1
|
Fan R, Shen Y, Li X, Luo H, Zhang P, Liu Y, Si Z, Zhou W, Liu Y. The effect of the NLRP1 inflammasome on methamphetamine-induced cognitive impairment in rats. Drug Alcohol Depend 2022; 237:109537. [PMID: 35752024 DOI: 10.1016/j.drugalcdep.2022.109537] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Methamphetamine (METH) use disorder has been shown to be in high comorbidity with cognitive deficits. METH-induced cognitive deficits are accompanied by neurotoxicity which could result from neuroinflammation. The potential role of NLRP1 inflammasome (NLRP1) and the downstream signalling pathway in METH-induced cognitive impairment was explored in the current study. Cognitive functions and the changes of NLRP1/Caspase-1/GSDMD signalling pathway were firstly determined in rats receiving daily injections of METH. Subsequently, the effects of aspirin-triggered-lipoxin A4 (ATL), a potent anti-inflammatory mediator, and NLRP1 siRNA was investigated were investigated in both METH-treated rats and HT22 cells. METH induces significant cognitive deficits in rats, using the NOR test. METH-induced cognitive impairment was in line with increased activities of NLRP1, cleaved-Caspase-11, IL-1β and TNF-α and the presence of GSDMD-mediated pyroptosis in the hippocampus of rats. NLRP1 inhibition by ATL significantly attenuated METH-induced cognitive impairment, in conjunction with the decreased activities of NLRP1 and cleaved-Caspase-1, IL-1β and TNF-α. ATL and NLRP1 siRNA also prevented the presence of apoptosis in the hippocampus of METH-treated rats and the cell death in METH-treated HT22 cells. These results reveal a novel role of NLRP1 and the downstream signaling pathways in the complex actions of METH-induced cognitive deficits.
Collapse
Affiliation(s)
- Runyue Fan
- School of Public Health, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, PR China
| | - Yao Shen
- School of Public Health, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, PR China
| | - Xiaofang Li
- School of Teaching and Education, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, PR China
| | - Hu Luo
- School of Teaching and Education, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, PR China
| | - Peng Zhang
- School of Public Health, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, PR China
| | - Yingying Liu
- School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, PR China
| | - Zizhen Si
- Department of Pharmacy, the Affiliated Hospital of Ningbo University Medical School, Ningbo , Zhejiang 315211, PR China; Department of Physiology and Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, PR China
| | - Wenhua Zhou
- Kangning Hospital, 1 South Zhuangyu Road, Ningbo, Zhejiang 315201, PR China
| | - Yu Liu
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
2
|
Hassani Moghaddam M, Eskandarian Boroujeni M, Vakili K, Fathi M, Abdollahifar MA, Eskandari N, Esmaeilpour T, Aliaghaei A. Functional and structural alternations in the choroid plexus upon methamphetamine exposure. Neurosci Lett 2021; 764:136246. [PMID: 34530114 DOI: 10.1016/j.neulet.2021.136246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Choroid plexus (CP) is the principal source of cerebrospinal fluid. CP can produce and release a wide range of materials including growth factors, neurotrophic factors, etc. all of which play an important role in the maintenance and proper functioning of the brain. Methamphetamine (METH) is a CNS neurostimulant that causes brain dysfunction. Herein, we investigated the potential effects of METH exposure on CP structure and function. Stereological analysis revealed a significant alteration in CP volume, epithelial cells and capillary number upon METH treatment. Electron microscopy exhibited changes in ultrastructure. Moreover, the upregulation of neurotrophic factors such as BDNF and VEGF as well as autophagy and apoptosis gene following METH administration were observed. We also identified several signaling cascades related to autophagy. In conclusion, gene expression changes coupled with structural alterations of the CP in response to METH suggested METH-induced autophagy in CP.
Collapse
Affiliation(s)
- Meysam Hassani Moghaddam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Eskandarian Boroujeni
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Eskandari
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Esmaeilpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Aliaghaei
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Rathitharan G, Truong J, Tong J, McCluskey T, Meyer JH, Mizrahi R, Warsh J, Rusjan P, Kennedy JL, Houle S, Kish SJ, Boileau I. Microglia imaging in methamphetamine use disorder: a positron emission tomography study with the 18 kDa translocator protein radioligand [F-18]FEPPA. Addict Biol 2021; 26:e12876. [PMID: 32017280 DOI: 10.1111/adb.12876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 01/19/2023]
Abstract
Activation of brain microglial cells, microgliosis, has been linked to methamphetamine (MA)-seeking behavior, suggesting that microglia could be a new therapeutic target for MA use disorder. Animal data show marked brain microglial activation following acute high-dose MA, but microglial status in human MA users is uncertain, with one positron emission tomography (PET) investigation reporting massively and globally increased translocator protein 18 kDa (TSPO; [C-11](R)-PK11195) binding, a biomarker for microgliosis, in MA users. Our aim was to measure binding of a second-generation TSPO radioligand, [F-18]FEPPA, in brain of human chronic MA users. Regional total volume of distribution (VT ) of [F-18]FEPPA was estimated with a two-tissue compartment model with arterial plasma input function for 10 regions of interest in 11 actively using MA users and 26 controls. A RM-ANOVA corrected for TSPO rs6971 polymorphism was employed to test significance. There was no main effect of group on [F-18]FEPPA VT (P = .81). No significant correlations between [F-18]FEPPA VT and MA use duration, weekly dosage, blood MA concentrations, regional brain volumes, and self-reported craving were observed. Our preliminary findings, consistent with our earlier postmortem data, do not suggest substantial brain microgliosis in MA use disorder but do not rule out microglia as a therapeutic target in MA addiction. Absence of increased [F-18]FEPPA TSPO binding might be related to insufficient MA dose or blunting of microglial response following repeated MA exposure, as suggested by some animal data.
Collapse
Affiliation(s)
- Gausiha Rathitharan
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Jennifer Truong
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Junchao Tong
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
| | - Tina McCluskey
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
| | - Jeffrey H. Meyer
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Romina Mizrahi
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Jerry Warsh
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Pablo Rusjan
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - James L. Kennedy
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Sylvain Houle
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
| | - Stephen J. Kish
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Isabelle Boileau
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| |
Collapse
|
4
|
LC3 and ATG5 overexpression and neuronal cell death in the prefrontal cortex of postmortem chronic methamphetamine users. J Chem Neuroanat 2020; 107:101802. [PMID: 32416129 DOI: 10.1016/j.jchemneu.2020.101802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022]
Abstract
Methamphetamine (METH) abuse is accompanied by oxidative stress, METH-induced neurotoxicity, and apoptosis. Oxidative stress has devastating effects on the structure of proteins and cells. Autophagy is an evolutionarily conserved intracellular regulated mechanism for orderly degradation of dysfunctional proteins or removing damaged organelles. The precise role of autophagy in oxidative stress-induced apoptosis of dopaminergic neuronal cells caused by METH has not clarified completely. In this study, we sought to evaluate the effects of METH abuse on autophagy in the prefrontal cortex of postmortem users, mainly focusing on the ATG5 and LC3 during neuroinflammation. Postmortem molecular and histological examination was done for two groups containing 12 non-addicted and 14 METH addicted cases. ATG5 and LC3 expression were analyzed by real-time PCR and immunohistochemistry (IHC) methods. Histopathological analysis was performed by stereological cell counting of neuronal cells using Hematoxylin and Eosin (H & E) staining technique. In order to detect DNA damage in the prefrontal lobe, Tunnel staining was performed. Real-time PCR and IHC assay showed overexpression of ATG5 and LC3 protein in the prefrontal cortex of Meth users. The cell death and neuronal degeneration were increased significantly based on Tunel assay and the stereological analysis in the Prefrontal cortex. Chronic METH exposure probably induces ATG5 and LC3 overexpression and neuronal cell death in the Prefrontal cortex of the postmortem cases.
Collapse
|
5
|
TBHQ Attenuates Neurotoxicity Induced by Methamphetamine in the VTA through the Nrf2/HO-1 and PI3K/AKT Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8787156. [PMID: 32351675 PMCID: PMC7174937 DOI: 10.1155/2020/8787156] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 12/29/2022]
Abstract
Methamphetamine (METH) leads to nervous system toxicity. Long-term exposure to METH results in damage to dopamine neurons in the ventral tegmental area (VTA), and depression-like behavior is a clinical symptom of this toxicity. The current study was designed to investigate whether the antioxidant tertiary butylhydroquinone (TBHQ) can alleviate neurotoxicity through both antioxidative stress and antiapoptotic signaling pathways in the VTA. Rats were randomly divided into a control group, a METH-treated group (METH group), and a METH+TBHQ-treated group (METH+TBHQ group). Intraperitoneal injections of METH at a dose of 10 mg/kg were administered to the rats in the METH and METH+TBHQ groups for one week, and METH was then administered at a dose that increased by 1 mg/kg per week until the sixth week, when the daily dosage reached 15 mg/kg. The rats in the METH+TBHQ group received 12.5 mg/kg TBHQ intragastrically. Chronic exposure to METH resulted in increased immobility times in the forced swimming test (FST) and tail suspension test (TST) and led to depression-like behavior. The production of reactive oxygen species (ROS) and apoptosis levels were increased in the VTA of animals in the METH-treated group. METH downregulated Nrf2, HO-1, PI3K, and AKT, key factors of oxidative stress, and the apoptosis signaling pathway. Moreover, METH increased the caspase-3 immunocontent. These changes were reversed by treatment with the antioxidant TBHQ. The results indicate that TBHQ can enhance Nrf2-induced antioxidative stress and PI3K-induced antiapoptotic effects, which can alleviate METH-induced ROS and apoptosis, and that the crosstalk between Nrf2 and PI3K/AKT is likely the key factor involved in the protective effect of TBHQ against METH-induced chronic nervous system toxicity.
Collapse
|
6
|
Abstract
One of the consequences of chronic methamphetamine (Meth) abuse and Meth addiction is impaired hippocampal function which plays a critical role in enhanced propensity for relapse. This impairment is predicted by alterations in hippocampal neurogenesis, structural- and functional-plasticity of granule cell neurons (GCNs), and expression of plasticity-related proteins in the dentate gyrus. This review will elaborate on the effects of Meth in animal models during different stages of addiction-like behavior on proliferation, differentiation, maturation, and survival of newly born neural progenitor cells. We will then discuss evidence for the contribution of adult neurogenesis in context-driven Meth-seeking behavior in animal models. These findings from interdisciplinary studies suggest that a subset of newly born GCNs contribute to context-driven Meth-seeking in Meth addicted animals.
