1
|
Ruivo J, Tavares I, Pozza DH. Molecular targets in bone cancer pain: a systematic review of inflammatory cytokines. J Mol Med (Berl) 2024; 102:1063-1088. [PMID: 38940936 PMCID: PMC11358194 DOI: 10.1007/s00109-024-02464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Bone cancer pain (BCP) profoundly impacts patient's quality of life, demanding more effective pain management strategies. The aim of this systematic review was to investigate the role of inflammatory cytokines as potential molecular targets in BCP. A systematic search for animal rodent models of bone cancer pain studies was conducted in PubMed, Scopus, and Web of Science. Methodological quality and risk of bias were assessed using the SYRCLE RoB tool. Twenty-five articles met the inclusion criteria, comprising animal studies investigating molecular targets related to inflammatory cytokines in BCP. A low to moderate risk of bias was reported. Key findings in 23 manuscripts revealed upregulated classic pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-17, IL-18, IL-33) and chemokines in the spinal cord, periaqueductal gray, and dorsal root ganglia. Interventions targeting these cytokines consistently mitigated pain behaviors. Additionally, it was demonstrated that glial cells, due to their involvement in the release of inflammatory cytokines, emerged as significant contributors to BCP. This systematic review underscores the significance of inflammatory cytokines as potential molecular targets for alleviating BCP. It emphasizes the promise of targeted interventions and advocates for further research to translate these findings into effective therapeutic strategies. Ultimately, this approach holds the potential to enhance the patient's quality of life.
Collapse
Affiliation(s)
- Jacinta Ruivo
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319, Porto, Portugal
| | - Isaura Tavares
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319, Porto, Portugal
- Institute for Research and Innovation in Health and IBMC, University of Porto, 4200-135, Porto, Portugal
| | - Daniel H Pozza
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319, Porto, Portugal.
- Institute for Research and Innovation in Health and IBMC, University of Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
2
|
Wasman Smail S, Ziyad Abdulqadir S, Omar Khudhur Z, Elia Ishaq S, Faqiyazdin Ahmed A, Ghayour MB, Abdolmaleki A. IL-33 promotes sciatic nerve regeneration in mice by modulating macrophage polarization. Int Immunopharmacol 2023; 123:110711. [PMID: 37531832 DOI: 10.1016/j.intimp.2023.110711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Despite the innate regenerative capacity of peripheral nerves, regeneration after a severe injury is insufficient, and sensorimotor recovery is incomplete. As a result, finding alternative methods for improving regeneration and sensorimotor recovery is essential. In this regard, we investigated the effect of IL-33 treatment as a chemokine with neuroprotective properties. IL-33 can facilitate tissue healing by potentiating the type 2 immune response and polarizing macrophages toward the pro-healing M2 phenotype. However, its effects on nerve regeneration remain unclear. Therefore, this research aimed to evaluate the neuroprotective effects of IL-33 on sciatic nerve injury in male C57BL/6 mice. After crushing the left sciatic nerve, the animals were given 10, 25, or 50 µg/kg IL-33 intraperitoneally for seven days. The sensorimotor recovery was then assessed eight weeks after surgery. In addition, immunohistochemistry, ELISA, and real-time PCR were used to assess macrophage polarization, cytokine secretion, and neurotrophic factor expression in the injured nerves. IL-33 at 50 and 25 µg/kg doses could significantly accelerate nerve regeneration and improve sensorimotor recovery when compared to 10 µg/kg IL-33 and control groups. Furthermore, at 50 and 25 µg/kg doses, IL-33 polarized macrophages toward an M2 phenotype and reduced proinflammatory cytokines at the injury site. It also increased the mRNA expression of NGF, VEGF, and BDNF. These findings suggest that a seven-day IL-33 treatment had neuroprotective effects in a mouse sciatic nerve crush model, most likely by inducing macrophage polarization toward M2 and regulating inflammatory microenvironments.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Shang Ziyad Abdulqadir
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology Education, Faculty of Education, Tishk International University - Erbil, Kurdistan Region, Iraq.
| | - Sonia Elia Ishaq
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | | | - Mohammad B Ghayour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.
| |
Collapse
|
3
|
Kim HW, Shim SW, Zhao AM, Roh D, Han HM, Middleton SJ, Kim W, Chung S, Johnson E, Prentice J, Tacon M, Koel-Simmelink MJ, Wieske L, Teunissen CE, Bae YC, Bennett DL, Rinaldi S, Davies AJ, Oh SB. Long-term tactile hypersensitivity after nerve crush injury in mice is characterized by the persistence of intact sensory axons. Pain 2023; 164:2327-2342. [PMID: 37366595 PMCID: PMC10502897 DOI: 10.1097/j.pain.0000000000002937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
ABSTRACT Traumatic peripheral nerve injuries are at high risk of neuropathic pain for which novel effective therapies are urgently needed. Preclinical models of neuropathic pain typically involve irreversible ligation and/or nerve transection (neurotmesis). However, translation of findings to the clinic has so far been unsuccessful, raising questions on injury model validity and clinically relevance. Traumatic nerve injuries seen in the clinic commonly result in axonotmesis (ie, crush), yet the neuropathic phenotype of "painful" nerve crush injuries remains poorly understood. We report the neuropathology and sensory symptoms of a focal nerve crush injury using custom-modified hemostats resulting in either complete ("full") or incomplete ("partial") axonotmesis in adult mice. Assays of thermal and mechanically evoked pain-like behavior were paralleled by transmission electron microscopy, immunohistochemistry, and anatomical tracing of the peripheral nerve. In both crush models, motor function was equally affected early after injury; by contrast, partial crush of the nerve resulted in the early return of pinprick sensitivity, followed by a transient thermal and chronic tactile hypersensitivity of the affected hind paw, which was not observed after a full crush injury. The partially crushed nerve was characterized by the sparing of small-diameter myelinated axons and intraepidermal nerve fibers, fewer dorsal root ganglia expressing the injury marker activating transcription factor 3, and lower serum levels of neurofilament light chain. By day 30, axons showed signs of reduced myelin thickness. In summary, the escape of small-diameter axons from Wallerian degeneration is likely a determinant of chronic pain pathophysiology distinct from the general response to complete nerve injury.
Collapse
Affiliation(s)
- Hyoung Woo Kim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sang Wook Shim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Anna Mae Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Dahee Roh
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hye Min Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Steven J. Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Wheedong Kim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sena Chung
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - John Prentice
- Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford, United Kingdom
| | - Mike Tacon
- Department of Physics, Denys Wilkinson Building, University of Oxford, Oxford, United Kingdom
| | - Marleen J.A. Koel-Simmelink
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam UMC, Academisch Medisch Centrum, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - David L.H. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alexander J. Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Sanchez JE, Noor S, Sun MS, Zimmerly J, Pasmay A, Sanchez JJ, Vanderwall AG, Haynes MK, Sklar LA, Escalona PR, Milligan ED. The FDA-approved compound, pramipexole and the clinical-stage investigational drug, dexpramipexole, reverse chronic allodynia from sciatic nerve damage in mice, and alter IL-1β and IL-10 expression from immune cell culture. Neurosci Lett 2023; 814:137419. [PMID: 37558176 PMCID: PMC10552878 DOI: 10.1016/j.neulet.2023.137419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
During the onset of neuropathic pain from a variety of etiologies, nociceptors become hypersensitized, releasing neurotransmitters and other factors from centrally-projecting nerve terminals within the dorsal spinal cord. Consequently, glial cells (astrocytes and microglia) in the spinal cord are activated and mediate the release of proinflammatory cytokines that act to enhance pain transmission and sensitize mechanical non-nociceptive fibers which ultimately results in light touch hypersensitivity, clinically observed as allodynia. Pramipexole, a D2/D3 preferring agonist, is FDA-approved for the treatment of Parkinson's disease and demonstrates efficacy in animal models of inflammatory pain. The clinical-stage investigational drug, R(+) enantiomer of pramipexole, dexpramipexole, is virtually devoid of D2/D3 agonist actions and is efficacious in animal models of inflammatory and neuropathic pain. The current experiments focus on the application of a mouse model of sciatic nerve neuropathy, chronic constriction injury (CCI), that leads to allodynia and is previously characterized to generate spinal glial activation with consequent release IL-1β. We hypothesized that both pramipexole and dexpramipexole reverse CCI-induced chronic neuropathy in mice, and in human monocyte cell culture studies (THP-1 cells), pramipexole prevents IL-1β production. Additionally, we hypothesized that in rat primary splenocyte culture, dexpramixole increases mRNA for the anti-inflammatory and pleiotropic cytokine, interleukin-10 (IL-10). Results show that following intravenous pramipexole or dexpramipexole, a profound decrease in allodynia was observed by 1 hr, with allodynia returning 24 hr post-injection. Pramipexole significantly blunted IL-1β protein production from stimulated human monocytes and dexpramipexole induced elevated IL-10 mRNA expression from rat splenocytes. The data support that clinically-approved compounds like pramipexole and dexpramipexole support their application as anti-inflammatory agents to mitigate chronic neuropathy, and provide a blueprint for future, multifaceted approaches for opioid-independent neuropathic pain treatment.
Collapse
Affiliation(s)
- J E Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - S Noor
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - M S Sun
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - J Zimmerly
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - A Pasmay
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - J J Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - A G Vanderwall
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - M K Haynes
- Center for Molecular Discovery (CMD) Innovation, Discovery and Training Complex (IDTC), University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - L A Sklar
- Center for Molecular Discovery (CMD) Innovation, Discovery and Training Complex (IDTC), University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - P R Escalona
- Department of Psychiatry, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; New Mexico VA Health Care System, Albuquerque NM 87108, USA
| | - E D Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
5
|
Kim HW, Wang S, Davies AJ, Oh SB. The therapeutic potential of natural killer cells in neuropathic pain. Trends Neurosci 2023:S0166-2236(23)00133-9. [PMID: 37385878 DOI: 10.1016/j.tins.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
Novel disease-modifying treatments for neuropathic pain are urgently required. The cellular immune response to nerve injury represents a promising target for therapeutic development. Recently, the role of natural killer (NK) cells in both CNS and PNS disease has been the subject of growing interest. In this opinion article, we set out the case for NK cell-based intervention as a promising avenue for development in the management of neuropathic pain. We explore the potential cellular and molecular targets of NK cells in the PNS by contrasting with their reported functional roles in CNS diseases, and we suggest strategies for using the beneficial functions of NK cells and immune-based therapeutics in the context of neuropathic pain.
