1
|
Hernandez M, Ghislin S, Lalonde R, Strazielle C. Corticosterone effects on postnatal cerebellar development in mice. Neurochem Int 2023; 171:105611. [PMID: 37704081 DOI: 10.1016/j.neuint.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Glucocorticoids administered early in infancy can affect the architectonic organization of brain structures, particularly those with a postnatal development and resulting in long-term deficits of neuromotor function and cognition. The present study was undertaken to study the effects of daily corticosterone (CORT) injections at a pharmacological dose from postnatal days 8-15 on cerebellar and hippocampal development in mouse pups. Gene expression status for trophic factors involved in synaptic development and function as well as measures of layer thickness associated with cytochrome oxidase labelling were analyzed in the hippocampus, hypothalamus, and specific cerebellar lobules involved in motor control. Repeated CORT injections dysregulated the HPA axis with increased Crh and Nr3c1 mRNA levels in the hypothalamus and a resulting higher serum corticosterone level. The CORT treatment altered the morphology of the hippocampus and down-regulated gene transcription for corticotropin-releasing hormone (Crh) and its type-1 receptor (Crhr1), glucocorticoid receptor (Nr3c1), and brain-derived neurotrophic factor Bdnf and its receptor Ntrk2 (neurotrophic receptor tyrosine kinase 2). Similar mRNA expression decreases were found in the cerebellum for Crhr1, Crhr2, Nr3c1, and Grid2 (glutamatergic δ2 receptor). Morphological alterations and metabolic activity variations were observed in specific cerebellar lobules involved in motor control. The paramedian lobule, normally characterized by mitotic activity in the external germinative layer during the second postnatal week, was atrophic but metabolically hyperactive in its granule cell and molecular layers. On the contrary, lobules with an earlier cell proliferation displayed neurogenesis but a hypoactivated granule cell layer, suggesting a developmental delay in synaptogenesis. The results indicate that glucocorticoid, administered daily during the second postnatal week modulated the developmental programming of the hippocampus and cerebellum. These growth and metabolic alterations may lead possibly to morphological and functional changes later in life.
Collapse
Affiliation(s)
- M Hernandez
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France
| | - S Ghislin
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - R Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - C Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France.
| |
Collapse
|
2
|
Bott CJ, Winckler B. Intermediate filaments in developing neurons: Beyond structure. Cytoskeleton (Hoboken) 2020; 77:110-128. [PMID: 31970897 DOI: 10.1002/cm.21597] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Neuronal development relies on a highly choreographed progression of dynamic cellular processes by which newborn neurons migrate, extend axons and dendrites, innervate their targets, and make functional synapses. Many of these dynamic processes require coordinated changes in morphology, powered by the cell's cytoskeleton. Intermediate filaments (IFs) are the third major cytoskeletal elements in vertebrate cells, but are rarely considered when it comes to understanding axon and dendrite growth, pathfinding and synapse formation. In this review, we first introduce the many new and exciting concepts of IF function, discovered mostly in non-neuronal cells. These roles include dynamic rearrangements, crosstalk with microtubules and actin filaments, mechano-sensing and -transduction, and regulation of signaling cascades. We then discuss the understudied roles of neuronally expressed IFs, with a particular focus on IFs expressed during development, such as nestin, vimentin and α-internexin. Lastly, we illustrate how signaling modulation by the unconventional IF nestin shapes neuronal morphogenesis in unexpected and novel ways. Even though the first IF knockout mice were made over 20 years ago, the study of the cell biological functions of IFs in the brain still has much room for exciting new discoveries.