Collapse
Affiliation(s)
- Yoshio Takashima
- Department of Anesthesiology, University of California San Diego, VA San Diego Healthcare System, San Diego, CA, USA
| | - Chitra D. Mandyam
- Department of Anesthesiology, University of California San Diego, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
7
|
Xu S, Tu S, Gao J, Liu J, Guo Z, Zhang J, Liu X, Liang J, Huang Y, Han M. Protective and restorative effects of the traditional Chinese medicine Jitai tablet against methamphetamine-induced dopaminergic neurotoxicity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:76. [PMID: 29475448 PMCID: PMC6389157 DOI: 10.1186/s12906-018-2094-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/16/2018] [Indexed: 01/09/2023]
Abstract
Background Methamphetamine (METH) is a psychostimulant with high abuse liability that affects the monoamine neurotransmitter systems, particularly the dopamine system. Currently there are no effective medications for the treatment of METH abuse to restore METH-induced dopaminergic dysfunction. The Jitai tablet (JTT), a commercial traditional Chinese medicinal preparation, has been shown to modulate the dopaminergic function both in heroin addicts and in morphine-dependent rats. The purpose of this study was to investigate, in a rodent model, whether JTT can protect against METH-induced neurotoxicity, and/or restore METH-damaged dopaminergic function. Methods Immunohistochemical staining and/or autoradiography staining were used to detect tyrosine hydroxylase (TH) expression in the substantia nigra, and to examine the levels of dopamine transporter (DAT), dopamine D2 receptor (D2R) and TH levels in the striatum. Using a stereotyped behavior rating scale, we evaluated the inhibitory effect of JTT on METH-induced behavioral sensitization. Results Repeated METH administration induced obvious stereotyped behavior and neurotoxicity on the dopaminergic system. Pre-treatment with JTT significantly attenuated METH-induced stereotyped responses, and interdicted METH-induced changes in the levels of DAT, D2R and TH expression. Treatment with JTT after METH administration restored DAT, D2R and TH expression to normal levels. Conclusions Our results indicated that JTT protects against METH-induced neurotoxicity and restores the dopaminergic function, and thus might be a potential treatment for the dopaminergic deficits associated with METH abuse.
Collapse
|
8
|
Bakhshayesh M, Golab F, Kermanian F, Mehdizadeh M, Katebi AR, Soleimani M, Mohammadzadeh F, Shabani R, Movahed E, Katebi M. The Mediating Role of A 2A Adenosine Receptors in the Mitochondrial Pathway of Apoptotic Hippocampal Cell Death, Following the Administration of MDMA in Rat. Basic Clin Neurosci 2017; 8:317-324. [PMID: 29158882 PMCID: PMC5683689 DOI: 10.18869/nirp.bcn.8.4.317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Introduction: The 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is a popular recreational drug and a major source of substance abuse, which ultimately leads to sensations of well-being, elation and euphoria, moderate derealization/depersonalization, and cognitive disruptions, as well as intense sensory awareness. The mechanisms involved in memory impairment induced by MDMA are not completely understood. Methods: The current study used 40 Sprague-Dawley rats, weighted 200 to 250 g. Experiments were performed in four groups, each containing 10 rats. The first group of rats was used as the control, treated with dimethyl sulfoxide (DMSO). The second group was treated with MDMA. The third group was treated with MDMA and CGS (the adenosine A2A receptor agonist, 2-[p-(2-carboxyethyl) phenethylamino]-5′-N-ethylcarboxamidoadenosine) (CGS 21680) and the fourth group was treated with MDMA and SCH (the A2A receptor antagonist [7-(2-phenylethyl)-5-amino-2-(2-furyl-) pyrazolo-[4, 3-e]-1, 2, 4 triazolo [1,5-] pyrimidine]) (SCH 58261). The drugs in all groups were administrated intraperitoneally (i.p.) once a day for 7 days. In 5 rats of each group, following perfusion, samples were taken from hippocampi to investigate apoptosis. Accordingly, the samples were stained using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay kit, and studied by light microscopy. In other rats, fresh tissue was also removed to study the expression of bax and bcl-2 by Western blotting technique. Results: It was observed that the coadministration of MDMA with CGS reduced bax expression and prevented apoptosis of hippocampal cells. The coadministration of MDMA and SCH increased bax expression, and also increased the frequency of hippocampal cell apoptosis. Conclusion: The results of the current study showed that administration of CGS with MDMA decreased the common side effects associated with MDMA.
Collapse
Affiliation(s)
- Masoomeh Bakhshayesh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kermanian
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Katebi
- Department of Educational Psychology, Faculty of Psychology & Educational Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Mansooreh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Mohammadzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Movahed
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Katebi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
9
|
Occhieppo VB, Marchese NA, Rodríguez ID, Basmadjian OM, Baiardi G, Bregonzio C. Neurovascular unit alteration in somatosensory cortex and enhancement of thermal nociception induced by amphetamine involves central AT1receptor activation. Eur J Neurosci 2017; 45:1586-1593. [DOI: 10.1111/ejn.13594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Victoria Belén Occhieppo
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Natalia Andrea Marchese
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Iara Diamela Rodríguez
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Osvaldo Martin Basmadjian
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología (IIBYT-CONICET); Universidad Nacional de Córdoba Facultad de Ciencias Químicas; Universidad Católica de Córdoba; Córdoba Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| |
Collapse
|
10
|
Hajheidari S, Sameni HR, Bandegi AR, Miladi-gorji H. Effects of prolonged abstinence from METH on the hippocampal BDNF levels, neuronal numbers and apoptosis in methamphetamine-sensitized rats. Neurosci Lett 2017; 645:80-85. [DOI: 10.1016/j.neulet.2017.02.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/06/2017] [Accepted: 02/20/2017] [Indexed: 02/02/2023]
|
11
|
Sanchez AB, Kaul M. Neuronal Stress and Injury Caused by HIV-1, cART and Drug Abuse: Converging Contributions to HAND. Brain Sci 2017; 7:brainsci7030025. [PMID: 28241493 PMCID: PMC5366824 DOI: 10.3390/brainsci7030025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Multiple mechanisms appear to contribute to neuronal stress and injury underlying HIV-associated neurocognitive disorders (HAND), which occur despite the successful introduction of combination antiretroviral therapy (cART). Evidence is accumulating that components of cART can itself be neurotoxic upon long-term exposure. In addition, abuse of psychostimulants, such as methamphetamine (METH), seems to compromise antiretroviral therapy and aggravate HAND. However, the combined effect of virus and recreational and therapeutic drugs on the brain is still incompletely understood. However, several lines of evidence suggest a shared critical role of oxidative stress, compromised neuronal energy homeostasis and autophagy in promotion and prevention of neuronal dysfunction associated with HIV-1 infection, cART and psychostimulant use. In this review, we present a synopsis of recent work related to neuronal stress and injury induced by HIV infection, antiretrovirals (ARVs) and the highly addictive psychostimulant METH.
Collapse
Affiliation(s)
- Ana B Sanchez
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Marcus Kaul
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
12
|
Bagheri J, Rajabzadeh A, Baei F, Jalayeri Z, Ebrahimzadeh-bideskan A. The effect of maternal exposure to methamphetamine during pregnancy and lactation period on hippocampal neurons apoptosis in rat offspring. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1288141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Javad Bagheri
- Department of Anatomy and Cell Biology, School of Medicine and
| | - Aliakbar Rajabzadeh
- Department of Anatomy and Cell Biology, School of Medicine and
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Baei
- Department of Anatomy and Cell Biology, School of Medicine and
| | - Zahra Jalayeri
- Department of Anatomy and Cell Biology, School of Medicine and
| | - Alireza Ebrahimzadeh-bideskan
- Department of Anatomy and Cell Biology, School of Medicine and
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Schmued LC. Development and application of novel histochemical tracers for localizing brain connectivity and pathology. Brain Res 2016; 1645:31-5. [PMID: 27155454 DOI: 10.1016/j.brainres.2016.03.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 11/29/2022]
Abstract
FLUORO-GOLD A NEW FLUORESCENT RETROGRADE AXONAL TRACER WITH NUMEROUS UNIQUE PROPERTIES: A new fluorescent dye, Fluoro-Gold, has been demonstrated to undergo retrograde axonal transport. Its properties include (1) intense fluorescence, (2) extensive filling of dendrites, (3) high resistance to fading, (4) no uptake by intact undamaged fibers of passage, (5) no diffusion from labeled cells, (6) consistent and pure commercial source, (7) wide latitude of survival times and (8) compatibility with all other tested neuro-histochemical techniques. © 1986. Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons: The causes and effects of neuronal degeneration are of major interest to a wide variety of neuroscientists. Paralleling this growing interest is an increasing number of methods applicable to the detection of neuronal degeneration. The earliest methods employing aniline dyes were methodologically simple, but difficult to interpret due to a lack of staining specificity. In an attempt to circumvent this problem, numerous suppressed silver methods have been introduced. However, these methods are labor intensive, incompatible with most other histochemical procedures and notoriously capricious. In an attempt to develop a tracer with the methodological simplicity and reliability of conventional stains but with the specificity of an ideal suppressed silver preparation, the Fluoro-Jade dyes were developed. Fluoro-Jade C, like its predecessors, Fluoro-Jade and Fluoro-Jade B, was found to stain all degenerating neurons, regardless of specific insult or mechanism of cell death. Therefore, the patterns of neuronal degeneration seen following exposure to either the glutamate agonist, kainic acid, or the inhibitor of mitochondrial respiration, 3-NPA, were the same for all of the Fluoro-Jade dyes. However, there was a qualitative difference in the staining characteristics of the three fluorochromes. Specifically, Fluoro-Jade C exhibited the greatest signal to background ratio, as well as the highest resolution. This translates to a stain of maximal contrast and affinity for degenerating neurons. This makes it ideal for localizing not only degenerating nerve cell bodies, but also distal dendrites, axons and terminals. The dye is highly resistant to fading and is compatible with virtually all histological processing and staining protocols. Triple labeling was accomplished by staining degenerating neurons with Fluoro-Jade C, cell nuclei with DAPI and activated astrocytes with GFAP immunofluoresence. © 2005. ARTICLE ABSTRACT The development of novel tracers and associated histochemical methods has always been need driven. One such need was the development of tracers that could be administered to discrete brain regions in vivo to subsequently reveal neuronal connectivity via axonal transport of the tracer. One such compound is Fluoro-Gold (F-G), which can be used to demonstrate retrograde axonal transport. Advantages of this fluorescent tracer include brightness, sensitivity, contrast, stability, permanence and compatibility with multiple labeling studies. It may be applied to resolve either the afferent or efferent connections of brain regions of interest. Another need addressed was for a simple and definitive way to localize degenerating neurons in brain tissue sections. This led to the development of Fluoro-Jade B (FJ-B) and Fluoro-Jade C (FJ-C). Advantages of these fluorescent histochemical tracers include high specificity, resolution, contrast, stability and suitability for use in multiple labeling studies. These methods can be applied to detect both apoptotic and necrotic neuronal degeneration following a variety of insults including physical trauma, neurodegenerative disease and a wide variety of neurotoxicants. This article is part of a Special Issue entitled SI:50th Anniversary Issue.
