012] [Indexed: 02/06/2023] Open
Affiliation(s)
- Pankaj A. Agarwal
- Pacific Parkinson's Research Centre; University of British Columbia; Vancouver; British Columbia; Canada
| | | |
Collapse
|
35
|
Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Oertel WH, Bjorklund A, Lindvall O, Piccini P. Serotonin Neuron Loss and Nonmotor Symptoms Continue in Parkinson's Patients Treated with Dopamine Grafts. Sci Transl Med 2012; 4:128ra41. [DOI: 10.1126/scitranslmed.3003391] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Brain monoamine systems in multiple system atrophy: a positron emission tomography study. Neurobiol Dis 2012; 46:130-6. [PMID: 22266105 DOI: 10.1016/j.nbd.2011.12.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/21/2011] [Accepted: 12/31/2011] [Indexed: 11/22/2022] Open
Abstract
Post-mortem studies of multiple system atrophy (MSA) patients have shown widespread subcortical neurodegeneration. In this study, we have used 18F-dopa PET, a marker of monoaminergic nerve terminal function, to explore in vivo changes in striatal and extrastriatal dopamine, noradrenaline, and serotonin transmission for a cohort of patients with MSA with predominant parkinsonism. Fourteen patients with MSA, ten patients with idiopathic Parkinson's disease (PD) matched for disease duration, and ten healthy controls were studied with 18F-dopa PET. Regions of interest (ROIs) were placed to sample 18F-dopa uptake in thirteen structures and mean activity was compared between groups. The MSA patients showed significantly decreased 18F-dopa uptake in putamen, caudate nucleus, ventral striatum, globus pallidus externa and red nucleus compared to controls, whereas PD patients only had decreased 18F-dopa uptake in putamen, caudate nucleus, and ventral striatum. MSA cases with orthostatic hypotension had lower 18F-dopa uptake in the locus coeruleus than patients without this symptom. In conclusion, 18F-dopa PET showed more widespread basal ganglia dysfunction in MSA than in PD with similar disease duration, and extrastriatal loss of monoaminergic innervation could be detected in the red nucleus and locus coeruleus. In contrast to PD, there was no evidence of early compensatory increases in regional 18F-dopa uptake.
Collapse
|
37
|
Abstract
The results of imaging studies have played an important role in the formulation of hypotheses regarding the etiology of psychosis and schizophrenia, as well as in our understanding of the mechanisms of action of antipsychotics. Since this volume is primarily directed to molecular aspects of psychosis and antipsychotics, only the results of molecular imaging techniques addressing these topics will be discussed here.One of the most consistent findings of molecular imaging studies in schizophrenia is an increased uptake of DOPA in the striatum, which may be interpreted as an increased synthesis of L-DOPA. Also, several studies reported an increased release of dopamine induced by amphetamine in schizophrenia patients. These findings played an important role in reformulating the dopamine hypothesis of schizophrenia. To study the roles of the neurotransmitters γ-aminobutyric acid (GABA) and glutamate in schizophrenia, SPECT as well as MR spectroscopy have been used. The results of preliminary SPECT studies are consistent with the hypothesis of NMDA receptor dysfunction in schizophrenia. Regarding the GABA deficit hypothesis of schizophrenia, imaging results are inconsistent. No changes in serotonin transporters were demonstrated in imaging studies in schizophrenia, but studies of several serotonin receptors showed conflicting results. The lack of selective radiotracers for muscarinic receptors may have hampered examination of this system in schizophrenia as well as its role in the induction of side effects of antipsychotics. Interestingly, preliminary molecular imaging studies on the cannabinoid-1 receptor and on neuroinflammatory processes in schizophrenia have recently been published. Finally, a substantial number of PET/SPECT studies have examined the occupancy of receptors by antipsychotics and an increasing number of studies is now focusing on the effects of these drugs using techniques like spectroscopy and pharmacological MRI.
Collapse
|
38
|
Abstract
In the last 25 years there have been enormous advances in brain imaging. In addition to utility in diagnosis, these have led to novel insights into the pathogenesis of basal ganglia disease and the role of dopamine and the basal ganglia in normal health. The authors review highlights of this work, with a focus on advances in Parkinson's disease, the dystonias, Huntington's disease, and the role of dopamine in cognition and reward signaling. Emerging areas for future development include studies of functional connectivity, the analysis of default mode networks, studies of novel neurochemical pathways, methods to study disease pathogenesis, and the application of imaging techniques to investigate animal models of disease.
