1
|
Jiang YQ, Lee DK, Guo W, Li M, Sun Q. Hypothalamic regulation of hippocampal CA1 interneurons by the supramammillary nucleus. Cell Rep 2024; 43:114898. [PMID: 39446584 DOI: 10.1016/j.celrep.2024.114898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/14/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
The hypothalamic supramammillary nucleus (SuM) projects heavily to the hippocampus to regulate hippocampal activity and plasticity. Although the projections from the SuM to the dentate gyrus (DG) and CA2 have been extensively studied, whether the SuM projects to CA1, the main hippocampal output region, is unclear. Here, we report a glutamatergic pathway from the SuM that selectively excites CA1 interneurons in the border between the stratum radiatum (SR) and the stratum lacunosum-moleculare (SLM). We find that the SuM projects selectively to a narrow band in the CA1 SR/SLM and monosynaptically excites SR/SLM interneurons, including vasoactive intestinal peptide-expressing (VIP+) and neuron-derived neurotrophic factor-expressing (NDNF+) cells, but completely avoids making monosynaptic contacts with CA1 pyramidal neurons (PNs) or parvalbumin-expressing (PV+) or somatostatin-expressing (SOM+) cells. Moreover, SuM activation drives spikes in most SR/SLM interneurons to suppress CA1 PN excitability. Taken together, our findings reveal that the SuM can directly regulate hippocampal output region CA1, bypassing CA2, CA3, and the DG.
Collapse
Affiliation(s)
- Yu-Qiu Jiang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Daniel K Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wanyi Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Minghua Li
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Qian Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
2
|
Solórzano Hernández E, Cervantes Alfaro JM, Figueroa Rosales R, Gutiérrez Guzmán BÉ, López Vázquez MÁ, Olvera Cortés ME. Septal medial/diagonal band of Broca citalopram infusion reduces place learning efficiency and alters septohippocampal theta learning-related activity in rats. Behav Brain Res 2022; 435:114056. [PMID: 35963580 DOI: 10.1016/j.bbr.2022.114056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
Increases in power and frequency of hippocampal theta activity have been related to efficient place learning and memory acquisition in hippocampal-dependent tests. The complex medial septum-diagonal band of Broca (MS/DBB) is the pacemaker of hippocampal theta activity, influenced by the ascending synchronizing system, and modulated by serotonergic raphe medial afferents, acting on cholinergic and GABAergic septal neurons. The suppression of hippocampal theta expression and the modulation of hippocampal learning and memory are attributed to serotonin. To simultaneously test these hypotheses, a daily local serotonin increase was induced by citalopram (CIT) infusion (100 µM, 0.88 µl, 0.2 µl/m) 15 min before training in the Morris water maze. The theta activity was recorded in the MS/DBB, dentate gyrus (DG) and CA1 of one group infused with artificial cerebrospinal liquid (ACL) and the other with CIT on Days 1-6 of training. After a probe trial (Day 7) and one resting day, the treatments were reversed (Days 8-11). The CIT MS/DBB infusion in the first 6 training days reduced the efficiency of spatial learning in association with reduced power in the DG, reduced MS/DBB-DG coherence, increased DG-CA1 coherence, and a lack of a negative correlation between MS/DBB power and swam distances. No effect of the CIT occurred once the information was acquired under ACL training. These results support a role of serotonin, in acting on the MS/DBB in the fine tuning of hippocampal learning and memory efficiency through the modulation of learning-related theta activity power and septohipocampal synchronization.
Collapse
Affiliation(s)
- Eduardo Solórzano Hernández
- Laboratorio de Neurociencias, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Mexico; Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Mexico.
| | - José Miguel Cervantes Alfaro
- Laboratorio de Neurociencias, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Mexico.
| | - Rosalinda Figueroa Rosales
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Mexico.
| | - Blanca Érika Gutiérrez Guzmán
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Mexico.
| | - Miguel Ángel López Vázquez
- Laboratorio de Neuroplasticidad, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Mexico.
| | - María Esther Olvera Cortés
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Mexico.
| |
Collapse
|
3
|
McNaughton N, Vann SD. Construction of complex memories via parallel distributed cortical-subcortical iterative integration. Trends Neurosci 2022; 45:550-562. [PMID: 35599065 PMCID: PMC7612902 DOI: 10.1016/j.tins.2022.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 01/08/2023]
Abstract
The construction of complex engrams requires hippocampal-cortical interactions. These include both direct interactions and ones via often-overlooked subcortical loops. Here, we review the anatomical organization of a hierarchy of parallel 'Papez' loops through the hypothalamus that are homologous in mammals from rats to humans. These hypothalamic loops supplement direct hippocampal-cortical connections with iterative reprocessing paced by theta rhythmicity. We couple existing anatomy and lesion data with theory to propose that recirculation in these loops progressively enhances desired connections, while reducing interference from competing external goals and internal associations. This increases the signal-to-noise ratio in the distributed engrams (neocortical and cerebellar) necessary for complex learning and memory. The hypothalamic nodes provide key motivational input for engram enhancement during consolidation.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, POB56, Dunedin, New Zealand.
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
4
|
The Role of the Posterior Hypothalamus in the Modulation and Production of Rhythmic Theta Oscillations. Neuroscience 2021; 470:100-115. [PMID: 34271089 DOI: 10.1016/j.neuroscience.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
Theta rhythm recorded as an extracellular synchronous field potential is generated in a number of brain sites including the hippocampus. The physiological occurrence of hippocampal theta rhythm is associated with the activation of a number of structures forming the ascending brainstem-hippocampal synchronizing pathway. Experimental evidence indicates that the supramammillary nucleus and posterior hypothalamic nuclei, considered as the posterior hypothalamic area, comprise a critical node of this ascending pathway. The posterior hypothalamic area plays an important role in movement control, place-learning, memory processing, emotion and arousal. In the light of multiplicity of functions of the posterior hypothalamic area and the influence of theta field oscillations on a number of neural processes, it is the authors' intent to summarize the data concerning the involvement of the supramammillary nucleus and posterior hypothalamic nuclei in the modulation of limbic theta rhythmicity as well as the ability of these brain structures to independently generate theta rhythmicity.
Collapse
|
5
|
Staszelis A, Kowalczyk T. The role of the posterior hypothalamic area
in the generation of theta rhythm. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Theta rhythm is one of the best synchronized patterns of the oscillatory activity recorded in
the mammalian brain. In humans, this rhythm is associated with REM sleep, spatial navigation,
memory functions, analytical and language processes. On the other hand, it can be treated as
a non-specific marker of such pathological states of the central nervous system as Alzheimer’s
disease or epilepsy. The hippocampal formation is the key structure involved in the generation
of this bioelectric phenomenon, both in humans and rodents (the most commonly studied laboratory
animals). Theta rhythm appearance in the hippocampus is dependent on the interaction
of multiple different structures of the nervous system. One of them is the posterior hypothalamic
area (PHa), which constitutes a crucial part of the neuronal system modulating the ability
of the hippocampal formation to generate theta rhythm. Although the research results encompassed
in this paper emphasize the essential role of the PHa as a modulator of the hippocampal
theta rhythm, it was the authors’ intent to indicate that this area is also capable of generating
local rhythmical theta oscillations, independently of the influence of other brain structures.
Collapse
Affiliation(s)
- Agata Staszelis
- Katedra Neurobiologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| | - Tomasz Kowalczyk
- Katedra Neurobiologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| |
Collapse
|
6
|
Robert V, Therreau L, Chevaleyre V, Lepicard E, Viollet C, Cognet J, Huang AJ, Boehringer R, Polygalov D, McHugh TJ, Piskorowski RA. Local circuit allowing hypothalamic control of hippocampal area CA2 activity and consequences for CA1. eLife 2021; 10:63352. [PMID: 34003113 PMCID: PMC8154026 DOI: 10.7554/elife.63352] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
The hippocampus is critical for memory formation. The hypothalamic supramammillary nucleus (SuM) sends long-range projections to hippocampal area CA2. While the SuM-CA2 connection is critical for social memory, how this input acts on the local circuit is unknown. Using transgenic mice, we found that SuM axon stimulation elicited mixed excitatory and inhibitory responses in area CA2 pyramidal neurons (PNs). Parvalbumin-expressing basket cells were largely responsible for the feedforward inhibitory drive of SuM over area CA2. Inhibition recruited by the SuM input onto CA2 PNs increased the precision of action potential firing both in conditions of low and high cholinergic tone. Furthermore, SuM stimulation in area CA2 modulated CA1 activity, indicating that synchronized CA2 output drives a pulsed inhibition in area CA1. Hence, the network revealed here lays basis for understanding how SuM activity directly acts on the local hippocampal circuit to allow social memory encoding.