Collapse
Affiliation(s)
- Larry C Schmued
- US Food and Drug Administration (FDA), National Center for Toxicological Research (NCTR), Division of Neurotoxicology, 3900 NCTR Rd, Jefferson, AR 72079United States.
| |
Collapse
|
14
|
Kuhn DM, Angoa-Pérez M, Thomas DM. Nucleus accumbens invulnerability to methamphetamine neurotoxicity. ILAR J 2016; 52:352-65. [PMID: 23382149 DOI: 10.1093/ilar.52.3.352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.
Collapse
|
15
|
Bowyer JF, Sarkar S, Tranter KM, Hanig JP, Miller DB, O'Callaghan JP. Vascular-directed responses of microglia produced by methamphetamine exposure: indirect evidence that microglia are involved in vascular repair? J Neuroinflammation 2016; 13:64. [PMID: 26970737 PMCID: PMC4789274 DOI: 10.1186/s12974-016-0526-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/03/2016] [Indexed: 11/24/2022] Open
Abstract
Background Brain microglial activations and damage responses are most commonly associated with neurodegeneration or systemic innate immune system activation. Here, we used histological methods to focus on microglial responses that are directed towards brain vasculature, previously undescribed, after a neurotoxic exposure to methamphetamine. Methods Male rats were given doses of methamphetamine that produce pronounced hyperthermia, hypertension, and toxicity. Identification of microglia and microglia-like cells (pericytes and possibly perivascular cells) was done using immunoreactivity to allograft inflammatory factor 1 (Aif1 a.k.a Iba1) and alpha M integrin (Itgam a.k.a. Cd11b) while vasculature endothelium was identified using rat endothelial cell antigen 1 (RECA-1). Regions of neuronal, axonal, and nerve terminal degeneration were determined using Fluoro-Jade C. Results Dual labeling of vasculature (RECA-1) and microglia (Iba1) showed a strong association of hypertrophied cells surrounding and juxtaposed to vasculature in the septum, medial dorsal hippocampus, piriform cortex, and thalamus. The Iba1 labeling was more pronounced in the cell body while Cd11b more so in the processes of activated microglia. These regions have been previously identified to have vascular leakage after neurotoxic methamphetamine exposure. Dual labeling with Fluoro-Jade C and Iba1 indicated that there was minimal or no evidence of neuronal damage in the septum and hippocampus where many hypertrophied Iba1-labeled cells were found to be associated with vasculature. Although microglial activation around the prominent neurodegeneration was found in the thalamus, there were also many examples of activated microglia associated with vasculature. Conclusions The data implicate microglia, and possibly related cell types, in playing a major role in responding to methamphetamine-induced vascular damage, and possibly repair, in the absence of neurodegeneration. Identifying brain regions with hypertrophied/activated microglial-like cells associated with vasculature has the potential for identifying regions of more subtle examples of vascular damage and BBB compromise. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0526-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicology/FDA, Jefferson, AR, 72079, USA. .,National Center for Toxicological Research/FDA, 3900 NCTR Road, HFT-132, Jefferson, AR, 72079, USA.
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicology/FDA, Jefferson, AR, 72079, USA
| | - Karen M Tranter
- Division of Neurotoxicology, National Center for Toxicology/FDA, Jefferson, AR, 72079, USA
| | - Joseph P Hanig
- Center for Drug Evaluation and Research/FDA, Silver Spring, MD, 20993, USA
| | - Diane B Miller
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| |
Collapse
|
16
|
Histological and immunohistochemical changes in cerebellum of chick embryos after exposure to neonicotinoid insecticide imidacloprid. J ANAT SOC INDIA 2015. [DOI: 10.1016/j.jasi.2015.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Methamphetamine-induced neuronal necrosis: the role of electrographic seizure discharges. Neurotoxicology 2015; 52:84-8. [PMID: 26562800 DOI: 10.1016/j.neuro.2015.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/06/2015] [Accepted: 11/06/2015] [Indexed: 11/23/2022]
Abstract
We have evidence that methamphetamine (METH)-induced neuronal death is morphologically necrotic, not apoptotic, as is currently believed, and that electrographic seizures may be responsible. We administered 40mg/kg i.p. to 12 male C57BL/6 mice and monitored EEGs continuously and rectal temperatures every 15min, keeping rectal temperatures <41.0°C. Seven of the 12 mice had repetitive electrographic seizure discharges (RESDs) and 5 did not. The RESDs were often not accompanied by behavioral signs of seizures-i.e., they were often not accompanied by clonic forelimb movements. The 7 mice with RESDs had acidophilic neurons (the H&E light-microscopic equivalent of necrotic neurons by ultrastructural examination) in all of 7 brain regions (hippocampal CA1, CA2, CA3 and hilus, amygdala, piriform cortex and entorhinal cortex), the same brain regions damaged following generalized seizures, 24h after METH administration. The 5 mice without RESDs had a few acidophilic neurons in 4 of the 7 brain regions, but those with RESDs had significantly more in 6 of the 7 brain regions. Maximum rectal temperatures were comparable in mice with and without RESDs, so that cannot explain the difference between the two groups with respect to METH-induced neuronal death. Our data show that METH-induced neuronal death is morphologically necrotic, that EEGs must be recorded to detect electrographic seizure activity in rodents without behavioral evidence of seizures, and that RESDs may be responsible for METH-induced neuronal death.
Collapse
|
18
|
Moratalla R, Khairnar A, Simola N, Granado N, García-Montes JR, Porceddu PF, Tizabi Y, Costa G, Morelli M. Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Prog Neurobiol 2015; 155:149-170. [PMID: 26455459 DOI: 10.1016/j.pneurobio.2015.09.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 09/04/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
Amphetamine-related drugs, such as 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (METH), are popular recreational psychostimulants. Several preclinical studies have demonstrated that, besides having the potential for abuse, amphetamine-related drugs may also elicit neurotoxic and neuroinflammatory effects. The neurotoxic potentials of MDMA and METH to dopaminergic and serotonergic neurons have been clearly demonstrated in both rodents and non-human primates. This review summarizes the species-specific cellular and molecular mechanisms involved in MDMA and METH-mediated neurotoxic and neuroinflammatory effects, along with the most important behavioral changes elicited by these substances in experimental animals and humans. Emphasis is placed on the neuropsychological and neurological consequences associated with the neuronal damage. Moreover, we point out the gap in our knowledge and the need for developing appropriate therapeutic strategies to manage the neurological problems associated with amphetamine-related drug abuse.
Collapse
Affiliation(s)
- Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain.
| | - Amit Khairnar
- Applied Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain
| | - Jose Ruben García-Montes
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain
| | - Pier Francesca Porceddu
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; National Research Council (CNR), Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
19
|
Somkuwar SS, Staples MC, Fannon MJ, Ghofranian A, Mandyam CD. Evaluating Exercise as a Therapeutic Intervention for Methamphetamine Addiction-Like Behavior. Brain Plast 2015; 1:63-81. [PMID: 29765835 PMCID: PMC5928557 DOI: 10.3233/bpl-150007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The need for effective treatments for addiction and dependence to the illicit stimulant methamphetamine in primary care settings is increasing, yet no effective medications have been FDA approved to reduce dependence [1]. This is partially attributed to the complex and dynamic neurobiology underlying the various stages of addiction [2]. Therapeutic strategies to treat methamphetamine addiction, particularly the relapse stage of addiction, could revolutionize methamphetamine addiction treatment. In this context, preclinical studies demonstrate that voluntary exercise (sustained physical activity) could be used as an intervention to reduce methamphetamine addiction. Therefore, it appears that methamphetamine disrupts normal functioning in the brain and this disruption is prevented or reduced by engaging in exercise. This review discusses animal models of methamphetamine addiction and sustained physical activity and the interactions between exercise and methamphetamine behaviors. The review highlights how methamphetamine and exercise affect neuronal plasticity and neurotoxicity in the adult mammalian striatum, hippocampus, and prefrontal cortex, and presents the emerging mechanisms of exercise in attenuating intake and in preventing relapse to methamphetamine seeking in preclinical models of methamphetamine addiction.
Collapse
Affiliation(s)
- Sucharita S Somkuwar
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Miranda C Staples
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - McKenzie J Fannon
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Atoosa Ghofranian
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
20
|
Northrop NA, Yamamoto BK. Methamphetamine effects on blood-brain barrier structure and function. Front Neurosci 2015; 9:69. [PMID: 25788874 PMCID: PMC4349189 DOI: 10.3389/fnins.2015.00069] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/17/2015] [Indexed: 01/28/2023] Open
Abstract
Methamphetamine (Meth) is a widely abuse psychostimulant. Traditionally, studies have focused on the neurotoxic effects of Meth on monoaminergic neurotransmitter terminals. Recently, both in vitro and in vivo studies have investigated the effects of Meth on the BBB and found that Meth produces a decrease in BBB structural proteins and an increase in BBB permeability to various molecules. Moreover, preclinical studies are validated by clinical studies in which human Meth users have increased concentrations of toxins in the brain. Therefore, this review will focus on the structural and functional disruption of the BBB caused by Meth and the mechanisms that contribute to Meth-induced BBB disruption. The review will reveal that the mechanisms by which Meth damages dopamine and serotonin terminals are similar to the mechanisms by which the blood-brain barrier (BBB) is damaged. Furthermore, this review will cover the factors that are known to potentiate the effects of Meth (McCann et al., 1998) on the BBB, such as stress and HIV, both of which are co-morbid conditions associated with Meth abuse. Overall, the goal of this review is to demonstrate that the scope of damage produced by Meth goes beyond damage to monoaminergic neurotransmitter systems to include BBB disruption as well as provide a rationale for investigating therapeutics to treat Meth-induced BBB disruption. Since a breach of the BBB can have a multitude of consequences, therapies directed toward the treatment of BBB disruption may help to ameliorate the long-term neurodegeneration and cognitive deficits produced by Meth and possibly even Meth addiction.