Collapse
Affiliation(s)
- Christopher J Bott
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
3
|
Kirkcaldie MTK, Dwyer ST. The third wave: Intermediate filaments in the maturing nervous system. Mol Cell Neurosci 2017; 84:68-76. [PMID: 28554564 DOI: 10.1016/j.mcn.2017.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 01/16/2023] Open
Abstract
Intermediate filaments are critical for the extreme structural specialisations of neurons, providing integrity in dynamic environments and efficient communication along axons a metre or more in length. As neurons mature, an initial expression of nestin and vimentin gives way to the neurofilament triplet proteins and α-internexin, substituted by peripherin in axons outside the CNS, which physically consolidate axons as they elongate and find their targets. Once connection is established, these proteins are transported, assembled, stabilised and modified, structurally transforming axons and dendrites as they acquire their full function. The interaction between these neurons and myelinating glial cells optimises the structure of axons for peak functional efficiency, a property retained across their lifespan. This finely calibrated structural regulation allows the nervous system to maintain timing precision and efficient control across large distances throughout somatic growth and, in maturity, as a plasticity mechanism allowing functional adaptation.
Collapse
Affiliation(s)
- Matthew T K Kirkcaldie
- School of Medicine, Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia.
| | - Samuel T Dwyer
- School of Medicine, Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia
| |
Collapse
|
4
|
Abstract
Stem cells, especially neural stem cells (NSCs), are a very attractive cell source for potential reconstruction of injured spinal cord though either neuroprotection, neural regeneration, remyelination, replacement of lost neural cells, or reconnection of disrupted axons. The later have great potential since recent studies demonstrate long-distance growth and connectivity of axons derived from transplanted NSCs after spinal cord injury (SCI). In addition, transplanted NSCs constitute a permissive environment for host axonal regeneration and serve as new targets for host axonal connection. This reciprocal connection between grafted neurons and host neurons constitutes a neuronal relay formation that could restore functional connectivity after SCI.
Collapse
|
5
|
Yuan A, Nixon RA. Specialized roles of neurofilament proteins in synapses: Relevance to neuropsychiatric disorders. Brain Res Bull 2016; 126:334-346. [PMID: 27609296 PMCID: PMC5079776 DOI: 10.1016/j.brainresbull.2016.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 01/05/2023]
Abstract
Neurofilaments are uniquely complex among classes of intermediate filaments in being composed of four subunits (NFL, NFM, NFH and alpha-internexin in the CNS) that differ in structure, regulation, and function. Although neurofilaments have been traditionally viewed as axonal structural components, recent evidence has revealed that distinctive assemblies of neurofilament subunits are integral components of synapses, especially at postsynaptic sites. Within the synaptic compartment, the individual subunits differentially modulate neurotransmission and behavior through interactions with specific neurotransmitter receptors. These newly uncovered functions suggest that alterations of neurofilament proteins not only underlie axonopathy in various neurological disorders but also may play vital roles in cognition and neuropsychiatric diseases. Here, we review evidence that synaptic neurofilament proteins are a sizable population in the CNS and we advance the concept that changes in the levels or post-translational modification of individual NF subunits contribute to synaptic and behavioral dysfunction in certain neuropsychiatric conditions.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, 10962, United States; Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, United States.
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, 10962, United States; Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, United States.
| |
Collapse
|
6
|
Wakade CG, Mehta SH, Maeda M, Webb RC, Chiu FC. Axonal fasciculation and the role of polysialic acid-neural cell adhesion molecule in rat cortical neurons. J Neurosci Res 2013; 91:1408-18. [PMID: 23963795 DOI: 10.1002/jnr.23268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/20/2013] [Accepted: 05/23/2013] [Indexed: 12/28/2022]
Abstract
Axonal fasciculation is a mechanism deployed by growing axons to reach their targets during development of the nervous system. Published data have suggested the involvement of neuronal cell adhesion molecules (NCAM) in axonal fasciculation. We have characterized the formation of axonal fascicles in serum-free, primary cultures of cortical neurons from embryonic rat brains. Unlike the published data, axonal fascicles in our system have a unique morphology: they are waveform, are rarely thicker than 20 μm, and can reach up to several millimeters in length. We observed an age and time dependence in the formation of fascicles. They formed only in cultures from embryonic day 15-17 brain and only between 4 days in vitro (DIV) and 11 DIV. Electron microscopy showed that the fascicles consisted of mostly axonal processes. Immunocytochemical staining confirmed that the fascicles were positive for the 66-kDa neurofilament protein, NF66, but they contained few, if any, microtubule-associated protein-2-positive or glial fibrillary acidic protein-positive processes. Polysialic acids appeared to be critical in the formation of fascicles. Neuraminidase treatment prevented the formation of fascicles when added before 5 DIV. Addition of a specific inhibitor blocked the effect of neuraminidase. The cortical neurons in our model shared several important features with axon fasciculation in vivo and may provide a unique system for studying the molecular mechanisms involved in the formation of axonal tracts in the brain.