Collapse
Affiliation(s)
- Vincent Robert
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Université de Paris, Paris, France
| | - Ludivine Therreau
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Université de Paris, Paris, France
| | - Vivien Chevaleyre
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Université de Paris, Paris, France.,GHU Paris Psychiatrie and Neurosciences, Paris, France
| | - Eude Lepicard
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Université de Paris, Paris, France
| | - Cécile Viollet
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Université de Paris, Paris, France
| | - Julie Cognet
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Université de Paris, Paris, France
| | - Arthur Jy Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Roman Boehringer
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Denis Polygalov
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Rebecca Ann Piskorowski
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, Team Synaptic Plasticity and Neural Networks, Université de Paris, Paris, France.,GHU Paris Psychiatrie and Neurosciences, Paris, France
| |
Collapse
|
7
|
Zhang Y, Stoelzel C, Ezrokhi M, Tsai TH, Cincotta AH. Activation State of the Supramammillary Nucleus Regulates Body Composition and Peripheral Fuel Metabolism. Neuroscience 2021; 466:125-147. [PMID: 33991623 DOI: 10.1016/j.neuroscience.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Whole body fuel metabolism and energy balance are controlled by an interactive brain neuronal circuitry involving multiple brain centers regulating cognition, circadian rhythms, reward, feeding and peripheral biochemical metabolism. The hypothalamic supramammillary nucleus (SuMN) comprises an integral node having connections with these metabolically relevant centers, and thus could be a key central coordination center for regulating peripheral energy balance. This study investigated the effect of chronically diminishing or increasing SuMN neuronal activity on body composition and peripheral fuel metabolism. The influence of neuronal activity level at the SuMN area on peripheral metabolism was investigated via chronic (2-4 week) direct SuMN treatment with agents that inhibit neuronal activity (GABAa receptor agonist [Muscimol] and AMPA plus NMDA glutamate receptor antagonists [CNQX plus dAP5, respectively]) in high fat fed animals refractory to the obesogenic effects of high fat diet. Such treatment reduced SuMN neuronal activity and induced metabolic syndrome, and likewise did so in animals fed low fat diet including inducement of glucose intolerance, insulin resistance, hyperinsulinemia, hyperleptinemia, and increased body weight gain and fat mass coupled with both increased food consumption and feed efficiency. Consistent with these results, circadian-timed activation of neuronal activity at the SuMN area with daily local infusion of glutamate receptor agonists, AMPA or NMDA at the natural daily peak of SuMN neuronal activity improved insulin resistance and obesity in high fat diet-induced insulin resistant animals. These studies are the first of their kind to identify the SuMN area as a novel brain locus that regulates peripheral fuel metabolism.
Collapse
Affiliation(s)
- Yahong Zhang
- VeroScience LLC, Tiverton, RI 02878, United States.
| | | | | | | | | |
Collapse
|
8
|
Signalling pathways contributing to learning and memory deficits in the Ts65Dn mouse model of Down syndrome. Neuronal Signal 2021; 5:NS20200011. [PMID: 33763235 PMCID: PMC7955101 DOI: 10.1042/ns20200011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/30/2023] Open
Abstract
Down syndrome (DS) is a genetic trisomic disorder that produces life-long changes in physiology and cognition. Many of the changes in learning and memory seen in DS are reminiscent of disorders involving the hippocampal/entorhinal circuit. Mouse models of DS typically involve trisomy of murine chromosome 16 is homologous for many of the genes triplicated in human trisomy 21, and provide us with good models of changes in, and potential pharmacotherapy for, human DS. Recent careful dissection of the Ts65Dn mouse model of DS has revealed differences in key signalling pathways from the basal forebrain to the hippocampus and associated rhinal cortices, as well as changes in the microstructure of the hippocampus itself. In vivo behavioural and electrophysiological studies have shown that Ts65Dn animals have difficulties in spatial memory that mirror hippocampal deficits, and have changes in hippocampal electrophysiological phenomenology that may explain these differences, and align with expectations generated from in vitro exploration of this model. Finally, given the existing data, we will examine the possibility for pharmacotherapy for DS, and outline the work that remains to be done to fully understand this system.
Collapse
|
9
|
Gil-Miravet I, Mañas-Ojeda A, Ros-Bernal F, Castillo-Gómez E, Albert-Gascó H, Gundlach AL, Olucha-Bordonau FE. Involvement of the Nucleus Incertus and Relaxin-3/RXFP3 Signaling System in Explicit and Implicit Memory. Front Neuroanat 2021; 15:637922. [PMID: 33867946 PMCID: PMC8044989 DOI: 10.3389/fnana.2021.637922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
Telencephalic cognitive and emotional circuits/functions are strongly modulated by subcortical inputs. The main focus of past research on the nature of this modulation has been on the widespread monoamine projections to the telencephalon. However, the nucleus incertus (NI) of the pontine tegmentum provides a strong GABAergic and peptidergic innervation of the hippocampus, basal forebrain, amygdala, prefrontal cortex, and related regions; and represents a parallel source of ascending modulation of cognitive and emotional domains. NI GABAergic neurons express multiple peptides, including neuromedin-B, cholecystokinin, and relaxin-3, and receptors for stress and arousal transmitters, including corticotrophin-releasing factor and orexins/hypocretins. A functional relationship exists between NI neurons and their associated peptides, relaxin-3 and neuromedin-B, and hippocampal theta rhythm, which in turn, has a key role in the acquisition and extinction of declarative and emotional memories. Furthermore, RXFP3, the cognate receptor for relaxin-3, is a Gi/o protein-coupled receptor, and its activation inhibits the cellular accumulation of cAMP and induces phosphorylation of ERK, processes associated with memory formation in the hippocampus and amygdala. Therefore, this review summarizes the role of NI transmitter systems in relaying stress- and arousal-related signals to the higher neural circuits and processes associated with memory formation and retrieval.
Collapse
Affiliation(s)
- Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Aroa Mañas-Ojeda
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Francisco Ros-Bernal
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Esther Castillo-Gómez
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Hector Albert-Gascó
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Andrew L Gundlach
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Francisco E Olucha-Bordonau
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| |
Collapse
|
10
|
Dillingham CM, Milczarek MM, Perry JC, Vann SD. Time to put the mammillothalamic pathway into context. Neurosci Biobehav Rev 2021; 121:60-74. [PMID: 33309908 PMCID: PMC8137464 DOI: 10.1016/j.neubiorev.2020.11.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
The medial diencephalon, in particular the mammillary bodies and anterior thalamic nuclei, has long been linked to memory and amnesia. The mammillary bodies provide a dense input into the anterior thalamic nuclei, via the mammillothalamic tract. In both animal models, and in patients, lesions of the mammillary bodies, mammillothalamic tract and anterior thalamic nuclei all produce severe impairments in temporal and contextual memory, yet it is uncertain why these regions are critical. Mounting evidence from electrophysiological and neural imaging studies suggests that mammillothalamic projections exercise considerable distal influence over thalamo-cortical and hippocampo-cortical interactions. Here, we outline how damage to the mammillary body-anterior thalamic axis, in both patients and animal models, disrupts behavioural performance on tasks that relate to contextual ("where") and temporal ("when") processing. Focusing on the medial mammillary nuclei as a possible 'theta-generator' (through their interconnections with the ventral tegmental nucleus of Gudden) we discuss how the mammillary body-anterior thalamic pathway may contribute to the mechanisms via which the hippocampus and neocortex encode representations of experience.
Collapse
Affiliation(s)
- Christopher M Dillingham
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Michal M Milczarek
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - James C Perry
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Seralynne D Vann
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
11
|
Young CK, Ruan M, McNaughton N. Speed modulation of hippocampal theta frequency and amplitude predicts water maze learning. Hippocampus 2020; 31:201-212. [PMID: 33171002 DOI: 10.1002/hipo.23281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Theta oscillations in the hippocampus have many behavioral correlates, with the magnitude and vigor of ongoing movement being the most salient. Many consider correlates of locomotion with hippocampal theta to be a confound in delineating theta contributions to cognitive processes. Theory and empirical experiments suggest theta-movement relationships are important if spatial navigation is to support higher cognitive processes. In the current study, we tested if variations in speed modulation of hippocampal theta can predict spatial learning rates in the water maze. Using multi-step regression, we find that the magnitude and robustness of hippocampal theta frequency versus speed scaling can predict water maze learning rates. Using a generalized linear model, we also demonstrate that speed and water maze learning are the best predictors of hippocampal theta frequency and amplitude. Our findings suggest movement-speed correlations with hippocampal theta frequency may be actively used in spatial learning.
Collapse
Affiliation(s)
- Calvin K Young
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Ming Ruan
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Zhuhai Municipal Women's and Children's Hospital, Zhuhai, China
| | - Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Kreuzer M, Butovas S, García PS, Schneider G, Schwarz C, Rudolph U, Antkowiak B, Drexler B. Propofol Affects Cortico-Hippocampal Interactions via β3 Subunit-Containing GABA A Receptors. Int J Mol Sci 2020; 21:ijms21165844. [PMID: 32823959 PMCID: PMC7461501 DOI: 10.3390/ijms21165844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND General anesthetics depress neuronal activity. The depression and uncoupling of cortico-hippocampal activity may contribute to anesthetic-induced amnesia. However, the molecular targets involved in this process are not fully characterized. GABAA receptors, especially the type with β3 subunits, represent a main molecular target of propofol. We therefore hypothesized that GABAA receptors with β3 subunits mediate the propofol-induced disturbance of cortico-hippocampal interactions. METHODS We used local field potential (LFP) recordings from chronically implanted cortical and hippocampal electrodes in wild-type and β3(N265M) knock-in mice. In the β3(N265M) mice, the action of propofol via β3subunit containing GABAA receptors is strongly attenuated. The analytical approach contained spectral power, phase locking, and mutual information analyses in the 2-16 Hz range to investigate propofol-induced effects on cortico-hippocampal interactions. RESULTS Propofol caused a significant increase in spectral power between 14 and 16 Hz in the cortex and hippocampus of wild-type mice. This increase was absent in the β3(N265M) mutant. Propofol strongly decreased phase locking of 6-12 Hz oscillations in wild-type mice. This decrease was attenuated in the β3(N265M) mutant. Finally, propofol reduced the mutual information between 6-16 Hz in wild-type mice, but only between 6 and 8 Hz in the β3(N265M) mutant. CONCLUSIONS GABAA receptors containing β3 subunits contribute to frequency-specific perturbation of cortico-hippocampal interactions. This likely explains some of the amnestic actions of propofol.