Collapse
Affiliation(s)
- Hyoung Woo Kim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Shuaiwei Wang
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexander J Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Er-Rouassi H, Bakour M, Touzani S, Vilas-Boas M, Falcão S, Vidal C, Lyoussi B. Beneficial Effect of Bee Venom and Its Major Components on Facial Nerve Injury Induced in Mice. Biomolecules 2023; 13:680. [PMID: 37189427 PMCID: PMC10135545 DOI: 10.3390/biom13040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Peripheral nerve injury (PNI) is a health problem that affects many people worldwide. This study is the first to evaluate the potential effect of bee venom (BV) and its major components in a model of PNI in the mouse. For that, the BV used in this study was analyzed using UHPLC. All animals underwent a distal section-suture of facial nerve branches, and they were randomly divided into five groups. Group 1: injured facial nerve branches without any treatment. Group 2: the facial nerve branches were injured, and the normal saline was injected similarly as in the BV-treated group. Group 3: injured facial nerve branches with local injections of BV solution. Group 4: injured facial nerve branches with local injections of a mixture of PLA2 and melittin. Group 5: injured facial nerve branches with local injection of betamethasone. The treatment was performed three times a week for 4 weeks. The animals were submitted to functional analysis (observation of whisker movement and quantification of nasal deviation). The vibrissae muscle re-innervation was evaluated by retrograde labeling of facial motoneurons in all experimental groups. UHPLC data showed 76.90 ± 0.13%, 11.73 ± 0.13%, and 2.01 ± 0.01%, respectively, for melittin, phospholipase A2, and apamin in the studied BV sample. The obtained results showed that BV treatment was more potent than the mixture of PLA2 and melittin or betamethasone in behavioral recovery. The whisker movement occurred faster in BV-treated mice than in the other groups, with a complete disappearance of nasal deviation two weeks after surgery. Morphologically, a normal fluorogold labeling of the facial motoneurons was restored 4 weeks after surgery in the BV-treated group, but no such restoration was ever observed in other groups. Our findings indicate the potential of the use of BV injections to enhance appropriate functional and neuronal outcomes after PNI.
Collapse
Affiliation(s)
- Hafsa Er-Rouassi
- Centre Borelli, Université de Paris Cité, National Centre for Scientific Research UMR 9010, 75006 Paris, France
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
- The Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco
| | - Soumaya Touzani
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Soraia Falcão
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Catherine Vidal
- Centre Borelli, Université de Paris Cité, National Centre for Scientific Research UMR 9010, 75006 Paris, France
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
7
|
Macrophage Infiltration Initiates RIP3/MLKL-Dependent Necroptosis in Paclitaxel-Induced Neuropathic Pain. Mediators Inflamm 2022; 2022:1567210. [PMID: 36164389 PMCID: PMC9508459 DOI: 10.1155/2022/1567210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Paclitaxel (PTX) is a commonly used antitumor drug. Approximately 80% of all patients receiving PTX chemotherapy develop chemotherapy-induced peripheral neuropathy (CIPN), limiting the use of PTX. Moreover, CIPN responds poorly to conventional analgesics. Experimental evidence suggests that the neuroinflammatory response plays an essential role in paclitaxel-induced peripheral neuropathy (PIPN). Previous studies have confirmed that dorsal root ganglion (DRG) neuron necroptosis and accompanying inflammation are linked with PIPN; however, the potential upstream regulatory mechanisms remain unclear. Preclinical studies have also established that macrophage infiltration in the DRG is associated with PIPN. TNF-α released by activated macrophages is the primary regulatory signal of necroptosis. In this study, we established a rat model of PIPN via quartic PTX administration (accumulated dose: 8 mg/kg, i.p.). The regulatory effect of macrophage infiltration on necroptosis in PIPN was observed using a macrophage scavenging agent (clodronate disodium). The results showed that PTX increased macrophage infiltration and the levels of TNF-α and IL-1β in the DRG. PTX also upregulated the levels of necroptosis-related proteins, including receptor-interacting protein kinase (RIP3) and mixed-lineage kinase domain-like protein (MLKL) in DRG neurons and promoted MLKL phosphorylation, resulting in neuronal necrosis and hyperalgesia. In contrast, clodronate disodium effectively removed macrophages, reduced the levels of RIP3, MLKL, and pMLKL, and decreased the number of necrotic cells in the DRG of PIPN rats, alleviating the behavioral pain abnormalities. These results suggest that PTX promotes macrophage infiltration, which results in the release of TNF-α and IL-1β in the DRG and the initiation of neuronal necroptosis via the RIP3/MLKL pathway, ultimately leading to neuropathic pain.
Collapse
|
8
|
Olaseinde OF, Owoyele BV. Chondroitin and glucosamine sulphate reduced proinflammatory molecules in the DRG and improved axonal function of injured sciatic nerve of rats. Sci Rep 2022; 12:3196. [PMID: 35210446 PMCID: PMC8873476 DOI: 10.1038/s41598-022-06554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
Neuropathic pain (NP) is an abnormality resulting from lesion or damage to parts of the somatosensory nervous system. It is linked to defective quality of life and often poorly managed. Due to the limited number of approved drugs, limited efficacy and side effects associated with the approved drugs, drugs or drug combinations with great efficacy and very minimal or no side effects will be of great advantage in managing NP. This study aimed at investigating the synergistic antinociceptive effects of the combination of glucosamine sulphate (GS) (240 mg/kg) and chondroitin sulphate (CS) (900 mg/kg) in chronic constriction injury (CCI)-induced neuropathy in rats. Forty-two Wistar rats were randomly distributed into seven groups (n = 6). Sciatic nerve was ligated with four loose ligatures to induce NP. Effects of drugs were examined on stimulus and non-stimulus evoked potentials, expression of dorsal root ganglia (DRG) pain modulators and structural architecture of DRG. Oral administration of GS and CS for 21 days reduced hyperalgesia, allodynia, sciatic nerve functional aberration and DRG pain modulators. Histopathology and immunohistochemistry revealed restoration of structural integrity of DRG. Our result showed that the combination of GS and CS produced antinociceptive effects by attenuating hyperalgesia, allodynia and downregulation of NP mediators. GS and CS additionally produced synergistic analgesic effect over its individual components.
Collapse
Affiliation(s)
- Olutayo Folajimi Olaseinde
- Neuroscience and Inflammation Unit, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara, Nigeria.
| | - Bamidele Victor Owoyele
- Neuroscience and Inflammation Unit, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara, Nigeria.
| |
Collapse
|
9
|
Zhu X, Xie W, Zhang J, Strong JA, Zhang JM. Sympathectomy decreases pain behaviors and nerve regeneration by downregulating monocyte chemokine CCL2 in dorsal root ganglia in the rat tibial nerve crush model. Pain 2022; 163:e106-e120. [PMID: 33941753 PMCID: PMC8556407 DOI: 10.1097/j.pain.0000000000002321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/15/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Peripheral nerve regeneration is associated with pain in several preclinical models of neuropathic pain. Some neuropathic pain conditions and preclinical neuropathic pain behaviors are improved by sympathetic blockade. In this study, we examined the effect of a localized "microsympathectomy," ie, cutting the gray rami containing sympathetic postganglionic axons where they enter the L4 and L5 spinal nerves, which is more analogous to clinically used sympathetic blockade compared with chemical or surgical sympathectomy. We also examined manipulations of CCL2 (monocyte chemoattractant protein 1), a key player in both regeneration and pain. We used rat tibial nerve crush as a neuropathic pain model in which peripheral nerve regeneration can occur successfully. CCL2 in the sensory ganglia was increased by tibial nerve crush and reduced by microsympathectomy. Microsympathectomy and localized siRNA-mediated knockdown of CCL2 in the lumbar dorsal root ganglion had very similar effects: partial improvement of mechanical hypersensitivity and guarding behavior, reduction of regeneration markers growth-associated protein 43 and activating transcription factor 3, and reduction of macrophage density in the sensory ganglia and regenerating nerve. Microsympathectomy reduced functional regeneration as measured by myelinated action potential propagation through the injury site and denervation-induced atrophy of the tibial-innervated gastrocnemius muscle at day 10. Microsympathectomy plus CCL2 knockdown had behavioral effects similar to microsympathectomy alone. The results show that local sympathetic effects on neuropathic pain may be mediated in a large part by the effects on expression of CCL2, which in turn regulates the regeneration process.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jingdong Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Judith A. Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
10
|
Lu ZY, Fan J, Yu LH, Ma B, Cheng LM. The Up-regulation of TNF-α Maintains Trigeminal Neuralgia by Modulating MAPKs Phosphorylation and BKCa Channels in Trigeminal Nucleus Caudalis. Front Cell Neurosci 2021; 15:764141. [PMID: 34899191 PMCID: PMC8657151 DOI: 10.3389/fncel.2021.764141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/18/2021] [Indexed: 12/30/2022] Open
Abstract
Trigeminal neuralgia (TN) is a severe chronic neuropathic pain. Despite numerous available medical interventions, the therapeutic effects are not ideal. To control the pain attacks, the need for more contemporary drugs continues to be a real challenge. Our previous study reported that Ca2+-activated K+ channels (BKCa) channels modulated by mitogen-activated protein kinases (MAPKs) in the trigeminal ganglia (TG) neurons play crucial roles in regulating TN, and some research studies demonstrated that inflammatory cytokine tumor necrosis factor alpha (TNF-α) could promote neuropathic pain. Meanwhile, the trigeminal nucleus caudalis (TNC), the first central site of the trigeminal nociceptive pathway, is responsible for processing sensory and pain signals from the peripheral orofacial area. Thus, this study is aimed to further investigate whether TNF-α and MAPKs phosphorylation in the TNC could mediate the pathogenesis of TN by modulating BKCa channels. The results showed that TNF-α of the TNC region is upregulated significantly in the chronic constriction injury of infraorbital nerve (ION-CCI) rats model, which displayed persistent facial mechanical allodynia. The normal rats with target injection of exogenous TNF-α to the fourth brain ventricle behaved just like the ION-CCI model rats, the orofacial mechanical pain threshold decreased clearly. Meanwhile, the exogenous TNF-α increased the action potential frequency and reduced the BKCa currents of TNC neurons significantly, which could be reversed by U0126 and SB203580, the inhibitors of MAPK. In addition, U0126, SB203580, and another MAPK inhibitor SP600125 could relieve the facial mechanical allodynia by being injected into the fourth brain ventricle of ION-CCI model rats, respectively. Taken together, our work suggests that the upregulation of TNF-α in the TNC region would cause the increase of MAPKs phosphorylation and then the negative regulation of BKCa channels, resulting in the TN.