Collapse
Affiliation(s)
- Chandramohan G Wakade
- Department of Physical Therapy, Georgia Regents University, Augusta, Georgia; Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia
| | | | | | | | | |
Collapse
|
7
|
Alpha-Internexin: The Fourth Subunit of Neurofilaments in the Mature CNS. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Lu XY, Chen XX, Huang LD, Zhu CQ, Gu YY, Ye S. Anti-alpha-internexin autoantibody from neuropsychiatric lupus induce cognitive damage via inhibiting axonal elongation and promote neuron apoptosis. PLoS One 2010; 5:e11124. [PMID: 20559547 PMCID: PMC2886066 DOI: 10.1371/journal.pone.0011124] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 05/15/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Neuropsychiatric systemic lupus erythematosus (NPSLE) is a major complication for lupus patients, which often leads to cognitive disturbances and memory loss and contributes to a significant patient morbidity and mortality. The presence of anti-neuronal autoantibodies (aAbs) has been identified; as examples, anti-NMDA receptors and anti-Ribsomal P aAbs have been linked to certain pathophysiological features of NPSLE. METHODS AND FINDINGS In the current study, we used a proteomic approach to identify an intermediate neurofilament alpha-internexin (INA) as a pathogenetically relevant autoantigen in NPSLE. The significance of this finding was then validated in an expanded of a cohort of NPSLE patients (n = 67) and controls (n = 270) by demonstrating that high titers of anti-INA aAb was found in both the serum and cerebrospinal fluid (CSF) of approximately 50% NPSLE. Subsequently, a murine model was developed by INA immunization that resulted in pronounced cognitive dysfunction that mimicked features of NPSLE. Histopathology in affected animals displayed cortical and hippocampal neuron apoptosis. In vitro studies further demonstrated that anti-INA Ab mediated neuronal damage via inhibiting axonal elongation and eventually driving the cells to apoptosis. CONCLUSIONS Taken together, this study identified a novel anti-neurofilament aAb in NPSLE, and established a hitherto undescribed mechanism of aAb-mediated neuron damage that could have relevance to the pathophysiology of NPSLE.
Collapse
Affiliation(s)
- Xiao-ye Lu
- Department of Rheumatology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiao-xiang Chen
- Department of Rheumatology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Li-dong Huang
- Department of Neurobiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang-qing Zhu
- Department of Emergency Medicine, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue-ying Gu
- Department of Rheumatology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shuang Ye
- Department of Rheumatology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Fröhlich T, Helmstetter D, Zobawa M, Crecelius AC, Arzberger T, Kretzschmar HA, Arnold GJ. Analysis of the HUPO Brain Proteome reference samples using 2-D DIGE and 2-D LC-MS/MS. Proteomics 2006; 6:4950-66. [PMID: 16927427 DOI: 10.1002/pmic.200600079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Within the Human Proteome Organization (HUPO) Brain Proteome Project, a pilot study was launched with reference samples shipped to nine international laboratories (see Hamacher et al., this Special Issue) to evaluate different proteome approaches in neuroscience and to build up a first version of a brain protein database. One part of the study addresses quantitative proteome alterations between three developmental stages (embryonic day 16; postnatal day 7; 8 weeks) of mouse brains. Five brains per stage were differentially analyzed by 2-D DIGE using internal standardization and overlapping pH gradients (pH 4-7 and 6-9). In total, 214 protein spots showing stage-dependent intensity alterations (> two-fold) were detected, 56 of which were identified. Several of them, e.g. members of the dihydropyrimidinase family, are known to be associated with brain development. To feed the HUPO BPP brain protein database, a robust 2-D LC-MS/MS method was applied to murine postnatal day 7 and human post-mortem brain samples. Using MASCOT and the IPI database, 350 human and 481 mouse proteins could be identified by at least two different peptides. The data are accessible through the PRIDE database (http://www.ebi.ac.uk/pride/).