Collapse
Affiliation(s)
- Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Ismaninger Str. 22, 81675 München, Germany; (M.K.); (G.S.)
| | - Sergejus Butovas
- Werner Reichardt Centre for Integrative Neuroscience, Eberhard-Karls-University, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; (S.B.); (C.S.)
| | - Paul S García
- Department of Anesthesiology, Neuroanesthesia Division, Columbia University Medical Center, New York Presbyterian Hospital, 622 West 168th Street, New York City, NY 10032, USA;
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Ismaninger Str. 22, 81675 München, Germany; (M.K.); (G.S.)
| | - Cornelius Schwarz
- Werner Reichardt Centre for Integrative Neuroscience, Eberhard-Karls-University, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; (S.B.); (C.S.)
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802-6178, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illiniois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bernd Antkowiak
- Department of Anaesthesiology, Experimental Anaesthesiology Section, Eberhard-Karls-University, Waldhörnlestrasse 22, 72072 Tübingen, Germany;
| | - Berthold Drexler
- Department of Anaesthesiology, Experimental Anaesthesiology Section, Eberhard-Karls-University, Waldhörnlestrasse 22, 72072 Tübingen, Germany;
- Correspondence:
| |
Collapse
|
13
|
Dillingham CM, Milczarek MM, Perry JC, Frost BE, Parker GD, Assaf Y, Sengpiel F, O'Mara SM, Vann SD. Mammillothalamic Disconnection Alters Hippocampocortical Oscillatory Activity and Microstructure: Implications for Diencephalic Amnesia. J Neurosci 2019; 39:6696-6713. [PMID: 31235646 PMCID: PMC6703878 DOI: 10.1523/jneurosci.0827-19.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 01/13/2023] Open
Abstract
Diencephalic amnesia can be as debilitating as the more commonly known temporal lobe amnesia, yet the precise contribution of diencephalic structures to memory processes remains elusive. Across four cohorts of male rats, we used discrete lesions of the mammillothalamic tract to model aspects of diencephalic amnesia and assessed the impact of these lesions on multiple measures of activity and plasticity within the hippocampus and retrosplenial cortex. Lesions of the mammillothalamic tract had widespread indirect effects on hippocampocortical oscillatory activity within both theta and gamma bands. Both within-region oscillatory activity and cross-regional synchrony were altered. The network changes were state-dependent, displaying different profiles during locomotion and paradoxical sleep. Consistent with the associations between oscillatory activity and plasticity, complementary analyses using several convergent approaches revealed microstructural changes, which appeared to reflect a suppression of learning-induced plasticity in lesioned animals. Together, these combined findings suggest a mechanism by which damage to the medial diencephalon can impact upon learning and memory processes, highlighting an important role for the mammillary bodies in the coordination of hippocampocortical activity.SIGNIFICANCE STATEMENT Information flow within the Papez circuit is critical to memory. Damage to ascending mammillothalamic projections has consistently been linked to amnesia in humans and spatial memory deficits in animal models. Here we report on the changes in hippocampocortical oscillatory dynamics that result from chronic lesions of the mammillothalamic tract and demonstrate, for the first time, that the mammillary bodies, independently of the supramammillary region, contribute to frequency modulation of hippocampocortical theta oscillations. Consistent with the associations between oscillatory activity and plasticity, the lesions also result in a suppression of learning-induced plasticity. Together, these data support new functional models whereby mammillary bodies are important for coordinating hippocampocortical activity rather than simply being a relay of hippocampal information as previously assumed.
Collapse
Affiliation(s)
- Christopher M Dillingham
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Michal M Milczarek
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - James C Perry
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Bethany E Frost
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Greg D Parker
- EMRIC, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Yaniv Assaf
- George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 6997801, and
| | - Frank Sengpiel
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Shane M O'Mara
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom,
| |
Collapse
|
14
|
Drieu C, Zugaro M. Hippocampal Sequences During Exploration: Mechanisms and Functions. Front Cell Neurosci 2019; 13:232. [PMID: 31263399 PMCID: PMC6584963 DOI: 10.3389/fncel.2019.00232] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Although the hippocampus plays a critical role in spatial and episodic memories, the mechanisms underlying memory formation, stabilization, and recall for adaptive behavior remain relatively unknown. During exploration, within single cycles of the ongoing theta rhythm that dominates hippocampal local field potentials, place cells form precisely ordered sequences of activity. These neural sequences result from the integration of both external inputs conveying sensory-motor information, and intrinsic network dynamics possibly related to memory processes. Their endogenous replay during subsequent sleep is critical for memory consolidation. The present review discusses possible mechanisms and functions of hippocampal theta sequences during exploration. We present several lines of evidence suggesting that these neural sequences play a key role in information processing and support the formation of initial memory traces, and discuss potential functional distinctions between neural sequences emerging during theta vs. awake sharp-wave ripples.
Collapse
Affiliation(s)
- Céline Drieu
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U 1050, PSL Research University, Paris, France
| | - Michaël Zugaro
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U 1050, PSL Research University, Paris, France
| |
Collapse
|
15
|
Bjorness TE, Booth V, Poe GR. Hippocampal theta power pressure builds over non-REM sleep and dissipates within REM sleep episodes. Arch Ital Biol 2019; 156:112-126. [PMID: 30324607 DOI: 10.12871/00039829201833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The theta rhythm during waking has been associated with voluntary motor activity and learning processes involving the hippocampus. Theta also occurs continuously during rapid eye movement (REM) sleep where it likely serves memory consolidation. Theta amplitude builds across wakefulness and is the best indicator of the homeostatic need for non-REM (NREM) sleep. Although REM sleep is homeostatically regulated independently of NREM sleep, the drivers of REM sleep regulation are under debate. The dynamics of theta within REM sleep bouts have not been thoroughly explored. We equipped 20 male rats with sleep instrumentation and hippocampal electrodes to measure theta across normal sleep/waking periods over the first 4 h of the sleep phase on two consecutive days. We found that theta power decreased by a third, on average, within individual REM sleep bouts, but recovered between bouts. Thus, there was no general decline in theta power across the duration of the recording period or between days. The time constant of theta power decline within a REM sleep bout was the same whether the bout was short, midlength, or long, and did not predict the behavioral state immediately following the REM sleep bout. Interestingly, the more time spent in NREM sleep prior to REM sleep, the larger the decline in theta power during REM sleep, indicating that REM sleep theta may be homeostatically driven by NREM sleep just as NREM delta power is driven by the length of prior waking and by waking theta. Potential causes and implications for this phenomenon are discussed.
Collapse
Affiliation(s)
| | | | - G R Poe
- Department of Integrative Biology and Physiology, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA -
| |
Collapse
|
16
|
Shim HS, Park HJ, Lee MS, Ye M, Shim I. The role of the supramammillary area of the hypothalamus in cognitive functions. Anim Cells Syst (Seoul) 2018. [DOI: 10.1080/19768354.2018.1427627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Hyun Soo Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun-Jung Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Mi-Sook Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Minsook Ye
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
17
|
Young CK, Ruan M, McNaughton N. A Critical Assessment of Directed Connectivity Estimates with Artificially Imposed Causality in the Supramammillary-Septo-Hippocampal Circuit. Front Syst Neurosci 2017; 11:72. [PMID: 29033799 PMCID: PMC5627232 DOI: 10.3389/fnsys.2017.00072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/19/2017] [Indexed: 11/23/2022] Open
Abstract
Algorithms for estimating directed connectivity have become indispensable to further understand the neurodynamics between functionally coupled brain areas. The evaluation of directed connectivity on the propagation of brain activity has largely been based on simulated data or toy models, where various hidden properties of neurophysiological data may not be fully recapitulated. In this study, directionality was unequivocally manipulated in the freely moving rat in a unique dataset, where normal oscillatory interactions between the supramammillary nucleus (SuM) and hippocampus (HPC) were attenuated by temporary medial septal (MS) inactivation, and replaced by electrical stimulation of the fornix to evaluate the performance of several directed connectivity assessment methods. The directed transfer function, partial directed coherence, directed coherence, pair-wise Geweke-Granger causality, phase slope index, and phase transfer entropy, all found SuM to HPC theta propagation when the MS is inactivated, and HPC activity was driven by peaks of simultaneously recorded SuM theta. As expected from theoretical expectations and simulated data, signal features including coupling strength, signal-to-noise ratio, and stationarity all weakly affected directed connectivity measures. We conclude that all the examined directed connectivity estimates correctly identify artificially imposed uni-directionality of brain oscillations in freely moving animals. Non-auto-regressive modeling based methods appear to be the most robust, and are least affected by inherent features in data such as signal-to-noise ratio and stationarity.
