1
|
Bhattarai G, Shrestha SK, Sim HJ, Lee JC, Kook SH. Effects of fine particulate matter on bone marrow-conserved hematopoietic and mesenchymal stem cells: a systematic review. Exp Mol Med 2024; 56:118-128. [PMID: 38200155 PMCID: PMC10834576 DOI: 10.1038/s12276-023-01149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024] Open
Abstract
The harmful effects of fine particulate matter ≤2.5 µm in size (PM2.5) on human health have received considerable attention. However, while the impact of PM2.5 on the respiratory and cardiovascular systems has been well studied, less is known about the effects on stem cells in the bone marrow (BM). With an emphasis on the invasive characteristics of PM2.5, this review examines the current knowledge of the health effects of PM2.5 exposure on BM-residing stem cells. Recent studies have shown that PM2.5 enters the circulation and then travels to distant organs, including the BM, to induce oxidative stress, systemic inflammation and epigenetic changes, resulting in the reduction of BM-residing stem cell survival and function. Understanding the broader health effects of air pollution thus requires an understanding of the invasive characteristics of PM2.5 and its direct influence on stem cells in the BM. As noted in this review, further studies are needed to elucidate the underlying processes by which PM2.5 disturbs the BM microenvironment and inhibits stem cell functionality. Strategies to prevent or ameliorate the negative effects of PM2.5 exposure on BM-residing stem cells and to maintain the regenerative capacity of those cells must also be investigated. By focusing on the complex relationship between PM2.5 and BM-resident stem cells, this review highlights the importance of specific measures directed at safeguarding human health in the face of rising air pollution.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Saroj Kumar Shrestha
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
2
|
Martinez-Banaclocha MA. Targeting the Cysteine Redox Proteome in Parkinson's Disease: The Role of Glutathione Precursors and Beyond. Antioxidants (Basel) 2023; 12:1373. [PMID: 37507913 PMCID: PMC10376658 DOI: 10.3390/antiox12071373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Encouraging recent data on the molecular pathways underlying aging have identified variants and expansions of genes associated with DNA replication and repair, telomere and stem cell maintenance, regulation of the redox microenvironment, and intercellular communication. In addition, cell rejuvenation requires silencing some transcription factors and the activation of pluripotency, indicating that hidden molecular networks must integrate and synchronize all these cellular mechanisms. Therefore, in addition to gene sequence expansions and variations associated with senescence, the optimization of transcriptional regulation and protein crosstalk is essential. The protein cysteinome is crucial in cellular regulation and plays unexpected roles in the aging of complex organisms, which show cumulative somatic mutations, telomere attrition, epigenetic modifications, and oxidative dysregulation, culminating in cellular senescence. The cysteine thiol groups are highly redox-active, allowing high functional versatility as structural disulfides, redox-active disulfides, active-site nucleophiles, proton donors, and metal ligands to participate in multiple regulatory sites in proteins. Also, antioxidant systems control diverse cellular functions, including the transcription machinery, which partially depends on the catalytically active cysteines that can reduce disulfide bonds in numerous target proteins, driving their biological integration. Since we have previously proposed a fundamental role of cysteine-mediated redox deregulation in neurodegeneration, we suggest that cellular rejuvenation of the cysteine redox proteome using GSH precursors, like N-acetyl-cysteine, is an underestimated multitarget therapeutic approach that would be particularly beneficial in Parkinson's disease.
Collapse
|
3
|
Martinez-Banaclocha M. N-Acetyl-Cysteine: Modulating the Cysteine Redox Proteome in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020416. [PMID: 35204298 PMCID: PMC8869501 DOI: 10.3390/antiox11020416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
In the last twenty years, significant progress in understanding the pathophysiology of age-associated neurodegenerative diseases has been made. However, the prevention and treatment of these diseases remain without clinically significant therapeutic advancement. While we still hope for some potential genetic therapeutic approaches, the current reality is far from substantial progress. With this state of the issue, emphasis should be placed on early diagnosis and prompt intervention in patients with increased risk of neurodegenerative diseases to slow down their progression, poor prognosis, and decreasing quality of life. Accordingly, it is urgent to implement interventions addressing the psychosocial and biochemical disturbances we know are central in managing the evolution of these disorders. Genomic and proteomic studies have shown the high molecular intricacy in neurodegenerative diseases, involving a broad spectrum of cellular pathways underlying disease progression. Recent investigations indicate that the dysregulation of the sensitive-cysteine proteome may be a concurrent pathogenic mechanism contributing to the pathophysiology of major neurodegenerative diseases, opening new therapeutic opportunities. Considering the incidence and prevalence of these disorders and their already significant burden in Western societies, they will become a real pandemic in the following decades. Therefore, we propose large-scale investigations, in selected groups of people over 40 years of age with decreased blood glutathione levels, comorbidities, and/or mild cognitive impairment, to evaluate supplementation of the diet with low doses of N-acetyl-cysteine, a promising and well-tolerated therapeutic agent suitable for long-term use.
Collapse
|
4
|
Martínez-Banaclocha M. N-acetyl-cysteine in Schizophrenia: Potential Role on the Sensitive Cysteine Proteome. Curr Med Chem 2021; 27:6424-6439. [PMID: 33115390 DOI: 10.2174/0929867326666191015091346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/11/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND N-acetyl-cysteine (NAC) has shown widespread utility in different psychiatric disorders, including a beneficial role in schizophrenic patients. Although the replenishment of glutathione and the antioxidant activity of NAC have been suggested as the mechanisms that improve such a wide range of disorders, none seems to be sufficiently specific to explain these intriguing effects. A sensitive cysteine proteome is emerging as a functional and structural network of interconnected Sensitive Cysteine-containing Proteins (SCCPs) that together with reactive species and the cysteine/ glutathione cycles can regulate the bioenergetic metabolism, the redox homeostasis and the cellular growth, differentiation and survival, acting through different pathways that are regulated by the same thiol radical in cysteine residues. OBJECTIVE Since this sensitive cysteine network has been implicated in the pathogenesis of Parkinson's and Alzheimer's diseases, I have reviewed if the proteins that play a role in schizophrenia can be classified as SCCPs. RESULTS The results show that the principal proteins playing a role in schizophrenia can be classified as SCCPs, suggesting that the sensitive cysteine proteome (cysteinet) is defective in this type of psychosis. CONCLUSION The present review proposes that there is a deregulation of the sensitive cysteine proteome in schizophrenia as the consequence of a functional imbalance among different SCCPs, which play different functions in neurons and glial cells. In this context, the role of NAC to restore and prevent schizophrenic disorders is discussed.
Collapse
|
5
|
Monti DA, Zabrecky G, Leist TP, Wintering N, Bazzan AJ, Zhan T, Newberg AB. N-acetyl Cysteine Administration Is Associated With Increased Cerebral Glucose Metabolism in Patients With Multiple Sclerosis: An Exploratory Study. Front Neurol 2020; 11:88. [PMID: 32117038 PMCID: PMC7033492 DOI: 10.3389/fneur.2020.00088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/24/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Multiple Sclerosis (MS) is an autoimmune disease marked by progressive neurocognitive injury. Treatment options affording neuroprotective effects remain largely experimental. The purpose of this proof of concept study was to explore the effects of N-acetyl-cysteine (NAC) on cerebral glucose metabolism (CMRGlu) and symptoms in patients with multiple sclerosis (MS). Methods: Twenty-four patients with MS were randomized to either NAC plus standard of care, or standard of care only (waitlist control). The experimental group received NAC intravenously once per week and orally the other 6 days. Patients in both groups were evaluated at baseline and after 2 months (of receiving the NAC or waitlist control period) with an integrated Position Emission Tomography (PET)/ Magnetic Resonance Imaging (MRI) scanner, using 18F Fluorodeoxyglucose (FDG) to measure cerebral glucose metabolism. Following imaging evaluation at 2 months, subjects initially attributed to the standard of care arm were eligible for treatment with NAC. Clinical and symptom questionnaires were also completed initially and after 2 months. Results: The FDG PET data showed significantly increased cerebral glucose metabolism in several brain regions including the caudate, inferior frontal gyrus, lateral temporal gyrus, and middle temporal gyrus (p < 0.05) in the MS group treated with NAC, as compared to the control group. Self-reported scores related to cognition and attention were also significantly improved in the NAC group as compared to the control group. Conclusions: The results of this study suggest that NAC positively affects cerebral glucose metabolism in MS patients, which is associated with qualitative, patient reported improvements in cognition and attention. Larger scale studies may help to determine the clinical impact of NAC on measures of functioning over the course of illness, as well as the most effective dosage and dosage regimen.