Collapse
Affiliation(s)
- Nicole A Northrop
- Department of Neurosciences, University of Toledo College of Medicine Toledo, OH, USA
| | - Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine Toledo, OH, USA
| |
Collapse
|
21
|
Methamphetamine-Induced Toxicity in Indusium Griseum of Mice is Associated with Astro- and Microgliosis. Neurotox Res 2014; 27:209-16. [DOI: 10.1007/s12640-014-9505-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/11/2014] [Accepted: 11/26/2014] [Indexed: 01/03/2023]
|
22
|
Teixeira‐Gomes A, Costa VM, Feio‐Azevedo R, Bastos MDL, Carvalho F, Capela JP. The neurotoxicity of amphetamines during the adolescent period. Int J Dev Neurosci 2014; 41:44-62. [PMID: 25482046 DOI: 10.1016/j.ijdevneu.2014.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Armanda Teixeira‐Gomes
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoRua de Jorge Viterbo Ferreira, 2284050‐313PortoPortugal
| | - Vera Marisa Costa
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoRua de Jorge Viterbo Ferreira, 2284050‐313PortoPortugal
| | - Rita Feio‐Azevedo
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoRua de Jorge Viterbo Ferreira, 2284050‐313PortoPortugal
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoRua de Jorge Viterbo Ferreira, 2284050‐313PortoPortugal
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoRua de Jorge Viterbo Ferreira, 2284050‐313PortoPortugal
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoRua de Jorge Viterbo Ferreira, 2284050‐313PortoPortugal
- Faculdade de Ciências da SaúdeUniversidade Fernando PessoaRua Carlos da Maia, 2964200‐150PortoPortugal
| |
Collapse
|
23
|
Galinato MH, Orio L, Mandyam CD. Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus. Neuroscience 2014; 286:97-108. [PMID: 25463524 DOI: 10.1016/j.neuroscience.2014.11.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/25/2014] [Accepted: 11/08/2014] [Indexed: 01/05/2023]
Abstract
Methamphetamine exposure reduces hippocampal long-term potentiation (LTP) and neurogenesis and these alterations partially contribute to hippocampal maladaptive plasticity. The potential mechanisms underlying methamphetamine-induced maladaptive plasticity were identified in the present study. Expression of brain-derived neurotrophic factor (BDNF; a regulator of LTP and neurogenesis), and its receptor tropomyosin-related kinase B (TrkB) were studied in the dorsal and ventral hippocampal tissue lysates in rats that intravenously self-administered methamphetamine in a limited access (1h/day) or extended access (6h/day) paradigm for 17days post baseline sessions. Extended access methamphetamine enhanced expression of BDNF with significant effects observed in the dorsal and ventral hippocampus. Methamphetamine-induced enhancements in BDNF expression were not associated with TrkB receptor activation as indicated by phospho (p)-TrkB-706 levels. Conversely, methamphetamine produced hypophosphorylation of N-methyl-d-aspartate (NMDA) receptor subunit 2B (GluN2B) at Tyr-1472 in the ventral hippocampus, indicating reduced receptor activation. In addition, methamphetamine enhanced expression of anti-apoptotic protein Bcl-2 and reduced pro-apoptotic protein Bax levels in the ventral hippocampus, suggesting a mechanism for reducing cell death. Analysis of Akt, a pro-survival kinase that suppresses apoptotic pathways and pAkt at Ser-473 demonstrated that extended access methamphetamine reduces Akt expression in the ventral hippocampus. These data reveal that alterations in Bcl-2 and Bax levels by methamphetamine were not associated with enhanced Akt expression. Given that hippocampal function and neurogenesis vary in a subregion-specific fashion, where dorsal hippocampus regulates spatial processing and has higher levels of neurogenesis, whereas ventral hippocampus regulates anxiety-related behaviors, these data suggest that methamphetamine self-administration initiates distinct allostatic changes in hippocampal subregions that may contribute to the altered synaptic activity in the hippocampus, which may underlie enhanced negative affective symptoms and perpetuation of the addiction cycle.
Collapse
Affiliation(s)
- M H Galinato
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92037, USA
| | - L Orio
- Departamento de Psicobiología, Facultad Psicología, Universidad Complutense de Madrid, Campus Somosaguas, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - C D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
24
|
Bowyer JF, Hanig JP. Amphetamine- and methamphetamine-induced hyperthermia: Implications of the effects produced in brain vasculature and peripheral organs to forebrain neurotoxicity. Temperature (Austin) 2014; 1:172-82. [PMID: 27626044 PMCID: PMC5008711 DOI: 10.4161/23328940.2014.982049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022] Open
Abstract
The adverse effects of amphetamine- (AMPH) and methamphetamine- (METH) induced hyperthermia on vasculature, peripheral organs and peripheral immune system are discussed. Hyperthermia alone does not produce amphetamine-like neurotoxicity but AMPH and METH exposures that do not produce hyperthermia (≥40°C) are minimally neurotoxic. Hyperthermia likely enhances AMPH and METH neurotoxicity directly through disruption of protein function, ion channels and enhanced ROS production. Forebrain neurotoxicity can also be indirectly influenced through the effects of AMPH- and METH- induced hyperthermia on vasculature. The hyperthermia and the hypertension produced by high doses amphetamines are a primary cause of transient breakdowns in the blood-brain barrier (BBB) resulting in concomitant regional neurodegeneration and neuroinflammation in laboratory animals. This BBB breakdown can occur in the amygdala, thalamus, striatum, sensory and motor cortex and hippocampus. Under these conditions, repetitive seizures greatly enhance neurodegeneration in hippocampus, thalamus and amygdala. Even when the BBB is less disrupted, AMPH- or METH- induced hyperthermia effects on brain vasculature may play a role in neurotoxicity. In this case, striatal and cortical vascular function are adversely affected, and even greater ROS, immune and damage responses are seen in the meninges and cortical surface vasculature. Finally, muscle and liver damage and elevated cytokines in blood can result when amphetamines produce hyperthermia. Proteins, from damaged muscle may activate the peripheral immune system and exacerbate liver damage. Liver damage can further increase cytokine levels, immune system activation and increase ammonia levels. These effects could potentially enhance vascular damage and neurotoxicity.
Collapse
|
25
|
Qiao D, Xu J, Le C, Huang E, Liu C, Qiu P, Lin Z, Xie WB, Wang H. Insulin-like growth factor binding protein 5 (IGFBP5) mediates methamphetamine-induced dopaminergic neuron apoptosis. Toxicol Lett 2014; 230:444-53. [DOI: 10.1016/j.toxlet.2014.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/18/2014] [Accepted: 08/10/2014] [Indexed: 01/28/2023]
|
26
|
Hoefer MM, Sanchez AB, Maung R, de Rozieres CM, Catalan IC, Dowling CC, Thaney VE, Piña-Crespo J, Zhang D, Roberts AJ, Kaul M. Combination of methamphetamine and HIV-1 gp120 causes distinct long-term alterations of behavior, gene expression, and injury in the central nervous system. Exp Neurol 2014; 263:221-34. [PMID: 25246228 DOI: 10.1016/j.expneurol.2014.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/27/2014] [Accepted: 09/06/2014] [Indexed: 01/18/2023]
Abstract
Methamphetamine (METH) abuse is frequent in individuals infected with human immunodeficiency virus type-1 (HIV-1) and is suspected to aggravate HIV-associated neurocognitive disorders (HAND). METH is a psychostimulant that compromises several neurotransmitter systems and HIV proteins trigger neuronal injury but the combined effects of viral infection and METH abuse are incompletely understood. In this study we treated transgenic mice expressing the HIV envelope protein gp120 in the brain (HIV-1 gp120tg) at 3-4 months of age with an escalating-dose, multiple-binge METH regimen. The long-term effects were analyzed after 6-7 months of drug abstinence employing behavioral tests and analysis of neuropathology, electrophysiology and gene expression. Behavioral testing showed that both HIV-1 gp120tg and WT animals treated with METH displayed impaired learning and memory. Neuropathological analysis revealed that METH similar to HIV-1 gp120 caused a significant loss of neuronal dendrites and pre-synaptic terminals in hippocampus and cerebral cortex of WT animals. Electrophysiological studies in hippocampal slices showed that METH exposed HIV-1 gp120tg animals displayed reduced post-tetanic potentiation, whereas both gp120 expression and METH lead to reduced long-term potentiation. A quantitative reverse transcription-polymerase chain reaction array showed that gp120 expression, METH and their combination each caused a significant dysregulation of specific components of GABAergic and glutamatergic neurotransmission systems, providing a possible mechanism for synaptic dysfunction and behavioral impairment. In conclusion, both HIV-1 gp120 and METH caused lasting behavioral impairment in association with neuropathology and altered gene expression. However, combined METH exposure and HIV-1 gp120 expression resulted in the most pronounced, long lasting pre- and post-synaptic alterations coinciding with impaired learning and memory.
Collapse
Affiliation(s)
- Melanie M Hoefer
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Ana B Sanchez
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Ricky Maung
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cyrus M de Rozieres
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Irene C Catalan
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cari C Dowling
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Victoria E Thaney
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Juan Piña-Crespo
- Del E. Webb Center for Neuroscience & Aging Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Dongxian Zhang
- Del E. Webb Center for Neuroscience & Aging Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Amanda J Roberts
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, MB6, La Jolla, CA 92037, USA.
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA.
| |
Collapse
|
27
|
O'dell SJ, Marshall JF. Running wheel exercise before a binge regimen of methamphetamine does not protect against striatal dopaminergic damage. Synapse 2014; 68:419-25. [PMID: 24899064 DOI: 10.1002/syn.21754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/22/2014] [Accepted: 05/17/2014] [Indexed: 12/23/2022]
Abstract
Repeated administration of methamphetamine (mAMPH) to rodents in a single-day "binge" dosing regimen produces long-lasting damage to forebrain dopaminergic nerve terminals as measured by decreases in tissue dopamine (DA) content and levels of the plasmalemmal DA transporter (DAT). However, the midbrain cell bodies from which the DA terminals arise survive, and previous reports show that striatal DA markers return to control levels by 12 months post-mAMPH, suggesting long-term repair or regrowth of damaged DA terminals. We previously showed that when rats engaged in voluntary aerobic exercise for 3 weeks before and 3 weeks after a binge regimen of mAMPH, exercise significantly ameliorated mAMPH-induced decreases in striatal DAT. However, these data left unresolved the question of whether exercise protected against the initial neurotoxicity from the mAMPH binge or accelerated the repair of the damaged DA terminals. The present experiments were designed to test whether exercise protects against the mAMPH-induced injury. Adult male Sprague-Dawley rats were allowed to run in wheels for 3 weeks before an acute binge regimen of mAMPH or saline, then placed into nonwheel cages for an additional week before autoradiographic determination of striatal DAT binding. The autoradiographic findings showed that prior exercise provided no protection against mAMPH-induced damage to striatal DA terminals. These results, together with analyses from our previous experiments, suggest that voluntary exercise may accelerate the repair of mAMPH-damaged DA terminals and that voluntary exercise may be useful as therapeutic adjunct in the treatment mAMPH addicts.