Collapse
Affiliation(s)
- Calvin K Young
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Ming Ruan
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Wuhan Asia Heart Hospital, Wuhan, China
| | - Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Gutiérrez-Guzmán BE, Hernández-Pérez JJ, Olvera-Cortés ME. Serotonergic modulation of septo-hippocampal and septo-mammillary theta activity during spatial learning, in the rat. Behav Brain Res 2017; 319:73-86. [DOI: 10.1016/j.bbr.2016.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/16/2022]
|
19
|
Hernández-Pérez JJ, Gutiérrez-Guzmán BE, Olvera-Cortés ME. Hippocampal strata theta oscillations change their frequency and coupling during spatial learning. Neuroscience 2016; 337:224-241. [PMID: 27615031 DOI: 10.1016/j.neuroscience.2016.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 11/18/2022]
Abstract
The theta rhythm is necessary for hippocampal-dependent spatial learning. It has been proposed that each hippocampal stratum can generate a current theta dipole. Therefore, considering that each hippocampal circuit (CA1, CA3, and Dentate Gyrus (DG)) contributes differently to distinct aspects of a spatial memory, the theta oscillations on each stratum and their couplings may exhibit oscillatory dynamics associated with different stages of learning. To test this hypothesis, the theta oscillations from five hippocampal strata were recorded in the rat during different stages of learning in a Morris maze. The peak power, the relative power (RP) and the coherence between hippocampal strata were analyzed. The early acquisition stage of the Morris task was characterized by the predominance of slow frequency theta activity and high coupling between specific hippocampal strata at slow frequencies. However, on the last training day, the theta oscillations were faster in all hippocampal strata, with tighter coupling at fast frequencies between the CA3 pyramidal stratum and other strata. Our results suggest that modifications to the theta frequency and its coupling can be a means by which the hippocampus differentially operates during acquisition and retrieval states.
Collapse
Affiliation(s)
- J Jesús Hernández-Pérez
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico; Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico.
| | - Blanca E Gutiérrez-Guzmán
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico; Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - María E Olvera-Cortés
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| |
Collapse
|
20
|
Vertes RP, Hoover WB, Viana Di Prisco G. Theta Rhythm of the Hippocampus: Subcortical Control and Functional Significance. ACTA ACUST UNITED AC 2016; 3:173-200. [PMID: 15653814 DOI: 10.1177/1534582304273594] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The theta rhythm is the largest extracellular synchronous signal that can be recorded from the mammalian brain and has been strongly implicated in mnemonic processes of the hippocampus. We describe (a) ascending brain stem–forebrain systems involved in controlling theta and nontheta (desynchronization) states of the hippocampal electroencephalogram; (b) theta rhythmically discharging cells in several structures of Papez's circuit and their possible functional significance, specifically with respect to head direction cells in this same circuit; and (c) the role of nucleus reuniens of the thalamus as a major interface between the medial prefrontal cortex and hippocampus and as a prominent source of afferent limbic information to the hippocampus. We suggest that the hippocampus receives two main types of input: theta rhythm from ascending brain stem– diencephaloseptal systems and information bearing mainly from thalamocortical/cortical systems. The temporal convergence of activity of these two systems results in the encoding of information in the hippocampus, primarily reaching it from the entorhinal cortex and nucleus reuniens.
Collapse
|
21
|
Central relaxin-3 receptor (RXFP3) activation increases ERK phosphorylation in septal cholinergic neurons and impairs spatial working memory. Brain Struct Funct 2016; 222:449-463. [PMID: 27146679 DOI: 10.1007/s00429-016-1227-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/12/2016] [Indexed: 01/09/2023]
Abstract
The medial septum/diagonal band (MS/DB) is a relay region connecting the hypothalamus and brainstem with the hippocampus, and both the MS/DB and dorsal/ventral hippocampus receive strong topographic GABA/peptidergic projections from the nucleus incertus of the pontine tegmentum. The neuropeptide relaxin-3, released by these neurons, is the cognate ligand for a Gi/o-protein-coupled receptor, RXFP3, which is highly expressed within the MS/DB, and both cholinergic and GABAergic neurons in this region of rat brain receive relaxin-3 positive terminals/boutons. Comprehensive in vitro studies have demonstrated that the cell signaling pathways altered by RXFP3 stimulation, include inhibition of forskolin-activated cAMP levels and activation of ERK phosphorylation. In this study we investigated whether intracerebroventricular (icv) injection of RXFP3-A2, a selective relaxin-3 receptor agonist, altered ERK phosphorylation levels in the MS/DB of adult male rats. We subsequently assessed the neurochemical phenotype of phosphorylated (p) ERK-positive neurons in MS/DB after icv RXFP3-A2 administration by dual-label immunostaining for pERK and neuronal markers for cholinergic and GABAergic neurons. Central RXFP3-A2 injection significantly increased levels of pERK immunoreactivity (IR) in MS/DB at 20 and 90 min post-injection, compared to vehicle and naive levels. In addition, RXFP3-A2 increased the number of cells expressing pERK-IR in the MS/DB at 90 (but not 20) min post-injection in cholinergic (but not GABAergic) neurons, which also expressed putative RXFP3-IR. Moreover, icv injection of RXFP3-A2 impaired alternation in a delayed spontaneous T-maze test of spatial working memory. The presence of RXFP3-like IR and the RXFP3-related activation of the MAPK/ERK pathway in MS/DB cholinergic neurons identifies them as a key target of ascending relaxin-3 projections with implications for the acute and chronic modulation of cholinergic neuron activity and function by relaxin-3/RXFP3 signaling.
Collapse
|
22
|
Liu X, Wang J, Wang B, Wang YH, Teng Q, Yan J, Wang S, Wan Y. Effect of transcutaneous acupoint electrical stimulation on propofol sedation: an electroencephalogram analysis of patients undergoing pituitary adenomas resection. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:33. [PMID: 26817460 PMCID: PMC4729180 DOI: 10.1186/s12906-016-1008-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 01/20/2016] [Indexed: 04/05/2023]
Abstract
BACKGROUND Transcutaneous acupoint electrical stimulation (TAES) as a needleless acupuncture has the same effect like traditional manual acupuncture. The combination of TAES and anesthesia has been proved valid in enhancing the anesthetic effects but its mechanisms are still not clear. METHODS In this study, we investigated the effect of TAES on anesthesia with an electroencephalogram (EEG) oscillation analysis on surgery patients anesthetized with propofol, a widely-used anesthetic in clinical practice. EEG was continuously recorded during light and deep propofol sedation (target-controlled infusion set at 1.0 and 3.0 μg/mL) in ten surgery patients with pituitary tumor excision. Each concentration of propofol was maintained for 6 min and TAES was given at 2-4 min. The changes in EEG power spectrum at different frequency bands (delta, theta, alpha, beta, and gamma) and the coherence of different EEG channels were analyzed. RESULTS Our result showed that, after TAES application, the EEG power increased at alpha and beta bands in light sedation of propofol, but reduced at delta and beta bands in deep propofol sedation (p < 0.001). In addition, the EEG oscillation analysis showed an enhancement of synchronization at low frequencies and a decline in synchronization at high frequencies between different EEG channels in either light or deep propofol sedation. CONCLUSIONS Our study showed evidence suggested that TAES may have different effects on propofol under light and deep sedation. TAES could enhance the sedative effect of propofol at low concentration but reduce the sedative effect of propofol at high concentration.
Collapse
|
23
|
Aranda L. Expression of c-Fos protein in medial septum/diagonal band of Broca and CA3 region, associated with the temporary inactivation of the supramammillary area. J Chem Neuroanat 2016; 74:11-7. [PMID: 26802745 DOI: 10.1016/j.jchemneu.2016.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
The supramammillary (SuM) area is part of the diencephalic nuclei comprising the mammillary bodies, and is a key structure in the memory and spatial learning processes. It is a critical region in the modulation/generation of hippocampal theta rhythm. In addition, many papers have recently shown a clear involvement of this structure in the processes of spatial learning and memory in animal models, although it is still not known how it modulates spatial navigation and response emotional. The aim of the present research was to study the effect of the temporary inactivation of the SuM area on synaptic plasticity of crucial structures in the formation of spatial memory and emotional response. Sprague-Dawley rats were asigned in three groups: a control group where the animals were not subjected to any treatment, and two groups where the rats received microinjections of tetrodotoxin (TTX) in the SuM area (5ng diluted in 0.5μl of saline) or saline (0.5μl). The microinjections were administered 90min before the perfusion. Later, cellular activity in medial septum/diagonal band of Broca (MS/DBB) and CA3 region of the dorsal hippocampus was assessed, by measuring the immediate early gene c-fos. The results show a clear hiperactivity cellular in medial septum/diagonal band of Broca and a clear hypoactivity cellular in the CA3 region of the hippocampus when there was a functional inactivation of the SuM area. It suggests that the SuM area seems to be part of the connection and information input pathways to CA3 region of the hippocampal formation, key for proper functioning in spatial memory and emotional response.