Collapse
Affiliation(s)
- Daniel A Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas P Leist
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anthony J Bazzan
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrew B Newberg
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States.,Division of Nuclear Medicine, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Monti DA, Zabrecky G, Kremens D, Liang TW, Wintering NA, Bazzan AJ, Zhong L, Bowens BK, Chervoneva I, Intenzo C, Newberg AB. N-Acetyl Cysteine Is Associated With Dopaminergic Improvement in Parkinson's Disease. Clin Pharmacol Ther 2019; 106:884-890. [PMID: 31206613 DOI: 10.1002/cpt.1548] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/24/2019] [Indexed: 11/06/2022]
Abstract
This study assessed the biological and clinical effects in patients with Parkinson's disease (PD) of N-acetyl-cysteine (NAC), the prodrug to l-cysteine, a precursor to the natural biological antioxidant glutathione. Forty-two patients with PD were randomized to either weekly intravenous infusions of NAC (50 mg/kg) plus oral doses (500 mg twice per day) for 3 months or standard of care only. Participants received prebrain and postbrain imaging with ioflupane (DaTscan) to measure dopamine transporter (DAT) binding. In the NAC group, significantly increased DAT binding was found in the caudate and putamen (mean increase from 3.4% to 8.3%) compared with controls (P < 0.05), along with significantly improved PD symptoms (P < 0.0001). The results suggest NAC may positively affect the dopaminergic system in patients with PD, with corresponding positive clinical effects. Larger scale studies are warranted.
Collapse
Affiliation(s)
- Daniel A Monti
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniel Kremens
- Department of Neurology, Jefferson Comprehensive Parkinson's Disease and Movement Disorders Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Tsao-Wei Liang
- Department of Neurology, Jefferson Comprehensive Parkinson's Disease and Movement Disorders Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nancy A Wintering
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anthony J Bazzan
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Li Zhong
- Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Brendan K Bowens
- Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Inna Chervoneva
- Department of Biostatistics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Charles Intenzo
- Division of Nuclear Medicine, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew B Newberg
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Division of Nuclear Medicine, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Ikonne US, Vann PH, Wong JM, Forster MJ, Sumien N. Supplementation with N-Acetyl Cysteine Affects Motor and Cognitive Function in Young but Not Old Mice. J Nutr 2019; 149:463-470. [PMID: 30770531 PMCID: PMC6398433 DOI: 10.1093/jn/nxy287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/14/2018] [Accepted: 10/18/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND N-acetyl cysteine (NAC) is a thiolic antioxidant that is thought to increase cellular glutathione (GSH) by augmenting the concentration of available cysteine, an essential precursor to GSH production. Manipulating redox status can affect brain function, and NAC intake has been associated with improving brain function in models of neurodegenerative diseases. OBJECTIVES The objective of the study was to determine if short-term dietary supplementation with NAC could ameliorate functional impairment associated with aging. METHODS C57BL/6J male mice aged 6, 12, or 24 mo were fed a control diet or the control diet supplemented with 0.3% NAC for a total of 12 wk. After 4 wk of dietary supplementation, mice began a series of behavioral tests to measure spontaneous activity (locomotor activity test), psychomotor performance (bridge-walking and coordinated running), and cognitive capacity (Morris water maze and discriminated active avoidance). The performance of the mice on these tests was analyzed through the use of analyses of variance with Age and Diet as factors. RESULTS Supplementation of NAC improved peak motor performance in a coordinated running task by 14% (P < 0.05), and increased the time spent around the platform by 24% in a Morris water maze at age 6 mo. However, the supplementation had no to minimal effect on the motor and cognitive functions of 12- and 24-mo-old mice. CONCLUSIONS The findings of this preclinical study support the claim that NAC has nootropic properties in 6-mo-old mice, but suggest that it may not be useful for improving motor and cognitive impairments in older mice.
Collapse
Affiliation(s)
- Uzoma S Ikonne
- Department of Pharmacology and Neuroscience and Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX,Basic Medical Science, School of Osteopathic Medicine Arizona, A.T. Still University, Mesa, AZ
| | - Philip H Vann
- Department of Pharmacology and Neuroscience and Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX
| | - Jessica M Wong
- Department of Pharmacology and Neuroscience and Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX
| | - Michael J Forster
- Department of Pharmacology and Neuroscience and Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience and Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX,Address correspondence to NS (e-mail: )
| |
Collapse
|
8
|
Tardiolo G, Bramanti P, Mazzon E. Overview on the Effects of N-Acetylcysteine in Neurodegenerative Diseases. Molecules 2018; 23:molecules23123305. [PMID: 30551603 PMCID: PMC6320789 DOI: 10.3390/molecules23123305] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
N-acetylcysteine (NAC), which is an acetylated cysteine compound, has aroused scientific interest for decades due to its important medical applications. It also represents a nutritional supplement in the human diet. NAC is a glutathione precursor and shows antioxidant and anti-inflammatory activities. In addition to the uses quoted in the literature, NAC may be considered helpful in therapies to counteract neurodegenerative and mental health diseases. Furthermore, this compound has been evaluated for its neuroprotective potential in the prevention of cognitive aging dementia. NAC is inexpensive, commercially available and no relevant side effects were observed after its administration. The purpose of this paper is to give an overview on the effects and applications of NAC in Parkinson's and Alzheimer's disorders and in neuropathic pain and stroke.
Collapse
Affiliation(s)
- Giuseppe Tardiolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
9
|
Ommati MM, Jamshidzadeh A, Niknahad H, Mohammadi H, Sabouri S, Heidari R, Abdoli N. N-acetylcysteine treatment blunts liver failure-associated impairment of locomotor activity. PHARMANUTRITION 2017. [DOI: 10.1016/j.phanu.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Monti DA, Zabrecky G, Kremens D, Liang TW, Wintering NA, Cai J, Wei X, Bazzan AJ, Zhong L, Bowen B, Intenzo CM, Iacovitti L, Newberg AB. N-Acetyl Cysteine May Support Dopamine Neurons in Parkinson's Disease: Preliminary Clinical and Cell Line Data. PLoS One 2016; 11:e0157602. [PMID: 27309537 PMCID: PMC4911055 DOI: 10.1371/journal.pone.0157602] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/31/2016] [Indexed: 12/23/2022] Open
Abstract
Backgound The purpose of this study was to assess the biological and clinical effects of n-acetyl-cysteine (NAC) in Parkinson’s disease (PD). Methods The overarching goal of this pilot study was to generate additional data about potentially protective properties of NAC in PD, using an in vitro and in vivo approach. In preparation for the clinical study we performed a cell tissue culture study with human embryonic stem cell (hESC)-derived midbrain dopamine (mDA) neurons that were treated with rotenone as a model for PD. The primary outcome in the cell tissue cultures was the number of cells that survived the insult with the neurotoxin rotenone. In the clinical study, patients continued their standard of care and were randomized to receive either daily NAC or were a waitlist control. Patients were evaluated before and after 3 months of receiving the NAC with DaTscan to measure dopamine transporter (DAT) binding and the Unified Parkinson’s Disease Rating Scale (UPDRS) to measure clinical symptoms. Results The cell line study showed that NAC exposure resulted in significantly more mDA neurons surviving after exposure to rotenone compared to no NAC, consistent with the protective effects of NAC previously observed. The clinical study showed significantly increased DAT binding in the caudate and putamen (mean increase ranging from 4.4% to 7.8%; p<0.05 for all values) in the PD group treated with NAC, and no measurable changes in the control group. UPDRS scores were also significantly improved in the NAC group (mean improvement of 12.9%, p = 0.01). Conclusions The results of this preliminary study demonstrate for the first time a potential direct effect of NAC on the dopamine system in PD patients, and this observation may be associated with positive clinical effects. A large-scale clinical trial to test the therapeutic efficacy of NAC in this population and to better elucidate the mechanism of action is warranted. Trial Registration ClinicalTrials.gov NCT02445651
Collapse
Affiliation(s)
- Daniel A. Monti
- Myrna Brind Center of Integrative Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - George Zabrecky
- Myrna Brind Center of Integrative Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Daniel Kremens
- Movement Disorders Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Tsao-Wei Liang
- Movement Disorders Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Nancy A. Wintering
- Myrna Brind Center of Integrative Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Jingli Cai
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Xiatao Wei
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Anthony J. Bazzan
- Myrna Brind Center of Integrative Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Li Zhong
- Myrna Brind Center of Integrative Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Brendan Bowen
- Myrna Brind Center of Integrative Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Charles M. Intenzo
- Division of Nuclear Medicine, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Lorraine Iacovitti
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Andrew B. Newberg
- Myrna Brind Center of Integrative Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Wang L, Guo L, Lu L, Sun H, Shao M, Beck SJ, Li L, Ramachandran J, Du Y, Du H. Synaptosomal Mitochondrial Dysfunction in 5xFAD Mouse Model of Alzheimer's Disease. PLoS One 2016; 11:e0150441. [PMID: 26942905 PMCID: PMC4778903 DOI: 10.1371/journal.pone.0150441] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/13/2016] [Indexed: 11/23/2022] Open
Abstract
Brain mitochondrial dysfunction is hallmark pathology of Alzheimer’s disease (AD). Recently, the role of synaptosomal mitochondrial dysfunction in the development of synaptic injury in AD has received increasing attention. Synaptosomal mitochondria are a subgroup of neuronal mitochondria specifically locating at synapses. They play an essential role in fueling synaptic functions by providing energy on the site; and their defects may lead to synaptic failure, which is an early and pronounced pathology in AD. In our previous studies we have determined early synaptosomal mitochondrial dysfunction in an AD animal model (J20 line) overexpressing human Amyloid beta (Aβ), the key mediator of AD. In view of the limitations of J20 line mice in representing the full aspects of amyloidopathy in AD cases, we employed 5xFAD mice which are thought to be a desirable paradigm of amyloidopathy as seen in AD subjects. In addition, we have also examined the status of synaptosomal mitochondrial dynamics as well as Parkin-mediated mitophagy which have not been previously investigated in this mouse model. In comparison to nontransgenic (nonTg mice), 5xFAD mice demonstrated prominent synaptosomal mitochondrial dysfunction. Moreover, synaptosomal mitochondria from the AD mouse model displayed imbalanced mitochondrial dynamics towards fission along with activated Parkin and LC3BII recruitment correlating to spatial learning & memory impairments in 5xFAD mice in an age-dependent manner. These results suggest that synaptosomal mitochondrial deficits are primary pathology in Aβ-rich environments and further confirm the relevance of synaptosomal mitochondrial deficits to the development of AD.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
- Shandong University, Shandong Provincial Hospital, Jinan, Shandong Province, China, 250100
| | - Lan Guo
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
| | - Lin Lu
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
- Shandong University, Shandong Provincial Hospital, Jinan, Shandong Province, China, 250100
| | - Huili Sun
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
- Shenzhen Traditional Medicine Hospital, Shenzhen, Guangdong Province, China, 518031
| | - Muming Shao
- Shenzhen Traditional Medicine Hospital, Shenzhen, Guangdong Province, China, 518031
| | - Simon J. Beck
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
| | - Lin Li
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
| | - Janani Ramachandran
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
| | - Yifeng Du
- Shandong University, Shandong Provincial Hospital, Jinan, Shandong Province, China, 250100
| | - Heng Du
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
- Shandong University, Shandong Provincial Hospital, Jinan, Shandong Province, China, 250100
- * E-mail:
| |
Collapse
|
12
|
Stauch KL, Purnell PR, Fox HS. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function. Aging (Albany NY) 2014; 6:320-34. [PMID: 24827396 PMCID: PMC4032798 DOI: 10.18632/aging.100657] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function.