Collapse
Affiliation(s)
- Zhan-Ying Lu
- Experimental Training Center of Basic Medical Science, Naval Medical University, Shanghai, China
| | - Juan Fan
- Experimental Training Center of Basic Medical Science, Naval Medical University, Shanghai, China
| | - Li-Hua Yu
- Experimental Training Center of Basic Medical Science, Naval Medical University, Shanghai, China
| | - Bei Ma
- Experimental Training Center of Basic Medical Science, Naval Medical University, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Division of Spine Surgery, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Li-Ming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Division of Spine Surgery, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Alipour M, Fadakar S, Aghazadeh M, Salehi R, Samadi Kafil H, Roshangar L, Mousavi E, Aghazadeh Z. Synthesis, characterization, and evaluation of curcumin-loaded endodontic reparative material. J Biochem Mol Toxicol 2021; 35:e22854. [PMID: 34331815 DOI: 10.1002/jbt.22854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/07/2021] [Accepted: 07/14/2021] [Indexed: 12/23/2022]
Abstract
Curcumin (CUR) is an ancient therapeutic agent with remarkable antimicrobial and anti-inflammatory properties. The purpose of the current study was to synthesize and evaluate a curcumin-based reparative endodontic material to reduce infection and inflammation besides the induction of mineralization during the healing of the dentin-pulp complex. Poly-ɛ-caprolactone (PCL)/gelatin (Gel)/CUR scaffold was synthesized and assessed by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermo-gravimetric analysis (TGA). Agar diffusion test was performed against E. coli, A. baumannii, P. aeruginosa, S. aureus, E. faecalis, and S. mutans. Moreover, proliferative, antioxidative, anti-inflammatory, and calcification properties of these scaffolds on human dental pulp stem cells (hDPSCs) were evaluated. The results showed that PCL/Gel/CUR scaffold had antibacterial effects. Also, these CUR-based scaffolds had significant inhibitory effects on the expression of tumor necrosis factor α and DCF from inflamed hDPSCs (p < 0.05). Moreover, the induction of mineralization in hDPSCs significantly increased after seeding on CUR-based scaffolds (p < 0.05). Based on these findings, the investigated CUR-loaded material was fabricated successfully and provided an appropriate structure for the attachment and proliferation of hDPSCs. It was found that these scaffolds had antimicrobial, antioxidant, and anti-inflammatory characteristics and could induce mineralization in hDPSCs, which is essential for healing and repairing the injured dentin-pulp complex.
Collapse
Affiliation(s)
- Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadaf Fadakar
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center and Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ensieh Mousavi
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center and Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Wang C, Hao H, He K, An Y, Pu Z, Gamper N, Zhang H, Du X. Neuropathic Injury-Induced Plasticity of GABAergic System in Peripheral Sensory Ganglia. Front Pharmacol 2021; 12:702218. [PMID: 34385921 PMCID: PMC8354334 DOI: 10.3389/fphar.2021.702218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022] Open
Abstract
GABA is a major inhibitory neurotransmitter in the mammalian central nervous system (CNS). Inhibitory GABAA channel circuits in the dorsal spinal cord are the gatekeepers of the nociceptive input from the periphery to the CNS. Weakening of these spinal inhibitory mechanisms is a hallmark of chronic pain. Yet, recent studies have suggested the existence of an earlier GABAergic “gate” within the peripheral sensory ganglia. In this study, we performed systematic investigation of plastic changes of the GABA-related proteins in the dorsal root ganglion (DRG) in the process of neuropathic pain development. We found that chronic constriction injury (CCI) induced general downregulation of most GABAA channel subunits and the GABA-producing enzyme, glutamate decarboxylase, consistent with the weakening of the GABAergic inhibition at the periphery. Strikingly, the α5 GABAA subunit was consistently upregulated. Knock-down of the α5 subunit in vivo moderately alleviated neuropathic hyperalgesia. Our findings suggest that while the development of neuropathic pain is generally accompanied by weakening of the peripheral GABAergic system, the α5 GABAA subunit may have a unique pro-algesic role and, hence, might represent a new therapeutic target.
Collapse
Affiliation(s)
- Caixue Wang
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Han Hao
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Kaitong He
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yating An
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Zeyao Pu
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Nikita Gamper
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Hailin Zhang
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Xiaona Du
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
13
|
Hu Z, Deng N, Liu K, Zhou N, Sun Y, Zeng W. CNTF-STAT3-IL-6 Axis Mediates Neuroinflammatory Cascade across Schwann Cell-Neuron-Microglia. Cell Rep 2021; 31:107657. [PMID: 32433966 DOI: 10.1016/j.celrep.2020.107657] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/30/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is a crucial mechanism in many neurological disorders. Injury to the peripheral sensory nerves leads to a neuroinflammatory response in the somatosensory pathway, from dorsal root ganglia (DRG) to the spinal cord, contributing to neuropathic pain. How the immune reaction is initiated peripherally and propagated to the spinal cord remains less clear. Here, we find that ciliary neurotrophic factor (CNTF), highly expressed in Schwann cells, mediates neuroinflammatory response through the activating signal transducer and activator of transcription 3 (STAT3) and inducing interleukin 6 (IL-6) in sensory neurons. Cntf deficiency attenuates neuroinflammation in DRG and the spinal cord with alleviated pain post-injury. Recombinant CNTF applied to the sensory nerves recapitulates neuroinflammation in the DRG and spinal cord, with consequent pain development. We delineate the CNTF-STAT3-IL-6 axis in mediating the onset and progression of the inflammatory cascade from the periphery to the spinal cord with therapeutic implications for neuropathic pain.
Collapse
Affiliation(s)
- Zhongsheng Hu
- Institute for Immunology, School of Medicine, and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Nan Deng
- Institute for Immunology, School of Medicine, and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Kaili Liu
- Institute for Immunology, School of Medicine, and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Nan Zhou
- Institute for Immunology, School of Medicine, and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Yue Sun
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenwen Zeng
- Institute for Immunology, School of Medicine, and Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
14
|
Gould SA, White M, Wilbrey AL, Pór E, Coleman MP, Adalbert R. Protection against oxaliplatin-induced mechanical and thermal hypersensitivity in Sarm1 -/- mice. Exp Neurol 2021; 338:113607. [PMID: 33460644 DOI: 10.1016/j.expneurol.2021.113607] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/22/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting side effect of cancer treatment, often associated with degeneration of sensory axons or their terminal regions. Presence of the slow Wallerian degeneration protein (WLDS), or genetic deletion of sterile alpha and TIR motif containing protein 1 (SARM1), which strongly protect axons from degeneration after injury or axonal transport block, alleviate pain in several CIPN models. However, oxaliplatin can cause an acute pain response, suggesting a different mechanism of pain generation. Here, we tested whether the presence of WLDS or absence of SARM1 protects against acute oxaliplatin-induced pain in mice after a single oxaliplatin injection. In BL/6 and WldS mice, oxaliplatin induced significant mechanical and cold hypersensitivities which were absent in Sarm1-/- mice. Despite the presence of hypersensitivity there was no significant loss of intraepidermal nerve fibers (IENFs) in the footpads of any mice after oxaliplatin treatment, suggesting that early stages of pain hypersensitivity could be independent of axon degeneration. To identify other changes that could underlie the pain response, RNA sequencing was carried out in DRGs from treated and control mice of each genotype. Sarm1-/- mice had fewer gene expression changes than either BL/6 or WldS mice. This is consistent with the pain measurements in demonstrating that Sarm1-/- DRGs remain relatively unchanged after oxaliplatin treatment, unlike those in BL/6 and WldS mice. Changes in levels of four transcripts - Alas2, Hba-a1, Hba-a2, and Tfrc - correlated with oxaliplatin-induced pain, or absence thereof, across the three genotypes. Our findings suggest that targeting SARM1 could be a viable therapeutic approach to prevent oxaliplatin-induced acute neuropathic pain.
Collapse
Affiliation(s)
- Stacey Anne Gould
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK; The Babraham Institute, Cambridge, UK
| | - Matthew White
- The Babraham Institute, Cambridge, UK; Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE5 9RT, UK
| | - Anna L Wilbrey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Erzsébet Pór
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Szeged H-6724, Hungary
| | - Michael Philip Coleman
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK; The Babraham Institute, Cambridge, UK
| | - Robert Adalbert
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK; The Babraham Institute, Cambridge, UK; Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Szeged H-6724, Hungary.
| |
Collapse
|
15
|
Simon LS, Taylor PC, Choy EH, Sebba A, Quebe A, Knopp KL, Porreca F. The Jak/STAT pathway: A focus on pain in rheumatoid arthritis. Semin Arthritis Rheum 2020; 51:278-284. [PMID: 33412435 DOI: 10.1016/j.semarthrit.2020.10.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Pain is a manifestation of rheumatoid arthritis (RA) that is mediated by inflammatory and non-inflammatory mechanisms and negatively affects quality of life. Recent findings from a Phase 3 clinical trial showed that patients with RA who were treated with a Janus kinase 1 (Jak1) and Janus kinase 2 (Jak2) inhibitor achieved significantly greater improvements in pain than those treated with a tumor necrosis factor blocker; both treatments resulted in similar changes in standard clinical measures and markers of inflammation. These findings suggest that Jak1 and Jak2 inhibition may relieve pain in RA caused by inflammatory and non-inflammatory mechanisms and are consistent with the overarching involvement of the Jak-signal transducer and activator of transcription (Jak/STAT) pathway in mediating the action, expression, and regulation of a multitude of pro- and anti-inflammatory cytokines. In this review, we provide an overview of pain in RA, the underlying importance of cytokines regulated directly or indirectly by the Jak/STAT pathway, and therapeutic targeting of the Jak/STAT pathway in RA. As highlighted herein, multiple cytokines directly or indirectly regulated by the Jak/STAT pathway play important roles in mediating various mechanisms underlying pain in RA. Having a better understanding of these mechanisms may help clinicians make treatment decisions that optimize the control of inflammation and pain.
Collapse
Affiliation(s)
| | - Peter C Taylor
- Botnar Research Centre, University of Oxford, Oxford, UK
| | - Ernest H Choy
- CREATE Centre, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85718, USA.
| |
Collapse
|
16
|
Differential modulation of the anterior cingulate and insular cortices on anxiogenic-like responses induced by empathy for pain. Neuropharmacology 2020; 192:108413. [PMID: 33249119 DOI: 10.1016/j.neuropharm.2020.108413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022]
Abstract
Mice cohabiting with a conspecific in chronic pain display anxiogenesis in the elevated plus-maze (EPM). Given that the anterior cingulate (ACC) and insular (InC) cortices play a role in the modulation of anxiety, pain, and emotional contagion, we investigated (a) the FosB activation in both brain areas and (b) the effects of intra-ACC or -InC injection of cobalt chloride (CoCl2, a synaptic blocker), on the anxiety of mice cohabiting with a cagemate suffering pain. Twenty-one days after birth, male Swiss mice were housed in pairs for 14 days to establish familiarity. On the 14th day, mice were divided into two groups: cagemate sciatic nerve constriction (CNC; i.e., one animal of each pair was subjected to sciatic nerve constriction), and cagemate sham (CS; i.e., a similar procedure but without suffering nerve constriction). After that, both groups were housed again with the same pairs for the other 14 days. On the 28th day, mice had their brains removed for the immunoassays analyses (Exp. 1). For experiments 2 and 3, on the 23rd day, the cagemates received guide cannula implantation bilaterally in the ACC or InC and, on the 28th day, they received local injections of saline or CoCl2, and then were exposed to the EPM. Results showed that cohabitation with a conspecific with chronic pain decreases and increases neuronal activation (FosB) within the ACC and InC, respectively. Intra-ACC or InC injection of CoCl2 reversed the anxiogenic effect in those animals that cohabited with a conspecific in chronic pain. ACC and InC seem to modulate anxiety induced by emotional contagion in animals cohabitating with a conspecific suffering pain.