Collapse
Affiliation(s)
- Lourdes Aranda
- Universidad de Málaga, Andalucia Tech, Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Campus de Teatinos s/n, 29071 Málaga, Spain.
| |
Collapse
|
24
|
Hernández-Pérez JJ, Gutiérrez-Guzmán BE, López-Vázquez MÁ, Olvera-Cortés ME. Supramammillary serotonin reduction alters place learning and concomitant hippocampal, septal, and supramammillar theta activity in a Morris water maze. Front Pharmacol 2015; 6:250. [PMID: 26578960 PMCID: PMC4625187 DOI: 10.3389/fphar.2015.00250] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/14/2015] [Indexed: 11/29/2022] Open
Abstract
Hippocampal theta activity is related to spatial information processing, and high-frequency theta activity, in particular, has been linked to efficient spatial memory performance. Theta activity is regulated by the synchronizing ascending system (SAS), which includes mesencephalic and diencephalic relays. The supramamillary nucleus (SUMn) is located between the reticularis pontis oralis and the medial septum (MS), in close relation with the posterior hypothalamic nucleus (PHn), all of which are part of this ascending system. It has been proposed that the SUMn plays a role in the modulation of hippocampal theta-frequency; this could occur through direct connections between the SUMn and the hippocampus or through the influence of the SUMn on the MS. Serotonergic raphe neurons prominently innervate the hippocampus and several components of the SAS, including the SUMn. Serotonin desynchronizes hippocampal theta activity, and it has been proposed that serotonin may regulate learning through the modulation of hippocampal synchrony. In agreement with this hypothesis, serotonin depletion in the SUMn/PHn results in deficient spatial learning and alterations in CA1 theta activity-related learning in a Morris water maze. Because it has been reported that SUMn inactivation with lidocaine impairs the consolidation of reference memory, we asked whether changes in hippocampal theta activity related to learning would occur through serotonin depletion in the SUMn, together with deficiencies in memory. We infused 5,7-DHT bilaterally into the SUMn in rats and evaluated place learning in the standard Morris water maze task. Hippocampal (CA1 and dentate gyrus), septal and SUMn EEG were recorded during training of the test. The EEG power in each region and the coherence between the different regions were evaluated. Serotonin depletion in the SUMn induced deficient spatial learning and altered the expression of hippocampal high-frequency theta activity. These results provide evidence in support of a role for serotonin as a modulator of hippocampal learning, acting through changes in the synchronicity evoked in several relays of the SAS.
Collapse
Affiliation(s)
- J. Jesús Hernández-Pérez
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro SocialMorelia, México
| | - Blanca E. Gutiérrez-Guzmán
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro SocialMorelia, México
| | - Miguel Á. López-Vázquez
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro SocialMorelia, México
- Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de HidalgoMorelia, México
| | - María E. Olvera-Cortés
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro SocialMorelia, México
- *Correspondence: María E. Olvera-Cortés
| |
Collapse
|
25
|
Hattori S, Chen L, Weiss C, Disterhoft JF. Robust hippocampal responsivity during retrieval of consolidated associative memory. Hippocampus 2015; 25:655-69. [PMID: 25515308 PMCID: PMC4412761 DOI: 10.1002/hipo.22401] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 11/30/2022]
Abstract
A contentious point in memory research is whether or not the hippocampus plays a time-limited role in the consolidation of declarative memories. A widely held view is that declarative memories are initially encoded in the hippocampus, then transferred to the neocortex for long-term storage. Alternate views argue instead that the hippocampus continues to play a role in remote memory recall. These competing theories are largely based on human amnesic and animal lesion/inactivation studies. However, in vivo electrophysiological evidence supporting these views is scarce. Given that other studies examining the role of the hippocampus in remote memory retrieval using lesion and imaging techniques in human and animal models have provided mixed results, it would be particularly useful to gain insight at the in vivo electrophysiological level. Here we report hippocampal single-neuron and theta activity recorded longitudinally during acquisition and remote retrieval of trace eyeblink conditioning. Results from conditioned rabbits were compared to those obtained from yoked pseudo-conditioned control rabbits. Results reveal continued learning-specific hippocampal activity one month after initial acquisition of the task. Our findings yield insight into the normal physiological responses of the hippocampus during memory processes and provide compelling in vivo electrophysiological evidence that the hippocampus is involved in both acquisition and retrieval of consolidated memories.
Collapse
Affiliation(s)
- Shoai Hattori
- Department of PhysiologyNorthwestern University, Feinberg School of MedicineChicagoIllinois
| | - Lillian Chen
- Department of PhysiologyNorthwestern University, Feinberg School of MedicineChicagoIllinois
| | - Craig Weiss
- Department of PhysiologyNorthwestern University, Feinberg School of MedicineChicagoIllinois
| | - John F. Disterhoft
- Department of PhysiologyNorthwestern University, Feinberg School of MedicineChicagoIllinois
| |
Collapse
|
26
|
Sánchez-Pérez AM, Arnal-Vicente I, Santos FN, Pereira CW, ElMlili N, Sanjuan J, Ma S, Gundlach AL, Olucha-Bordonau FE. Septal projections to nucleus incertus in the rat: bidirectional pathways for modulation of hippocampal function. J Comp Neurol 2014; 523:565-88. [PMID: 25269409 DOI: 10.1002/cne.23687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 11/10/2022]
Abstract
Projections from the nucleus incertus (NI) to the septum have been implicated in the modulation of hippocampal theta rhythm. In this study we describe a previously uncharacterized projection from the septum to the NI, which may provide feedback modulation of the ascending circuitry. Fluorogold injections into the NI resulted in retrograde labeling in the septum that was concentrated in the horizontal diagonal band and areas of the posterior septum including the septofimbrial and triangular septal nuclei. Double-immunofluorescent staining indicated that the majority of NI-projecting septal neurons were calretinin-positive and some were parvalbumin-, calbindin-, or glutamic acid decarboxylase (GAD)-67-positive. Choline acetyltransferase-positive neurons were Fluorogold-negative. Injection of anterograde tracers into medial septum, or triangular septal and septofimbrial nuclei, revealed fibers descending to the supramammillary nucleus, median raphe, and the NI. These anterogradely labeled varicosities displayed synaptophysin immunoreactivity, indicating septal inputs form synapses on NI neurons. Anterograde tracer also colocalized with GAD-67-positive puncta in labeled fibers, which in some cases made close synaptic contact with GAD-67-labeled NI neurons. These data provide evidence for the existence of an inhibitory descending projection from medial and posterior septum to the NI that provides a "feedback loop" to modulate the comparatively more dense ascending NI projections to medial septum and hippocampus. Neural processes and associated behaviors activated or modulated by changes in hippocampal theta rhythm may depend on reciprocal connections between ascending and descending pathways rather than on unidirectional regulation via the medial septum.
Collapse
|
27
|
López-Vázquez MÁ, López-Loeza E, Lajud Ávila N, Gutiérrez-Guzmán BE, Hernández-Pérez JJ, Reyes YE, Olvera-Cortés ME. Septal serotonin depletion in rats facilitates working memory in the radial arm maze and increases hippocampal high-frequency theta activity. Eur J Pharmacol 2014; 734:105-13. [PMID: 24742376 DOI: 10.1016/j.ejphar.2014.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/27/2022]
Abstract
Hippocampal theta activity, which is strongly modulated by the septal medial/Broca׳s diagonal band neurons, has been linked to information processing of the hippocampus. Serotonin from the medial raphe nuclei desynchronises hippocampal theta activity, whereas inactivation or a lesion of this nucleus induces continuous and persistent theta activity in the hippocampus. Hippocampal serotonin depletion produces an increased expression of high-frequency theta activity concurrent with the facilitation of place learning in the Morris maze. The medial septum-diagonal band of Broca complex (MS/DBB) has been proposed as a key structure in the serotonin modulation of theta activity. We addressed whether serotonin depletion of the MS/DBB induces changes in the characteristics of hippocampal theta activity and whether the depletion is associated with learning in a working memory spatial task in the radial arm maze. Sprague Dawley rats were depleted of 5HT with the infusion of 5,7-dihydroxytriptamine (5,7-DHT) in MS/DBB and were subsequently trained in the standard test (win-shift) in the radial arm, while the CA1 EEG activity was simultaneously recorded through telemetry. The MS/DBB serotonin depletion induced a low level of expression of low-frequency (4.5-6.5Hz) and a higher expression of high-frequency (6.5-9.5Hz) theta activity concomitant to a minor number of errors committed by rats on the working memory test. Thus, the depletion of serotonin in the MS/DBB caused a facilitator effect on working memory and a predominance of high-frequency theta activity.