Collapse
Affiliation(s)
- Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilian University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Haynes RL, Borenstein NS, Desilva TM, Folkerth RD, Liu LG, Volpe JJ, Kinney HC. Axonal development in the cerebral white matter of the human fetus and infant. J Comp Neurol 2005; 484:156-67. [PMID: 15736232 DOI: 10.1002/cne.20453] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
After completion of neuronal migration to form the cerebral cortex, axons undergo rapid elongation to their intra- and subcortical targets, from midgestation through infancy. We define axonal development in the human parietal white matter in this critical period. Immunocytochemistry and Western blot analysis were performed on 46 normative cases from 20-183 postconceptional (PC) weeks. Anti-SMI 312, a pan-marker of neurofilaments, stained axons as early as 23 weeks. Anti-SMI 32, a marker for nonphosphorylated neurofilament high molecular weight (NFH), primarily stained neuronal cell bodies (cortical, subcortical, and Cajal-Retzius). Anti-SMI 31, which stains phosphorylated NFH, was used as a marker of axonal maturity, and showed relatively low levels of staining (approximately one-fourth of adult levels) from 24-34 PC weeks. GAP-43, a marker of axonal growth and elongation, showed high levels of expression in the white matter from 21-64 PC weeks and lower, adult-like levels beyond 17 postnatal months. The onset of myelination, as seen by myelin basic protein expression, was approximately 54 weeks, with progression to "adult-like" staining by 72-92 PC weeks. This study provides major insight into axonal maturation during a critical period of growth, over an age range not previously examined and one coinciding with the peak period of periventricular leukomalacia (PVL), the major disorder underlying cerebral palsy in premature infants. These data suggest that immature axons are susceptible to damage in PVL and that the timing of axonal maturation must be considered toward establishing its pathology relative to the oligodendrocyte/myelin/axonal unit.
Collapse
Affiliation(s)
- Robin L Haynes
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG. Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. ACTA ACUST UNITED AC 2004; 167:723-34. [PMID: 15545317 PMCID: PMC2172580 DOI: 10.1083/jcb.200405144] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The formation of stem cell-derived tumors (teratomas) is observed when engrafting undifferentiated embryonic stem (ES) cells, embryoid body-derived cells (EBCs), or mammalian embryos and is a significant obstacle to stem cell therapy. We show that in tumors formed after engraftment of EBCs into mouse brain, expression of the pluripotency marker Oct-4 colocalized with that of prostate apoptosis response-4 (PAR-4), a protein mediating ceramide-induced apoptosis during neural differentiation of ES cells. We tested the ability of the novel ceramide analogue N-oleoyl serinol (S18) to eliminate mouse and human Oct-4(+)/PAR-4(+) cells and to increase the proportion of nestin(+) neuroprogenitors in EBC-derived cell cultures and grafts. S18-treated EBCs persisted in the hippocampal area and showed neuronal lineage differentiation as indicated by the expression of beta-tubulin III. However, untreated cells formed numerous teratomas that contained derivatives of endoderm, mesoderm, and ectoderm. Our results show for the first time that ceramide-induced apoptosis eliminates residual, pluripotent EBCs, prevents teratoma formation, and enriches the EBCs for cells that undergo neural differentiation after transplantation.