Collapse
|
17
|
Deletion of Acid-Sensing Ion Channel 3 Relieves the Late Phase of Neuropathic Pain by Preventing Neuron Degeneration and Promoting Neuron Repair. Cells 2020; 9:cells9112355. [PMID: 33114619 PMCID: PMC7692130 DOI: 10.3390/cells9112355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
Neuropathic pain is one type of chronic pain that occurs as a result of a lesion or disease to the somatosensory nervous system. Chronic excessive inflammatory response after nerve injury may contribute to the maintenance of persistent pain. Although the role of inflammatory mediators and cytokines in mediating allodynia and hyperalgesia has been extensively studied, the detailed mechanisms of persistent pain or whether the interactions between neurons, glia and immune cells are essential for maintenance of the chronic state have not been completely elucidated. ASIC3, a voltage-insensitive, proton-gated cation channel, is the most essential pH sensor for pain perception. ASIC3 gene expression is increased in dorsal root ganglion neurons after inflammation and nerve injury and ASIC3 is involved in macrophage maturation. ASIC currents are increased after nerve injury. However, whether prolonged hyperalgesia induced by the nerve injury requires ASIC3 and whether ASIC3 regulates neurons, immune cells or glial cells to modulate neuropathic pain remains unknown. We established a model of chronic constriction injury of the sciatic nerve (CCI) in mice. CCI mice showed long-lasting mechanical allodynia and thermal hyperalgesia. CCI also caused long-term inflammation at the sciatic nerve and primary sensory neuron degeneration as well as increased satellite glial expression and ATF3 expression. ASIC3 deficiency shortened mechanical allodynia and attenuated thermal hyperalgesia. ASIC3 gene deletion shifted ATF3 expression from large to small neurons and altered the M1/M2 macrophage ratio, thereby preventing small neuron degeneration and relieved pain.
Collapse
|
18
|
Dewberry LS, Dru A, Gravenstine M, Nguyen B, Anderson J, Vaziri S, Hoh D, Allen K, Otto KJ. Partial high frequency nerve block decreases neuropathic signaling following chronic sciatic nerve constriction injury. J Neural Eng 2020; 18. [PMID: 33027782 DOI: 10.1088/1741-2552/abbf03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/07/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVE High frequency (HF) block can quickly and reversibly stop nerve conduction. We hypothesized HF block at the sciatic nerve would minimize nociception by preventing neuropathic signals from reaching the central nervous system. APPROACH Lewis rats were implanted with a constriction cuff and a distal cuff electrode around their right sciatic nerve. Tactile sensitivity was evaluated using the 50% paw withdrawal threshold determined using Chaplan's method for von Frey monofilaments. Over the course of 49 days, the 50% paw withdrawal threshold was measured 1) before HF block, 2) during HF block (50 kHz, 3 Vpp), and 3) after HF block. Gait was observed and scored before and during block. At end point, HF block efficacy was directly evaluated using additional cuff electrodes to elicit and record compound neural action potentials across the HF blocking cuff. MAIN RESULTS At days 7 and 14 days post-operation, tactile sensitivity was significantly lower during HF block compared to before and after block (p < 0.005). Additionally, an increase in gait disability was not visually observed during HF block. SIGNIFICANCE HF block can reduce tactile sensitivity in a limb with a neuropthic injury in a rapidly reversible fashion.
Collapse
Affiliation(s)
- Lauren Savannah Dewberry
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building JG56, Gainesville, FL 32611-6131, Gainesville, Florida, 32611-7011, UNITED STATES
| | - Alexander Dru
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, UNITED STATES
| | - Maxwell Gravenstine
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, UNITED STATES
| | - Brian Nguyen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, UNITED STATES
| | - James Anderson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, UNITED STATES
| | - Sasha Vaziri
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, UNITED STATES
| | - Daniel Hoh
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, UNITED STATES
| | - Kyle Allen
- Department of Biomedical Engineering, University of Florida, P.O. Box 116131, USA, Gainesville, Florida, 32611-6131, UNITED STATES
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, 32611-7011, UNITED STATES
| |
Collapse
|
19
|
Kumar B, Singh SK, Prakash T, Bhatia A, Gulati M, Garg V, Pandey NK, Singh S, Melkani I. Pharmacokinetic and pharmacodynamic evaluation of Solid self-nanoemulsifying delivery system (SSNEDDS) loaded with curcumin and duloxetine in attenuation of neuropathic pain in rats. Neurol Sci 2020; 42:1785-1797. [PMID: 32885394 DOI: 10.1007/s10072-020-04628-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
The present investigation is focused on improving oral bioavailability of poorly soluble and lipophilic drugs, curcumin (CRM) and duloxetine (DXH), through the solid self-nanoemulsifying drug delivery system (S-SNEDDS) and identifying their potential against attenuation of NP in chronic constriction injury (CCI)-induced rats through the solid self-nanoemulsifying drug delivery system (S-SNEDDS). The optimized batch of S-SNEDDS reported was containing CRM and DXH (30 mg each), castor oil (20% w/w), tween-80 (40% w/w), transcutol-P (40% w/w), and syloid 244 FP (1 g). The high dose of each of naïve CRM (NCH), naïve DXH (NDH), physical mixture of DXH and CRM (C-NCM-DXH), S-SNEDDS-CRM (SCH), S-SNEDDS-DXH (SDH), and S-SNEDDS-CRM-DXH (C-SCH-SDH) was subjected for MTT assay. The developed formulations were subjected to pharmacokinetic studies and results showed about 8 to 11.06 and 2-fold improvement in oral bioavailability of CRM and DXH through S-SNEDDS. Furthermore, CCI-induced male Wistar rats were treated with SSNEDDS containing CRM and DXH, S-SNEDDS containing individual drug, individual naïve forms, and their combination from the day of surgery for 14 days and evaluated for behavioral at pre-determined time intervals. On the terminal day, animals were sacrificed to assess tissue myeloperoxidase, superoxide anion, protein, tumor necrosis factor-α, total calcium levels, and histopathological changes. Pronounced effect was observed in rats treated with S-SNEDDS containing both drugs with respect to rats receiving any of other treatments owing to enhanced oral bioavailability through S-SNEDDS. Therefore, it can be concluded that S-SNEDDS of both drugs and their coadministration can accelerate the prevention of NP.
Collapse
Affiliation(s)
- Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - T Prakash
- Department of Physiology and Pharmacology, Acharya and B.M. Reddy College of Pharmacy, Soladeuanahalli Hesargatta Road, Chikkabanawara Post, Bangalore, Karnataka, 560 090, India.
| | - Amit Bhatia
- Department of Pharm. Sci. & Tech, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Varun Garg
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Saurabh Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Indu Melkani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
20
|
Chen SH, Huang TC, Wang JY, Wu CC, Hsueh YY. Controllable forces for reproducible chronic constriction injury mimicking compressive neuropathy in rat sciatic nerve. J Neurosci Methods 2020; 335:108615. [PMID: 32006536 DOI: 10.1016/j.jneumeth.2020.108615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Compressive neuropathy is a recurring and challenging disease for patients, regardless of medical or surgical treatment. Neuropathological severity is associated with the force of mechanical compression. Available animal models do not address mechanical issues with reproducible outcomes. We used a chronic constriction injury model to analyze tension-controlled compressive neuropathy and achieve reproducible functional outcomes. NEW METHOD We refined a modified animal model for chronic constriction nerve injury under controllable compressive tensile strength to target the unilateral sciatic nerve of adult rats. Sensory outcomes were evaluated using the Von Frey test. Muscle atrophy and nerve degeneration were analyzed, including markers of neural degeneration, neuroinflammation, and neuropathic pain in the affected nerve. RESULTS The compressive force significantly affected the neuropathological severity of sensory dysfunction and muscle atrophy. Greater mechanical forces (i.e., tight-knot) contributed to muscle atrophy and hypoesthesia. Low forces (i.e., loose-knot) induced mechanical allodynia with better residual muscle weight. Well-controlled loose knotting can avoid myelin degradation while lessening neuroinflammation and macrophage infiltration. Neuropathic pain was enhanced with increased nociceptive pain markers expression within the affected nerve. Comparison with Existing Method(s): Our chronic constriction injury model, unlike previous models, controls the ligation forces applied for different levels of injury. CONCLUSION The functional influences of different compressive forces recapitulate the diverse clinical symptoms involved in clinical compressive neuropathy. This controllable and reproducible model of compressive neuropathy revealed the underlying molecular mechanisms of neural degeneration and inflammation. It will lead to the future development of translational therapeutics for neuropathic pain and nerve regeneration.
Collapse
Affiliation(s)
- Szu-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chieh Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jheng-Yang Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yuan-Yu Hsueh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
21
|
Abstract
Injury typically results in the development of neuropathic pain, but the pain normally decreases and disappears in paralleled with wound healing. The pain results from cells resident at, and recruited to, the injury site releasing pro-inflammatory cytokines and other mediators leading to the development of pro-inflammatory environment and causing nociceptive neurons to develop chronic ectopic electrical activity, which underlies neuropathic pain. The pain decreases as some of the cells that induce pro-inflammation, changing their phenotype leading to the blocking the release of pro-inflammatory mediators while releasing anti-inflammatory mediators, and blocking nociceptive neuron chronic spontaneous electrical activity. Often, despite apparent wound healing, the neuropathic pain becomes chronic. This raises the question of how chronic pain can be eliminated. While many of the cells and mediators contributing to the development and maintenance of neuropathic pain are known, a better understanding is required of how the injury site environment can be controlled to permanently eliminate the pro-inflammatory environment and silence the chronically electrically active nociceptive neurons. This paper examines how methods that can promote the transition of the pro-inflammatory injury site to an anti-inflammatory state, by changing the composition of local cell types, modifying the activity of pro- and anti-inflammatory receptors, inducing the release of anti-inflammatory mediators, and silencing the chronically electrically active nociceptive neurons. It also examines the hypothesis that factors released from platelet-rich plasma applied to chronic pain sites can permanently eliminate chronic inflammation and its associated chronic pain.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, 201 Blvd. del Valle, San Juan, PR, 00901, USA.
| |
Collapse
|
22
|
Hu Z, Deng N, Liu K, Zeng W. DLK mediates the neuronal intrinsic immune response and regulates glial reaction and neuropathic pain. Exp Neurol 2019; 322:113056. [DOI: 10.1016/j.expneurol.2019.113056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022]
|
23
|
Karl F, Colaço MBN, Schulte A, Sommer C, Üçeyler N. Affective and cognitive behavior is not altered by chronic constriction injury in B7-H1 deficient and wildtype mice. BMC Neurosci 2019; 20:16. [PMID: 30975083 PMCID: PMC6458735 DOI: 10.1186/s12868-019-0498-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/04/2019] [Indexed: 01/14/2023] Open
Abstract
Background Chronic neuropathic pain is often associated with anxiety, depressive symptoms, and cognitive impairment with relevant impact on patients` health related quality of life. To investigate the influence of a pro-inflammatory phenotype on affective and cognitive behavior under neuropathic pain conditions, we assessed mice deficient of the B7 homolog 1 (B7-H1), a major inhibitor of inflammatory response. Results Adult B7-H1 ko mice and wildtype littermates (WT) received a chronic constriction injury (CCI) of the sciatic nerve, and we assessed mechanical and thermal sensitivity at selected time points. Both genotypes developed mechanical (p < 0.001) and heat hypersensitivity (p < 0.01) 7, 14, and 20 days after surgery. We performed three tests for anxiety-like behavior: the light–dark box, the elevated plus maze, and the open field. As supported by the results of these tests for anxiety-like behavior, no relevant differences were found between genotypes after CCI. Depression-like behavior was assessed using the forced swim test. Also, CCI had no effect on depression like behavior. For cognitive behavior, we applied the Morris water maze for spatial learning and memory and the novel object recognition test for object recognition, long-, and short-term memory. Learning and memory did not differ in B7-H1 ko and WT mice after CCI. Conclusions Our study reveals that the impact of B7-H1 on affective-, depression-like- and learning-behavior, and memory performance might play a subordinate role in mice after nerve lesion.