Collapse
Affiliation(s)
- Steven J O'dell
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697
| | | |
Collapse
|
28
|
Levi MS, Patton RE, Hanig JP, Tranter KM, George NI, James LP, Davis KJ, Bowyer JF. Serum myoglobin, but not lipopolysaccharides, is predictive of AMPH-induced striatal neurotoxicity. Neurotoxicology 2013; 37:40-50. [PMID: 23608161 DOI: 10.1016/j.neuro.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/19/2013] [Accepted: 04/05/2013] [Indexed: 01/08/2023]
Abstract
Determinants of amphetamine (AMPH)-induced neurotoxicity are poorly understood. The role of lipopolysaccharides (LPS) and organ injury in AMPH-induced neurotoxicity was examined in adult male Sprague-Dawley rats that were give AMPH and became hyperthermic during the exposure. Environmentally-induced hyperthermia (EIH) in the rat was compared to AMPH to determine whether AMPH-induced increases in LPS and peripheral toxicities were solely attributable to hyperthermia. Muscle, liver, and kidney function were determined biochemically at 3h or 1 day after AMPH or EIH exposure and histopathology at 1 day after treatment. Circulating levels of LPS were monitored (via limulus amoebocyte coagulation assay) during AMPH or EIH exposure. Blood LPS levels were detected in 40-50% of the AMPH and EIH rats, but the presence of LPS in the serum had no effect on organ damage or striatal dopamine depletions (neurotoxicity). In both CR and NCTR rats, serum bound urea nitrogen and creatinine levels increased at 3h after EIH or AMPH (2- to 3-fold above control) but subsided by 1 day. Alanine transaminase was increased (indicating liver dysfunction) by both AMPH and EIH at 3 h (2- to 10-fold above control) in CR rats, but the levels were not significantly different between the control and AMPH groups in NCTR animals. Mild liver necrosis was detected in 1 of 7 rats examined in the AMPH group and in 1 of 5 rats examined in the EIH group (only NCTR rats were examined). Serum myoglobin increased (indicating muscle damage) in both CR and NCTR rats at 3h and was more pronounced with AMPH (≈5-fold above control) than EIH. Our results indicate that: (1) "free" blood borne LPS often increases with EIH and AMPH but may not be necessary for striatal neurotoxicity and CNS immune responses; (2) liver or kidney dysfunction may result from muscle damage; however, it is not sufficient nor necessary to produce, but may exacerbate, neurotoxicity; (3) AMPH-induced serum myoglobin release is a potential biomarker and possibly a factor in AMPH-induced toxicity processes.
Collapse
Affiliation(s)
- Mark S Levi
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR 72079-9502, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Methamphetamine and Parkinson's disease. PARKINSONS DISEASE 2013; 2013:308052. [PMID: 23476887 PMCID: PMC3582059 DOI: 10.1155/2013/308052] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/22/2012] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder predominantly affecting the elderly. The aetiology of the disease is not known, but age and environmental factors play an important role. Although more than a dozen gene mutations associated with familial forms of Parkinson's disease have been described, fewer than 10% of all cases can be explained by genetic abnormalities. The molecular basis of Parkinson's disease is the loss of dopamine in the basal ganglia (caudate/putamen) due to the degeneration of dopaminergic neurons in the substantia nigra, which leads to the motor impairment characteristic of the disease. Methamphetamine is the second most widely used illicit drug in the world. In rodents, methamphetamine exposure damages dopaminergic neurons in the substantia nigra, resulting in a significant loss of dopamine in the striatum. Biochemical and neuroimaging studies in human methamphetamine users have shown decreased levels of dopamine and dopamine transporter as well as prominent microglial activation in the striatum and other areas of the brain, changes similar to those observed in PD patients. Consistent with these similarities, recent epidemiological studies have shown that methamphetamine users are almost twice as likely as non-users to develop PD, despite the fact that methamphetamine abuse and PD have distinct symptomatic profiles.
Collapse
|
30
|
Jan RK, Kydd RR, Russell BR. Functional and structural brain changes associated with methamphetamine abuse. Brain Sci 2012; 2:434-82. [PMID: 24961256 PMCID: PMC4061807 DOI: 10.3390/brainsci2040434] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 12/20/2022] Open
Abstract
Methamphetamine (MA) is a potent psychostimulant drug whose abuse has become a global epidemic in recent years. Firstly, this review article briefly discusses the epidemiology and clinical pharmacology of methamphetamine dependence. Secondly, the article reviews relevant animal literature modeling methamphetamine dependence and discusses possible mechanisms of methamphetamine-induced neurotoxicity. Thirdly, it provides a critical review of functional and structural neuroimaging studies in human MA abusers; including positron emission tomography (PET) and functional and structural magnetic resonance imaging (MRI). The effect of abstinence from methamphetamine, both short- and long-term within the context of these studies is also reviewed.
Collapse
Affiliation(s)
- Reem K Jan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Rob R Kydd
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Bruce R Russell
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
31
|
Kelly KA, Miller DB, Bowyer JF, O’Callaghan JP. Chronic exposure to corticosterone enhances the neuroinflammatory and neurotoxic responses to methamphetamine. J Neurochem 2012; 122:995-1009. [PMID: 22776046 PMCID: PMC4706460 DOI: 10.1111/j.1471-4159.2012.07864.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Up-regulation of proinflammatory cytokines and chemokines in brain ("neuroinflammation") accompanies neurological disease and neurotoxicity. Previously, we documented a striatal neuroinflammatory response to acute administration of a neurotoxic dose of methamphetamine (METH), i.e. one associated with evidence of dopaminergic terminal damage and activation of microglia and astroglia. When we used minocycline to suppress METH-induced neuroinflammation, indices of dopaminergic neurotoxicity were not affected, but suppression of neuroinflammation was incomplete. Here, we administered the classic anti-inflammatory glucocorticoid, corticosterone (CORT), in an attempt to completely suppress METH-related neuroinflammation. METH alone caused large increases in striatal proinflammatory cytokine/chemokine mRNA and subsequent astrocytic hypertrophy, microglial activation, and dopaminergic nerve terminal damage. Pre-treatment of mice with acute CORT failed to prevent neuroinflammatory responses to METH. Surprisingly, when mice were pre-treated with chronic CORT in the drinking water, an enhanced striatal neuroinflammatory response to METH was observed, an effect that was accompanied by enhanced METH-induced astrogliosis and dopaminergic neurotoxicity. Chronic CORT pre-treatment also sensitized frontal cortex and hippocampus to mount a neuroinflammatory response to METH. Because the levels of chronic CORT used are associated with high physiological stress, our data suggest that chronic CORT therapy or sustained physiological stress may sensitize the neuroinflammatory and neurotoxicity responses to METH.
Collapse
Affiliation(s)
- Kimberly A. Kelly
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diane B. Miller
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - John F. Bowyer
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - James P. O’Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
32
|
Sarkar S, Schmued L. In vivo administration of fluorescent dextrans for the specific and sensitive localization of brain vascular pericytes and their characterization in normal and neurotoxin exposed brains. Neurotoxicology 2012; 33:436-43. [PMID: 22525936 DOI: 10.1016/j.neuro.2012.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/12/2012] [Accepted: 04/08/2012] [Indexed: 11/19/2022]
Abstract
We have aimed to develop novel histochemical markers for the labeling of brain pericytes and characterize their morphology in the normal and the excitotoxin-exposed brain, as this class of cells has received little attention until recently. Pericyte labeling was accomplished by the intracerebroventricular injection of certain fluorescent dextran conjugates, such as Fluoro-Gold-dextran, FR-dextran, FITC-dextran and Fluoro-Turquoise (FT)-dextran. 1-7 days after the tracer injection, extensive labeling of vascular pericytes was seen throughout the entire brain. These cells were found distal to the endothelial cells and exhibited large dye containing vacuoles. The morphology of the pericytes was somewhat variable, exhibiting round or amoeboid shapes within larger intracellular vesicles, while those wrapping around capillaries exhibited a more elongated appearance with finger-like projections. The use of FG-dextran resulted in bluish yellow fluorescently labeled pericytes, while FR-dextran resulted in red fluorescent labeled pericytes, FITC-dextran exhibited green fluorescent pericytes and FT-dextran showed fluorescent blue pericytes in the brain. We have used these tracers to study possible changes in morphology and pericyte number following kainic acid insult, observing that the number of pericytes in the injured or lesioned areas of the brain is dramatically reduced compared to the non-injured areas. These novel fluorochromes should be of use for studies involving the detection and localization of pericytes in both normal and pathological brain tissues.
Collapse
Affiliation(s)
- Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, AR 72079, USA
| | | |
Collapse
|
33
|
Levi MS, Divine B, Hanig JP, Doerge DR, Vanlandingham MM, George NI, Twaddle NC, Bowyer JF. A comparison of methylphenidate-, amphetamine-, and methamphetamine-induced hyperthermia and neurotoxicity in male Sprague–Dawley rats during the waking (lights off) cycle. Neurotoxicol Teratol 2012; 34:253-62. [DOI: 10.1016/j.ntt.2012.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/12/2012] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
|
34
|
O'Dell SJ, Galvez BA, Ball AJ, Marshall JF. Running wheel exercise ameliorates methamphetamine-induced damage to dopamine and serotonin terminals. Synapse 2011; 66:71-80. [PMID: 21953518 DOI: 10.1002/syn.20989] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/14/2011] [Indexed: 01/26/2023]
Abstract
Repeated administration of methamphetamine (mAMPH) to rodents in a single-day "binge" produces long-lasting damage to dopaminergic and serotonergic terminals. Because previous research has demonstrated that physical activity can ameliorate nigrostriatal injury, this study investigated whether voluntary exercise in rats can alter the monoaminergic damage resulting from a neurotoxic mAMPH binge. Adult male rats were allowed constant access to running wheels or kept in nonwheel cages for three weeks, then given a binge dosing regimen of mAMPH or saline. The rats were returned to their original environments for three additional weeks post-mAMPH. [(125) I]RTI-55 binding and autoradiography was used to quantify dopamine transporters (DAT), and radioimmunocytochemistry was used to quantify striatal tyrosine hydroxylase (TH). Binge mAMPH treatment significantly reduced striatal DAT and TH in a regionally specific pattern; with greatest effects in ventral caudate-putamen (CP) and relative sparing of the nucleus accumbens septi (NAc). The effects of mAMPH on striatal DAT and TH were ameliorated in the running, compared to the sedentary, animals. Also, mAMPH was found to reduce [(125) I]RTI-55 binding to serotonin transporters (SERT) in frontoparietal cortex, and this too was significantly attenuated by exercise. Additional correlational analyses showed that the post-mAMPH running of individual animals predicted the amelioration of striatal DAT and TH as well as frontoparietal SERT. Overall, voluntary exercise significantly diminished mAMPH-induced forebrain monoaminergic damage. The significant correlations between post-mAMPH exercise and markers of monoaminergic terminal integrity provide novel evidence that voluntary exercise may exert beneficial effects on behavior in recovering mAMPH addicts.