Collapse
Affiliation(s)
- A Jon Stoessl
- Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
39
|
Pavese N, Simpson BS, Metta V, Ramlackhansingh A, Chaudhuri KR, Brooks DJ. [¹⁸F]FDOPA uptake in the raphe nuclei complex reflects serotonin transporter availability. A combined [¹⁸F]FDOPA and [¹¹C]DASB PET study in Parkinson's disease. Neuroimage 2011; 59:1080-4. [PMID: 21963917 DOI: 10.1016/j.neuroimage.2011.09.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 09/06/2011] [Accepted: 09/15/2011] [Indexed: 11/15/2022] Open
Abstract
Brain uptake of [(18)F]FDOPA, measured with PET, reflects the activity of aromatic amino acid decarboxylase, an enzyme largely expressed in monoaminergic nerve terminals. This enzyme catalyzes a number of decarboxylation reactions including conversion of l-dopa into dopamine and 5-hydroxytryptophan into serotonin. For more than 20years [(18)F]FDOPA PET has been used to assess dopaminergic nigrostriatal dysfunction in patients with Parkinson's disease (PD). More recently, however, [(18)F]FDOPA PET has also been employed as a marker of serotoninergic and noradrenergic function in PD patients. In this study, we provide further evidence in support of the view that [(18)F]FDOPA PET can be used to evaluate the distribution and the function of serotoninergic systems in the brain. Eighteen patients with PD were investigated with both [(18)F]FDOPA and [(11)C]DASB PET, the latter being a marker of serotonin transport (SERT) availability. We then assessed the relationship between measurements of the two tracers within brain serotoninergic structures. [(18)F]FDOPA uptake in the median raphe nuclei complex of PD patients was significantly correlated with SERT availability in the same structure. Trends towards significant correlations between [(18)F]FDOPA Ki values and [(11)C]DASB binding values were also observed in the hypothalamus and the anterior cingulate cortex, suggesting a serotoninergic contribution to [(18)F]FDOPA uptake in these regions. Conversely, no correlations were found in brain structures with mixed dopaminergic, serotoninergic and noradrenergic innervations, or with predominant dopaminergic innervation. These findings provide evidence that [(18)F]FDOPA PET represents a valid marker of raphe serotoninergic function in PD and supports previous studies where [(18)F]FDOPA PET has been used to assess serotoninergic function in PD.
Collapse
Affiliation(s)
- N Pavese
- Centre for Neuroscience, Department of Medicine, Imperial College, London, UK.
| | | | | | | | | | | |
Collapse
|
40
|
Convergence optimization of parametric MLEM reconstruction for estimation of Patlak plot parameters. Comput Med Imaging Graph 2011; 35:407-16. [DOI: 10.1016/j.compmedimag.2011.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 10/14/2010] [Accepted: 01/10/2011] [Indexed: 11/23/2022]
|
41
|
Progression of monoaminergic dysfunction in Parkinson's disease: a longitudinal 18F-dopa PET study. Neuroimage 2011; 56:1463-8. [PMID: 21396455 DOI: 10.1016/j.neuroimage.2011.03.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 11/21/2022] Open
Abstract
Post-mortem and neuroimaging studies in Parkinson's disease (PD) have shown involvement of the brain serotoninergic, noradrenergic and cholinergic pathways alongside the characteristic degeneration of nigrostriatal dopamine neurons. The rate of progression of the degenerative process in these extrastriatal areas is still unclear. We used (18)F-dopa PET, a marker of aromatic aminoacid decarboxylase activity in monoaminergic neurons, to assess longitudinal changes in tracer uptake in brain noradrenergic, serotoninergic and extrastriatal dopaminergic structures over a 3-year period in a group of early PD patients. Ten PD patients had (18)F-dopa PET twice: at baseline and again after 37.1±21.5 months follow up. A standard object map was used to extract tracer influx constants (Ki) in 11 striatal and extrastriatal regions. Progressive decreases in (18)F-dopa Ki occurred over the follow-up period in the majority of the investigated areas, the fastest annual declines occurring in putamen (8.1%), locus coeruleus (7.8%), and globus pallidus interna (7.7%). Caudate and hypothalamus showed 6.3% and 6.1% annual Ki declines, respectively. At baseline, some structures showed increased levels of (18)F-dopa uptake in PD compared to controls (internal pallidum, locus coeruleus), indicating possible compensatory upregulation of monoamine turnover. These increased levels had normalised (globus pallidus interna) or become subnormal (locus coeruleus) at follow-up suggesting exhaustion of these mechanisms within the first years of disease. Loss of monoaminergic function in extrastriatal regions, as reflected by(18)F-dopa PET, is delayed and occurs independently from nigrostriatal degeneration. When assessing the efficacy of novel neuroprotective agents on nigrostriatal dysfunction in PD, (18)F-dopa PET could provide supplementary information concerning function of extrastriatal monoaminergic structures.
