1
|
Barbieri Caus L, Pasquetti MV, Seminotti B, Woontner M, Wajner M, Calcagnotto ME. Increased susceptibility to quinolinic acid-induced seizures and long-term changes in brain oscillations in an animal model of glutaric acidemia type I. J Neurosci Res 2021; 100:992-1007. [PMID: 34713466 DOI: 10.1002/jnr.24980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 11/11/2022]
Abstract
Glutaric acidemia type I (GA-I) is an inborn error of metabolism of lysine, hydroxylysine, and tryptophan, caused by glutaryl-CoA-dehydrogenase (GCDH) deficiency, characterized by the buildup of toxic organic acids predominantly in the brain. After acute catabolic states, patients usually develop striatal degeneration, but the mechanisms behind this damage are still unknown. Quinolinic acid (QA), a metabolite of the kynurenine pathway, increases especially during infections/inflammatory processes, and could act synergically with organic acids, contributing to the neurological features of GA-I. The aim of this study was to investigate whether QA increases seizure susceptibility and modifies brain oscillation patterns in an animal model of GA-I, the Gcdh-/- mice taking high-lysine diet (Gcdh-/- -Lys). Therefore, the characteristics of QA-induced seizures and changes in brain oscillatory patterns were evaluated by video-electroencephalography (EEG) analysis recorded in Gcdh-/- -Lys, Gcdh+/+ -Lys, and Gcdh-/- -N (normal diet) animals. We found that the number of seizures per animal was similar for all groups receiving QA, Gcdh-/- -Lys-QA, Gcdh+/+ -Lys-QA, and Gcdh-/- -N-QA. However, severe seizures were observed in the majority of Gcdh-/- -Lys-QA mice (82%), and only in 25% of Gcdh+/+ -Lys-QA and 44% of Gcdh-/- -N-QA mice. All Gcdh-/- -Lys animals developed spontaneous recurrent seizures (SRS), but Gcdh-/- -Lys-QA animals had increased number of SRS, higher mortality rate, and significant predominance of lower frequency oscillations on EEG. Our results suggest that QA plays an important role in the neurological features of GA-I, as Gcdh-/- -Lys mice exhibit increased susceptibility to intrastriatal QA-induced seizures and long-term changes in brain oscillations.
Collapse
Affiliation(s)
- Letícia Barbieri Caus
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bianca Seminotti
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Michael Woontner
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
| | - Moacir Wajner
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Paldino E, D’Angelo V, Sancesario G, Fusco FR. Pyroptotic cell death in the R6/2 mouse model of Huntington's disease: new insight on the inflammasome. Cell Death Discov 2020; 6:69. [PMID: 32821438 PMCID: PMC7395807 DOI: 10.1038/s41420-020-00293-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/04/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Mechanisms of tissue damage in Huntington's disease involve excitotoxicity, mitochondrial damage, and neuroinflammation, including microglia activation. In the present study, we investigate the role of pyroptosis process in the striatal neurons of the R6/2 mouse model of Huntington's disease. Transgenic mice were sacrificed at 4 and 13 weeks of age. After sacrifice, histological and immunohistochemical studies were performed. We found that NLRP3 and Caspase-1 were intensely expressed in 13-week-old R6/2 mice. Moreover, NLRP3 expression levels were higher in striatal spiny projection neurons and in parvalbumin interneurons, which are prone to degenerate in HD.
Collapse
Affiliation(s)
- Emanuela Paldino
- IRCSS Fondazione Santa Lucia, Laboratory of Neuroanatomy, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Vincenza D’Angelo
- Department of Systems Medicine, Tor Vergata University of Rome, via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe Sancesario
- Department of Systems Medicine, Tor Vergata University of Rome, via Montpellier 1, 00133 Rome, Italy
| | - Francesca R. Fusco
- IRCSS Fondazione Santa Lucia, Laboratory of Neuroanatomy, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| |
Collapse
|
3
|
Patočka J, Bielavský J, Cabal J, Fusek J. 3-Nitropropionic Acid and Similar Nitrotoxins. ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2019.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
3-Nitropropionic acid as well as 3-nitro-1-propanol and its β-D-glucopyranoside (miserotoxin) are the plant and fungal toxins reported to interrupt mitochondrial electron transport resulting in cellular energy deficit. These nitrotoxins induce neurological degeneration in ruminants and humans. 3-Nitropropionic acid-intoxicated rats serve as the animal model for Huntington’s disease.