Collapse
Affiliation(s)
- Miguel Ángel López-Vázquez
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Mexico; Laboratorio de Biofísica, Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Elisa López-Loeza
- Laboratorio de Biofísica, Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Naima Lajud Ávila
- Laboratorio de Neuroendocrinología, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Mexico
| | - Blanca Erika Gutiérrez-Guzmán
- Laboratorio de Neurofisiología Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la arboleda 300, Exhacienda de san José de la Huerta, Morelia, Mich C.P. 58341, Mexico
| | - J Jesús Hernández-Pérez
- Laboratorio de Neurofisiología Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la arboleda 300, Exhacienda de san José de la Huerta, Morelia, Mich C.P. 58341, Mexico
| | - Yoana Estrada Reyes
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Mexico
| | - María Esther Olvera-Cortés
- Laboratorio de Neurofisiología Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la arboleda 300, Exhacienda de san José de la Huerta, Morelia, Mich C.P. 58341, Mexico
| |
Collapse
|
28
|
Olvera-Cortés ME, Gutiérrez-Guzmán BE, López-Loeza E, Hernández-Pérez JJ, López-Vázquez MÁ. Serotonergic modulation of hippocampal theta activity in relation to hippocampal information processing. Exp Brain Res 2013; 230:407-26. [DOI: 10.1007/s00221-013-3679-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
|
29
|
Disruption of footshock-induced theta rhythms by stimulating median raphe nucleus reduces anxiety in rats. Behav Brain Res 2013; 247:193-200. [DOI: 10.1016/j.bbr.2013.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 03/08/2013] [Accepted: 03/16/2013] [Indexed: 11/22/2022]
|
30
|
Trillo L, Das D, Hsieh W, Medina B, Moghadam S, Lin B, Dang V, Sanchez MM, De Miguel Z, Ashford JW, Salehi A. Ascending monoaminergic systems alterations in Alzheimer's disease. translating basic science into clinical care. Neurosci Biobehav Rev 2013; 37:1363-79. [PMID: 23707776 DOI: 10.1016/j.neubiorev.2013.05.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 01/23/2023]
Abstract
Extensive neuropathological studies have established a compelling link between abnormalities in structure and function of subcortical monoaminergic (MA-ergic) systems and the pathophysiology of Alzheimer's disease (AD). The main cell populations of these systems including the locus coeruleus, the raphe nuclei, and the tuberomamillary nucleus undergo significant degeneration in AD, thereby depriving the hippocampal and cortical neurons from their critical modulatory influence. These studies have been complemented by genome wide association studies linking polymorphisms in key genes involved in the MA-ergic systems and particular behavioral abnormalities in AD. Importantly, several recent studies have shown that improvement of the MA-ergic systems can both restore cognitive function and reduce AD-related pathology in animal models of neurodegeneration. This review aims to explore the link between abnormalities in the MA-ergic systems and AD symptomatology as well as the therapeutic strategies targeting these systems. Furthermore, we will examine possible mechanisms behind basic vulnerability of MA-ergic neurons in AD.
Collapse
Affiliation(s)
- Ludwig Trillo
- Department of Physiology, School of Medicine, National University of San Agustin, Arequipa, Peru
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Caruana DA, Alexander GM, Dudek SM. New insights into the regulation of synaptic plasticity from an unexpected place: hippocampal area CA2. Learn Mem 2012; 19:391-400. [PMID: 22904370 DOI: 10.1101/lm.025304.111] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The search for molecules that restrict synaptic plasticity in the brain has focused primarily on sensory systems during early postnatal development, as critical periods for inducing plasticity in sensory regions are easily defined. The recent discovery that Schaffer collateral inputs to hippocampal area CA2 do not readily support canonical activity-dependent long-term potentiation (LTP) serves as a reminder that the capacity for synaptic modification is also regulated anatomically across different brain regions. Hippocampal CA2 shares features with other similarly "LTP-resistant" brain areas in that many of the genes linked to synaptic function and the associated proteins known to restrict synaptic plasticity are expressed there. Add to this a rich complement of receptors and signaling molecules permissive for induction of atypical forms of synaptic potentiation, and area CA2 becomes an ideal model system for studying specific modulators of brain plasticity. Additionally, recent evidence suggests that hippocampal CA2 is instrumental for certain forms of learning, memory, and social behavior, but the links between CA2-enriched molecules and putative CA2-dependent behaviors are only just beginning to be made. In this review, we offer a detailed look at what is currently known about the synaptic plasticity in this important, yet largely overlooked component of the hippocampus and consider how the study of CA2 may provide clues to understanding the molecular signals critical to the modulation of synaptic function in different brain regions and across different stages of development.
Collapse
Affiliation(s)
- Douglas A Caruana
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
32
|
Gutiérrez-Guzmán BE, Hernández-Pérez JJ, López-Vázquez MÁ, Fregozo CS, Guevara MÁ, Olvera-Cortés ME. Serotonin depletion of supramammillary/posterior hypothalamus nuclei produces place learning deficiencies and alters the concomitant hippocampal theta activity in rats. Eur J Pharmacol 2012; 682:99-109. [PMID: 22387092 DOI: 10.1016/j.ejphar.2012.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/10/2012] [Accepted: 02/15/2012] [Indexed: 11/25/2022]
Abstract
Hippocampal theta activity is important for the acquisition of spatial information and is strongly influenced and regulated by extra-hippocampal inputs from the synchronising ascending system (SAS), which includes the supramammillary nucleus (SUMn) and the posterior hypothalamic nucleus (PHn). Together these nuclei play an important role in controlling the frequency encoding of theta activity and are innervated by serotonin synapses, which also regulate theta activity and learning abilities. The participation of the SUMn in place learning and modulation of hippocampal theta activity were recently shown; thus, we questioned whether serotonin acting on SUMn/PHn could modulate place learning ability and concurrent hippocampal theta activity. The serotonergic terminals of the SUMn/PHn in rats were lesioned through 5,7-dihydroxytryptamine (5,7-DHT) infusion, and hippocampal theta activity during the Morris water maze test was recorded. Rats in the vehicle group learned the task efficiently and showed learning-related theta changes in the CA1 and dentate gyrus regions throughout the training. The 5-HT-depleted rats were deficient in the Morris water maze task and showed theta activity in the CA1 and dentate gyrus that were unrelated to the processing of learning. We conclude that serotonin can regulate the hippocampal theta activity acting on the SUMn/PHn relay of the SAS and that the influence of 5-HT in these nuclei is required for the learning-related changes in hippocampal theta activity that underlie the successful resolution of the Morris water maze task.
Collapse
Affiliation(s)
- Blanca Erika Gutiérrez-Guzmán
- Laboratorio de Neurofisiología Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la Arboleda # 300, Ex-hacienda de San José de la Huerta, C.P. 58341, Morelia, Mich., México.
| | | | | | | | | | | |
Collapse
|
33
|
Differential learning-related changes in theta activity during place learning in young and old rats. Behav Brain Res 2012; 226:555-62. [DOI: 10.1016/j.bbr.2011.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 11/19/2022]
|
34
|
Electroencephalogram bands modulated by vigilance states in an anuran species: a factor analytic approach. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 198:119-27. [PMID: 22045113 DOI: 10.1007/s00359-011-0693-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 10/12/2011] [Accepted: 10/17/2011] [Indexed: 10/16/2022]
Abstract
Dramatic changes in neocortical electroencephalogram (EEG) rhythms are associated with the sleep-waking cycle in mammals. Although amphibians are thought to lack a neocortical homologue, changes in rest-activity states occur in these species. In the present study, EEG signals were recorded from the surface of the cerebral hemispheres and midbrain on both sides of the brain in an anuran species, Babina daunchina, using electrodes contacting the meninges in order to measure changes in mean EEG power across behavioral states. Functionally relevant frequency bands were identified using factor analysis. The results indicate that: (1) EEG power was concentrated in four frequency bands during the awake or active state and in three frequency bands during rest; (2) EEG bands in frogs differed substantially from humans, especially in the fast frequency band; (3) bursts similar to mammalian sleep spindles, which occur in non-rapid eye movement mammalian sleep, were observed when frogs were at rest suggesting sleep spindle-like EEG activity appeared prior to the evolution of mammals.
Collapse
|
35
|
Abstract
A major tool in understanding how the brain processes information is the analysis of neuronal output at each hierarchical level along the pathway of signal propagation. Theta rhythm and head directionality are the two main signals found across all levels of Papez's circuit, which supports episodic memory formation. Here, we provide evidence that the functional interaction between both signals occurs at a subcortical level. We show that there is population of head direction cells (39%) in rat anteroventral thalamic nucleus that exhibit rhythmic spiking in the theta range. This class of units, termed HD-by-theta (head direction-by-theta) cells, discharged predominantly in spike trains at theta frequency (6-12 Hz). The highest degree of theta rhythmicity was evident when the animal was heading/facing in the preferred direction, expressed by the Gaussian peak of the directional tuning curve. The theta-rhythmic mode of spiking was closely related to the firing activity of local theta-bursting cells. We also found that 32% of anteroventral theta-bursting cells displayed a head-directional modulation of their spiking. This crossover between theta and head-directional signals indicates that anterior thalamus integrates information related to heading and movement, and may therefore actively modulate hippocampo-dencephalic information processing.
Collapse
|
36
|
Fedor M, Berman RF, Muizelaar JP, Lyeth BG. Hippocampal θ dysfunction after lateral fluid percussion injury. J Neurotrauma 2011; 27:1605-15. [PMID: 20597686 DOI: 10.1089/neu.2010.1370] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Chronic memory deficits are a major cause of morbidity following traumatic brain injury (TBI). In the rat, the hippocampal theta rhythm is a well-studied correlate of memory function. This study sought to investigate disturbances in hippocampal theta rhythm following lateral fluid percussion injury in the rat. A total of 13 control rats and 12 TBI rats were used. Electrodes were implanted in bilateral hippocampi and an electroencephalogram (EEG) was recorded while the rats explored a new environment, and also while navigating a modified version of the Barnes maze. Theta power and peak theta frequency were significantly attenuated in the injured animals. Further, injured rats were less likely to develop a spatial strategy for Barnes maze navigation compared to control rats. In conclusion, rats sustaining lateral fluid percussion injury demonstrated deficits in hippocampal theta activity. These deficits may contribute to the underlying memory problems seen in chronic TBI.