Collapse
Affiliation(s)
- Steven J O'Dell
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697-4550, USA.
| | | | | | | |
Collapse
|
35
|
Yuan CJ, Quiocho JMD, Kim A, Wee S, Mandyam CD. Extended access methamphetamine decreases immature neurons in the hippocampus which results from loss and altered development of neural progenitors without altered dynamics of the S-phase of the cell cycle. Pharmacol Biochem Behav 2011; 100:98-108. [PMID: 21855565 DOI: 10.1016/j.pbb.2011.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/13/2011] [Accepted: 08/05/2011] [Indexed: 01/07/2023]
Abstract
Methamphetamine addicts demonstrate impaired hippocampal-dependent cognitive function that could result from methamphetamine-induced maladaptive plasticity in the hippocampus. Reduced adult hippocampal neurogenesis observed in a rodent model of compulsive methamphetamine self-administration partially contributes to the maladaptive plasticity in the hippocampus. The potential mechanisms underlying methamphetamine-induced inhibition of hippocampal neurogenesis were identified in the present study. Key aspects of the cell cycle dynamics of hippocampal progenitors, including proliferation and neuronal development, were studied in rats that intravenously self-administered methamphetamine in a limited access (1h/day: short access (ShA)-4 days and ShA-13 days) or extended access (6h/day: long access (LgA)-4 days and LgA-13 days) paradigm. Immunohistochemical analysis of Ki-67 cells with 5-chloro-2'-deoxyuridine (CldU) demonstrated that LgA methamphetamine inhibited hippocampal proliferation by decreasing the proliferating pool of progenitors that are in the synthesis (S)-phase of the cell cycle. Double S-phase labeling with CldU and 5-iodo-2'-deoxyuridine (IdU) revealed that reduced S-phase cells were not due to alterations in the length of the S-phase. Further systematic analysis of Ki-67 cells with GFAP, Sox2, and DCX revealed that LgA methamphetamine-induced inhibition of hippocampal neurogenesis was attributable to impairment in the development of neuronal progenitors from preneuronal progenitors to immature neurons. Methamphetamine concomitantly increased hippocampal apoptosis, changes that were evident during the earlier days of self-administration. These findings demonstrate that methamphetamine self-administration initiates allostatic changes in adult neuroplasticity maintained by the hippocampus, including increased apoptosis, and altered dynamics of hippocampal neural progenitors. These data suggest that altered hippocampal plasticity by methamphetamine could partially contribute to methamphetamine-induced impairments in hippocampal function.
Collapse
Affiliation(s)
- Clara J Yuan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
36
|
Venkatesan A, Uzasci L, Chen Z, Rajbhandari L, Anderson C, Lee MH, Bianchet MA, Cotter R, Song H, Nath A. Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination. Mol Brain 2011; 4:28. [PMID: 21708025 PMCID: PMC3142219 DOI: 10.1186/1756-6606-4-28] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/27/2011] [Indexed: 11/24/2022] Open
Abstract
Methamphetamine (METH) abuse has reached epidemic proportions, and it has become increasingly recognized that abusers suffer from a wide range of neurocognitive deficits. Much previous work has focused on the deleterious effects of METH on mature neurons, but little is known about the effects of METH on neural progenitor cells (NPCs). It is now well established that new neurons are continuously generated from NPCs in the adult hippocampus, and accumulating evidence suggests important roles for these neurons in hippocampal-dependent cognitive functions. In a rat hippocampal NPC culture system, we find that METH results in a dose-dependent reduction of NPC proliferation, and higher concentrations of METH impair NPC survival. NPC differentiation, however, is not affected by METH, suggesting cell-stage specificity of the effects of METH. We demonstrate that the effects of METH on NPCs are, in part, mediated through oxidative and nitrosative stress. Further, we identify seventeen NPC proteins that are post-translationally modified via 3-nitrotyrosination in response to METH, using mass spectrometric approaches. One such protein was pyruvate kinase isoform M2 (PKM2), an important mediator of cellular energetics and proliferation. We identify sites of PKM2 that undergo nitrotyrosination, and demonstrate that nitration of the protein impairs its activity. Thus, METH abuse may result in impaired adult hippocampal neurogenesis, and effects on NPCs may be mediated by protein nitration. Our study has implications for the development of novel therapeutic approaches for METH-abusing individuals with neurologic dysfunction and may be applicable to other neurodegenerative diseases in which hippocampal neurogenesis is impaired.
Collapse
Affiliation(s)
- Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Lerna Uzasci
- Middle Atlantic Mass Spectrometry Laboratory, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Zhaohui Chen
- Middle Atlantic Mass Spectrometry Laboratory, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Labchan Rajbhandari
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Carol Anderson
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- National Institutes of Health, Section of Infections of the Nervous Systems, Bldg 10-CRC, Room 7C103; Bethesda, MD 20892
| | - Myoung-Hwa Lee
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- National Institutes of Health, Section of Infections of the Nervous Systems, Bldg 10-CRC, Room 7C103; Bethesda, MD 20892
| | - Mario A Bianchet
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Robert Cotter
- Middle Atlantic Mass Spectrometry Laboratory, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Hongjun Song
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Avindra Nath
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- National Institutes of Health, Section of Infections of the Nervous Systems, Bldg 10-CRC, Room 7C103; Bethesda, MD 20892
| |
Collapse
|
37
|
Switzer RC, Lowry-Franssen C, Benkovic SA. Recommended Neuroanatomical Sampling Practices for Comprehensive Brain Evaluation in Nonclinical Safety Studies. Toxicol Pathol 2011; 39:73-84. [DOI: 10.1177/0192623310397557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adequate tissue sampling is known to reduce the likelihood that the toxicity of novel biomolecules, chemicals, and drugs might go undetected. Each organ, and often specific structurally and functionally distinct regions within it, must be assessed to detect potential site-specific toxicity. Adequate sampling of the brain requires particular consideration because of the many major substructures and more than 600 subpopulations of generally irreplaceable cells with unique functions and vulnerabilities. All known neurotoxicants affect specific subpopulations (usually neurons) rather than damaging a certain percentage of cells throughout the brain; thus, all populations should be independently assessed for lesions. Historically, the affected neural cell subpopulation has not been predictable, but it is now clear that sampling selected populations (e.g., cerebral cortex, hippocampus, cerebellar folia) cannot forecast the health of other populations. This article reviews the neuroanatomical domains affected by several model neurotoxicants to illustrate the need for more comprehensive neurohistological evaluation during nonclinical development of novel compounds. The article also describes an easily executed, cost-effective method that uses a set number of evenly spaced coronal (cross) sections to accomplish this comprehensive brain assessment during nonclinical safety studies performed in rodents, dogs, and nonhuman primates.
Collapse
Affiliation(s)
| | - Catherine Lowry-Franssen
- NeuroScience Associates, Knoxville, Tennessee, USA
- Randolph-Macon College, Ashland, Virginia, USA
| | | |
Collapse
|
38
|
Thomas M, George NI, Saini UT, Patterson TA, Hanig JP, Bowyer JF. Endoplasmic reticulum stress responses differ in meninges and associated vasculature, striatum, and parietal cortex after a neurotoxic amphetamine exposure. Synapse 2011; 64:579-93. [PMID: 20340164 DOI: 10.1002/syn.20763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Amphetamine (AMPH) is used to treat attention deficit and hyperactivity disorders, but it can produce neurotoxicity and adverse vascular effects at high doses. The endoplasmic reticulum (ER) stress response (ERSR) entails the unfolded protein response, which helps to avoid or minimize ER dysfunction. ERSR is often associated with toxicities resulting from the accumulation of unfolded or misfolded proteins and has been associated with methamphetamine toxicity in the striatum. The present study evaluates the effect of AMPH on several ERSR elements in meninges and associated vasculature (MAV), parietal cortex, and striatum. Adult, male Sprague-Dawley rats were exposed to saline, environmentally induced hyperthermia (EIH) or four consecutive doses of AMPH that produce hyperthermia. Expression changes (mRNA and protein levels) of key ERSR-related genes in MAV, striatum, and parietal cortex at 3 h or 1 day postdosing were monitored. AMPH increased the expression of some ERSR-related genes in all tissues. Atf4 (activating transcription factor 4, an indicator of Perk pathway activation), Hspa5/Grp78 (Glucose regulated protein 78, master regulator of ERSR), Pdia4 (protein disulfide isomerase, protein-folding enzyme), and Nfkb1 (nuclear factor of kappa b, ERSR sensor) mRNA increased significantly in MAV and parietal cortex 3 h after AMPH. In striatum, Atf4 and Hspa5/Grp78 mRNA significantly increased 3 h after AMPH, but Pdia4 and Nfkb11 did not. Thus, AMPH caused a robust activation of the Perk pathway in all tissues, but significant Ire1 pathway activation occurred only after AMPH treatment in the parietal cortex and striatum. Ddit3/Chop, a downstream effector of the ERSR pathway related to the neurotoxicity, was only increased in striatum and parietal cortex. Conversely, Pdia4, an enzyme protective in the ERSR, was only increased in MAV. The overall ERSR manifestation varied significantly between MAV, striatum, and parietal cortex after a neurotoxic exposure to AMPH.