Collapse
|
4
|
Kalonia H, Kumar P, Kumar A, Nehru B. Effects of caffeic acid, rofecoxib, and their combination against quinolinic acid-induced behavioral alterations and disruption in glutathione redox status. Neurosci Bull 2009; 25:343-52. [PMID: 19927170 PMCID: PMC5552501 DOI: 10.1007/s12264-009-0513-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The neuroprotective roles of cyclooxygenase (COX) and lipooxygenase (LOX) inhibitors have been well documented. Quinolinic acid (QA) is a well-known excitotoxic agent that could induce behavioral, morphological and biochemical alterations similar with symptoms of Huntington's disease (HD), by stimulating NMDA receptors. However, the exact roles of COX and LOX inhibitors in HD have not yet been explained. The present study aims to elucidate the effects of caffeic acid (a specific inhibitor for LOX), rofecoxib (a specific inhibitor for COX-2), and their combination in ameliorating QA-induced neurotoxicity in rats. METHODS QA was injected into the right striatum of rats to induce neurotoxicity. Caffeic acid and rofecoxib were then orally administered separately. In the combination study, caffeic acid and rofecoxib were administered together. After that, a series of behavioral assessments were conducted to determine the effects of caffeic acid and rofecoxib, respectively, and the co-effect of caffeic acid and rofecoxib, against QA-induced neurotoxicity. RESULTS Intrastriatal QA administration (300 nmol) not only induced a significant reduction in body weight and motor incoordination, but also altered the redox status (decreased glutathione and increased oxidized glutathione level) in striatum, as compared to the sham group. Moreover, chronic treatment with caffeic acid (5 mg/kg and 10 mg/kg, respectively, p.o.) or rofecoxib (10 mg/kg, p.o.) could significantly attenuate QA-induced behavioral alterations and restore the redox status in striatum. However, at the dose of 2.5 mg/kg, caffeic acid did not show any significant effects on these parameters in QA-treated rats. Furthermore, the combination of rofecoxib (10 mg/kg) and caffeic acid (5 mg/kg) could significantly protect against QA neurotoxicity. CONCLUSION The in vivo study indicates that excitotoxic injury to the brain might affect oxidant/antioxidant equilibrium by eliciting changes in glutathione. Moreover, the LOX and the COX pathways may be both involved in quinolinic-induced neurotoxicity, which provides a promising target for HD treatment.