Collapse
Affiliation(s)
- Kelly L Stauch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | | | |
Collapse
|
13
|
Teng Y, Zou L, Huang M, Chen Y. Molecular interaction mechanism between 2-mercaptobenzimidazole and copper-zinc superoxide dismutase. PLoS One 2014; 9:e106003. [PMID: 25157630 PMCID: PMC4144957 DOI: 10.1371/journal.pone.0106003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022] Open
Abstract
2-Mercaptobenzimidazole (MBI) is widely utilized as a corrosion inhibitor, copper-plating brightener and rubber accelerator. The residue of MBI in the environment is potentially harmful. In the present work, the toxic interaction of MBI with the important antioxidant enzyme copper-zinc superoxide dismutase (Cu/ZnSOD) was investigated using spectroscopic and molecular docking methods. MBI can interact with Cu/ZnSOD to form an MBI-Cu/ZnSOD complex. The binding constant, number of binding sites and thermodynamic parameters were measured, which indicated that MBI could spontaneously bind with Cu/ZnSOD with one binding site through hydrogen bonds and van der Waals forces. MBI bound into the Cu/ZnSOD interface of two subdomains, which caused some microenvironmental and secondary structure changes of Cu/ZnSOD and further resulted in the inhibition of Cu/ZnSOD activity. This work provides direct evidence at a molecular level to show that exposure to MBI could induce changes in the structure and function of the enzyme Cu/ZnSOD. The estimated methods in this work may be applied to probe molecular interactions of biomacromolecules and other pollutants and drugs.
Collapse
Affiliation(s)
- Yue Teng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province, PR China
- * E-mail:
| | - Luyi Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province, PR China
| | - Ming Huang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province, PR China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
14
|
Stauch KL, Purnell PR, Fox HS. Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability. J Proteome Res 2014; 13:2620-36. [PMID: 24708184 PMCID: PMC4015687 DOI: 10.1021/pr500295n] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage.
Collapse
Affiliation(s)
- Kelly L Stauch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | | | | |
Collapse
|
15
|
Teng Y, Liu R. Insights into potentially toxic effects of 4-aminoantipyrine on the antioxidant enzyme copper-zinc superoxide dismutase. JOURNAL OF HAZARDOUS MATERIALS 2013; 262:318-324. [PMID: 24056243 DOI: 10.1016/j.jhazmat.2013.08.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 06/02/2023]
Abstract
4-Aminoantipyrine (AAP) is scarcely administered as an analgesic drug because of side effects. The residue of AAP in the environment is potentially harmful. To evaluate the toxicity of AAP from molecular level, the effects of AAP on the important antioxidant enzyme copper-zinc superoxide dismutase (Cu/ZnSOD) were explored using spectroscopic and molecular modeling methods. AAP can spontaneously bind with Cu/ZnSOD with one binding site to form AAP-Cu/ZnSOD complex through hydrogen bond and van der Waals forces. The molecular docking simulation revealed that AAP bound into the Cu/ZnSOD interface of two subdomains, which induced some conformational and microenvironmental changes of Cu/ZnSOD and further caused the inhibition of Cu/ZnSOD activity. The present study provides important insights into toxic mechanism of AAP with Cu/ZnSOD. The estimated research route can be applied to characterize interactions of enzyme systems and other pollutants and drugs.
Collapse
Affiliation(s)
- Yue Teng
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi 214122, PR China
| | | |
Collapse
|
16
|
Aoyama K, Nakaki T. Inhibition of GTRAP3-18 may increase neuroprotective glutathione (GSH) synthesis. Int J Mol Sci 2012; 13:12017-12035. [PMID: 23109897 PMCID: PMC3472789 DOI: 10.3390/ijms130912017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/06/2012] [Accepted: 09/10/2012] [Indexed: 01/24/2023] Open
Abstract
Glutathione (GSH) is a tripeptide consisting of glutamate, cysteine, and glycine; it has a variety of functions in the central nervous system. Brain GSH depletion is considered a preclinical sign in age-related neurodegenerative diseases, and it promotes the subsequent processes toward neurotoxicity. A neuroprotective mechanism accomplished by increasing GSH synthesis could be a promising approach in the treatment of neurodegenerative diseases. In neurons, cysteine is the rate-limiting substrate for GSH synthesis. Excitatory amino acid carrier 1 (EAAC1) is a neuronal cysteine/glutamate transporter in the brain. EAAC1 translocation to the plasma membrane promotes cysteine uptake, leading to GSH synthesis, while being negatively regulated by glutamate transport associated protein 3-18 (GTRAP3-18). Our recent studies have suggested GTRAP3-18 as an inhibitory factor for neuronal GSH synthesis. Inhibiting GTRAP3-18 function is an endogenous mechanism to increase neuron-specific GSH synthesis in the brain. This review gives an overview of EAAC1-mediated GSH synthesis, and its regulatory mechanisms by GTRAP3-18 in the brain, and a potential approach against neurodegeneration.
Collapse
Affiliation(s)
| | - Toshio Nakaki
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-3-3964-1211; Fax: +81-3-3964-0602
| |
Collapse
|
17
|
Abstract
SIGNIFICANCE Synaptic degeneration, an early pathological feature in Alzheimer's disease (AD), is closely correlated to impaired cognitive function and memory loss. Recent studies suggest that involvement of amyloid-beta peptide (Aβ) in synaptic mitochondrial alteration underlies these synaptic lesions. Thus, to understand the Aβ-associated synaptic mitochondrial perturbations would fortify our understanding of synaptic stress in the pathogenesis of AD. RECENT ADVANCES Increasing evidence suggests that synaptic mitochondrial dysfunction is strongly associated with synaptic failure in many neurodegenerative diseases including AD. Based on recent findings in human AD subjects, AD animal models, and AD cellular models, synaptic mitochondria undergo multiple malfunctions including Aβ accumulation, increased oxidative stress, decreased respiration, and compromised calcium handling capacity, all of which occur earlier than changes seen in nonsynaptic mitochondria before predominant AD pathology. Of note, the impact of Aβ on mitochondrial motility and dynamics exacerbates synaptic mitochondrial alterations. CRITICAL ISSUES Synaptic mitochondria demonstrate early deficits in AD; in combination with the role that synaptic mitochondria play in sustaining synaptic functions, deficits in synaptic mitochondria may be a key factor involved in an early synaptic pathology in AD. FUTURE DIRECTIONS The importance of synaptic mitochondria in supporting synapses and the high vulnerability of synaptic mitochondria to Aβ make them a promising target of new therapeutic strategy for AD.