Collapse
|
42
|
Fusar-Poli P, Howes OD, Allen P, Broome M, Valli I, Asselin MC, Montgomery AJ, Grasby PM, McGuire P. Abnormal prefrontal activation directly related to pre-synaptic striatal dopamine dysfunction in people at clinical high risk for psychosis. Mol Psychiatry 2011; 16:67-75. [PMID: 19949389 DOI: 10.1038/mp.2009.108] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Schizophrenia is characterized by altered prefrontal activity and elevated striatal dopaminergic function. To investigate the relationship between these abnormalities in the prodromal phase of the illness, we combined functional Magnetic Resonance Imaging and (18)F-Dopa Positron Emission Tomography. When performing a verbal fluency task, subjects with an At-Risk Mental State showed greater activation in the inferior frontal cortex than controls. Striatal dopamine function was greater in the At-Risk group than in controls. Within the At-Risk group, but not the control group, there was a direct correlation between the degree of left inferior frontal activation and the level of striatal dopamine function. Altered prefrontal activation in subjects with an At-Risk Mental State for psychosis is related to elevated striatal dopamine function. These changes reflect an increased vulnerability to psychosis and predate the first episode of frank psychosis.
Collapse
Affiliation(s)
- P Fusar-Poli
- Department of Psychological Medicine, Neuroimaging Section, Institute of Psychiatry, King's College London, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Parkinson's disease (PD) is a common disorder in which the primary features can be related to dopamine deficiency. Changes on structural imaging are limited, but a wealth of abnormalities can be detected using positron emission tomography, single photon emission computed tomography, or functional magnetic resonance imaging to detect changes in neurochemical pathology or functional connectivity. The changes detected on these studies may reflect the disease process itself and/or compensatory responses to the disease, or they may arise in association with disease- and/or treatment-related complications. This review will focus mainly on neurochemical and metabolic studies and reviews various approaches to the assessment of dopaminergic function as well as the function of other neurotransmitters that may be affected in PD. A number of clinical applications are highlighted, including diagnostic utility, identification of preclinical disease, changes associated with motor and nonmotor complications of PD, and the effects of various therapeutic interventions.
Collapse
Affiliation(s)
- A Jon Stoessl
- Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada.
| |
Collapse
|
44
|
Stoessl AJ. Parkin and Parkinson's disease: differentiated by non-dopaminergic dysfunction? Exp Neurol 2010; 225:48-50. [PMID: 20450912 DOI: 10.1016/j.expneurol.2010.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 04/20/2010] [Indexed: 11/17/2022]
Affiliation(s)
- A Jon Stoessl
- Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, 2221 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
| |
Collapse
|
45
|
Foster PS, Drago V, Harrison DW, Skidmore F, Crucian GP, Heilman KM. Influence of left versus right hemibody onset Parkinson's disease on cardiovascular control. Laterality 2010; 16:164-73. [PMID: 20306353 DOI: 10.1080/13576500903483507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Whereas the left hemisphere is involved in regulating the parasympathetic nervous system, the right hemisphere regulates the sympathetic. Given the asymmetrical onset of motor symptoms and neuropathology in PD, differences in cardiovascular functions might be expected between PD patients with left hemibody onset (LHO) versus right hemibody onset (RHO). A total of 66 PD patients served as participants, including 31 LHO patients and 35 RHO PD patients. All participants had their resting heart rate (HR) and blood pressure (BP) recorded. Although the LHO group had lower systolic BP, it had higher resting HR than did the RHO group. The reason for this dissociation is not known but might be related to asymmetrical vagus nerve control of the heart (SA node). Future researchers might want to use additional indices of cardiovascular functioning that are more precise measures of parasympathetic and sympathetic functioning, as well as learn the influence of dopaminergic medications.