Collapse
Affiliation(s)
- Franziska Karl
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.
| | - Maria B Nandini Colaço
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Annemarie Schulte
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| |
Collapse
|
24
|
Biomarkers mapping of neuropathic pain in a nerve chronic constriction injury mice model. Biochimie 2019; 158:172-179. [PMID: 30639439 DOI: 10.1016/j.biochi.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
Neuropathic pain is caused by a lesion or disease of the somatosensory nervous system and has a considerable impact on the quality of life. Neuropathic pain has a dynamic and complex aetiology and gives heterogeneous symptoms across patients; therefore, it represents an important clinical challenge. Current pharmacological treatment includes tricyclic antidepressant serotonin-noradrenaline uptake inhibitors such as duloxetine, pregabalin, and gabapentin. However, these drugs do not show efficacy in all patients suffering from neuropathic pain. In this work we used a nerve chronic constriction injury mice model based on the ligation of sciatic nerve to analyse, by two-dimensional electrophoresis and mass spectrometry, blood proteins significantly altered by neuropathic pain one-week after surgery. A sham-ligated group of mice acting as control and a group of ligated mice treated with gabapentin were also analysed. The results indicated that four haptoglobin isoforms were significantly more expressed, while transthyretin and alpha-2-macroglobulin expression decreased in the serum of the murine neuropathic pain model with respect to the control mice. Interestingly, the treatment with the gabapentin reversed these conditions. The outcomes of this study can provide a further understanding of the pathophysiological meaning of the biomarkers involved in neuropathic pain.
Collapse
|
25
|
Li Y, Zhang L, Wu Y, Zheng Q, Chen M, Qian Z, Wei C, Han J, Liu Z, Ren W, Liu Y. Cannabinoids-induced peripheral analgesia depends on activation of BK channels. Brain Res 2019; 1711:23-28. [PMID: 30615887 DOI: 10.1016/j.brainres.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/11/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
The endogenous cannabinoid system is involved in the physiological inhibitory control of pain and is of particular interest for the development of therapeutic approaches for pain management. Selective activation of the peripheral CB1 cannabinoid receptor has been shown to suppress the heightened firing of primary afferents, which is the peripheral mechanism underlying neuropathic pain after nerve injury. However, the mechanism underlying this effect of CB1 receptor remains unclear. The large-conductance calcium-activated potassium (BK) channels have been reported to participate in anticonvulsant and vasorelaxant effects of cannabinoids. We asked whether BK channels participate in cannabinoids-induced analgesia and firing-suppressing effects in primary afferents after nerve injury. Here, using mice with chronic constriction injury (CCI)-induced neuropathic pain, antinociception action and firing-suppressing effect of HU210 were measured before and after BK channel blocker application. We found that local peripheral application of HU210 alleviated CCI-induced pain behavior and suppressed the heightened firing of injured fibers. Co-administration of IBTX with HU210 significantly reversed the analgesia and the firing-suppressing effect of HU210. This result indicated that the peripheral analgesic effects of cannabinoids depends on activation of BK channels.
Collapse
Affiliation(s)
- Yongfeng Li
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Leili Zhang
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Yuwei Wu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Qiaohua Zheng
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Mengjiao Chen
- School of Physics & Information Technology, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an 710119, China
| | - Zhaoqiang Qian
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Chunling Wei
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Jing Han
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Zhiqiang Liu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Wei Ren
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China
| | - Yihui Liu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, China.
| |
Collapse
|
26
|
Reinhold AK, Schwabe J, Lux TJ, Salvador E, Rittner HL. Quantitative and Microstructural Changes of the Blood-Nerve Barrier in Peripheral Neuropathy. Front Neurosci 2018; 12:936. [PMID: 30618565 PMCID: PMC6305433 DOI: 10.3389/fnins.2018.00936] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
Abstract
Peripheral neuropathy is accompanied by changes in the neuronal environment. The blood-nerve barrier (BNB) is crucial in protecting the neural homeostasis: Tight junctions (TJ) seal paracellular spaces and thus prevent external stimuli from entering. In different models of neuropathic pain, the BNB is impaired, thus contributing to local damage, immune cell invasion and, ultimately, the development of neuropathy with its symptoms. In this study, we examined changes in expression and microstructural localization of two key tight junction proteins (TJP), claudin-1 and the cytoplasmic anchoring ZO-1, in the sciatic nerve of mice subjected to chronic constriction injury (CCI). Via qPCR and analysis of fluorescence immunohistochemistry, a marked downregulation of mRNA as well as decreased fluorescence intensity were observed in the nerve for both proteins. Moreover, a distinct zig-zag structure for both proteins located at cell-cell contacts, indicative of the localization of TJs, was observed in the perineurial compartment of sham-operated animals. This microstructural location in cell-cell-contacts was lost in neuropathy as semiquantified via computational analysis, based on a novel algorithm. In summary, we provide evidence that peripheral neuropathy is not only associated with decrease in relevant TJPs but also exhibits alterations in TJP arrangement and loss in barrier tightness, presumably due to internalization. Specifically, semiquantification of TJP in cell-cell-contacts of microcompartments could be used in the future for routine clinical samples of patients with neuropathy.
Collapse
Affiliation(s)
- Ann Kristin Reinhold
- Department of Anaesthesiology, University Hospitals Würzburg, Wüerzburg, Germany
| | - Joachim Schwabe
- Department of Anaesthesiology, University Hospitals Würzburg, Wüerzburg, Germany
| | - Thomas J Lux
- Department of Anaesthesiology, University Hospitals Würzburg, Wüerzburg, Germany
| | - Ellaine Salvador
- Department of Anaesthesiology, University Hospitals Würzburg, Wüerzburg, Germany
| | - Heike L Rittner
- Department of Anaesthesiology, University Hospitals Würzburg, Wüerzburg, Germany
| |
Collapse
|
27
|
Hofmann L, Hose D, Grießhammer A, Blum R, Döring F, Dib-Hajj S, Waxman S, Sommer C, Wischmeyer E, Üçeyler N. Characterization of small fiber pathology in a mouse model of Fabry disease. eLife 2018; 7:39300. [PMID: 30328411 PMCID: PMC6255391 DOI: 10.7554/elife.39300] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Fabry disease (FD) is a life-threatening X-linked lysosomal storage disorder caused by α-galactosidase A (α-GAL) deficiency. Small fiber pathology and pain are major FD symptoms of unknown pathophysiology. α-GAL deficient mice (GLA KO) age-dependently accumulate globotriaosylceramide (Gb3) in dorsal root ganglion (DRG) neurons paralleled by endoplasmic stress and apoptosis as contributors to skin denervation. Old GLA KO mice show increased TRPV1 protein in DRG neurons and heat hypersensitivity upon i.pl. capsaicin. In turn, GLA KO mice are protected from heat and mechanical hypersensitivity in neuropathic and inflammatory pain models based on reduced neuronal Ih and Nav1.7 currents. We show that in vitro α-GAL silencing increases intracellular Gb3 accumulation paralleled by loss of Nav1.7 currents, which is reversed by incubation with agalsidase-α and lucerastat. We provide first evidence of a direct Gb3 effect on neuronal integrity and ion channel function as potential mechanism underlying pain and small fiber pathology in FD. Fabry disease is a life-threatening disorder that runs in families and affects many parts of the body. Symptoms begin in early childhood, often with episodes of burning pain in the hands and feet. As patients with Fabry disease grow older, sensory nerve fibers in their skin start to break down. As a result, affected individuals may often struggle to detect heat or cold against their skin. Mutations in a gene called alpha-galactosidase A cause Fabry disease. These mutations prevent the alpha-galactosidase A (alpha-GAL) enzyme from working properly. This enzyme breaks down fatty substances in the cells, in particular a molecule named globotriaosylceramide (Gb3). In patients with Fabry disease, Gb3 accumulates inside cells and is thought to cause pain, reduced temperature sensitivity, and loss of nerve fibers in the skin. But how it does this is still unclear. To find out more, Hofmann et al. studied mutant mice with a disrupted alpha-GAL gene, which consequently lack enzyme activity. Like patients, the mice accumulate Gb3 inside their sensory nerve cells as they age. This build-up of Gb3 damages the cells and reduces the function of ion channels (passages for charged ions to enter and leave a cell) in their membranes. This may contribute to the loss of nerve fibers and the reduced cold-warm sensitivity in Fabry patients. However, one particular ion channel is more abundant in elderly mutant mice than in normal animals. This channel, called TRPV1, responds to high temperatures and also to capsaicin, the chemical that makes chilli peppers hot. Hofmann et al. propose that the accumulation Gb3 may be linked to the excessive activation of TRPV1 in the sensory nerve cells of patients with Fabry disease. This may in turn contribute to the heat-induced pain. By providing insights into the mechanisms underlying some of the symptoms of Fabry disease, these findings will assist researchers to develop new treatments. They will also be useful for clinicians who manage patients with the disorder. Further studies should investigate the exact cellular mechanisms linking Gb3 accumulation with changes in cellular activity.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Dorothea Hose
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Anne Grießhammer
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Frank Döring
- Molecular Electrophysiology, Institute of Physiology and Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Sulayman Dib-Hajj
- Center for Neuroscience and Regeneration Research, Yale Medical School and Veterans Affairs Hospital, West Haven, United States
| | - Stephen Waxman
- Center for Neuroscience and Regeneration Research, Yale Medical School and Veterans Affairs Hospital, West Haven, United States
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Erhard Wischmeyer
- Molecular Electrophysiology, Institute of Physiology and Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Yang M, Xu W, Wang Y, Jiang X, Li Y, Yang Y, Yuan H. CD11b-activated Src signal attenuates neuroinflammatory pain by orchestrating inflammatory and anti-inflammatory cytokines in microglia. Mol Pain 2018; 14:1744806918808150. [PMID: 30280656 PMCID: PMC6311569 DOI: 10.1177/1744806918808150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neuroinflammation plays an important role in the induction and maintenance of chronic pain. Orchestra of pattern-recognition receptor-induced pro-inflammatory and anti-inflammatory cytokines is critical for inflammation homeostasis. CD11b on macrophages could inhibit toll-like receptor (TLR) activation-induced inflammatory responses. However, the function of CD11b on microglia remains unknown. In the current study, we demonstrated that CD11b-deficient microglia cells produced more inflammatory cytokines, such as interleukin-6 and tumor necrosis factor alpha, while less anti-inflammatory cytokines. Signal transduction assay confirmed that nuclear factor-κB activation was increased in CD11b-deficient microglia cells, which resulted from decreased activation of Src. Inhibition of Src by PP1 increased inflammation in wild-type microglia cells significantly, but not in CD11b-deficient microglia cells. In vivo, CD11b-deficient mice were more susceptible to chronic constrictive injury-induced allodynia and hyperalgesia with significantly more inflammatory cytokines expression. All these results indicated that the regulatory function of CD11b-Src signal pathway on both inflammatory and anti-inflammatory cytokines in microglia cells is a potential target in neuropathic pain treatment.