Collapse
Affiliation(s)
- Harikesh Kalonia
- Pharmacology Division, University Institute of Pharmaceutical Sciences, University Grants Commission, Centre of Advanced Study, Panjab University, Chandigarh, 160014 India
| | - Puneet Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, University Grants Commission, Centre of Advanced Study, Panjab University, Chandigarh, 160014 India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, University Grants Commission, Centre of Advanced Study, Panjab University, Chandigarh, 160014 India
| | - Bimla Nehru
- Department of Biophysics, Panjab University, Chandigarh, 160014 India
| |
Collapse
|
5
|
Srinivasan V, Pandi-Perumal SR, Cardinali DP, Poeggeler B, Hardeland R. Melatonin in Alzheimer's disease and other neurodegenerative disorders. Behav Brain Funct 2006; 2:15. [PMID: 16674804 PMCID: PMC1483829 DOI: 10.1186/1744-9081-2-15] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 05/04/2006] [Indexed: 12/15/2022] Open
Abstract
Increased oxidative stress and mitochondrial dysfunction have been identified as common pathophysiological phenomena associated with neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). As the age-related decline in the production of melatonin may contribute to increased levels of oxidative stress in the elderly, the role of this neuroprotective agent is attracting increasing attention. Melatonin has multiple actions as a regulator of antioxidant and prooxidant enzymes, radical scavenger and antagonist of mitochondrial radical formation. The ability of melatonin and its kynuramine metabolites to interact directly with the electron transport chain by increasing the electron flow and reducing electron leakage are unique features by which melatonin is able to increase the survival of neurons under enhanced oxidative stress. Moreover, antifibrillogenic actions have been demonstrated in vitro, also in the presence of profibrillogenic apoE4 or apoE3, and in vivo, in a transgenic mouse model. Amyloid-β toxicity is antagonized by melatonin and one of its kynuramine metabolites. Cytoskeletal disorganization and protein hyperphosphorylation, as induced in several cell-line models, have been attenuated by melatonin, effects comprising stress kinase downregulation and extending to neurotrophin expression. Various experimental models of AD, PD and HD indicate the usefulness of melatonin in antagonizing disease progression and/or mitigating some of the symptoms. Melatonin secretion has been found to be altered in AD and PD. Attempts to compensate for age- and disease-dependent melatonin deficiency have shown that administration of this compound can improve sleep efficiency in AD and PD and, to some extent, cognitive function in AD patients. Exogenous melatonin has also been reported to alleviate behavioral symptoms such as sundowning. Taken together, these findings suggest that melatonin, its analogues and kynuric metabolites may have potential value in prevention and treatment of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- V Srinivasan
- Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kampus Kesihatan, 16150, Kubang kerian, Kelantan, Malaysia
| | - SR Pandi-Perumal
- Comprehensive Center for Sleep Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Mount Sinai School of Medicine, 1176 – 5Avenue, New York, NY 10029, USA
| | - DP Cardinali
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, 1121, Buenos Aires, Argentina
| | - B Poeggeler
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Berliner Str. 28, D-37073 Goettingen, Germany
| | - R Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Berliner Str. 28, D-37073 Goettingen, Germany
| |
Collapse
|
6
|
Gubellini P, Centonze D, Tropepi D, Bernardi G, Calabresi P. Induction of corticostriatal LTP by 3-nitropropionic acid requires the activation of mGluR1/PKC pathway. Neuropharmacology 2004; 46:761-9. [PMID: 15033336 DOI: 10.1016/j.neuropharm.2003.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 10/20/2003] [Accepted: 11/20/2003] [Indexed: 10/26/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder typically affecting individuals in midlife. HD is characterized by the selective loss of striatal spiny neurons, while large cholinergic interneurons are spared. An impaired mitochondrial complex II (succinate dehydrogenase, SD) activity is known as a prominent metabolic alteration in HD. Accordingly, chronic treatment with 3-nitropropionic acid (3-NP), an irreversible SD inhibitor, mimics motor abnormalities and pathology of HD in several animal models. We have previously shown that in vitro application of 3-NP induces a long-term potentiation (LTP) of corticostriatal synaptic transmission through NMDA glutamate receptor. Since this 3-NP-induced LTP (3-NP-LTP) is shown by striatal spiny neurons, but not by cholinergic interneurons, it might play a role in the regional and cell type-specific neuronal death observed in HD. Here we investigate the role of group I metabotropic glutamate receptors (mGluRs) in the induction of 3-NP-LTP. We report that selectively blocking mGluR1, but not mGluR5, suppresses 3-NP-LTP induction. Moreover, we show that a PKC-mediated mechanism is involved in the formation of 3-NP-LTP. Characterizing the cellular mechanisms underlying 3-NP-LTP may provide new insights to better understand the processes leading to the selective neuronal loss observed in HD.