Collapse
Affiliation(s)
- Monzy Thomas
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079-9502, USA
| | | | | | | | | | | |
Collapse
|
39
|
Hori N, Kadota MT, Watanabe M, Ito Y, Akaike N, Carpenter DO. Neurotoxic effects of methamphetamine on rat hippocampus pyramidal neurons. Cell Mol Neurobiol 2010; 30:849-56. [PMID: 20232135 DOI: 10.1007/s10571-010-9512-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/02/2010] [Indexed: 11/24/2022]
Abstract
Methamphetamine (MAP) is known to alter behavior and cause deficits in learning and memory. While the major site of action of MAP is on mesolimbic dopaminergic pathways, the effects on learning and memory raise the possibility of important actions in the hippocampus. We have studied electrophysiologic and morphologic effects of MAP in the CA1 region of hippocampus from young male rats chronically exposed to MAP, male rats exposed during gestation only and the effects of bath perfusion of MAP onto brain slices from control rats. Pyramidal neurons in brain slices from chronically exposed rats had reduced membrane potential and membrane resistance. Long-term potentiation (LTP) was reduced as compared to control, but when MAP was acutely perfused over control slices the amplitude of LTP was increased. LTP in young adult animals that had been gestationally exposed to MAP showed reduced LTP as compared to controls. Morphologically CA1 pyramidal neurons in chronically exposed animals showed a high prevalence of extensive blebbing of dendrites. We conclude that the NMDA receptor and the process of LTP are also targets of MAP dysfunction, at least in the hippocampus.
Collapse
Affiliation(s)
- N Hori
- Division of Life Science, University of Texas at San Antonio, 6900 North Loop 1604, West San Antonio, TX 78249-066, USA
| | | | | | | | | | | |
Collapse
|
40
|
Virmani A, Ali SF, Binienda ZK. Neuroprotective strategies in drug abuse-evoked encephalopathy. Ann N Y Acad Sci 2010; 1199:52-68. [PMID: 20633109 DOI: 10.1111/j.1749-6632.2009.05171.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Encephalopathy is evidenced as an altered mental state with various neurological symptoms, such as memory and cognitive problems. The type of a substance-evoked encephalopathy will depend on the drug, substance, or combination being abused. The categories into which we could place the various abused substances could be tentatively divided into stimulants, amphetamines, hallucinogens, narcotics, inhalants, anesthetics, anabolic steroids, and antipsychotics/antidepressants. Other factors that may underlie encephalopathy, such as infectious agents, environmental, and other factors have also to be taken into account. Drugs of abuse can be highly toxic to the CNS following acute, but more so in chronic exposure, and can produce significant damage to other organs, such as the heart, lungs, liver, and kidneys. The damage to these organs may be at least partially reversible when drug abuse is stopped but CNS damage from repeated or prolonged abuse is often irreversible. The major pathways for the organ and CNS toxicity could be related to ischemic events as well as increased cell damage due to metabolic or mitochondrial dysfunction resulting in increased excitotoxicity, reduced energy production, and lowered antioxidant potential. These susceptibilities could be strengthened by the use of antioxidants to combat free radicals (e.g., vitamin E, lipoic acid); trying to improve energy generation by using mitochondriotropic/metabolic compounds (e.g., thiamine, coenzyme Q10, carnitine, riboflavin); by reducing excitotoxicity (e.g., glutamate antagonists) and other possible strategies, such as robust gene response, need to be investigated further. The drug-abuse-evoked encephalopathy still needs to be studied further to enable better preventative and protective strategies.
Collapse
Affiliation(s)
- Ashraf Virmani
- Scientific & Medical Affairs, Sigma tau, Pomezia 00040, Roma, Italy.
| | | | | |
Collapse
|
41
|
Yamamoto BK, Moszczynska A, Gudelsky GA. Amphetamine toxicities: classical and emerging mechanisms. Ann N Y Acad Sci 2010; 1187:101-21. [PMID: 20201848 DOI: 10.1111/j.1749-6632.2009.05141.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The drugs of abuse, methamphetamine and MDMA, produce long-term decreases in markers of biogenic amine neurotransmission. These decreases have been traditionally linked to nerve terminals and are evident in a variety of species, including rodents, nonhuman primates, and humans. Recent studies indicate that the damage produced by these drugs may be more widespread than originally believed. Changes indicative of damage to cell bodies of biogenic and nonbiogenic amine-containing neurons in several brain areas and endothelial cells that make up the blood-brain barrier have been reported. The processes that mediate this damage involve not only oxidative stress but also include excitotoxic mechanisms, neuroinflammation, the ubiquitin proteasome system, as well as mitochondrial and neurotrophic factor dysfunction. These mechanisms also underlie the toxicity associated with chronic stress and human immunodeficiency virus (HIV) infection, both of which have been shown to augment the toxicity to methamphetamine. Overall, multiple mechanisms are involved and interact to promote neurotoxicity to methamphetamine and MDMA. Moreover, the high coincidence of substituted amphetamine abuse by humans with HIV and/or chronic stress exposure suggests a potential enhanced vulnerability of these individuals to the neurotoxic actions of the amphetamines.
Collapse
Affiliation(s)
- Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio 43614, USA.
| | | | | |
Collapse
|
42
|
Kuroda KO, Ornthanalai VG, Kato T, Murphy NP. FosB null mutant mice show enhanced methamphetamine neurotoxicity: potential involvement of FosB in intracellular feedback signaling and astroglial function. Neuropsychopharmacology 2010; 35:641-55. [PMID: 19890265 PMCID: PMC3055620 DOI: 10.1038/npp.2009.169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous studies show that (1) two members of fos family transcription factors, c-Fos and FosB, are induced in frontal brain regions by methamphetamine; (2) null mutation of c-Fos exacerbates methamphetamine-induced neurotoxicity; and (3) null mutation of FosB enhances behavioral responses to cocaine. Here we sought a role of FosB in responses to methamphetamine by studying FosB null mutant (-/-) mice. After a 10 mg/kg methamphetamine injection, FosB(-/-) mice were more prone to self-injury. Concomitantly, the intracellular feedback regulators of Sprouty and Rad-Gem-Kir (RGK) family transcripts had lower expression profiles in the frontoparietal cortex and striatum of the FosB(-/-) mice. Three days after administration of four 10 mg/kg methamphetamine injections, the frontoparietal cortex and striatum of FosB(-/-) mice contained more degenerated neurons as determined by Fluoro-Jade B staining. The abundance of the small neutral amino acids, serine, alanine, and glycine, was lower and/or was poorly induced after methamphetamine administration in the frontoparietal cortex and striatum of FosB(-/-) mice. In addition, methamphetamine-treated FosB(-/-) frontoparietal and piriform cortices showed more extravasation of immunoglobulin, which is indicative of blood-brain barrier dysfunction. Methamphetamine-induced hyperthermia, brain dopamine content, and loss of tyrosine hydroxylase immunoreactivity in the striatum, however, were not different between genotypes. These data indicate that FosB is involved in thermoregulation-independent protective functions against methamphetamine neurotoxicity in postsynaptic neurons. Our findings suggest two possible mechanisms of FosB-mediated neuroprotection: one is induction of negative feedback regulation within postsynaptic neurons through Sprouty and RGK. Another is supporting astroglial function such as maintenance of the blood-brain barrier, and metabolism of serine and glycine, which are important glial modulators of nerve cells.
Collapse
Affiliation(s)
- Kumi O Kuroda
- Unit for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan.
| | | | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorder, RIKEN Brain Science Institute, Saitama, Japan
| | - Niall P Murphy
- Neuropathology Research Group, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
43
|
Bowyer JF, Latendresse JR, Delongchamp RR, Warbritton AR, Thomas M, Divine B, Doerge DR. The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water. Toxicol Appl Pharmacol 2009; 240:401-11. [DOI: 10.1016/j.taap.2009.07.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 02/06/2023]
|
44
|
Thomas M, George NI, Patterson TA, Bowyer JF. Amphetamine and environmentally induced hyperthermia differentially alter the expression of genes regulating vascular tone and angiogenesis in the meninges and associated vasculature. Synapse 2009; 63:881-94. [PMID: 19582783 DOI: 10.1002/syn.20661] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An amphetamine (AMPH) regimen that does not produce a prominent blood-brain barrier breakdown was shown to significantly alter the expression of genes regulating vascular tone, immune function, and angiogenesis in vasculature associated with arachnoid and pia membranes of the forebrain. Adult-male Sprague-Dawley rats were given either saline injections during environmentally-induced hyperthermia (EIH) or four doses of AMPH with 2 h between each dose (5, 7.5, 10, and 10 mg/kg d-AMPH, s.c.) that produced hyperthermia. Rats were sacrificed either 3 h or 1 day after dosing, and total RNA and protein was isolated from the meninges, arachnoid and pia membranes, and associated vasculature (MAV) that surround the forebrain. Vip, eNos, Drd1a, and Edn1 (genes regulating vascular tone) were increased by either EIH or AMPH to varying degrees in MAV, indicating that EIH and AMPH produce differential responses to enhance vasodilatation. AMPH, and EIH to a lesser extent, elicited a significant inflammatory response at 3 h as indicated by an increased MAV expression of cytokines Il1b, Il6, Ccl-2, Cxcl1, and Cxcl2. Also, genes related to heat shock/stress and disruption of vascular homeostasis such as Icam1 and Hsp72 were also observed. The increased expression of Ctgf and Timp1 and the decreased expression of Akt1, Anpep, and Mmp2 and Tek (genes involved in stimulating angiogenesis) from AMPH exposure suggest that angiogenesis was arrested or disrupted in MAV to a greater extent by AMPH compared to EIH. Alterations in vascular-related gene expression in the parietal cortex and striatum after AMPH were less in magnitude than in MAV, indicating less of a disruption of vascular homeostasis in these two regions. Changes in the levels of insulin-like growth factor binding proteins Igfbp1, 2, and 5 in MAV, compared to those in striatum and parietal cortex, imply an interaction between these regions to regulate the levels of insulin-like growth factor after AMPH damage. Thus, the vasculature and meninges surrounding the surface of the forebrain may be an important region in which AMPHs can disrupt vascular homeostasis.