Collapse
Affiliation(s)
- Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Wenyun Xu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yiru Wang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yingke Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yajuan Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Lindborg JA, Niemi JP, Howarth MA, Liu KW, Moore CZ, Mahajan D, Zigmond RE. Molecular and cellular identification of the immune response in peripheral ganglia following nerve injury. J Neuroinflammation 2018; 15:192. [PMID: 29945607 PMCID: PMC6019520 DOI: 10.1186/s12974-018-1222-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Neuroinflammation accompanies neural trauma and most neurological diseases. Axotomy in the peripheral nervous system (PNS) leads to dramatic changes in the injured neuron: the cell body expresses a distinct set of genes known as regeneration-associated genes, the distal axonal segment degenerates and its debris is cleared, and the axons in the proximal segment form growth cones and extend neurites. These processes are orchestrated in part by immune and other non-neuronal cells. Macrophages in ganglia play an integral role in supporting regeneration. Here, we explore further the molecular and cellular components of the injury-induced immune response within peripheral ganglia. METHODS Adult male wild-type (WT) and Ccr2 -/- mice were subjected to a unilateral transection of the sciatic nerve and axotomy of the superior cervical ganglion (SCG). Antibody arrays were used to determine the expression of chemokines and cytokines in the dorsal root ganglion (DRG) and SCG. Flow cytometry and immunohistochemistry were utilized to identify the cellular composition of the injury-induced immune response within ganglia. RESULTS Chemokine expression in the ganglia differed 48 h after nerve injury with a large increase in macrophage inflammatory protein-1γ in the SCG but not in the DRG, while C-C class chemokine ligand 2 was highly expressed in both ganglia. Differences between WT and Ccr2 -/- mice were also observed with increased C-C class chemokine ligand 6/C10 expression in the WT DRG compared to C-C class chemokine receptor 2 (CCR2)-/- DRG and increased CXCL5 expression in CCR2-/- SCG compared to WT. Diminished macrophage accumulation in the DRG and SCG of Ccr2 -/- mice was found compared to WT ganglia 7 days after nerve injury. Interestingly, neutrophils were found in the SCG but not in the DRG. Cytokine expression, measured 7 days after injury, differed between ganglion type and genotype. Macrophage activation was assayed by colabeling ganglia with the anti-inflammatory marker CD206 and the macrophage marker CD68, and an almost complete colocalization of the two markers was found in both ganglia. CONCLUSIONS This study demonstrates both molecular and cellular differences in the nerve injury-induced immune response between DRG and SCG and between WT and Ccr2 -/- mice.
Collapse
Affiliation(s)
- Jane A Lindborg
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jon P Niemi
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Madeline A Howarth
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Science and Engineering Program, Hathaway Brown School, Shaker Heights, OH, USA
| | - Kevin W Liu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Christian Z Moore
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Deepti Mahajan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA. .,Present Address: Department Neurosciences, School of Medicine, 10900 Euclid Avenue, Robbins E701, Cleveland, OH, 44106-4975, USA.
| |
Collapse
|
30
|
Vanderwall AG, Noor S, Sun MS, Sanchez JE, Yang XO, Jantzie LL, Mellios N, Milligan ED. Effects of spinal non-viral interleukin-10 gene therapy formulated with d-mannose in neuropathic interleukin-10 deficient mice: Behavioral characterization, mRNA and protein analysis in pain relevant tissues. Brain Behav Immun 2018; 69:91-112. [PMID: 29113923 PMCID: PMC5857419 DOI: 10.1016/j.bbi.2017.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/20/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022] Open
Abstract
Studies show that spinal (intrathecal; i.t.) interleukin-10 (IL-10) gene therapy reverses neuropathic pain in animal models, and co-administration with the mannose receptor (MR; CD206) ligand d-mannose (DM) greatly improves therapeutic efficacy. However, the actions of endogenous IL-10 may be required for enduring pain control observed following i.t. IL-10 gene therapy, potentially narrowing the application of this non-viral transgene delivery approach. Here, we show that i.t. application of naked plasmid DNA expressing the IL-10 transgene co-injected with DM (DM/pDNA-IL-10) for the treatment of peripheral neuropathic pain in IL-10 deficient (IL-10 KO) mice results in a profound and prolonged bilateral pain suppression. Neuropathic pain is induced by unilateral sciatic chronic constriction injury (CCI), and while enduring relief of light touch sensitivity (mechanical allodynia) in both wild type (WT) and IL-10 KO mice was observed following DM/pDNA-IL-10 co-therapy, transient reversal from allodynia was observed following i.t. DM alone. In stably pain-relieved IL-10 KO mice given DM/pDNA-IL-10, mRNA for the IL-10 transgene is detected in the cauda equina and ipsilateral dorsal root ganglia (DRG), but not the lumbar spinal cord. Further, DM/pDNA-IL-10 application increases anti-inflammatory TGF-β1 and decreases pro-inflammatory TNF mRNA in the ipsilateral DRG compared to allodynic controls. Additionally, DM/pDNA-IL-10 treated mice exhibit decreased spinal pro-inflammatory mRNA expression for TNF, CCL2 (MCP-1), and for the microglial-specific marker TMEM119. Similarly, DM/pDNA-IL-10 treatment decreases immunoreactivity for the astrocyte activation marker GFAP in lumbar spinal cord dorsal horn. Despite transient reversal and early return to allodynia in DM-treated mice, lumbar spinal cord revealed elevated TNF, CCL2 and TMEM119 mRNA levels. Both MR (CD206) and IL-10 receptor mRNAs are increased in the DRG following CCI manipulation independent of injection treatment, suggesting that pathological conditions stimulate upregulation and availability of relevant receptors in critical anatomical regions required for the therapeutic actions of the DM/pDNA-IL-10 co-therapy. Taken together, the current report demonstrates that non-viral DM/pDNA-IL-10 gene therapy does not require endogenous IL-10 for enduring relief of peripheral neuropathic pain and does not require direct contact with the spinal cord dorsal horn for robust and enduring relief of neuropathic pain. Spinal non-viral DM/pDNA-IL-10 co-therapy may offer a framework for the development of non-viral gene therapeutic approaches for other diseases of the central nervous system.
Collapse
Affiliation(s)
- Arden G Vanderwall
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA; Department of Anesthesiology & Critical Care Medicine, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Shahani Noor
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Melody S Sun
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Jacob E Sanchez
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Xuexian O Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Lauren L Jantzie
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA; Department of Pediatrics, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Erin D Milligan
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA; Department of Anesthesiology & Critical Care Medicine, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA.
| |
Collapse
|
31
|
Renström L, Stål P, Song Y, Forsgren S. Bilateral muscle fiber and nerve influences by TNF-alpha in response to unilateral muscle overuse - studies on TNF receptor expressions. BMC Musculoskelet Disord 2017; 18:498. [PMID: 29183282 PMCID: PMC5706416 DOI: 10.1186/s12891-017-1796-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TNF-alpha is suggested to be involved in muscle damage and muscle inflammation (myositis). In order to evaluate whether TNF-alpha is involved in the myositis that occurs in response to muscle overuse, the aim was to examine the expression patterns of TNF receptors in this condition. METHODS A rabbit muscle overuse model leading to myositis in the soleus muscle was used. The expression patterns of the two TNF receptors Tumor Necrosis Factor Receptor type 1 (TNFR1) and Tumor Necrosis Factor Receptor type 2 (TNFR2) were investigated. In situ hybridization and immunofluorescence were utilized. Immunostainings for desmin, NK-1R and CD31 were made in parallel. RESULTS Immunoreactions (IR) for TNF receptors were clearly observed in white blood cells, fibroblasts and vessel walls, and most interestingly also in muscle fibers and nerve fascicles in the myositis muscles. There were very restricted reactions for these in the muscles of controls. The upregulation of TNF receptors was for all types of structures seen for both the experimental side and the contralateral nonexperimental side. TNF receptor expressing muscle fibers were present in myositis muscles. They can be related to attempts for reparation/regeneration, as evidenced from results of parallel stainings. Necrotic muscle fibers displayed TNFR1 mRNA and TNFR2 immunoreaction (IR) in the invading white blood cells. In myositis muscles, TNFR1 IR was observed in both axons and Schwann cells while TNFR2 IR was observed in Schwann cells. Such observations were very rarely made for control animals. CONCLUSIONS The findings suggest that there is a pronounced involvement of TNF-alpha in the developing myositis process. Attempts for reparation of the muscle tissue seem to occur via both TNFR1 and TNFR2. As the myositis process also occurs in the nonexperimental side and as TNF receptors are confined to nerve fascicles bilaterally it can be asked whether TNF-alpha is involved in the spreading of the myositis process to the contralateral side via the nervous system. Taken together, the study shows that TNF-alpha is not only associated with the inflammation process but that both the muscular and nervous systems are affected and that this occurs both on experimental and nonexperimental sides.
Collapse
Affiliation(s)
- Lina Renström
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden.
| | - Per Stål
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | - Yafeng Song
- Perelman School of Medicine & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Sture Forsgren
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| |
Collapse
|
32
|
Montague K, Malcangio M. The Therapeutic Potential of Monocyte/Macrophage Manipulation in the Treatment of Chemotherapy-Induced Painful Neuropathy. Front Mol Neurosci 2017; 10:397. [PMID: 29230166 PMCID: PMC5711788 DOI: 10.3389/fnmol.2017.00397] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/13/2017] [Indexed: 01/19/2023] Open
Abstract
In cancer treatments a dose-limiting side-effect of chemotherapeutic agents is the development of neuropathic pain, which is poorly managed by clinically available drugs at present. Chemotherapy-induced painful neuropathy (CIPN) is a major cause of premature cessation of treatment and so a greater understanding of the underlying mechanisms and the development of novel, more effective therapies, is greatly needed. In some cases, only a weak correlation between chemotherapy-induced pain and neuronal damage is observed both clinically and preclinically. As such, a critical role for non-neuronal cells, such as immune cells, and their communication with neurons in CIPN has recently been appreciated. In this mini-review, we will discuss preclinical evidence for the role of monocytes/macrophages in the periphery in CIPN, with a focus on that which is associated with the chemotherapeutic agents vincristine and paclitaxel. In addition we will discuss the potential mechanisms that regulate monocyte/macrophage–neuron crosstalk in this context. Informed by preclinical data, we will also consider the value of monocytes/macrophages as therapeutic targets for the treatment of CIPN clinically. Approaches that manipulate the signaling pathways discussed in this review show both promise and potential pitfalls. Nonetheless, they are emerging as innovative therapeutic targets with CX3CL1/R1-regulation of monocyte/macrophage–neuron communication currently emerging as a promising front-runner.