Collapse
Affiliation(s)
- Heng Du
- Higuchi Bioscience Center, University of Kansas, Lawrence, Kansas, USA
| | | | | |
Collapse
|
18
|
Yarana C, Sanit J, Chattipakorn N, Chattipakorn S. Synaptic and nonsynaptic mitochondria demonstrate a different degree of calcium-induced mitochondrial dysfunction. Life Sci 2012; 90:808-14. [DOI: 10.1016/j.lfs.2012.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
|
19
|
N-acetyl-cysteine in the treatment of Parkinson's disease. What are we waiting for? Med Hypotheses 2012; 79:8-12. [PMID: 22546753 DOI: 10.1016/j.mehy.2012.03.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/20/2012] [Accepted: 03/24/2012] [Indexed: 11/23/2022]
Abstract
Parkinson's disease is an age-related neurodegenerative disorder that is ameliorated with levodopa. However, long-term use of this drug is limited by motor complications, postural instability and dementia resulting in the progression of the disease. Insights into the organization of the basal ganglia and knowledge of the mechanisms responsible for cell death in Parkinson's disease has permitted the development of putative neuro-protective drugs that might slow the disease progression. Although no drug has yet been established to alter the rate of disease progression, recent publications have confirmed previous results and hypotheses about the probable role of thiolic antioxidants on Parkinson's disease, demonstrating a significant reduction of dopaminergic neuronal degeneration in α-synuclein over expressing mice treated with oral N-acetyl-cysteine. This thiolic antioxidant is a modified form of the natural amino acid cysteine, which is the precursor of the most potent intracellular antioxidant glutathione. Besides, increasing evidence has been accumulated in the last 10years about the beneficial effects of this thiolic antioxidant in experimental and pathologic states of the nervous system, including against neurotoxic substances. The present paper put forward the existing rationale evidence for the use of N-acetyl-cysteine alone or in combination with levodopa in the clinical management of this neurodegenerative disorder.
Collapse
|
20
|
Amadoro G, Corsetti V, Atlante A, Florenzano F, Capsoni S, Bussani R, Mercanti D, Calissano P. Interaction between NH(2)-tau fragment and Aβ in Alzheimer's disease mitochondria contributes to the synaptic deterioration. Neurobiol Aging 2011; 33:833.e1-25. [PMID: 21958963 DOI: 10.1016/j.neurobiolaging.2011.08.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/26/2011] [Accepted: 08/05/2011] [Indexed: 12/15/2022]
Abstract
Although amyloid beta (Aβ) peptide can promote tau pathology and its toxicity is concurrently tau-dependent, the underlying mechanisms of the in vivo interplay of these proteins remain unsolved. Structural and functional mitochondrial alterations play an early, precipitating role in synaptic failure of Alzheimer's disease (AD) pathogenesis and an aggravated mitochondrial impairment has been described in triple APP/PS/tau transgenic mice carrying both plaques and tangles, if compared with mice overexpressing tau or amyloid precursor protein (APP) alone. Here, we show that a neurotoxic aminoterminal (NH(2))-derived tau fragment mapping between 26 and 230 amino acids of the human tau40 isoform (441 amino acids)-but not the physiological full-length protein-preferentially interacts with Aβ peptide(s) in human AD synapses in association with mitochondrial adenine nucleotide translocator-1 (ANT-1) and cyclophilin D. The two peptides-Aβ 1-42 and the smaller and more potent NH(2)-26-44 peptide of the longest 20-22 kDa NH(2)-tau fragment-inhibit the ANT-1-dependent adenosine diphosphate-adenosine triphosphate (ADP/ATP) exchange in a noncompetitive and competitive manner, respectively, and together further aggravate the mitochondrial dysfunction by exacerbating the ANT-1 impairment. Taken together, these data establish a common, direct and synergistic toxicity of pathological APP and tau products on synaptic mitochondria and suggest potential, new pathway(s) and target(s) for a combined, more efficient therapeutic intervention of early synaptic dysfunction in AD.
Collapse
|
21
|
Teng Y, Liu R, Li C, Zhang H. Effect of 4-aminoantipyrine on oxidative stress induced by glutathione depletion in single human erythrocytes using a microfluidic device together with fluorescence imaging. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:1766-1771. [PMID: 21784575 DOI: 10.1016/j.jhazmat.2011.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 06/28/2011] [Accepted: 07/03/2011] [Indexed: 05/31/2023]
Abstract
The effects of 4-aminoantipyrine (AAP) on oxidative stress induced by glutathione (GSH) depletion in single human erythrocytes were investigated using microfluidic technique and fluorescence imaging. Most cell-based toxicity evaluations on GSH are performed with bulk experiments based on analysis of cell populations. This work established a single-cell toxicity evaluation method to statistically analyze the GSH amount in single erythrocytes incubated with AAP in different concentrations. The experimental conditions of cell flow rate and cell concentration were optimized. The GSH contents in erythrocytes decreased with increasing dose of AAP. At low concentration, AAP had a little effect on GSH; while at high concentration, AAP led to GSH depletion reaching a maximum of 14.53%. The depletion of GSH leads to a significant shift to a more oxidizing intracellular environment. This study provides basic data for presenting the effect of AAP on GSH in erythrocytes and is helpful for understanding its toxicity during the blood transportation process. In addition, it will also complement studies on the environmental risk assessment of AAP pollution.
Collapse
Affiliation(s)
- Yue Teng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100, PR China
| | | | | | | |
Collapse
|
22
|
Lee DH, Kim CS, Lee YJ. Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem Toxicol 2010; 49:271-80. [PMID: 21056612 DOI: 10.1016/j.fct.2010.10.029] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/10/2010] [Accepted: 10/31/2010] [Indexed: 11/28/2022]
Abstract
Astaxanthin (AST) is a powerful antioxidant that occurs naturally in a wide variety of living organisms. We have investigated the role of AST in preventing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced apoptosis of the substantia nigra (SN) neurons in the mouse model of Parkinson's disease (PD) and 1-methyl-4-phenylpyridinium (MPP+)-induced cytotoxicity of SH-SY5Y human neuroblastoma cells. In in vitro study, AST inhibits MPP+-induced production of intracellular reactive oxygen species (ROS) and cytotoxicity in SH-SY5Y human neuroblastoma cells. Preincubation of AST (50 μM) significantly attenuates MPP+-induced oxidative damage. Furthermore, AST is able to enhance the expression of Bcl-2 protein but reduce the expression of α-synuclein and Bax, and suppress the cleavage of caspase-3. Our results suggest that the protective effects of AST on MPP+-induced apoptosis may be due to its anti-oxidative properties and anti-apoptotic activity via induction of expression of superoxide dismutase (SOD) and catalase and regulating the expression of Bcl-2 and Bax. Pretreatment with AST (30 mg/kg) markedly increases tyrosine hydroxylase (TH)-positive neurons and decreases the argyrophilic neurons compared with the MPTP model group. In summary, AST shows protection from MPP+/MPTP-induced apoptosis in the SH-SY5Y cells and PD model mouse SN neurons, and this effect may be attributable to upregulation of the expression of Bcl-2 protein, downregulation of the expression of Bax and α-synuclein, and inhibition of the activation of caspase-3. These data indicate that AST may provide a valuable therapeutic strategy for the treatment of progressive neurodegenerative disease such as Parkinson's disease.
Collapse
Affiliation(s)
- Dae-Hee Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
23
|
Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 2010; 107:18670-5. [PMID: 20937894 DOI: 10.1073/pnas.1006586107] [Citation(s) in RCA: 530] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Synaptic dysfunction and the loss of synapses are early pathological features of Alzheimer's disease (AD). Synapses are sites of high energy demand and extensive calcium fluctuations; accordingly, synaptic transmission requires high levels of ATP and constant calcium fluctuation. Thus, synaptic mitochondria are vital for maintenance of synaptic function and transmission through normal mitochondrial energy metabolism, distribution and trafficking, and through synaptic calcium modulation. To date, there has been no extensive analysis of alterations in synaptic mitochondria associated with amyloid pathology in an amyloid β (Aβ)-rich milieu. Here, we identified differences in mitochondrial properties and function of synaptic vs. nonsynaptic mitochondrial populations in the transgenic mouse brain, which overexpresses the human mutant form of amyloid precursor protein and Aβ. Compared with nonsynaptic mitochondria, synaptic mitochondria showed a greater degree of age-dependent accumulation of Aβ and mitochondrial alterations. The synaptic mitochondrial pool of Aβ was detected at an age as young as 4 mo, well before the onset of nonsynaptic mitochondrial and extensive extracellular Aβ accumulation. Aβ-insulted synaptic mitochondria revealed early deficits in mitochondrial function, as shown by increased mitochondrial permeability transition, decline in both respiratory function and activity of cytochrome c oxidase, and increased mitochondrial oxidative stress. Furthermore, a low concentration of Aβ (200 nM) significantly interfered with mitochondrial distribution and trafficking in axons. These results demonstrate that synaptic mitochondria, especially Aβ-rich synaptic mitochondria, are more susceptible to Aβ-induced damage, highlighting the central importance of synaptic mitochondrial dysfunction relevant to the development of synaptic degeneration in AD.
Collapse
|
24
|
Clark J, Clore EL, Zheng K, Adame A, Masliah E, Simon DK. Oral N-acetyl-cysteine attenuates loss of dopaminergic terminals in alpha-synuclein overexpressing mice. PLoS One 2010; 5:e12333. [PMID: 20808797 PMCID: PMC2925900 DOI: 10.1371/journal.pone.0012333] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/29/2010] [Indexed: 11/18/2022] Open
Abstract
Levels of glutathione are lower in the substantia nigra (SN) early in Parkinson's disease (PD) and this may contribute to mitochondrial dysfunction and oxidative stress. Oxidative stress may increase the accumulation of toxic forms of α-synuclein (SNCA). We hypothesized that supplementation with n-acetylcysteine (NAC), a source of cysteine – the limiting amino acid in glutathione synthesis, would protect against α-synuclein toxicity. Transgenic mice overexpressing wild-type human α-synuclein drank water supplemented with NAC or control water supplemented with alanine from ages 6 weeks to 1 year. NAC increased SN levels of glutathione within 5–7 weeks of treatment; however, this increase was not sustained at 1 year. Despite the transient nature of the impact of NAC on brain glutathione, the loss of dopaminergic terminals at 1 year associated with SNCA overexpression was significantly attenuated by NAC supplementation, as measured by immunoreactivity for tyrosine hydroxylase in the striatum (p = 0.007; unpaired, two-tailed t-test), with a similar but nonsignificant trend for dopamine transporter (DAT) immunoreactivity. NAC significantly decreased the levels of human SNCA in the brains of PDGFb-SNCA transgenic mice compared to alanine treated transgenics. This was associated with a decrease in nuclear NFκB localization and an increase in cytoplasmic localization of NFκB in the NAC-treated transgenics. Overall, these results indicate that oral NAC supplementation decreases SNCA levels in brain and partially protects against loss of dopaminergic terminals associated with overexpression of α-synuclein in this model.