Collapse
Affiliation(s)
- Mark Fedor
- Department of Neurological Surgery, University of California-Davis, Davis, California 95618, USA
| | | | | | | |
Collapse
|
37
|
Neo P, Carter D, Zheng Y, Smith P, Darlington C, McNaughton N. Septal elicitation of hippocampal theta rhythm did not repair cognitive and emotional deficits resulting from vestibular lesions. Hippocampus 2011; 22:1176-87. [PMID: 21748822 DOI: 10.1002/hipo.20963] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2011] [Indexed: 02/05/2023]
Abstract
Bilateral vestibular lesions cause atrophy of the hippocampus in humans and subsequent deficits in spatial memory and the processing of emotional stimuli in both rats and humans. Vestibular lesions also impair hippocampal theta rhythm in rats. The aim of the present study was to investigate whether restoring theta rhythm to the hippocampus of a rat, via stimulation of the medial septum, would repair the deficits caused by vestibular lesions. It was hypothesized that the restoration of theta would repair the deficits and the vestibular rats would exhibit behavior and EEG similar to that of the sham rats. Rats were given either sham surgery or bilateral vestibular deafferentation (BVD) followed in a later operation by electrode implants. Half of the lesioned rats received stimulation. Subjects were tested in open field, elevated T-maze and spatial nonmatching to sample tests. BVD caused a deficit in hippocampal theta rhythm. Stimulation restored theta power at a higher frequency in the vestibular-lesioned rats, however, the stimulation did not repair the cognitive and emotional deficits caused by the lesions. It was concluded that stimulation, at least in the form used here, would not be a viable treatment option for vestibular damaged humans.
Collapse
Affiliation(s)
- Phoebe Neo
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
38
|
Hippocampal serotonin depletion facilitates place learning concurrent with an increase in CA1 high frequency theta activity expression in the rat. Eur J Pharmacol 2011; 652:73-81. [DOI: 10.1016/j.ejphar.2010.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 11/09/2010] [Accepted: 11/15/2010] [Indexed: 11/20/2022]
|
39
|
Mahmoodi M, Shahidi S, Hasanein P. Involvement of the ventral tegmental area in the inhibitory avoidance memory in rats. Physiol Behav 2011; 102:542-7. [PMID: 21241724 DOI: 10.1016/j.physbeh.2011.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 01/07/2011] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
The ventral tegmental area (VTA) is a neural structure that sends strong efferent projections to the hippocampus. Output from the VTA can affect hippocampal-dependent neural processes that are critical for learning and memory, including long term potentiation and theta activity. However, no study to date has elucidated what role the VTA plays in mediating the different stages of learning and memory. Therefore, the current study was designed to assess how reversible inactivation of the VTA may affect the acquisition, consolidation and retrieval of memory in rats using an inhibitory avoidance (IA) task. In this experiment, rats with chronically implanted cannulae aimed at the VTA were trained on an inhibitory avoidance task. They received intra-VTA infusions of lidocaine or saline immediately before training, after training or before a memory retention test. The results indicate that inactivation of the VTA prior to the first acquisition session increased the number of trials rats required to reach the acquisition criterion. Similarly, inactivation of the VTA after acquisition training decreased the step-through latency and increased the amount of time spent in the dark compartment relative to the saline-treated group. However, inactivation of the VTA immediately prior to the memory retention test failed to alter either step-through latency or the amount of time spent in the dark compartment. Overall, these results suggest the VTA facilitates the acquisition and consolidation of IA learning and memory.
Collapse
Affiliation(s)
- Minoo Mahmoodi
- Department of Biology, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | | | | |
Collapse
|
40
|
Perouansky M, Rau V, Ford T, Oh SI, Perkins M, Eger EI, Pearce RA. Slowing of the hippocampal θ rhythm correlates with anesthetic-induced amnesia. Anesthesiology 2010; 113:1299-309. [PMID: 21042201 PMCID: PMC3048812 DOI: 10.1097/aln.0b013e3181f90ccc] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Temporary, antegrade amnesia is one of the core desirable endpoints of general anesthesia. Multiple lines of evidence support a role for the hippocampal θ rhythm, a synchronized rhythmic oscillation of field potentials at 4-12 Hz, in memory formation. Previous studies have revealed a disruption of the θ rhythm at surgical levels of anesthesia. We hypothesized that θ-rhythm modulation would also occur at subhypnotic but amnestic concentrations. Therefore, we examined the effect of three inhaled agents on properties of the θ rhythm considered critical for the formation of hippocampus-dependent memories. METHODS We studied the effects of halothane and nitrous oxide, two agents known to modulate different molecular targets (GABAergic [γ-aminobutyric acid] vs. non-GABAergic, respectively) and isoflurane (GABAergic and non-GABAergic targets) on fear-conditioned learning and θ oscillations in freely behaving rats. RESULTS All three anesthetics slowed θ peak frequency in proportion to their inhibition of fear conditioning (by 1, 0.7, and 0.5 Hz for 0.32% isoflurane, 60% N2O, and 0.24% halothane, respectively). Anesthetics inconsistently affected other characteristics of θ oscillations. CONCLUSIONS At subhypnotic amnestic concentrations, θ-oscillation frequency was the parameter most consistently affected by these three anesthetics. These results are consistent with the hypothesis that modulation of the θ rhythm contributes to anesthetic-induced amnesia.
Collapse
Affiliation(s)
- Misha Perouansky
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Ruan M, Young CK, McNaughton N. Minimal driving of hippocampal theta by the supramammillary nucleus during water maze learning. Hippocampus 2010; 21:1074-81. [PMID: 20865741 DOI: 10.1002/hipo.20821] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2010] [Indexed: 11/05/2022]
Abstract
Previous studies have shown only modest effects of supramammillary nucleus (SuM) dysfunction on theta frequency and learning in the water maze (WM), with larger effects in other tasks. However, theta recorded from SuM, and used to trigger the production of theta-like oscillations in the hippocampus, produced reversal of the deficit in WM learning produced by theta blocking. We explored this apparent inconsistency by analyzing the relationship between SuM and hippocampal theta in the control group of this theta-blocking experiment using coherence, phase analysis, and the directed transfer function. We found little evidence of an influence of SuM on the hippocampus in the bulk of WM learning-with some possibility of SuM becoming involved briefly later in learning. A learning-related increase in coherence was observed in conjunction with gradual phase reorganization of hippocampal theta in relation to SuM theta. This change in phase dynamics between the two structures was also correlated with a relative increase of the estimated direction of theta propagation from the SuM to the hippocampus. These results are consistent with the previous weak effects of SuM lesions and suggest that the use of SuM as a source to trigger hippocampal theta and recover function is likely to be due to coherence between SuM and some other structure that normally controls hippocampal theta during WM learning.
Collapse
Affiliation(s)
- Ming Ruan
- Department of Psychology and the Neuroscience Research Centre, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
42
|
Vann SD. Re-evaluating the role of the mammillary bodies in memory. Neuropsychologia 2009; 48:2316-27. [PMID: 19879886 DOI: 10.1016/j.neuropsychologia.2009.10.019] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 10/20/2022]
Abstract
Although the mammillary bodies were among the first brain regions to be implicated in amnesia, the functional importance of this structure for memory has been questioned over the intervening years. Recent patient studies have, however, re-established the mammillary bodies, and their projections to the anterior thalamus via the mammillothalamic tract, as being crucial for recollective memory. Complementary animal research has also made substantial advances in recent years by determining the electrophysiological, neurochemical, anatomical and functional properties of the mammillary bodies. Mammillary body and mammillothalamic tract lesions in rats impair performance on a number of spatial memory tasks and these deficits are consistent with impoverished spatial encoding. The mammillary bodies have traditionally been considered a hippocampal relay which is consistent with the equivalent deficits seen following lesions of the mammillary bodies or their major efferents, the mammillothalamic tract. However, recent findings suggest that the mammillary bodies may have a role in memory that is independent of their hippocampal formation afferents; instead, the ventral tegmental nucleus of Gudden could be providing critical mammillary body inputs needed to support mnemonic processes. Finally, it is now apparent that the medial and lateral mammillary nuclei should be considered separately and initial research indicates that the medial mammillary nucleus is predominantly responsible for the spatial memory deficits following mammillary body lesions in rats.
Collapse
Affiliation(s)
- Seralynne D Vann
- School of Psychology, Cardiff University, Tower Building, Cardiff, UK.
| |
Collapse
|
43
|
Miller SM, Lonstein JS. Dopaminergic projections to the medial preoptic area of postpartum rats. Neuroscience 2009; 159:1384-96. [PMID: 19409227 DOI: 10.1016/j.neuroscience.2009.01.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/19/2009] [Accepted: 01/27/2009] [Indexed: 11/19/2022]
Abstract
Dopamine receptor activity in the rodent medial preoptic area (mPOA) is crucial for the display of maternal behaviors, as well as numerous other physiological and behavioral functions. However, the origin of dopaminergic input to the mPOA has not been identified through neuroanatomical tracing. To accomplish this, the retrograde tracer Fluorogold was iontophoretically applied to the mPOA of postpartum laboratory rats, and dual-label immunocytochemistry for Fluorogold and tyrosine hydroxylase later performed to identify dopaminergic cells of the forebrain and midbrain projecting to the mPOA. Results indicate that the number of dopaminergic cells projecting to the mPOA is moderate ( approximately 90 cells to one hemisphere), and that these cells have an unexpectedly wide distribution. Even so, more than half of the dual-labeled cells were found in either what has been considered extensions of the A10 dopamine group (particularly the ventrocaudal posterior hypothalamus and adjacent medial supramammillary nucleus), or in the A10 group of the ventral tegmental area. The rostral hypothalamus and surrounding region also contained numerous dual-labeled cells, with the greatest number found within the mPOA itself (including in the anteroventral preoptic area and preoptic periventricular nucleus). Notably, dual-labeled cells were rare in the zona incerta (A13), a site previously suggested to provide dopaminergic input to the mPOA. This study is the first to use anatomical tracing to detail the dopaminergic projections to the mPOA in the laboratory rat, and indicates that much of this projection originates more caudally than previously suggested.