Collapse
Affiliation(s)
- Paolo Gubellini
- Interactions Cellulaires, Neurodégénérescence et Neuroplasticité (IC2N), CNRS, 13402 Marseille Cedex 20, France.
| | | | | | | | | |
Collapse
|
7
|
Marti M, Mela F, Ulazzi L, Hanau S, Stocchi S, Paganini F, Beani L, Bianchi C, Morari M. Differential responsiveness of rat striatal nerve endings to the mitochondrial toxin 3-nitropropionic acid: implications for Huntington's disease. Eur J Neurosci 2003; 18:759-67. [PMID: 12925002 DOI: 10.1046/j.1460-9568.2003.02806.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rat striatal synaptosomes and slices were used to investigate the responsiveness of different populations of nerve terminals to 3-nitropropionic acid (3-NP), a suicide inhibitor of the mitochondrial enzyme succinate dehydrogenase, and to elucidate the ionic mechanisms involved. 3-NP (0.3-3 mm) stimulated spontaneous gamma-aminobutyric acid (GABA), glutamate and [3H]-dopamine efflux but left unchanged acetylcholine efflux from synaptosomes. This effect was associated with a >70% inhibition of succinate dehydrogenase, as measured in the whole synaptosomal population. The facilitation was not dependent on extracellular Ca2+ but relied on voltage-dependent Na+ channel opening, because it was prevented by tetrodotoxin and riluzole. 3-NP also elevated spontaneous glutamate efflux from slices but in a tetrodotoxin-insensitive way. To investigate whether energy depletion could change the responsiveness of nerve endings to a depolarizing stimulus, synaptosomes were pretreated with 3-NP and challenged with pulses of KCl evoking 'quasi-physiological' neurotransmitter release. 3-NP potentiated the K+-evoked GABA, glutamate and [3H]-dopamine release but inhibited the K+-evoked acetylcholine release. The 3-NP induced potentiation of GABA release was Ca2+-dependent and prevented by tetrodotoxin and riluzole whereas the 3-NP-induced inhibition of acetylcholine release was tetrodotoxin- and riluzole-insensitive but reversed by glipizide, an ATP-dependent K+ channel inhibitor. We conclude that the responsiveness of striatal nerve endings to 3-NP relies on activation of different ionic conductances, and suggest that the selective survival of striatal cholinergic interneurons following chronic 3-NP treatment (as in models of Huntington's disease) may rely on the opening of ATP-dependent K+ channels, which counteracts the fall in membrane potential as a result of mitochondrial impairment.
Collapse
Affiliation(s)
- Matteo Marti
- Department of Experimental and Clinical Medicine, Section of Pharmacology, via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lastres-Becker I, de Miguel R, De Petrocellis L, Makriyannis A, Di Marzo V, Fernández-Ruiz J. Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of Huntington's disease. J Neurochem 2003; 84:1097-109. [PMID: 12603833 DOI: 10.1046/j.1471-4159.2003.01595.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have recently reported that the administration of AM404, an inhibitor of the endocannabinoid re-uptake process, which also has affinity for the vanilloid VR1 receptors, is able to reduce hyperkinesia, and causes recovery from neurochemical deficits, in a rat model of Huntington's disease (HD) generated by bilateral intrastriatal injections of 3-nitropropionic acid (3NP). In the present study, we wanted to explore the mechanism(s) by which AM404 produces its antihyperkinetic effect in 3NP-lesioned rats by employing several experimental approaches. First, we tried to block the effects of AM404 with selective antagonists for the CB1 or VR1 receptors, i.e. SR141716A and capsazepine, respectively. We found that the reduction caused by AM404 of the increased ambulation exhibited by 3NP-lesioned rats in the open-field test was reversed when the animals had been pre-treated with capsazepine but not with SR141716A, thus suggesting a major role of VR1 receptors in the antihyperkinetic effects of AM404. However, despite the lack of behavioral effects of the CB1 receptor antagonist, the pretreatment with this compound abolished the recovery of neurochemical [gamma-aminobutyric acid (GABA) and dopamine] deficits in the caudate- putamen caused by AM404, as also did capsazepine. In a second group of studies, we wanted to explore the potential antihyperkinetic effects of various compounds which, compared to AM404, exhibit more selectivity for either the endovanilloid or the endocannabinoid systems. First, we tested VDM11 or AM374, two selective inhibitors or the endocannabinoid re-uptake or hydrolysis, respectively. Both compounds were mostly unable to reduce hyperkinesia in 3NP-lesioned rats, although VDM11 produced a certain motor depression, and AM374 exhibited a trend to stimulate ambulation, in control rats. We also tested the effects of selective direct agonists for VR1 (capsaicin) or CB1 (CP55,940) receptors. Capsaicin exhibited a strong antihyperkinetic activity and, moreover, was able to attenuate the reductions in dopamine and GABA transmission provoked by the 3NP lesion, whereas CP55,940 had also antihyperkinetic activity but was unable to cause recovery of either dopamine or GABA deficits in the basal ganglia. In summary, our data indicate a major role for VR1 receptors, as compared to CB1 receptors, in the antihyperkinetic effects and the recovery of neurochemical deficits caused in 3NP-lesioned rats by compounds that activate both CB1 and VR1 receptors, either directly or via manipulation of the levels of endogenous agonists.