Collapse
Affiliation(s)
- Karli Montague
- Wolfson Centre for Age-Related Diseases, Guy's Hospital Campus, King's College London, London, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Guy's Hospital Campus, King's College London, London, United Kingdom
| |
Collapse
|
33
|
Ishii N, Tsubouchi H, Miura A, Yanagi S, Ueno H, Shiomi K, Nakazato M. Ghrelin alleviates paclitaxel-induced peripheral neuropathy by reducing oxidative stress and enhancing mitochondrial anti-oxidant functions in mice. Eur J Pharmacol 2017; 819:35-42. [PMID: 29154935 DOI: 10.1016/j.ejphar.2017.11.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/31/2017] [Accepted: 11/14/2017] [Indexed: 01/24/2023]
Abstract
Paclitaxel is an effective chemotherapeutic agent, but has some treatment-limiting adverse effects that markedly decrease patients' quality of life. Peripheral neuropathy is one of these, and no treatment for it has been established yet. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is secreted from the stomach and has widespread effects on multiple systems. We investigated the pharmacological potential of ghrelin in preventing paclitaxel-induced peripheral neuropathy using wild-type mice, ghrelin-null mice, and growth hormone secretagogue receptor-null mice. In wild-type mice, ghrelin administration alleviated mechanical and thermal hypersensitivity, and partially prevented neuronal loss of small unmyelinated intraepidermal nerve fibers but not large myelinated nerve fibers. Moreover, ghrelin administration decreased plasma oxidative and nitrosative stress and increased the expression of uncoupling protein 2 (UCP2) and superoxide dismutase 2 (SOD2) in the dorsal root ganglia, which are mitochondrial antioxidant proteins, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a regulator of mitochondrial number. Both ghrelin-null mice and growth hormone secretagogue receptor-null mice developed more severe nerve injuries than wild-type mice. Our results suggest that ghrelin administration exerts a protective effect against paclitaxel-induced neuropathy by reducing oxidative stress and enhancing mitochondrial anti-oxidant functions, and that endogenous ghrelin has a neuroprotective effect that is mediated by ghrelin/growth hormone secretagogue receptor signaling. Ghrelin could be a promising therapeutic agent for the management of this intractable disease.
Collapse
Affiliation(s)
- Nobuyuki Ishii
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hironobu Tsubouchi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | - Ayako Miura
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shigehisa Yanagi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroaki Ueno
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazutaka Shiomi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
34
|
Khan J, Hassun H, Zusman T, Korczeniewska O, Eliav E. Interleukin-8 levels in rat models of nerve damage and neuropathic pain. Neurosci Lett 2017; 657:106-112. [PMID: 28789985 DOI: 10.1016/j.neulet.2017.07.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/13/2017] [Accepted: 07/27/2017] [Indexed: 01/15/2023]
Abstract
Interleukin-8 (IL-8) is a pro-inflammatory cytokine that has been shown to play a role in inflammatory and autoimmune disorders. The objective of the present study was to assess the levels of IL-8 in rat serum, dorsal root ganglion (DRG) and the sciatic nerve following four different forms of sciatic nerve injury. The models used to induce the injury included partial sciatic ligation (PSL), chronic constriction injury (CCI), perineural inflammation (neuritis) and complete sciatic transection (CST). Mechanical and thermal hyperalgesia were detected by measuring withdrawal responses from a mechanical stimulus and withdrawal latency from thermal stimulation. Enzyme-linked immunosorbent assays (ELISA) was used to assess the IL-8 levels in the affected and contralateral sciatic nerves. Rats exposed to PSL and neuritis developed significant nociceptive response (mechanical and thermal hyperalgesia) in the affected side at three days post-surgery whereas the CCI group at eight days post-surgery. No mechanical or thermal hyperalgesia was observed in rats exposed to CST at either three or eight days postsurgery. Additionally, IL-8 levels were significantly increased in the injured sciatic nerve at 3 and 8days following PSL and neuritis as well as at 8days following CCI when compared to naïve animals. A significant up regulation of IL-8 levels was observed in the ipsilateral DRG at 3 and 8days following CST compared to naïve animals. The serum IL-8 levels remained unchanged in all models of nerve damage. The results of this study suggest that IL-8's role in the neuropathic pain etiology may be specific to nerve injury type.
Collapse
Affiliation(s)
- Junad Khan
- Eastman Institute for Oral Health, Rochester, NY, 14620, United States.
| | - Humza Hassun
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, NJ, United States
| | - Tali Zusman
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, NJ, United States
| | - Olga Korczeniewska
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, NJ, United States
| | - Eli Eliav
- Eastman Institute for Oral Health, University of Rochester, NY, United States
| |
Collapse
|
35
|
Du X, Hao H, Yang Y, Huang S, Wang C, Gigout S, Ramli R, Li X, Jaworska E, Edwards I, Deuchars J, Yanagawa Y, Qi J, Guan B, Jaffe DB, Zhang H, Gamper N. Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission. J Clin Invest 2017; 127:1741-1756. [PMID: 28375159 PMCID: PMC5409786 DOI: 10.1172/jci86812] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/02/2017] [Indexed: 01/05/2023] Open
Abstract
The integration of somatosensory information is generally assumed to be a function of the central nervous system (CNS). Here we describe fully functional GABAergic communication within rodent peripheral sensory ganglia and show that it can modulate transmission of pain-related signals from the peripheral sensory nerves to the CNS. We found that sensory neurons express major proteins necessary for GABA synthesis and release and that sensory neurons released GABA in response to depolarization. In vivo focal infusion of GABA or GABA reuptake inhibitor to sensory ganglia dramatically reduced acute peripherally induced nociception and alleviated neuropathic and inflammatory pain. In addition, focal application of GABA receptor antagonists to sensory ganglia triggered or exacerbated peripherally induced nociception. We also demonstrated that chemogenetic or optogenetic depolarization of GABAergic dorsal root ganglion neurons in vivo reduced acute and chronic peripherally induced nociception. Mechanistically, GABA depolarized the majority of sensory neuron somata, yet produced a net inhibitory effect on the nociceptive transmission due to the filtering effect at nociceptive fiber T-junctions. Our findings indicate that peripheral somatosensory ganglia represent a hitherto underappreciated site of somatosensory signal integration and offer a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Xiaona Du
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Han Hao
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Yuehui Yang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Sha Huang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Caixue Wang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Sylvain Gigout
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Rosmaliza Ramli
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Dental Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Xinmeng Li
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Ewa Jaworska
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Ian Edwards
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jim Deuchars
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine and Japan Science and Technology Agency, CREST, Maebashi, Japan
| | - Jinlong Qi
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Bingcai Guan
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - David B. Jaffe
- Department of Biology, UTSA Neurosciences Institute, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
36
|
The Antinociceptive Effect of Light-Emitting Diode Irradiation on Incised Wounds Is Correlated with Changes in Cyclooxygenase 2 Activity, Prostaglandin E2, and Proinflammatory Cytokines. Pain Res Manag 2017; 2017:4792489. [PMID: 28469528 PMCID: PMC5392408 DOI: 10.1155/2017/4792489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/02/2017] [Indexed: 02/02/2023]
Abstract
Background. Light-emitting diode (LED) phototherapy has been reported to relieve pain and enhance tissue repair through several mechanisms. However, the analgesic effect of LED on incised wounds has never been examined. Objectives. We examined the analgesic effect of LED therapy on incision pain and the changes in cyclooxygenase 2 (COX-2), prostaglandin E2 (PGE2), and the proinflammatory cytokines interleukin 6 (IL-6), IL-1β, and tumor necrosis factor α (TNF-α). Methods. Rats received LED therapy on incised skin 6 days before incision (L-I group) or 6 days after incision (I-L group) or from 3 days before incision to 3 days after incision (L-I-L group). Behavioral tests and analysis of skin tissue were performed after LED therapy. Results. LED therapy attenuated the decrease in thermal withdrawal latency in all the irradiated groups and the decrease in the mechanical withdrawal threshold in the L-I group only. The expression levels of COX-2, PGE2, and IL-6 were significantly decreased in the three LED-treated groups, whereas IL-1β and TNF-α were significantly decreased only in the L-I group compared with their levels in the I groups (p < 0.05). Conclusions. LED therapy provides an analgesic effect and modifies the expression of COX-2, PGE2, and proinflammatory cytokines in incised skin.
Collapse
|
37
|
Collins A, Li D, McMahon SB, Raisman G, Li Y. Transplantation of Cultured Olfactory Bulb Cells Prevents Abnormal Sensory Responses During Recovery From Dorsal Root Avulsion in the Rat. Cell Transplant 2017; 26:913-924. [PMID: 28337957 DOI: 10.3727/096368917x695353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The central branches of the C7 and C8 dorsal roots were avulsed close to their entry point into the spinal cord in adult rats. The forepaw responses to heat and cold stimuli were tested at 1, 2, and 3 weeks after injury. Over this period, the paws were sensitive to both stimuli at 1-2 weeks and returned toward normal at 3 weeks. Immunohistology showed no evidence of axonal regeneration into the spinal cord in a control group of rats with avulsion only, implying that adjacent dorsal roots and their corresponding dermatomes were involved in the recovery. In a further group of rats, a mixture of bulbar olfactory ensheathing cells and olfactory nerve fibroblasts were transplanted into the gap between the avulsed roots and the spinal cord at the time of avulsion. These rats showed no evidence of either loss of sensation or exaggerated responses to stimuli at any of the time points from 1 to 3 weeks. Immunohistology showed that the transplanted cells formed a complete bridge, and the central branches of the dorsal root fibers had regenerated into the dorsal horn of the spinal cord. These regenerating axons, including Tuj1 and CGRP immunoreactive fibers, were ensheathed by the olfactory ensheathing cells. This confirms our previous demonstration of central regeneration by these transplants and suggests that such transplants may provide a useful means to prevent the development of abnormal sensations such as allodynia after spinal root lesions.