Collapse
Affiliation(s)
- Joanne Clark
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth L. Clore
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Kangni Zheng
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Anthony Adame
- Department of Neuroscience, School of Medicine, University of Southern California, San Diego, California, United States of America
| | - Eliezer Masliah
- Department of Neuroscience, School of Medicine, University of Southern California, San Diego, California, United States of America
| | - David K. Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
25
|
Bates KA, Martins RN, Harvey AR. Oxidative stress in a rat model of chronic gliosis. Neurobiol Aging 2007; 28:995-1008. [DOI: 10.1016/j.neurobiolaging.2006.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/18/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
|
26
|
Abstract
Brain aging is associated with a progressive imbalance between antioxidant defenses and intracellular concentrations of reactive oxygen species (ROS) as exemplified by increases in products of lipid peroxidation, protein oxidation, and DNA oxidation. Oxidative conditions cause not only structural damage but also changes in the set points of redox-sensitive signaling processes including the insulin receptor signaling pathway. In the absence of insulin, the otherwise low insulin receptor signaling is strongly enhanced by oxidative conditions. Autophagic proteolysis and sirtuin activity, in turn, are downregulated by the insulin signaling pathway, and impaired autophagic activity has been associated with neurodegeneration. In genetic studies, impairment of insulin receptor signaling causes spectacular lifespan extension in nematodes, fruit flies, and mice. The predicted effects of age-related oxidative stress on sirtuins and autophagic activity and the corresponding effects of antioxidants remain to be tested experimentally. However, several correlates of aging have been shown to be ameliorated by antioxidants. Oxidative damage to mitochondrial DNA and the electron transport chain, perturbations in brain iron and calcium homeostasis, and changes in plasma cysteine homeostasis may altogether represent causes and consequences of increased oxidative stress. Aging and cognitive decline thus appear to involve changes at multiple nodes within a complex regulatory network.
Collapse
Affiliation(s)
- Wulf Dröge
- Immunotec Research Ltd., 300 Joseph-Carrier, Vaudreuil-Dorion, Quebec, Canada J7V 5V5.
| | | |
Collapse
|
27
|
Nicoletti VG, Marino VM, Cuppari C, Licciardello D, Patti D, Purrello VS, Stella AMG. Effect of antioxidant diets on mitochondrial gene expression in rat brain during aging. Neurochem Res 2006; 30:737-52. [PMID: 16187210 DOI: 10.1007/s11064-005-6867-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2005] [Indexed: 10/25/2022]
Abstract
Age-related increase of reactive oxygen species (ROS) is particularly detrimental in postmitotic tissues. Calorie restriction (CR) has been shown to exert beneficial effects, consistent with reduced ROS generation by mitochondria. Many antioxidant compounds also mimic such effects. N-acetyl cysteine (NAC) provides thiol groups to glutathione and to mitochondrial respiratory chain proteins; thus, it may counteract both ROS generation and effects. In the present study we investigated, in different rat brain areas during aging (6, 12, and 28 months), the effect of 1-year treatment with CR and dietary supplementation with NAC on the expression of subunit 39 kDa and ND-1 (mitochondrial respiratory complex I), subunit IV (complex IV), subunit alpha of F0F1-ATP synthase (complex V) and of adenine nucleotide translocator, isoform 1 (ANT-1). The observed age-related changes of expression were prevented by the dietary treatments. The present study provides further evidence for the critical role of mitochondria in the aging process.
Collapse
Affiliation(s)
- V G Nicoletti
- Department of Chemical Sciences, Section of Biochemistry & Molecular Biology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Astrocyte swelling represents the major factor responsible for the brain edema associated with fulminant hepatic failure (FHF). The edema may be of such magnitude as to increase intracranial pressure leading to brain herniation and death. Of the various agents implicated in the generation of astrocyte swelling, ammonia has had the greatest amount of experimental support. This article reviews mechanisms of ammonia neurotoxicity that contribute to astrocyte swelling. These include oxidative stress and the mitochondrial permeability transition (MPT). The involvement of glutamine in the production of cell swelling will be highlighted. Evidence will be provided that glutamine induces oxidative stress as well as the MPT, and that these events are critical in the development of astrocyte swelling in hyperammonemia.
Collapse
Affiliation(s)
- M D Norenberg
- Veterans Affairs Medical Center, Miami, Florida 33101, USA. mnorenbe@med,miami.edu
| | | | | |
Collapse
|
29
|
Wang XJ, Xu JX. Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. Neurosci Res 2005; 51:129-38. [PMID: 15681030 DOI: 10.1016/j.neures.2004.10.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2004] [Accepted: 10/13/2004] [Indexed: 01/15/2023]
Abstract
1-methyl-4-phenylpyridinium ion (MPP(+)), an inhibitor of mitochondrial complex I, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with elevation of intracellular reactive oxygen species (ROS) level and apoptotic death. Salvianic acid A (SA), isolated from the Chinese herbal medicine Salvia miltiorrhiza, is capable of protecting diverse kinds of cells from damage caused by a variety of toxic stimuli. In the present study, we investigated the protective effects of SA on MPP(+)-induced cytotoxicity in human neuroblastoma SH-SY5Y cells, as well as the underlying mechanism. Treatment of SH-SY5Y cells with MPP(+) caused the loss of cell viability, and condensation and fragmentation of nuclei, which was associated with the elevation of ROS level, the increase in Bax/Bcl-2 ratio, and the activation of caspase-3. MPP(+) induced mitochondria dysfunction characterized by mitochondrial membrane potential loss and cytochrome c release. These phenotypes induced by MPP(+) were reversed by SA. Our results suggested that the protective effects of SA on MPP(+)-induced cytotoxicity may be ascribed to its antioxidative properties and anti-apoptotic activity via regulating the expression of Bcl-2 and Bax. These data indicated that SA might provide a useful therapeutic strategy for the treatment of progressive neurodegenerative disease such as Parkinson's disease.
Collapse
Affiliation(s)
- Xin-Jian Wang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | |
Collapse
|
30
|
Lee CS, Han ES, Lee WB. Antioxidant effect of phenelzine on MPP+-induced cell viability loss in differentiated PC12 cells. Neurochem Res 2004; 28:1833-41. [PMID: 14649725 DOI: 10.1023/a:1026119708124] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phenelzine, deprenyl, and antioxidants (SOD, catalase, ascorbate, or rutin) reduced the loss of cell viability in differentiated PC12 cells treated with 250 microM MPP+, whereas N-acetylcysteine and dithiothreitol did not inhibit cell death. Phenelzine reduced the condensation and fragmentation of nuclei caused by MPP+ in PC12 cells. Phenelzine and deprenyl prevented the MPP+-induced decrease in mitochondrial membrane potential, cytochrome c release, formation of reactive oxygen species, and depletion of GSH in PC12 cells. Phenelzine revealed a scavenging action on hydrogen peroxide and reduced the hydrogen peroxide-induced cell death in PC12 cells, whereas deprenyl did not depress the cytotoxic effect of hydrogen peroxide. Both compounds reduced the iron and EDTA-mediated degradation of 2-deoxy-D-ribose degradation. The results suggest that phenelzine attenuates the MPP+-induced viability loss in PC12 cells by reducing the alteration of mitochondrial membrane permeability that seems to be mediated by oxidative stress.
Collapse
Affiliation(s)
- Chung Soo Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea.
| | | | | |
Collapse
|
31
|
Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 2003; 333:19-39. [PMID: 12809732 DOI: 10.1016/s0009-8981(03)00200-6] [Citation(s) in RCA: 784] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Glutathione is a ubiquitous thiol-containing tripeptide, which plays a central role in cell biology. It is implicated in the cellular defence against xenobiotics and naturally occurring deleterious compounds, such as free radicals and hydroperoxides. Glutathione status is a highly sensitive indicator of cell functionality and viability. Its levels in human tissues normally range from 0.1 to 10 mM, being most concentrated in liver (up to 10 mM) and in the spleen, kidney, lens, erythrocytes and leukocytes. In humans, GSH depletion is linked to a number of disease states including cancer, neurodegenerative and cardiovascular diseases. The present review proposes an analysis of the current knowledge about the methodologies for measuring glutathione in human biological samples and their feasibility as routine methods in clinical chemistry. Furthermore, it elucidates the fundamental role of glutathione in pathophysiological conditions and its implication in redox and detoxification process. TESTS AVAILABLE Several methods have been optimised in order to identify and quantify glutathione forms in human biological samples. They include spectrophotometric, fluorometric and bioluminometric assays, often applied to HPLC analysis. Recently, a liquid chromatography-mass spectrometry technique for glutathione determination has been developed that, however, suffers from the lack of total automation and the high cost of the equipment. CONCLUSION Glutathione is a critical factor in protecting organisms against toxicity and disease. This review may turn useful for analysing the glutathione homeostasis, whose impairment represents an indicator of tissue oxidative status in human subjects.