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Lastres-Becker I, Hansen HH, Berrendero F, De Miguel R, Pérez-Rosado A, Manzanares J, Ramos JA, Fernández-Ruiz J. Alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington's disease. Synapse 2002; 44:23-35. [PMID: 11842443 DOI: 10.1002/syn.10054] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent studies have demonstrated a loss of cannabinoid CB1 receptors in the postmortem basal ganglia of patients affected by Huntington's disease (HD) and in transgenic mouse models for this disease. These studies have led to the notion that substances that increase the endocannabinoid activity, such as receptor agonists or inhibitors of endocannabinoid uptake and/or metabolism, might be useful in the treatment of hyperkinetic symptoms of this disease. In the present study, we employed a rat model of HD generated by bilateral intrastriatal injections of 3-nitropropionic acid (3-NP), a toxin that selectively damages striatal GABAergic efferent neurons. These rats exhibited biphasic motor disturbances, with an early (1-2 weeks) hyperactivity followed by a late (3-4 weeks) motor depression. Analysis of GABA, dopamine, and their related enzymes, glutamic acid decarboxylase and tyrosine hydroxylase, in the basal ganglia proved marked decreases compatible with the motor hyperkinesia. In addition, mRNA levels for CB1 receptor, neuronal-specific enolase, proenkephalin, and substance P decreased in the caudate-putamen of 3-NP-injected rats. There were also reductions in CB1 receptor binding in the caudate putamen, the globus pallidus, and, to a lesser extent, the substantia nigra. By contrast, mRNA levels for tyrosine hydroxylase in the substantia nigra remained unaffected. Interestingly, the administration of AM404, an inhibitor of endocannabinoid uptake, to 3-NP-injected rats attenuated motor disturbances observed in the early phase of hyperactivity. Administration of AM404 also tended to induce recovery from the neurochemical deficits caused by the toxin in GABA and dopamine indices in the basal ganglia. In summary, morphological, behavioral, and biochemical changes observed in rats intrastriatally lesioned with 3-NP acid were compatible with a profound degeneration of striatal efferent GABAergic neurons, similar to that occurring in the brain of HD patients. As expected, a loss of CB1 receptors was evident in the basal ganglia of these rats. However, the administration of substances that increase endocannabinoid activity, by inhibiting the uptake process, allowed an activation of the remaining population of CB1 receptors, resulting in a significant improvement of motor disturbances and neurochemical deficits. These observations might be relevant to the treatment of hyperkinetic symptoms in HD, a human disorder with unsatisfactory symptomatic treatment for most patients.