Collapse
Affiliation(s)
- Monzy Thomas
- US Food and Drug Administration, National Center for Toxicological Research, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, Arkansas 72079, USA
| | | | | | | |
Collapse
|
45
|
Gold MS, Kobeissy FH, Wang KKW, Merlo LJ, Bruijnzeel AW, Krasnova IN, Cadet JL. Methamphetamine- and trauma-induced brain injuries: comparative cellular and molecular neurobiological substrates. Biol Psychiatry 2009; 66:118-27. [PMID: 19345341 PMCID: PMC2810951 DOI: 10.1016/j.biopsych.2009.02.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 02/19/2009] [Accepted: 02/22/2009] [Indexed: 12/21/2022]
Abstract
The use of methamphetamine (METH) is a growing public health problem, because its abuse is associated with long-term biochemical and structural effects on the human brain. Neurodegeneration is often observed in humans, because of mechanical injuries (e.g., traumatic brain injury [TBI]) and ischemic damage (strokes). In this review, we discuss recent findings documenting the fact that the psychostimulant drug METH can cause neuronal damage in several brain regions. The accumulated evidence from our laboratories and those of other investigators indicates that acute administration of METH leads to activation of calpain and caspase proteolytic systems. These systems are also involved in causing neuronal damage secondary to traumatic and ischemic brain injuries. Protease activation is accompanied by proteolysis of endogenous neuronal structural proteins (alphaII-spectrin protein and microtubule-associated protein-tau), evidenced by the appearance of their breakdown products after these injuries. When taken together, these observations suggest that METH exposure, like TBI, can cause substantial damage to the brain by causing both apoptotic and necrotic cell death in the brains of METH addicts who use large doses of the drug during their lifetimes. Finally, because METH abuse is accompanied by functional and structural changes in the brain similar to those in TBI, METH addicts might experience greater benefit if their treatment involved greater emphasis on rehabilitation in conjunction with potential neuroprotective pharmacological agents such as calpain and caspase inhibitors similar to those used in TBI.
Collapse
Affiliation(s)
- Mark S Gold
- Center for Neuroproteomics and Biomarkers Research, McKnight Brain Institute of the University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Krasnova IN, Cadet JL. Methamphetamine toxicity and messengers of death. ACTA ACUST UNITED AC 2009; 60:379-407. [PMID: 19328213 DOI: 10.1016/j.brainresrev.2009.03.002] [Citation(s) in RCA: 420] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/16/2009] [Indexed: 12/11/2022]
Abstract
Methamphetamine (METH) is an illicit psychostimulant that is widely abused in the world. Several lines of evidence suggest that chronic METH abuse leads to neurodegenerative changes in the human brain. These include damage to dopamine and serotonin axons, loss of gray matter accompanied by hypertrophy of the white matter and microgliosis in different brain areas. In the present review, we summarize data on the animal models of METH neurotoxicity which include degeneration of monoaminergic terminals and neuronal apoptosis. In addition, we discuss molecular and cellular bases of METH-induced neuropathologies. The accumulated evidence indicates that multiple events, including oxidative stress, excitotoxicity, hyperthermia, neuroinflammatory responses, mitochondrial dysfunction, and endoplasmic reticulum stress converge to mediate METH-induced terminal degeneration and neuronal apoptosis. When taken together, these findings suggest that pharmacological strategies geared towards the prevention and treatment of the deleterious effects of this drug will need to attack the various pathways that form the substrates of METH toxicity.
Collapse
Affiliation(s)
- Irina N Krasnova
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, Baltimore, MD 21224, USA
| | | |
Collapse
|
47
|
Diadenosine tetraphosphate reduces toxicity caused by high-dose methamphetamine administration. Neurotoxicology 2009; 30:436-44. [PMID: 19442829 DOI: 10.1016/j.neuro.2009.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/02/2009] [Accepted: 02/05/2009] [Indexed: 11/23/2022]
Abstract
Diadenosine tetraphosphate (AP(4)A), two adenosine moieties bridged by four phosphates, is an endogenous purinergic ligand found in brain. Previous studies have shown that AP(4)A reduced neurodegeneration caused by the dopaminergic neurotoxin 6-hydroxydopamine in rat striatum and substantia nigra. The purpose of this study was to determine whether AP(4)A is protective against methamphetamine (MA)-mediated toxicity. Primary neuronal cultures were prepared from rat embryonic (E14-E15) ventral mesencephalic tissue. Cultures treated with 2mM MA exhibited decreased tyrosine hydroxylase (TH) immunoreactivity and increased cleaved caspase-3 immunoreactivity and TUNEL labeling. All these changes were lessened by pretreatment with AP(4)A. The protective effect of AP(4)A was also found in vivo. Adult Sprague-Dawley rats were injected with AP(4)A (25 microg/20 microl) or vehicle intracerebroventricularly followed by 4 doses of MA (5 or 10 mg/kg), given subcutaneously every 2h. Administration of MA reduced locomotor activity 1 day after injection, which was significantly antagonized by the pretreatment with AP(4)A. Using immunohistochemical analysis, TH fiber density at the substantia nigra pars reticulata was found reduced while cleaved caspase-3 immunoreactivity in striatum was increased after MA treatment; these responses were also significantly antagonized by AP(4)A. Taken together, our data show that AP(4)A has protective effects against MA-mediated toxicity both in vitro and in vivo. The mechanism of action involves suppression of MA-induced apoptosis.
Collapse
|
48
|
Marques E, Vasconcelos F, Rolo MR, Pereira FC, Silva AP, Macedo TR, Ribeiro CF. Influence of chronic exercise on the amphetamine-induced dopamine release and neurodegeneration in the striatum of the rat. Ann N Y Acad Sci 2008; 1139:222-31. [PMID: 18991868 DOI: 10.1196/annals.1432.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to verify the effect of chronic exercise on the striatal dopamine (DA) outflow induced by low and high single doses of amphetamine (AMPH), and verify the existence of an exercise protective role on neurodegeneration. Adult male Sprague-Dawley rats were randomly separated into six groups: chronic exercise, saline; chronic exercise, 5 mg kg(-1) AMPH; chronic exercise, 30 mg kg(-1) AMPH; without exercise, saline; without exercise, 5 mg kg(-1) AMPH; without exercise, 30 mg kg(-1) AMPH. Chronic exercise consisted of an 8-week running program on a treadmill, with increasing intensity. Animals were anesthetized, placed into a stereotaxic frame and an intracerebral guide cannula implanted into the caudate-putamen. When indicated, microdialysis was performed. Dialysate samples were collected during 30-min intervals for 6 h, before and after the intraperitonial administration of AMPH or saline solution. HPLC with electrochemical detection was used to quantify DA. Chronic exercise did not significantly change the extracellular DA basal values. Regarding the maximal DA levels in the dialysates, in the rats treated with 5 mg kg(-1) AMPH, there was no significant difference between groups with and without chronic exercise; on the contrary, in animals treated with 30 mg kg(-1) AMPH, the DA release was lower in the group with chronic exercise. Moreover, the maintenance of higher levels of DA along time in the training group suggests a diminished reuptake of DA. By using the Fluoro-Jade C staining technique, we did not find neuronal death in any of the groups. In conclusion, these results suggest that chronic exercise leads to a diminished release and reuptake of DA after administration of a high dose of AMPH, whereas neither chronic exercise nor AMPH seems to induce neurodegeneration.
Collapse
Affiliation(s)
- Elsa Marques
- Department of Pharmacology, Biomedical Institute for Research on Light and Image (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
49
|
Bowyer JF, Thomas M, Schmued LC, Ali SF. Brain region-specific neurodegenerative profiles showing the relative importance of amphetamine dose, hyperthermia, seizures, and the blood-brain barrier. Ann N Y Acad Sci 2008; 1139:127-39. [PMID: 18991857 DOI: 10.1196/annals.1432.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Understanding the neurotoxic effects of acute high-dose exposures of laboratory animals to methamphetamine (METH) and amphetamine (AMPH) is of relevance to understanding the neurotoxicity incurred in humans from overdose or abuse of these substances. We present recent findings on the neurodegenerative effects of both a single high dose of 40 mg/kg and a 4-dose exposure to AMPH in the rat. Comparing these results with those we have previously observed in rodents exposed to either AMPH or METH helps further address how dose, hyperthermia, seizures and blood-brain barrier (BBB) disruption interact to produce neurodegeneration. With regard to the 4-dose paradigm of AMPH exposure in the rat, our recent data, combined with previous findings, clearly show the importance of dose and hyperthermic interactions in producing neurodegeneration. The single high AMPH dose invariably resulted in extreme hyperthermia and brief episodes of clonic-tonic seizure activity in many rats. However, motor behavior indicative of status epilepticus was not observed in rats receiving the 40 mg/kg AMPH, which contrasts with what we have previously seen with 40 mg/kg METH dose in the mouse. This may explain why, unlike the mice given METH, there was minimal BBB disruption in the amygdala of rats. Nonetheless, in some of the surviving rats there was extensive neurodegeneration in the hippocampus and intralaminar and ventromedial/lateral thalamic nuclei. Early BBB disruption was seen in the hippocampus and may play an important role in the subsequent neurodegeneration. The fact that status epilepticus does not occur in rats that have major hippocampal and thalamic degeneration indicates that such damage may also occur in humans exposed to high doses of AMPH or METH in the absence of status epilepticus or prominent motor manifestations of seizure activity.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA.
| | | | | | | |
Collapse
|
50
|
Bowyer JF, Robinson B, Ali S, Schmued LC. Neurotoxic-related changes in tyrosine hydroxylase, microglia, myelin, and the blood-brain barrier in the caudate-putamen from acute methamphetamine exposure. Synapse 2008; 62:193-204. [PMID: 18081184 DOI: 10.1002/syn.20478] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Changes in the histological morphology of the caudate-putamen (CPu) were determined after a high-dose methamphetamine (METH) exposure in an effort to elucidate whether BBB disruption plays a role in CPu neurotoxicity. This was accomplished by evaluating the tyrosine hydroxylase immunoreactivity (TH-IR), isolectin B4 reactivity, Black Gold II (BG-II) and Fluoro-Jade C (FJ-C) staining, and immunoreactivity to mouse immunoglobulin G (IgG-IR) in adult male mice at 90-min, 4-h, 12-h, 1-day, and 3-day post-METH exposure. The IgG-IR indicated that the BBB was only modestly altered in the CPu at time points after neurodegeneration occurred and dependent on hyperthermia and status epilepticus. The modest CPu IgG-IR changes observed in the perivascular areas indicated that immunoglobulins were present on some CPu microglia 1 day or more after METH. The first signs of CPu damage were swellings in the TH-IR axons, myelin damage, and a few degenerating neurons at 4-h post-METH. The loss of TH-IR was dependent on hyperthermia but not seizures or CPu neurodegeneration, and the TH-IR was virtually absent throughout the CPu within 12 h. Surprisingly, signs of FJ-C labeling (degenerating) axons in the CPu were seen only in the regions of pronounced somatic neurodegeneration and independent of TH-IR loss. Microglial activation did not occur until 1 day or more post-METH. In summary, a major BBB disruption within the CPu does not directly contribute to neurotoxicity in this single high-dose METH exposure. However, seizure activity produced or exacerbated by amygdalar BBB disruption can significantly increase CPu somatic neurodegeneration (but not affect dopamine (DA) terminal damage). The time course of microglial activation indicates a response to the neurodegeneration, myelin damage, and/or damaged DA terminals after loss of TH-IR.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | | | | | | |
Collapse
|