Collapse
Affiliation(s)
- Anna Pastore
- Laboratory of Biochemistry, Children's Hospital and Research Institute Bambino Gesù, Piazza S. Onofrio, 4-00165 Rome, Italy.
| | | | | | | |
Collapse
|
32
|
Powell CS, Jackson RM. Mitochondrial complex I, aconitase, and succinate dehydrogenase during hypoxia-reoxygenation: modulation of enzyme activities by MnSOD. Am J Physiol Lung Cell Mol Physiol 2003; 285:L189-98. [PMID: 12665464 DOI: 10.1152/ajplung.00253.2002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both NADH dehydrogenase (complex I) and aconitase are inactivated partially in vitro by superoxide (O2-.) and other oxidants that cause loss of iron from enzyme cubane (4Fe-4S) centers. We tested whether hypoxia-reoxygenation (H-R) by itself would decrease lung epithelial cell NADH dehydrogenase, aconitase, and succinate dehydrogenase (SDH) activities and whether transfection with adenoviral vectors expressing MnSOD (Ad.MnSOD) would inhibit oxidative enzyme inactivation and thus confirm a mechanism involving O2-. Human lung carcinoma cells with alveolar epithelial cell characteristics (A549 cells) were exposed to <1% O2-5% CO2 (hypoxia) for 24 h followed by air-5% CO2 for 24 h (reoxygenation). NADH dehydrogenase activity was assayed in submitochondrial particles; aconitase and SDH activities were measured in cell lysates. H-R significantly decreased NADH dehydrogenase, aconitase, and SDH activities. Ad.MnSOD increased mitochondrial MnSOD substantially and prevented the inhibitory effects of H-R on enzyme activities. Addition of alpha-ketoglutarate plus aspartate, but not succinate, to medium prevented cytotoxicity due to 2,3-dimethoxy-1,4-naphthoquinone. After hypoxia, cells displayed significantly increased dihydrorhodamine fluorescence, indicating increased mitochondrial oxidant production. Inhibition of NADH dehydrogenase, aconitase, and SDH activities during reoxygenation are due to excess O2-. produced in mitochondria, because enzyme inactivation can be prevented by overexpression of MnSOD.
Collapse
Affiliation(s)
- Charles S Powell
- Birmingham Department of Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| | | |
Collapse
|
33
|
Park TH, Kwon OS, Park SY, Han ES, Lee CS. N-methylated beta-carbolines protect PC12 cells from cytotoxic effect of MPP+ by attenuation of mitochondrial membrane permeability change. Neurosci Res 2003; 46:349-58. [PMID: 12804796 DOI: 10.1016/s0168-0102(03)00097-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Opening of the mitochondrial permeability transition pore has been recognized to be involved in cell death. The present study investigated the effect of beta-carbolines (harmaline and harmalol) on the MPP(+)-induced change in the mitochondrial membrane permeability and cell death in differentiated PC12 cells. beta-Carbolines and antioxidants (superoxide dismutase, catalase, ascorbate or rutin) prevented the loss of cell viability in PC12 cells treated with 250 microM MPP(+), while the effects of N-acetylcysteine and dithiothreitol were not observed. beta-Carbolines reduced the condensation and fragmentation of nuclei caused by MPP(+) in PC12 cells. beta-Carbolines alone did not exhibit a significant cytotoxic effect on PC12 cells. beta-Carbolines (50 microM) inhibited the decrease in mitochondrial transmembrane potential, cytochrome c release, activation of caspase-3, formation of reactive oxygen species (ROS) and depletion of GSH caused by MPP(+) in PC12 cells. beta-Carbolines reduced the hydrogen peroxide- or SIN-1-induced cell death in PC12 cells. The results suggest that beta-carbolines may attenuate the MPP(+)-induced viability loss in PC12 cells by inhibition of change in the mitochondrial membrane permeability and by antioxidant effect.
Collapse
Affiliation(s)
- Tai Hwan Park
- Department of Neurology, College of Medicine, Chung-Ang University, 156-756, Seoul, South Korea
| | | | | | | | | |
Collapse
|
34
|
Dröge W. Aging-related changes in the thiol/disulfide redox state: implications for the use of thiol antioxidants. Exp Gerontol 2002; 37:1333-45. [PMID: 12559403 DOI: 10.1016/s0531-5565(02)00175-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic and biochemical studies suggest that free radical-derived reactive oxygen species play a key role in a common mechanism of aging in many or all animal species. This led to the hypothesis that the quality of life in old age may be improved by pharmacological or dietary thiol antioxidants. This review describes important details about how the organism deals with its own thiol antioxidants. Aging was found to be associated with an oxidative shift in the thiol/disulfide redox state (REDST) of the intracellular glutathione pool and of the plasma cyst(e)ine and albumin pools. There is also a decrease in plasma thiol (mainly cysteine) concentration. The oxidative shift in intracellular REDST was found to be typically associated with cellular dysfunctions. Studies in humans related to plasma REDST revealed correlations with aging-related pathophysiological processes, suggesting that oxidative changes in REDST play a key role in processes and diseases which limit the human life span. The age-related shift in plasma REDST is mediated, at least partly, by the decreasing capacity to remove dietary cysteine from the oxidative environment of the blood. Thiol antioxidants were found to ameliorate various aging-related processes but obviously ought to be used with caution in consideration of the oxidative environment of the blood.
Collapse
Affiliation(s)
- Wulf Dröge
- Deutsches Krebsforschungszentrum, German Cancer Research Center (DKFZ), Division of Immunochemistry, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
35
|
Liu L, Trimarchi JR, Smith PJS, Keefe DL. Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 2002; 1:40-6. [PMID: 12882352 DOI: 10.1046/j.1474-9728.2002.00004.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress have been implicated in cellular senescence, apoptosis, aging and aging-associated pathologies. Telomere shortening and genomic instability have also been associated with replicative senescence, aging and cancer. Here we show that mitochondrial dysfunction leads to telomere attrition, telomere loss, and chromosome fusion and breakage, accompanied by apoptosis. An antioxidant prevented telomere loss and genomic instability in cells with dysfunctional mitochondria, suggesting that reactive oxygen species are mediators linking mitochondrial dysfunction and genomic instability. Further, nuclear transfer protected genomes from telomere dysfunction and promoted cell survival by reconstitution with functional mitochondria. This work links mitochondrial dysfunction and genomic instability and may provide new therapeutic strategies to combat certain mitochondrial and aging-associated pathologies.
Collapse
Affiliation(s)
- Lin Liu
- Department of Ob/Gyn, Brown University and Women & Infants Hospital, Providence, RI 02905, USA
| | | | | | | |
Collapse
|
36
|
Youn YC, Kwon OS, Han ES, Song JH, Shin YK, Lee CS. Protective effect of boldine on dopamine-induced membrane permeability transition in brain mitochondria and viability loss in PC12 cells. Biochem Pharmacol 2002; 63:495-505. [PMID: 11853700 DOI: 10.1016/s0006-2952(01)00852-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Boldine ([S]-2,9-dihydroxy-1,10-dimethoxyaporphine) has been shown to exert antioxidant and anti-inflammatory effects. The present study elucidated the protective effect of boldine on catecholamine-induced membrane permeability transition in brain mitochondria and viability loss in PC12 cells. Dopamine (200 microM) and 6-hydroxydopamine (6-OHDA, 100 microM) attenuated Ca(2+) and succinate-induced mitochondrial swelling and membrane potential formation. Boldine (10-100 microM) and 10 microg/mL of superoxide dismutase (SOD) or catalase reduced the effect of catecholamine oxidation on brain mitochondria. Boldine, SOD, and catalase decreased catecholamine-induced mitochondrial cytochrome c release. Antioxidant enzymes attenuated the depressant effect of catecholamines on mitochondrial electron flow, whereas boldine did not reduce it. Boldine inhibited the catecholamine-induced decrease in thioredoxin reductase activity and the increase in thiol oxidation in mitochondria. It also showed a scavenging action on hydrogen peroxide and hydroxyl radicals and decreased the formation of melanin from dopamine. Boldine and antioxidant enzymes decreased the dopamine-induced cell death, including apoptosis, in PC12 cells. The results suggest that boldine may attenuate the catecholamine oxidation-induced brain mitochondrial dysfunction and decrease the dopamine-induced death of PC12 cells through a scavenging action on reactive oxygen species and inhibition of melanin formation and thiol oxidation.