Collapse
Affiliation(s)
- Paul S Foster
- Middle Tennessee State University, Psychology Department, Murfreesboro, TN 37132, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Pavese N, Moore RY, Scherfler C, Khan NL, Hotton G, Quinn NP, Bhatia KP, Wood NW, Brooks DJ, Lees AJ, Piccini P. In vivo assessment of brain monoamine systems in parkin gene carriers: a PET study. Exp Neurol 2010; 222:120-4. [PMID: 20043906 DOI: 10.1016/j.expneurol.2009.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/09/2009] [Accepted: 12/20/2009] [Indexed: 11/28/2022]
Abstract
PET studies in parkin-linked parkinsonism have generally been performed to assess striatal dopaminergic dysfunction and very little is known about the involvement of other monoaminergic structures in these patients. Measurements of (18)F-dopa uptake into serotonergic and noradrenergic structures provide an indication of the functional integrity of these nerve terminals. We used (18)F-dopa PET to assess changes in brain monoaminergic function associated with parkin mutations. Twelve patients with parkin-linked parkinsonism and 12 asymptomatic parkin heterozygotes were included in the study. Eleven healthy controls, 12 patients with idiopathic Parkinson's disease (IPD), and four patients with PINK1 mutations were also investigated for comparison. parkin patients and IPD patients were matched for striatal dopaminergic dysfunction, as measured by (18)F-dopa uptake. Compared to controls, parkin patients showed significant (18)F-dopa reductions in the caudate, putamen, ventral striatum, locus coeruleus, midbrain raphe, and pallidum. The same structures showed reduced uptake in IPD patients, who additionally had significant reductions in hypothalamus, ventral anterior thalamus, and pineal gland. Direct comparison of parkin with IPD patients showed that hypothalamus was targeted in IPD and midbrain raphe in parkin disease. Patients with PINK1 mutation and several parkin heterozygotes also showed monoaminergic dysfunction. These findings suggest that parkin patients and IPD patients with similar striatal dysfunction have different patterns of monoaminergic involvement, with more widespread dysfunction in IPD.
Collapse
Affiliation(s)
- Nicola Pavese
- MRC Clinical Science Centre and Division of Neuroscience and Mental Health, Imperial College, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Recent advances in the development and applications of neurochemical brain imaging methods have improved the ability to study the neurochemistry of the living brain in normal processes as well as psychiatric disorders. In particular, positron emission tomography (PET) and single photon emission computed tomography (SPECT) have been used to determine neurochemical substrates of schizophrenia and to uncover the mechanism of action of antipsychotic medications. The growing availability of radiotracers for monoaminergic neurotransmitter synthesis, transporters and receptors, has enabled the evaluation of hypotheses regarding neurotransmitter function in schizophrenia derived from preclinical and clinical observations. This chapter reviews the studies using neurochemical brain imaging methods for (1) detection of abnormalities in indices of dopamine and serotonin transmission in patients with schizophrenia compared to controls, (2) development of new tools to study other neurotransmitters systems, such as gamma-aminobutyric acid (GABA) and glutamate, and (3) characterization of target occupancy by antipsychotic drugs, as well as its relationship to efficacy and side effects. As more imaging tools become available, this knowledge will expand and will lead to better detection of disease, as well as better therapeutic approaches.
Collapse
Affiliation(s)
- Nina Urban
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
48
|
Egerton A, Demjaha A, McGuire P, Mehta MA, Howes OD. The test-retest reliability of 18F-DOPA PET in assessing striatal and extrastriatal presynaptic dopaminergic function. Neuroimage 2009; 50:524-531. [PMID: 20034580 DOI: 10.1016/j.neuroimage.2009.12.058] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/08/2009] [Accepted: 12/12/2009] [Indexed: 11/17/2022] Open
Abstract
Brain presynaptic dopaminergic function can be assessed using 18F-DOPA positron emission tomography (PET). Regional 18F-DOPA utilization may be used to index dopaminergic abnormalities over time or dopaminergic response to treatment in clinical populations. Such studies require prior knowledge of the stability of the 18F-DOPA signal in the brain regions of interest. Test-retest reliability was examined in eight healthy volunteers who each received two 18F-DOPA PET scans, approximately 2 years apart. 18F-DOPA utilization (k(i)(cer)) was determined using graphical analysis relative to a reference tissue input (Patlak and Blasberg, 1985). Reproducibility (measured as the within-subjects variation) and reliability (measured as intraclass correlation coefficients, ICCs) of 18F-DOPA k(i)(cer) were assessed in the structural and functional subdivisions of the striatum and select extrastriatal brain regions. Voxel-based median ICC maps were used to visualize the distribution of 18F-DOPA k(i)(cer) reliability across the brain. The caudate and putamen, and associative and sensorimotor, striatal subdivisions showed good reliability across the two scan sessions with bilateral ICCs ranging from 0.681 to 0.944. Reliability was generally lower in extrastriatal regions, with bilateral ICCs ranging from 0.235 in the amygdala to 0.894 in the thalamus. These data confirm the utility of 18F-DOPA PET in assessing dopaminergic function in the striatum and select extrastriatal areas but highlight the limitations in using this approach to measure dopaminergic function in low uptake extrastriatal brain areas. This information can be used to optimize the experimental design of future studies investigating changes in brain dopaminergic function with 18F-DOPA.