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Comaish IF, Gorman C, Brimlow GM, Barber C, Orr GM, Galloway NR. The effects of vigabatrin on electrophysiology and visual fields in epileptics: a controlled study with a discussion of possible mechanisms. Doc Ophthalmol 2002; 104:195-212. [PMID: 11999627 DOI: 10.1023/a:1014603229383] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To compare the visual electrophysiology and visual fields of patients taking vigabatrin to those of a control group of epileptics on other anti-epileptic drugs (AEDs). METHODS Fourteen epileptics treated with vigabatrin and 10 control patients treated with other AEDs underwent ERG and EOG. Goldmann visual fields were performed and analysed using standard software to measure areas contained within I4e isopters. RESULTS The cone and rod b-waves of the ERG, the oscillatory potential amplitudes and Arden indices were reduced in vigabatrin-treated subjects and the oscillatory potentials delayed. The Arden indices were reduced due to an increased dark trough. The areas contained within the I4e isopter of vigabatrin treated subjects were reduced compared to the control group and these areas correlated well with oscillatory potential amplitudes and b-wave amplitudes in the vigabatrin group only. CONCLUSIONS The use of vigabatrin is associated with a reduction of the ERG cone b-wave amplitude and oscillatory potentials which correlates with visual field loss. The Arden ratio is reduced in subjects taking vigabatrin but may recover after cessation. However, visual loss may persist in the presence of a recovered EOG. These findings suggest further effects of the drug than those mediated by GABA receptors, and support the contention that the cause of the field loss may be at least in part due to retinal effects. Possible mechanisms are discussed.
Collapse
Affiliation(s)
- I F Comaish
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Tkác I, Keene CD, Pfeuffer J, Low WC, Gruetter R. Metabolic changes in quinolinic acid-lesioned rat striatum detected non-invasively by in vivo (1)H NMR spectroscopy. J Neurosci Res 2001; 66:891-8. [PMID: 11746416 DOI: 10.1002/jnr.10112] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intrastriatal injection of quinolinic acid (QA) provides an animal model of Huntington disease. In vivo (1)H NMR spectroscopy was used to measure the neurochemical profile non-invasively in seven animals 5 days after unilateral injection of 150 nmol of QA. Concentration changes of 16 metabolites were measured from 22 microl volume at 9.4 T. The increase of glutamine ((+25 +/- 14)%, mean +/- SD, n = 7) and decrease of glutamate (-12 +/- 5)%, N-acetylaspartate (-17 +/- 6)%, taurine (-14 +/- 6)% and total creatine (-9 +/- 3%) were discernible in each individual animal (P < 0.005, paired t-test). Metabolite concentrations in control striata were in excellent agreement with biochemical literature. The change in glutamate plus glutamine was not significant, implying a shift in the glutamate-glutamine interconversion, consistent with a metabolic defect at the level of neuronal-glial metabolic trafficking. The most significant indicator of the lesion, however, were the changes in glutathione ((-19 +/- 9)%, P < 0.002)), consistent with oxidative stress. From a comparison with biochemical literature we conclude that high-resolution in vivo (1)H NMR spectroscopy accurately reflects the neurochemical changes induced by a relatively modest dose of QA, which permits one to longitudinally follow mitochondrial function, oxidative stress and glial-neuronal metabolic trafficking as well as the effects of treatment in this model of Huntington disease.