Collapse
Affiliation(s)
- Young Chul Youn
- Department of Neurology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
37
|
Grune T, Shringarpure R, Sitte N, Davies K. Age-related changes in protein oxidation and proteolysis in mammalian cells. J Gerontol A Biol Sci Med Sci 2001; 56:B459-67. [PMID: 11682566 DOI: 10.1093/gerona/56.11.b459] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species generated as by-products of oxidative metabolism, or from environmental sources, frequently damage cellular macromolecules. Proteins are recognized as major targets of oxidative modification, and the accumulation of oxidized proteins is a characteristic feature of aging cells. An increase in the amount of oxidized proteins has been reported in many experimental aging models, as measured by the level of intracellular protein carbonyls or dityrosine, or by the accumulation of protein-containing pigments such as lipofuscin and ceroid bodies. In younger individuals, moderately oxidized soluble cell proteins appear to be selectively recognized and rapidly degraded by the proteasome. An age-related accumulation of oxidized proteins could, therefore, be a result of declining activity of the proteasome. Previous research to investigate the notion of an age-related decline in the content and/or activity of the proteasome has generated contradictory results. The latest evidence, including our own recent findings, indicates that proteasome activity does, indeed, decline during aging as the enzyme complex is progressively inhibited by oxidized and cross-linked protein aggregates. We propose that cellular aging involves both an increase in (mitochondrial) oxidant production and a progressive decline in proteasome activity. Eventually so much proteasome is inactivated that oxidized proteins begin to accumulate rapidly and contribute to cellular dysfunction and senescence.
Collapse
Affiliation(s)
- T Grune
- Clinics of Physical Medicine and Rehabilitation, Medical Faculty (Charité), Berlin, Germany
| | | | | | | |
Collapse
|
38
|
De Flora S, Izzotti A, D'Agostini F, Balansky RM. Mechanisms of N-acetylcysteine in the prevention of DNA damage and cancer, with special reference to smoking-related end-points. Carcinogenesis 2001; 22:999-1013. [PMID: 11408342 DOI: 10.1093/carcin/22.7.999] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although smoking cessation is the primary goal for the control of cancer and other smoking-related diseases, chemoprevention provides a complementary approach applicable to high risk individuals such as current smokers and ex-smokers. The thiol N-acetylcysteine (NAC) works per se in the extracellular environment, and is a precursor of intracellular cysteine and glutathione (GSH). Almost 40 years of experience in the prophylaxis and therapy of a variety of clinical conditions, mostly involving GSH depletion and alterations of the redox status, have established the safety of this drug, even at very high doses and for long-term treatments. A number of studies performed since 1984 have indicated that NAC has the potential to prevent cancer and other mutation-related diseases. N-Acetylcysteine has an impressive array of mechanisms and protective effects towards DNA damage and carcinogenesis, which are related to its nucleophilicity, antioxidant activity, modulation of metabolism, effects in mitochondria, decrease of the biologically effective dose of carcinogens, modulation of DNA repair, inhibition of genotoxicity and cell transformation, modulation of gene expression and signal transduction pathways, regulation of cell survival and apoptosis, anti-inflammatory activity, anti-angiogenetic activity, immunological effects, inhibition of progression to malignancy, influence on cell cycle progression, inhibition of pre-neoplastic and neoplastic lesions, inhibition of invasion and metastasis, and protection towards adverse effects of other chemopreventive agents or chemotherapeutical agents. These mechanisms are herein reviewed and commented on with special reference to smoking-related end-points, as evaluated in in vitro test systems, experimental animals and clinical trials. It is important that all protective effects of NAC were observed under a range of conditions produced by a variety of treatments or imbalances of homeostasis. However, our recent data show that, at least in mouse lung, under physiological conditions NAC does not alter per se the expression of multiple genes detected by cDNA array technology. On the whole, there is overwhelming evidence that NAC has the ability to modulate a variety of DNA damage- and cancer-related end-points.
Collapse
Affiliation(s)
- S De Flora
- Department of Health Sciences, Section of Hygiene and Preventive Medicine, University of Genoa, Via A. Pastore 1, I-16132 Genoa, Italy.
| | | | | | | |
Collapse
|
39
|
Kim DH, Jang YY, Han ES, Lee CS. Protective effect of harmaline and harmalol against dopamine- and 6-hydroxydopamine-induced oxidative damage of brain mitochondria and synaptosomes, and viability loss of PC12 cells. Eur J Neurosci 2001; 13:1861-72. [PMID: 11403679 DOI: 10.1046/j.0953-816x.2001.01563.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study elucidated the protective effect of beta-carbolines (harmaline, harmalol and harmine) against oxidative damage of brain mitochondria, synaptosomes and PC12 cells induced by either dopamine or 6-hydroxydopamine. Harmaline, harmalol and antioxidant enzymes (superoxide dismutase/SOD and catalase) decreased the alteration of mitochondrial swelling and membrane potential induced by 200 microM dopamine or 100 microM 6-hydroxydopamine. Deprenyl attenuated the dopamine-induced mitochondrial dysfunction but did not reduce the effect of 6-hydroxydopamine. While beta-carbolines inhibited the electron flow in mitochondria, they did not enhance the depressant effect of catecholamines. beta-Carbolines and antioxidant enzymes reversed the depression of synaptosomal Ca2+ uptake induced by 10 microM catecholamines. The compounds inhibited the catecholamine-induced thioredoxin reductase inhibition, thiol oxidation and carbonyl formation in mitochondria and synaptosomes. beta-Carbolines decreased the reactive species-induced deoxyribose degradation. Harmaline and harmalol reduced the catecholamine-induced loss of the transmembrane potential and of cell viability in PC12 cells. beta-Carbolines alone did not show a significant cytotoxic effect on PC12 cells. The results suggest that beta-carbolines may attenuate the dopamine- or 6-hydroxydopamine-induced alteration of brain mitochondrial and synaptosomal functions, and viability loss in PC12 cells, by a scavenging action on reactive oxygen species and inhibition of thiol oxidation.
Collapse
Affiliation(s)
- D H Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | |
Collapse
|
40
|
Banaclocha MM. Therapeutic potential of N-acetylcysteine in age-related mitochondrial neurodegenerative diseases. Med Hypotheses 2001; 56:472-7. [PMID: 11339849 DOI: 10.1054/mehy.2000.1194] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Increasing lines of evidence suggest a key role for mitochondrial damage in neurodegenerative diseases. Brain aging, Parkinson's disease, Alzheimer's disease, Huntington's disease and Friedreich's ataxia have been associated with several mitochondrial alterations including impaired oxidative phosphorylation. Mitochondrial impairment can decrease cellular bioenergetic capacity, which will then increase the generation of reactive oxygen species resulting in oxidative damage and programmed cell death. This paper reviews the mechanisms of N-acetylcysteine action at the cellular level, and the possible usefulness of this antioxidant for the treatment of age-associated neurodegenerative diseases. First, this thiol can act as a precursor for glutathione synthesis as well as a stimulator of the cytosolic enzymes involved in glutathione regeneration. Second, N-acetylcysteine can act by direct reaction between its reducing thiol group and reactive oxygen species. Third, it has been shown that N-acetylcysteine can prevent programmed cell death in cultured neuronal cells. And finally, N-acetylcysteine also increases mitochondrial complex I and IV specific activities both in vitro and in vivo in synaptic mitochondrial preparations from aged mice. In view of the above, and because of the ease of its administration and lack of toxicity in humans, the potential usefulness of N-acetylcysteine in the treatment of age-associated mitochondrial neurodegenerative diseases deserves investigation.
Collapse
Affiliation(s)
- M M Banaclocha
- Department of Pathology, Hospital La Paz, Madrid, Spain.
| |
Collapse
|
41
|
Affiliation(s)
- J W Naskalski
- Department of Diagnostics, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
42
|
Golomb E, Scolnik M, Koren R, Servadio C, Sandbank U, Abramovici A. Effects of senescence and citral on neuronal vacuolar degeneration in rat pelvic ganglia. Neurotoxicology 2001; 22:73-7. [PMID: 11307853 DOI: 10.1016/s0161-813x(00)00002-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A significant part of the morbidity in elderly men involves pelvic organs and their autonomic neural regulation. Environmental stimuli also impair the structure and function of pelvic organs. One of these factors is citral, a widely-used cosmetic fragrance constituent, which causes severe prostatic hyperplasia in rats. In this study, we assessed the effect of topical administration of citral (30 days) on the morphology of pelvic ganglia (PG) in young adult and old Wistar rats. Neuronal vacuolar degeneration with preserved nuclei of PG neurons was observed in untreated senescent, but not young rats. Citral significantly increased the rate of vacuolated neurons in old rats (from 3 to 14%), but only slightly in young ones (from 0 to 0.5-0.3%). Similar lesions were not found in inferior cervical or celiac ganglia, in either group. This shows that environmental stimuli enhance age-related processes of vacuolar neuronal degeneration in PG, and may contribute to the dysfunction of pelvic organs in the elderly.