Collapse
Affiliation(s)
- Erhard Bieberich
- Institute of Molecular Medicine and Genetics, School of Medicine, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | |
Collapse
|
12
|
Trimpin S, Mixon AE, Stapels MD, Kim MY, Spencer PS, Deinzer ML. Identification of endogenous phosphorylation sites of bovine medium and low molecular weight neurofilament proteins by tandem mass spectrometry. Biochemistry 2004; 43:2091-105. [PMID: 14967049 DOI: 10.1021/bi030196q] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurofilament proteins (NFP) are intermediate filaments found in the neuronal cytoskeleton. They are highly phosphorylated, a condition that is believed to be responsible for the assembly and stability of the filaments. Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) shows molecular masses for bovine NFP subunits of 63, 105, and 125 kDa for NFL, NFM, and NFH. Mass spectrometric de novo sequencing was used to determine the N-terminal sequence of bovine NFM (115 amino acids), which was previously unknown. Molecular mass information shows that there is one-half equivalent phosphate group on NFL and 24 on NFM. For the first time, it is shown that bovine NFL has three phosphorylation sites (Ser(55), Ser(66), and Ser(472)) and NFM has 22 (Ser(512), Ser(546), Ser(554), Ser(560), Thr(627), Ser(629), Ser(634), Ser(639), Thr(646), Ser(649), Ser(654), Ser(664), Ser(669), Thr(676), Ser(679), Ser(684), Ser(694), Ser(726), Ser(750), Ser(756), Ser(770), and Ser(846)) and two tentative sites (Ser(659)/Thr(661) and Thr(840)). Ser(66) was previously not known to be phosphorylated in NFL of other species, while two sites (Ser(55) and Ser(472)) are consistent with the phosphorylations observed in other mammalian NFLs. The three sites, Ser(55), Ser(66), Ser(472), are heterogeneously phosphorylated. Phosphorylation in bovine NFM occurs mainly in the Lys-Ser-Pro (KSP) region, but the Val-Ser-Pro and Ser-Glu-Lys motifs are also phosphorylated. Most of the phosphorylation sites are in accordance with those previously identified in other mammalian NFMs. In bovine NFM, 16 out of the 22 sites are always phosphorylated (Ser(512), Thr(627), Ser(629), Ser(634), Ser(639), Thr(646), Ser(649), Ser(654), Ser(664), Ser(669), Thr(676), Ser(679), Ser(684), Ser(694), Ser(726), and Ser(750)), all of which are contained in the KSP region, and six are sometimes phosphorylated (Ser(546), Ser(554), Ser(560), Ser(756), Ser(770), and Ser(846)). The NFPs have other modifications, including deamidation, oxidation, and N-terminal acetylation. Pyroglutamic acid formation also occurs.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | |
Collapse
|
13
|
Ge WW, Leystra-Lantz C, Wen W, Strong MJ. Selective loss of trans-acting instability determinants of neurofilament mRNA in amyotrophic lateral sclerosis spinal cord. J Biol Chem 2003; 278:26558-63. [PMID: 12730211 DOI: 10.1074/jbc.m302886200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurofilament (NF) aggregates in motor neurons are a key neuropathological feature of amyotrophic lateral sclerosis (ALS). We have previously observed an alteration in the stoichiometry of NF subunit steady state mRNA levels in ALS spinal motor neurons using in situ hybridization and proposed that this led to aggregate formation. We have now examined the levels of NF mRNA in whole tissue homogenates of spinal cord using the RNase protection assay and real time reverse transcriptase-PCR and observed significant elevations of NF mRNA level in ALS. Compared with age-matched control, we observed a greater stability of heterogeneously expressed NFL mRNA in the presence of ALS spinal cord homogenates. Heat denaturing or protease K digestion of the control homogenates increased the stability of the NFL mRNA to levels observed in ALS homogenate. Increased NFL mRNA stability was also induced by increasing the percentage of ALS homogenate in an admixture of control and ALS homogenates. These observations suggest the presence of trans-acting NFL mRNA-destabilizing elements in control but not in ALS spinal cord homogenates. This was confirmed in gel retardation assays. We also observed that the destabilizing elements interact with the 3'-untranslated region of NFL mRNA. These findings suggest that the trans-acting NFL-destabilizing elements are selectively suppressed in ALS homogenates, resulting in an increased stability and level of NFL mRNA.