Collapse
Affiliation(s)
- I Tkác
- Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
12
|
Lastres-Becker I, Fezza F, Cebeira M, Bisogno T, Ramos JA, Milone A, Fernández-Ruiz J, Di Marzo V. Changes in endocannabinoid transmission in the basal ganglia in a rat model of Huntington's disease. Neuroreport 2001; 12:2125-9. [PMID: 11447320 DOI: 10.1097/00001756-200107200-00017] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies have demonstrated a loss of cannabinoid CB1 receptors in the basal ganglia in Huntington's disease (HD), but there are no data on endocannabinoid levels in this disease. In the present study, we have addressed this question by using rats with bilateral intrastriatal injections of 3-nitropropionic acid (3-NP), a toxin that, through the selective damage of striatal GABAergic efferent neurons, produces a useful model of HD. Twelve days after the lesion, 3-NP-lesioned rats exhibited motor disturbances, characterized by an ambulatory hyperactivity accompanied by a loss of guided activities. Analysis of GABA contents in the basal ganglia showed a trend towards a reduction compatible with motor hyperactivity. In addition, CB1 receptor binding and, to a greater extent, CB1 receptor activation of GTP-binding proteins, were also reduced in the basal ganglia. These changes were paralleled by a decrease of the contents of the two endocannabinoids, anandamide and 2-arachidonoylglycerol, in the striatum, and by an increase, particularly of anandamide, in the ventral mesencephalon where the substantia nigra is located. Both CB1 receptors and endocannabinoid levels were not altered in the cerebral cortex, an area not affected by the lesion. In summary, behavioral and biochemical changes observed in rats intrastriatally lesioned with 3-NP were similar to those occurring in the brain of HD patients. As expected, a loss of CB1 receptor function was evident in the basal ganglia of these rats and this was accompanied by different changes in endocannabinoid levels.
Collapse
Affiliation(s)
- I Lastres-Becker
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Silva PC, Costa JS, Pereira VLP. AN EXPEDITIOUS SYNTHESIS OF 3-NITROPROPIONIC ACID AND ITS ETHYL AND METHYL ESTERS. SYNTHETIC COMMUN 2001. [DOI: 10.1081/scc-100000587] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Cruz-Aguado R, Francis-Turner L, Díaz CM, Antúnez I. Quinolinic acid lesion induces changes in rat striatal glutathione metabolism. Neurochem Int 2000; 37:53-60. [PMID: 10781845 DOI: 10.1016/s0197-0186(99)00165-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the involvement of oxidative mechanisms in the cytotoxicity of excitatory amino acids has been well documented, it is not known whether the intrastriatal injection of quinolinic acid (QA) induces changes in glutathione (GSH) metabolism. In this work, the activities of the enzymes GSH reductase (GRD), GSH peroxidase (GPX), and GSH S-transferase (GST), as well as the GSH content, were studied in the striatum, hippocampus, and frontal cortex of rats 1 and 6 weeks following the intrastriatal injection of QA (225 nmol). One group of animals remained untreated. This lesion resulted in a 20% decrease in striatal GRD activity at both the 1- and 6-week postlesion times, whereas GST exhibited a 30% activity increase in the lesioned striatum observable only 6 weeks after the lesion. GPX activity remained unchanged. In addition, the QA injection elicited a 30% fall in GSH level at the 1-week postlesion time. GSH related enzyme activities and GSH content from other areas outside the lesioned striatum were not affected. GST activation could represent a beneficial compensatory response to neutralize some of the oxidant agents generated by the lesion. However, this effect together with the reduction in GRD activity could be the cause or a contributing factor to the observed QA-induced deficit in GSH availability and, consequently, further disrupt the oxidant homeostasis of the injured striatal tissue. Therefore, these results provide evidence that the in vivo excitotoxic injury to the brain might affect oxidant/antioxidant equilibrium by eliciting changes in glutathione metabolism.
Collapse
Affiliation(s)
- R Cruz-Aguado
- International Center for Neurological Restoration, Neurochemistry Lab, Havana, Cuba.