Collapse
Affiliation(s)
- S M Miller
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
44
|
Haijima A, Ichitani Y. Anterograde and retrograde amnesia of place discrimination in retrosplenial cortex and hippocampal lesioned rats. Learn Mem 2008; 15:477-82. [DOI: 10.1101/lm.862308] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Aranda L, Begega A, Sánchez-López J, Aguirre JA, Arias JL, Santín LJ. Temporary inactivation of the supramammillary area impairs spatial working memory and spatial reference memory retrieval. Physiol Behav 2008; 94:322-30. [DOI: 10.1016/j.physbeh.2008.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/17/2008] [Accepted: 01/23/2008] [Indexed: 10/22/2022]
|
46
|
Markevich VA, Grigoryan GA, Dawe GS, Stephenson JD. Theta driving both inhibits and potentiates the effects of nicotine on dentate gyrus responses. ACTA ACUST UNITED AC 2007; 37:403-9. [PMID: 17457536 DOI: 10.1007/s11055-007-0027-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 12/12/2005] [Indexed: 12/01/2022]
Abstract
The medial septal area of conscious rats was stimulated through previously implanted electrodes at a frequency of 7.7 Hz for 20 min each day for 7 days to evoke rhythmic slow activity in CA1 at a similar frequency to spontaneous theta. Two weeks later in the anaesthetized rats the effects of a single subcutaneous injection of nicotine (0.4 mg/kg) on fEPSPs, evoked in the dentate gyrus by separate stimulation of the MPP and LPP, were studied and compared with those obtained in controls. Nicotine increased the firing of locus coeruleus neurons and the slope of the fEPSPs evoked by LPP stimulation, but not by MPP stimulation. Prior theta driving considerably increased the effect of nicotine on the responses evoked by stimulation of the MPP and abolished the nicotine-induced potentiation of the responses evoked by stimulation of the LPP. The results are attributed to theta driving increasing the amount of noradrenaline released by nicotine and to noradrenaline producing a beta-adrenoceptor long-lasting potentiation at the medial perforant path synapse and a long-lasting depression at the lateral perforant path synapse.
Collapse
Affiliation(s)
- V A Markevich
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
47
|
McNaughton N, Ruan M, Woodnorth MA. Restoring theta-like rhythmicity in rats restores initial learning in the Morris water maze. Hippocampus 2007; 16:1102-10. [PMID: 17068783 DOI: 10.1002/hipo.20235] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural activity often becomes rhythmic during mental processing. But there has been no direct proof that rhythmicity, per se, is important for mental function. We assessed this issue in relation to the contribution of hippocampal theta-frequency rhythmicity to learning in the Morris water maze by blocking theta (and other septal inputs to the hippocampus) and then using electrical stimulation to restore rhythmicity. We injected tetracaine into the medial septal area, and so blocked septal input to the hippocampus in rats throughout 16 consecutive trials in a Morris water maze. Rats with no hippocampal theta also showed no initial learning in the maze. Theta rhythmicity in the supramammillary area remained after septal blockade, and we used this to trigger electrical stimulation of the fornix superior. This substantially restored hippocampal theta-like rhythmicity throughout training at a normal frequency but with abnormal wave forms. This treatment applied throughout training substantially restored initial learning. Fixed frequency (7.7 Hz) stimulation produced rhythmic activity and a brief improvement in learning. Irregular stimulation with an average frequency of 7.7 Hz produced little rhythmicity and little improvement in learning. These results demonstrate that brain rhythmicity, per se, can be important for mental processing even when the detailed information originally carried by neurons is lost and when the reinstated pattern of population firing is not normal. The results suggest that the precise frequency of rhythmicity may be important for hippocampal function. Functional rhythmicity needs, therefore, to be included in neural models of cognitive processing. The success of our procedure also suggests that simple alterations of rhythmicity could be used to ameliorate deficits in learning and memory. (c) 2006 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology, Neuroscience Research Centre, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|
48
|
Russell NA, Horii A, Smith PF, Darlington CL, Bilkey DK. Lesions of the vestibular system disrupt hippocampal theta rhythm in the rat. J Neurophysiol 2006; 96:4-14. [PMID: 16772515 DOI: 10.1152/jn.00953.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hippocampus has a major role in memory for spatial location. Theta is a rhythmic hippocampal EEG oscillation that occurs at approximately 8 Hz during voluntary movement and that may have some role in encoding spatial information. We investigated whether, as part of this process, theta might be influenced by self-movement signals provided by the vestibular system. The effects of bilateral peripheral vestibular lesions, made > or = 60 days prior to recording, were assessed in freely moving rats. Power spectral analysis revealed that theta in the lesioned animals had a lower power and frequency compared with that recorded in the control animals. When the electroencephalography (EEG) was compared in epochs matched for speed of movement and acceleration, theta was less rhythmic in the lesioned group, indicating that the effect was not a result of between-group differences in this behavior. Blood measurements of corticosterone were also similar in the two groups indicating that the results could not be attributed to changes in stress levels. Despite the changes in theta EEG, individual neurons in the CA1 region of lesioned animals continued to fire with a periodicity of approximately 8 Hz. The positive correlation between cell firing rate and movement velocity that is observed in CA1 neurons of normal animals was also maintained in cells recorded from lesion group animals. These findings indicate that although vestibular signals may contribute to theta rhythm generation, velocity-related firing in hippocampal neurons is dependent on nonvestibular signals such as sensory flow, proprioception, or motor efference copy.
Collapse
Affiliation(s)
- Noah A Russell
- Department of Psychology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
49
|
Cenquizca LA, Swanson LW. Analysis of direct hippocampal cortical field CA1 axonal projections to diencephalon in the rat. J Comp Neurol 2006; 497:101-14. [PMID: 16680763 PMCID: PMC2570652 DOI: 10.1002/cne.20985] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The hippocampal formation is generally considered essential for processing episodic memory. However, the structural organization of hippocampal afferent and efferent axonal connections is still not completely understood, although such information is critical to support functional hypotheses. The full extent of axonal projections from field CA1 to the interbrain (diencephalon) is analyzed here with the Phaseolus vulgaris-leucoagglutinin (PHAL) method. The ventral pole of field CA1 establishes direct pathways to, and terminal fields within, the anterior hypothalamic nucleus, ventromedial hypothalamic nucleus, lateral hypothalamic and lateral preoptic areas, medial preoptic area, and certain other hypothalamic regions, as well as particular midline thalamic nuclei. These results suggest that hippocampal field CA1 modulates motivated or goal-directed behaviors, and physiological responses, associated with the targeted hypothalamic neuron populations.
Collapse
Affiliation(s)
- Lee A. Cenquizca
- Department of Life Sciences, Los Angeles City College, Los Angeles, California 90029
| | - Larry W. Swanson
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA
| |
Collapse
|
50
|
Aranda L, Santín LJ, Begega A, Aguirre JA, Arias JL. Supramammillary and adjacent nuclei lesions impair spatial working memory and induce anxiolitic-like behavior. Behav Brain Res 2006; 167:156-64. [PMID: 16236369 DOI: 10.1016/j.bbr.2005.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 08/31/2005] [Accepted: 09/05/2005] [Indexed: 11/25/2022]
Abstract
The present study assesses the involvement of the supramammillary and adjacent nuclei in spatial memory and anxiety-like behaviors. Rats with electrolytic lesions in the supramammillary nucleus were pre- and post-operatively trained in two spatial memory tasks and two anxiety tasks. Spatial memory tasks were performed in an open field with seven different goal positions containing the reward. Anxiety-like behaviors were tested in the elevated T-maze. In the spatial reference memory task, neither lesioned nor sham-lesioned groups were impaired. In the working memory task, lesioned animals were permanently impaired in their ability to solve the delayed-matching-to-position task. This working memory deficit is not related to increased proactive interference. It could be related to impairment of the rats ability to reorganize spatial stimuli. Consequently, rats were not able to achieve an optimal performance level to solve spatial tasks with continuous changes in the place location. In the elevated T-maze, lesioned rats reduced passive avoidance response but no changes in the escape response were observed. These results suggest a clear involvement of the supramammillary nucleus in working memory and behavioral inhibition but not in either spatial reference memory or in escape responses.
Collapse
Affiliation(s)
- Lourdes Aranda
- Dpto. Psicobiología y Metodología de las CC, Facultad de Psicología, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | | | | | | | | |
Collapse
|