Collapse
Affiliation(s)
- Wei-Wen Ge
- Cell Biology Research Group, Robarts Research Institute, London, Ontario N6A 5K8, Canada
| | | | | | | |
Collapse
|
14
|
Mehler MF. Mechanisms regulating lineage diversity during mammalian cerebral cortical neurogenesis and gliogenesis. Results Probl Cell Differ 2003; 39:27-52. [PMID: 12357985 DOI: 10.1007/978-3-540-46006-0_2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During mammalian cerebral cortical development, neural stem cells (NSCs) present within periventricular generative zones give rise to successive waves of neurons and radial glia, followed by oligodendrocytes and astrocytes. The molecular and cellular mechanisms that orchestrate these precisely timed and progressive maturational events are still largely undefined. These developmental processes are likely to involve the dynamic interplay of environmental signals, cell-cell interactions and transcriptional regulatory events. The bone morphogenetic proteins (BMPs), an expanding subclass of the transforming growth factor beta cytokine superfamily, may represent an important set of environmental cues for these progressive maturational events because of the broad profiles of developmental expression of the requisite BMP ligands, receptor subunits and intracellular transduction elements, and because of their versatile roles in promoting a spectrum of cellular processes intimately involved in progressive neural fate decisions. The BMPs also interact with complementary regional environmental signals such as the basic fibroblast growth factor (bFGF) and sonic hedgehog (Shh) that promote earlier stages of NSC expansion, self-renewal, lineage restriction and incipient lineage commitment. The ability of these cytokines and trophic signals to act within specific neurodevelopmental contexts may, in turn, depend on the composite actions of cell-cell contact-associated signals, such as Notch-Hes-mediated lateral inhibitory pathways, and additional transcriptional modulatory events, such as those mediated by members of the inhibitor of differentiation (ID) gene family that encode a novel set of negative basic helix-loop-helix (bHLH) transcription factors. In this chapter, we will examine the distinct roles of these different classes of developmental cues in defining the biological properties of an integrated cerebral cortical developmental signaling network. Ongoing studies in this exciting area of mammalian central nervous system (CNS) development will help to identify important molecular and cellular targets for evolving pharmacological, gene and stem cell therapeutic interventions to combat the pathological sequelae of a spectrum of acquired and genetic disorders of the central nervous system.
Collapse
Affiliation(s)
- Mark F Mehler
- Departments of Neurology, Neuroscience and Psychiatry, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
15
|
Kirkcaldie MTK, Dickson TC, King CE, Grasby D, Riederer BM, Vickers JC. Neurofilament triplet proteins are restricted to a subset of neurons in the rat neocortex. J Chem Neuroanat 2002; 24:163-71. [PMID: 12297262 DOI: 10.1016/s0891-0618(02)00043-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cellular localisation of neurofilament triplet subunits was investigated in the rat neocortex. A subset of mainly pyramidal neurons showed colocalisation of subunit immunolabelling throughout the neocortex, including labelling with the antibody SMI32, which has been used extensively in other studies of the primate cortex as a selective cellular marker. Neurofilament-labelled neurons were principally localised to two or three cell layers in most cortical regions, but dramatically reduced labelling was present in areas such as the perirhinal cortex, anterior cingulate and a strip of cortex extending from caudal motor regions through the medial parietal region to secondary visual areas. However, quantitative analysis demonstrated a similar proportion (10-20%) of cells with neurofilament triplet labelling in regions of high or low labelling. Combining retrograde tracing with immunolabelling showed that cellular content of the neurofilament proteins was not correlated with the length of projection. Double labelling immunohistochemistry demonstrated that neurofilament content in axons was closely associated with myelination. Analysis of SMI32 labelling in development indicated that content of this epitope within cell bodies was associated with relatively late maturation, between postnatal days 14 and 21. This study is further evidence of a cell type-specific regulation of neurofilament proteins within neocortical neurons. Neurofilament triplet content may be more closely related to the degree of myelination, rather than the absolute length, of the projecting axon.