| | | | | | | |
Collapse
|
15
|
Eradiri OL, Starr MS. Striatal dopamine depletion and behavioural sensitization induced by methamphetamine and 3-nitropropionic acid. Eur J Pharmacol 1999; 386:217-26. [PMID: 10618473 DOI: 10.1016/s0014-2999(99)00776-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The neurotoxic effects of methamphetamine (4 x 5 mg/kg i.p. at 2-h intervals) and 3-nitropropionic acid (20 mg/kg i.p. on days 1-4 and 6-9, saline on day 5), administered alone or in combination (3-nitropropionic acid as above and methamphetamine on day 5), were investigated in rats 1 week after the last injection. Neither methamphetamine nor 3-nitropropionic acid on their own altered brain dopamine levels, but in combination, they selectively lowered dopamine in the terminal regions of the corpus striatum and nucleus accumbens. Methamphetamine depleted 5-hydroxytryptamine (5-HT) in the striatum, while 3-nitropropionic acid depleted 5-HT in the accumbens and substantia nigra, but a combination of the two toxins failed to lower 5-HT in any of these brain regions. Measurements of aromatic L-amino acid decarboxylase activity disclosed no change in the capacity to decarboxylate L-3,4-dihydroxyphenylalanine in any region with any of the treatments, but a lowered capacity to decarboxylate 5-hydroxytryptophan in the nigra after all three treatments. Methamphetamine evoked characteristic hyperactivity and stereotypy in the animals, whereas 3-nitropropionic gave rise to early hypermotility followed by hypoactivity. At 1 week after treatment with 3-nitropropionic/methamphetamine, rats exhibited normal spontaneous motor behaviour, a poor response to dopamine D(1) receptor stimulation and an exaggerated response to dopamine D(2) receptor agonists. These results show that combined systemic treatment with methamphetamine and 3-nitropropionic acid partially depletes dopamine in the basal ganglia, rendering the animals supersensitive to dopamine D(2) receptor activation without altering their spontaneous locomotion.
Collapse
Affiliation(s)
- O L Eradiri
- Department of Pharmacology, The School of Pharmacy, 29-39 Brunswick Square, London, UK
| | | |
Collapse
|
16
|
Reynolds NC, Lin W, Cameron CM, Roerig DL. Extracellular perfusion of rat brain nuclei using microdialysis: a method for studying differential neurotransmitter release in response to neurotoxins. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1999; 4:124-31. [PMID: 10446406 DOI: 10.1016/s1385-299x(99)00008-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microdialysis probes, stereotactically placed in rat brain nuclei, allow detailed kinetic comparisons of neurotransmitter release from in situ chemical lesioning over a continuum from acute early changes (minutes) to chronic late changes (days). This technique insures a localized mechanism of action independent of systemic effects apparent with other routes of administration and independent of mechanical damage patterns encountered in conventional chemical lesioning. The example provided compares changes in extracellular gamma-aminobutyric acid (GABA) concentrations in the striatum in response to quinolinic acid (QA, 0.24 M) and 3-nitropropionic acid (3-NPA, 0.25 M). These examples of chemical lesioning represent two theoretical mechanisms of neurodeterioration in Huntington's disease, QA representing the excitotoxic component, and 3-NPA representing the impaired mitochondrial energy component [M.F. Beal, N.W. Kowall, D.W. Ellison, M.F. Mazurek, K.J. Swartz, J.M. Martin, Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid, Nature 321 (1986) 168-171; M.F. Beal, E. Brouillet, B.G. Jenkins, R.J. Ferrante, N.W. Kowall, J.M. Miller, E. Storey, R. Srivastava, B.R. Rosen, B.T. Hyman, Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13 (1993) 4181-4192; N.C. Reynolds, W. Lin, C.M. Cameron, D.L. Roerig, Differential responses of extracellular GABA to intrastriatal perfusions of 3-nitropropionic acid and quinolinic acid in the rat, Brain Res. 778 (1997) 140-149]. An auxillary microdialysis probe implanted in the ipsilateral nucleus accumbens is used to define the physiologic extent of the cytotoxic lesion. Pre-column derivatization of perfusate fractions with o-phthalaldehyde/t-butylthiol (OPA) provides electroactivity to the OPA-GABA conjugate and facilitates electrochemical detection following high performance liquid chromatography [J.M. Peinado, K.T. McManus, R.B. Myers, Rapid method for microanalysis of endogenous amino acid neurotransmitters in brain perfusates in the rat by isocratic HPLC-EC, J. Neurosci. Methods 18 (1986) 269-276].
Collapse
Affiliation(s)
- N C Reynolds
- Department of Neurology, The Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | |
Collapse
|