Collapse
Affiliation(s)
- Alice Egerton
- Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom.,Division of Neurosciences & Mental Health, Imperial College London, United Kingdom.,Department of Psychological Medicine, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom
| | - Arsime Demjaha
- Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom.,Department of Psychological Medicine, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom
| | - Philip McGuire
- Department of Psychological Medicine, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom
| | - Mitul A Mehta
- Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom.,Division of Neurosciences & Mental Health, Imperial College London, United Kingdom.,Department of Psychological Medicine, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom
| | - Oliver D Howes
- Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom.,Division of Neurosciences & Mental Health, Imperial College London, United Kingdom.,Department of Psychological Medicine, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom
| |
Collapse
|
49
|
Elevated [(18)F]FDOPA utilization in the periaqueductal gray and medial nucleus accumbens of patients with early Parkinson's disease. Neuroimage 2009; 49:2933-9. [PMID: 19941962 DOI: 10.1016/j.neuroimage.2009.11.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 11/20/2022] Open
Abstract
PET studies with the DOPA decarboxylase substrate 6-[(18)F]fluoro-l-DOPA (FDOPA) reveal the storage of [(18)F]-fluorodopamine within synaptic vesicles, mainly of dopamine fibres. As such, FDOPA PET is a sensitive indicator of the integrity of the nigrostriatal dopamine innervation. Nonetheless, there have been several reports of focal elevations of FDOPA utilization in brain of patients with Parkinson's disease (PD), all based on reference tissue methods. To investigate this phenomenon further, we used voxel-wise steady-state kinetic analysis to search for regions of elevated FDOPA utilization (K; ml g(-1) min(-1)) and steady-state trapping (V(d); ml g(-1)) in a group of well-characterized patients with early, asymmetric PD, who were contrasted with an age-matched control group. Subtraction of the population mean parametric maps revealed foci of increased FDOPA utilization K (+25%) in the bilateral medial nucleus accumbens, whereas the expected declines in the trapping of FDOPA were seen in the caudate and putamen. This observation suggests hyperfunction of catecholamine fibres innervating specifically the limbic striatum, which could guide the design of future prospective FDOPA-PET studies of the impulse control disorders occurring in some PD patients under treatment with dopamine agonists. A focus of increased FDOPA influx and also V(d) was detected in the periaqueductal grey, consistent with some earlier reports based on reference tissue analysis. Increased FDOPA trapping in the periaqueductal grey of PD patients seems consistent with recent reports of increased activity of serotonin neurons in a rat model of parkinsonism.
Collapse
|
50
|
Howes OD, Egerton A, Allan V, McGuire P, Stokes P, Kapur S. Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. Curr Pharm Des 2009; 15:2550-9. [PMID: 19689327 DOI: 10.2174/138161209788957528] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular imaging studies have generated important in vivo insights into the etiology of schizophrenia and treatment response. This article first reviews the PET and SPECT evidence implicating dopaminergic dysfunction, especially presynaptic dysregulation, as a mechanism for psychosis. Second, it summarises the neurochemical imaging studies of antipsychotic action, focussing on D2/3 receptors. These studies show that all currently licensed antipsychotic drugs block striatal D2/3 receptors in vivo- a site downstream of the likely principal dopaminergic pathophysiology in schizophrenia- and that D2/3 occupancy above a threshold is required for antipsychotic treatment response. However, adverse events, such as extra-pyramidal side-effects or hyperprolactinemia, become much more likely at higher occupancy levels, which indicates there is an optimal 'therapeutic window' for D2/3 occupancy, and questions the use of high doses of antipsychotic treatment in clinical practice and trials. Adequate D2/3 blockade by antipsychotic drugs is necessary but not always sufficient for antipsychotic response. Molecular imaging studies of clozapine, the one antipsychotic licensed for treatment resistant schizophrenia, have provided insights into the mechanisms underlying its unique efficacy. To link this pharmacology to the phenomenology of the illness, we discuss the role of dopamine in motivational salience and show how i) psychosis could be viewed as a process of aberrant salience, and ii) antipsychotics might provide symptomatic relief by blocking this aberrant salience. Finally, we discuss the implications of these PET and SPECT findings for new avenues of drug development.
Collapse
Affiliation(s)
- O D Howes
- PET Psychiatry-MRC Clinical Sciences Centre, Imperial College Hammersmith Campus, Hammersmith Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|