Collapse
Affiliation(s)
- M T K Kirkcaldie
- School of Biomedical Sciences, University of Newcastle, NSW 2308, Callaghan, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
There are many causes of hereditary ataxia. These can be grouped into categories of autosomal recessive, autosomal dominant, and X-linked. Molecularly, many of them are due to trinucleotide repeat expansions. In Friedreich ataxia, the trinucleotide repeat expansions lead to a "loss of function." In the dominant ataxias, the expanded repeats lead to a "gain of function," most likely through accumulation of intranuclear (and less commonly cytoplasmic) polyglutamine inclusions. Channelopathies can also lead to ataxia, especially episodic ataxia. Although phenotypic characteristics are an aid to the clinician, a definitive diagnosis is usually made only through genotypic or molecular studies. Genetic counseling is necessary for the testing of symptomatic and asymptomatic individuals. No effective treatment is yet available for most ataxic syndromes, except for ataxia with isolated vitamin E deficiency and the episodic ataxias.
Collapse
Affiliation(s)
- V G Evidente
- Department of Neurology, Mayo Clinic Scottsdale, Ariz., USA
| | | | | | | |
Collapse
|
17
|
Levavasseur F, Zhu Q, Julien JP. No requirement of alpha-internexin for nervous system development and for radial growth of axons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 69:104-12. [PMID: 10350642 DOI: 10.1016/s0169-328x(99)00104-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Alpha-Internexin is a type IV intermediate filament protein that is expressed abundantly in neurons during development of the peripheral and central nervous systems as well as in few neurons of the adult central nervous system. It has been suggested that alpha-internexin may act as a scaffold for the formation of neuronal intermediate filaments during early development. In addition, recent reports suggest that alpha-internexin could play a major role in two degenerative neurological disorders. We report here an analysis of mice with a targeted disruption of alpha-internexin gene. Unexpectedly, alpha-internexin -/- mice developed normally and did not exhibit overt phenotypes. Moreover, the absence of alpha-internexin did not interfere with neurite extension of cultured DRG neurons. The number and caliber of L4 ventral root axons remained unchanged in alpha-internexin -/- mice. In the retina, alpha-internexin begins to be expressed in retinal ganglion cells when their first axons reach the optic chiasma. Using HRP tracer, we show that the projection pattern of the RGC axons is not modified by the absence of alpha-internexin. Electron microscopy did not reveal significant differences in axonal calibers, in myelination of axons and in neurofilament structures between alpha-internexin -/- and control mice during development and at adult stage. These data indicate that alpha-internexin is not required for the polymerization of neurofilament in vivo. Mice deficient for both alpha-internexin and neurofilament light chain (NF-L) exhibited no over phenotypes as well. No intermediate filament structures were detectable in optic nerve of alpha-internexin -/-; NF-L -/- mice. Ours results do not support the hypothesis of a role for type IV intermediate filaments in axonal outgrowth during development of nervous system.
Collapse
Affiliation(s)
- F Levavasseur
- Centre for Research in Neuroscience, McGill University, The Montreal General Hospital Research Institute, L12-218, 1650 Cedar Avenue, Montreal, Quebec, Canada
| | | | | |
Collapse
|