Collapse
Affiliation(s)
- E Golomb
- Department of Pathology, Sackler Medical School, Tel-Aviv University, Ramat-Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
43
|
Lee CS, Han ES, Jang YY, Han JH, Ha HW, Kim DE. Protective effect of harmalol and harmaline on MPTP neurotoxicity in the mouse and dopamine-induced damage of brain mitochondria and PC12 cells. J Neurochem 2000; 75:521-31. [PMID: 10899927 DOI: 10.1046/j.1471-4159.2000.0750521.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study elucidated the protective effect of beta-carbolines (harmaline, harmalol, and harmine) on oxidative neuronal damage. MPTP treatment increased activities of total superoxide dismutase, catalase, and glutathione peroxidase and levels of malondialdehyde and carbonyls in the basal ganglia, diencephalon plus midbrain of brain compared with control mouse brain. Coadministration of harmalol (48 mg/kg) attenuated the MPTP effect on the enzyme activities and formation of tissue peroxidation products. Harmaline, harmalol, and harmine attenuated both the 500 microM MPP(+)-induced inhibition of electron flow and membrane potential formation and the 100 microM dopamine-induced thiol oxidation and carbonyl formation in mitochondria. The scavenging action of beta-carbolines on hydroxyl radicals was represented by inhibition of 2-deoxy-D-ribose degradation. Harmaline and harmalol (100 microM) attenuated 200 microM dopamine-induced viability loss in PC12 cells. The beta-carbolines (50 microM) attenuated 50 microM dopamine-induced apoptosis in PC12 cells. The compounds alone did not exhibit significant cytotoxic effects. The results indicate that beta-carbolines attenuate brain damage in mice treated with MPTP and MPP(+)-induced mitochondrial damage. The compounds may prevent dopamine-induced mitochondrial damage and PC12 cell death through a scavenging action on reactive oxygen species and inhibition of monoamine oxidase and thiol oxidation.
Collapse
Affiliation(s)
- C S Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea. Department of Neurology, Korean Veterans Hospital, Seoul, Korea.
| | | | | | | | | | | |
Collapse
|
44
|
Martínez Banaclocha M. N-acetylcysteine elicited increase in complex I activity in synaptic mitochondria from aged mice: implications for treatment of Parkinson's disease. Brain Res 2000; 859:173-5. [PMID: 10720628 DOI: 10.1016/s0006-8993(00)02005-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has been suggested that thiolic groups are essential for complex I activity and other respiratory mitochondrial enzymes. Recent experiments showed that the thiolic antioxidant N-acetylcysteine (NAC) can protect against age-related decrease in complex I activity in mice hepatic mitochondria. The present paper shows that NAC enhances complex I activity in vitro in synaptic mitochondria isolated from old mice. The optimum NAC concentration for maximum complex I activity was 10 mM in old synaptic preparations. Our data suggest that mitochondrial thiolic groups, which are essentials to oxidative phosphorylation, are impaired by aging. Based on the finding of decreased mitochondrial complex I activity in the substantia nigra of patients with Parkinson's disease, we propose that the thiol-containing antioxidant NAC could be beneficial for treatment of the disease.
Collapse
|
45
|
Martínez M, Hernández AI, Martínez N. N-Acetylcysteine delays age-associated memory impairment in mice: role in synaptic mitochondria. Brain Res 2000; 855:100-6. [PMID: 10650135 DOI: 10.1016/s0006-8993(99)02349-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondrial oxidative damage is implicated in brain aging and in age-related neurodegenerative diseases. Since N-acetylcysteine (NAC) has recently been shown to prevent apoptotic death in neuronal cells and protect synaptic mitochondria proteins from oxidative damage in aged mice, we have investigated whether dietary administration of this thiolic antioxidant retards age-related memory loss. At 48 weeks of age, a control female OF-1 mice group was fed standard food pellets and another group received pellets containing 0.3% (w/w) of NAC. After 23 weeks of this diet, the NAC had partially restored the memory deficit associated with aging in mice. Moreover, the lipid peroxide and protein carbonyl contents of the synaptic mitochondria were significantly decreased in the NAC-supplemented animals in comparison with their age-matched controls. The antioxidant properties and probable action on mitochondrial bioenergetic ability in the synaptic terminals may explain, at least partially, the beneficial action of NAC administration.
Collapse
Affiliation(s)
- M Martínez
- Department of Pathology, Hospital Universitario La Paz, Madrid, Spain
| | | | | |
Collapse
|
46
|
Xiong Y, Peterson PL, Lee CP. Effect of N-acetylcysteine on mitochondrial function following traumatic brain injury in rats. J Neurotrauma 1999; 16:1067-82. [PMID: 10595823 DOI: 10.1089/neu.1999.16.1067] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Efficacy of N-acetylcysteine (NAC) in traumatic brain injury (TBI)-induced mitochondrial dysfunction was evaluated following controlled cortical impact injury in rats. Respiratory function and calcium transport of rat forebrain mitochondria from injured and uninjured hemispheres were examined. NAC significantly restored mitochondrial electron transfer, energy coupling capacity, calcium uptake activity and reduced calcium content absorbed to brain mitochondrial membranes when examined 12 h post-TBI if NAC was administered i.p. 5 min before injury or 30 min or 1 h postinjury. Glutathione (reduced form, GSH) levels in brain tissues were decreased at all time points examined over a 14-day observation period, while mitochondrial GSH levels significantly decreased only at 3 days and 14 days following TBI. NAC treatment given within 1 h greatly restored brain GSH levels from 1 h to 14 days and mitochondrial GSH levels from 12 h to 14 days post-TBI. NAC did not show protective effects when given 2 h postinjury. Our data indicate that NAC administered postinjury at an early stage can effectively restore TBI-induced mitochondrial dysfunction and the protective effect of NAC may be related to its restoration of GSH levels in the brain.
Collapse
Affiliation(s)
- Y Xiong
- Department of Biochemistry, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
47
|
Martínez Banaclocha M, Martínez N. N-acetylcysteine elicited increase in cytochrome c oxidase activity in mice synaptic mitochondria. Brain Res 1999; 842:249-51. [PMID: 10526120 DOI: 10.1016/s0006-8993(99)01819-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It has been suggested that thiolic groups are essential for cytochrome c oxidase (COX) activity and other respiratory mitochondrial enzymes. Recent experiments showed that the thiolic antioxidant N-acetylcysteine (NAC) can protect against age-related impairment in COX activity in mice hepatic mitochondria. The present paper shows that NAC enhances COX activity in vitro in synaptic mitochondria isolated from young and old mice. The optimum NAC concentration for maximum COX activity was 5 mM in young and 10 mM in old synaptic preparations. Our data suggest that mitochondrial thiolic groups, which are essentials to oxidative phosphorylation, are impaired by aging.
Collapse
|
48
|
Martínez M, Martínez N, Hernández AI, Ferrándiz ML. Hypothesis: can N-acetylcysteine be beneficial in Parkinson's disease? Life Sci 1999; 64:1253-7. [PMID: 10227580 DOI: 10.1016/s0024-3205(98)00472-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Based on the finding of decreased mitochondrial complex I activity in the substantia nigra of patients with Parkinson's disease, we propose that the consequent reduction of ATP synthesis and increased generation of reactive oxygen species may be a possible cause of nigrostriatal cell death. Since sulfhydryl groups are essential in oxidative phosphorylation, thiolic antioxidants may contribute to the preservation of these proteins against oxidative damage. In the present paper, we hypothesize that treatment with a sulfur-containing antioxidant such as N-acetylcysteine may provide a new neuroprotective therapeutic strategy for Parkinson's disease.
Collapse
Affiliation(s)
- M Martínez
- Departamento de Anatomía Patológica, Hospital Universitario La Paz, Madrid, Spain
| | | | | | | |
Collapse
|
49
|
Schmidt RE, Dorsey DA, Beaudet LN, Plurad SB, Parvin CA, Bruch LA. Vacuolar neuritic dystrophy in aged mouse superior cervical sympathetic ganglia is strain-specific. Brain Res 1998; 806:141-51. [PMID: 9739127 DOI: 10.1016/s0006-8993(98)00678-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have developed a model of autonomic nervous system aging using the mouse superior cervical sympathetic ganglion (SCG) which is characterized by the reproducible development of distinctive, markedly-enlarged neuritic swellings (vacuolar neuritic dystrophy, VND). These structures contained an admixture of lucent vacuoles and subcellular organelles, and involved both presynaptic and postsynaptic ganglionic elements. Quantitation of the frequency of VND was accomplished at the light microscopic level and validated by ultrastructural examination. VND lesions were 30-100-fold more frequent in the aged mouse paravertebral SCG than in the prevertebral celiac/superior mesenteric (C/SMG) sympathetic ganglia. Although VND was identified in all ages of mice examined, the number of lesions increased significantly with age. The frequency of VND was a function of the strain of mouse examined with a 40-fold difference in VND frequency between C57BL6 mice, the least involved strain, and the DBA/2J strain, which was most affected and began to develop significant numbers of lesions at an early age. As in our human studies of aging in the sympathetic nervous system, there was a prominent gender effect with males developing twofold greater numbers of VND lesions than females. Mice maintained on a significant calorie restricted diet for 30 months developed 70% fewer lesions than ad libitum-fed, age and sex matched controls. The aging mouse SCG, therefore, represents a robust animal model with reproducible, quantifiable and unambiguous neuropathology. Insights into pathogenetic mechanisms gained in the subsequent analysis of this relatively simple peripheral sympathetic nervous system model may contribute to the understanding of some of the most complex and significant problems involving higher brain function.
Collapse
Affiliation(s)
- R E Schmidt
- Washington University School of Medicine, Department of Pathology, Division of Neuropathology, 660 South Euclid Avenue, Saint Louis, MO, USA.
| | | | | | | | | | | |
Collapse
|