Collapse
|
38
|
Baddack-Werncke U, Busch-Dienstfertig M, González-Rodríguez S, Maddila SC, Grobe J, Lipp M, Stein C, Müller G. Cytotoxic T cells modulate inflammation and endogenous opioid analgesia in chronic arthritis. J Neuroinflammation 2017; 14:30. [PMID: 28166793 PMCID: PMC5294766 DOI: 10.1186/s12974-017-0804-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background This study examined the development of chronic pain, a cardinal symptom of rheumatoid arthritis (RA), in mice with antigen- and collagen-induced arthritis (ACIA). Since the role of CD8+ T cells in arthritis is controversial, we investigated the consequences of CD8-depletion on arthritis development and opioid modulation of pain in this novel model of chronic autoimmune arthritis. Methods Disease severity in control and CD8-depleted animals was determined by histological assessment of knee-joint sections and measurement of autoantibody formation. Pain was evaluated by measuring mechanical allodynia and thermal hyperalgesia in von Frey and Hargreaves tests, respectively. The production and release of endogenous opioids and inflammatory cytokines was assessed in immunoassays. Results In ACIA, mice display persistent mechanical allodynia and thermal hyperalgesia for more than 2 months after induction of arthritis. The blockade of peripheral opioid receptors with naloxone-methiodide (NLXM) transiently increased thermal hyperalgesia, indicating that endogenous opioid peptides were released in the arthritic joint to inhibit pain. CD8+ T cell depletion did not affect autoantibody formation or severity of joint inflammation, but serum levels of the pro-inflammatory cytokines TNFα and IL-17 were increased. The release of opioid peptides from explanted arthritic knee cells and the NLXM effect were significantly reduced in the absence of CD8+ T cells. Conclusions We have successfully modeled the development of chronic pain, a hallmark of RA, in ACIA. Furthermore, we detected a yet unknown protective role of CD8+ T cells in chronic ACIA since pro-inflammatory cytokines rose and opioid peptide release decreased in the absence of these cells.
Collapse
Affiliation(s)
- Uta Baddack-Werncke
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center of Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Current address: DLR project management agency, Department for Health Research, Heinrich-Konen-Str. 1, 53227, Bonn, Germany
| | - Melanie Busch-Dienstfertig
- Department of Anesthesiology and Critical Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Sara González-Rodríguez
- Department of Anesthesiology and Critical Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany. .,Current address: Instituto de Biología Molecular y Celular (IBMC), Av. de la Universidad s/n. Edif. Torregaitán, Elche, 03202, Alicante, Spain.
| | - Santhosh Chandar Maddila
- Department of Anesthesiology and Critical Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.,Current address: Santhosh Nursing Home, Darsi, Prakasam District, Andhra Pradesh, 523247, India
| | - Jenny Grobe
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center of Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Martin Lipp
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center of Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Christoph Stein
- Department of Anesthesiology and Critical Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Gerd Müller
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center of Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| |
Collapse
|
39
|
Li J, Li X, Jiang X, Yang M, Yang R, Burnstock G, Xiang Z, Yuan H. Microvesicles shed from microglia activated by the P2X7-p38 pathway are involved in neuropathic pain induced by spinal nerve ligation in rats. Purinergic Signal 2016; 13:13-26. [PMID: 27683228 DOI: 10.1007/s11302-016-9537-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/12/2016] [Indexed: 12/30/2022] Open
Abstract
Microglia are critical in the pathogenesis of neuropathic pain. In this study, we investigated the role of microvesicles (MVs) in neuropathic pain induced by spinal nerve ligation (SNL) in rats. First, we found that MVs shed from microglia were increased in the cerebrospinal fluid and dorsal horn of the spinal cord after SNL. Next, MVs significantly reduced paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). In addition, the P2X7-p38 pathway was related to the bleb of MVs after SNL. Interleukin (IL)-1β was found to be significantly upregulated in the package of MVs, and PWT and PWL increased following inhibition with shRNA-IL-1β. Finally, the amplitude and frequency of spontaneous excitatory postsynaptic currents increased following stimulation with MVs. Our results indicate that the P2X7-p38 pathway is closely correlated with the shedding of MVs from microglia in neuropathic pain, and MVs had a significant effect on neuropathic pain by participating in the interaction between microglia and neurons.
Collapse
Affiliation(s)
- Jian Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Xiangnan Li
- Department of Anesthesiology, The Third People's Hospital of Yancheng, Yancheng, 224001, China
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Rui Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| | - Zhenghua Xiang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, China.
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
40
|
Nakanishi M, Nakae A, Kishida Y, Baba K, Sakashita N, Shibata M, Yoshikawa H, Hagihara K. Go-sha-jinki-Gan (GJG) ameliorates allodynia in chronic constriction injury-model mice via suppression of TNF-α expression in the spinal cord. Mol Pain 2016; 12:12/0/1744806916656382. [PMID: 27296622 PMCID: PMC4956397 DOI: 10.1177/1744806916656382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Alternative medicine is noted for its clinical effect and minimal invasiveness in the treatment of neuropathic pain. Go-sha-jinki-Gan, a traditional Japanese herbal medicine, has been used for meralgia and numbness in elderly patients. However, the exact mechanism of GJG is unclear. This study aimed to investigate the molecular mechanism of the analgesic effect of GJG in a chronic constriction injury model. Results GJG significantly reduced allodynia and hyperalgesia from the early phase (von Frey test, p < 0.0001; cold-plate test, p < 0.0001; hot-plate test p = 0.011; two-way repeated measures ANOVA). Immunohistochemistry and Western blot analysis revealed that GJG decreased the expression of Iba1 and tumor necrosis factor-α in the spinal cord. Double staining immunohistochemistry showed that most of the tumor necrosis factor-α was co-expressed in Iba1-positive cells at day 3 post-operation. GJG decreased the phosphorylation of p38 in the ipsilateral dorsal horn. Moreover, intrathecal injection of tumor necrosis factor-α opposed the anti-allodynic effect of GJG in the cold-plate test. Conclusions Our data suggest that GJG ameliorates allodynia in chronic constriction injury model mice via suppression of tumor necrosis factor-α expression derived from activated microglia. GJG is a promising drug for the treatment of neuropathic pain induced by neuro-inflammation.
Collapse
Affiliation(s)
| | - Aya Nakae
- Osaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicine Osaka University Graduate School of Medicine Osaka University Graduate School of Medicine
| | | | | | | | | | | | - Keisuke Hagihara
- Osaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicine Osaka University Graduate School of Medicine Osaka University Graduate School of Medicine
| |
Collapse
|
41
|
Furuya-da-Cunha EM, Souza RRD, Canto-de-Souza A. Rat exposure in mice with neuropathic pain induces fear and antinociception that is not reversed by 5-HT2C receptor activation in the dorsal periaqueductal gray. Behav Brain Res 2016; 307:250-7. [PMID: 27059332 DOI: 10.1016/j.bbr.2016.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/14/2023]
Abstract
Previous studies have demonstrated that serotonin 5-HT2C receptors in the dorsal periaqueductal gray (dPAG) mediate both anxiety and antinociception in mice submitted to the elevated plus maze. The present study examined the effects of intra-dPAG infusion of the serotonin 5-HT2C receptor agonist (MK-212) in the defensive reactions and antinociception in mice with neurophatic pain confronted by a predator. Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve, and predator confrontation was performed using the rat exposure test (RET). Our results demonstrated that both sham-operated and CCI mice exhibited intense defensive reactions when confronted by rats. However, rat-exposed CCI mice showed reduced pain reactivity in comparison to CCI mice exposed to a toy rat. Intra-dPAG infusion of MK-212 prior to predator exposure did not significantly alter defensive or antinociceptive responses. To our knowledge, our results represent the first evidence of RET-induced antinociception in mice. Moreover, the results of the present study suggest that 5-HT2C receptor activation in the dPAG is not critically involved in the control of predator-evoked fearful or antinociceptive responses.
Collapse
Affiliation(s)
- Elke Mayumi Furuya-da-Cunha
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP, 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP. Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Rimenez Rodrigues de Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP, 13565-905, Brazil; Graduate Program in Psychology UFSCar. Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Azair Canto-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP, 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP. Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil; Graduate Program in Psychology UFSCar. Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
42
|
Slotkin JR, Ness JK, Snyder KM, Skiles AA, Woodard EJ, OʼShea T, Layer RT, Aimetti AA, Toms SA, Langer R, Tapinos N. Sustained Local Release of Methylprednisolone From a Thiol-Acrylate Poly(Ethylene Glycol) Hydrogel for Treating Chronic Compressive Radicular Pain. Spine (Phila Pa 1976) 2016; 41:E441-8. [PMID: 26630427 DOI: 10.1097/brs.0000000000001309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A preclinical animal model of chronic ligation of the sciatic nerve was used to compare the effectiveness of a slow-release hydrogel carrying methylprednisolone to methylprednisolone injection alone, which simulates the current standard of care for chronic compressive radiculopathy (CR). OBJECTIVE To extend the short-term benefits of steroid injections by using a nonswelling, biodegradable hydrogel as carrier to locally release methylprednisolone in a regulated and sustained way at the site of nerve compression. SUMMARY OF BACKGROUND DATA CR affects millions worldwide annually, and is a cause of costly disability with significant societal impact. Currently, a leading nonsurgical therapy involves epidural injection of steroids to temporarily alleviate the pain associated with CR. However, an effective way to extend the short-term effect of steroid treatment to address the chronic component of CR does not exist. METHODS We induced chronic compression injury of the sciatic nerves of rats by permanent ligation. Forty-eight hours later we injected our methylprednisolone infused hydrogel and assessed the effectiveness of our treatment for 4 weeks. We quantified mechanical hyperalgesia using a Dynamic Plantar Aesthesiometer (Ugo Basile, Stoelting Co., IL, USA), whereas gait analysis was conducted using the Catwalk automated gait analysis platform (Noldus, Leesburg, VA, USA). Macrophage staining was performed with immunohistochemistry and quantification of monocyte chemoattractant protein-1 in sciatic nerve lysates was performed with multiplex immunoassay using a SECTOR Imager 2400A (Meso Scale Discovery, Rockville, MA, USA). RESULTS We demonstrate that using the hydrogel to deliver methylprednisolone results in significant (P < 0.05) reduction of hyperalgesia and improvement in the gait pattern of animals with chronic lesions as compared with animals treated with steroid alone. In addition, animals treated with hydrogel plus steroid showed significant reduction in the number of infiltrating macrophages at the sciatic nerve and reduced expression of the neuroinflammatory chemokine monocyte chemoattractant protein-1 (P < 0.05). CONCLUSION Use of hydrogels as carriers for sustained local release of steroids provides significantly better control of pain in an animal model of chronic CR. Our steroid-infused hydrogel could be an effective extender of the short-term benefits of epidural steroid injections for patients with chronic compression-induced radicular pain. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Jonathan R Slotkin
- *Department of Neurosurgery, Geisinger Clinic, Danville, PA †InVivo Therapeutics Corporation, Cambridge, MA ‡Laboratory of Molecular Neuroscience and Neurooncology, Geisinger Clinic, Danville, PA §Department of Neurosurgery, New England Baptist Hospital, Boston, MA ¶David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ghasemlou N, Chiu IM, Julien JP, Woolf CJ. CD11b+Ly6G- myeloid cells mediate mechanical inflammatory pain hypersensitivity. Proc Natl Acad Sci U S A 2015; 112:E6808-17. [PMID: 26598697 PMCID: PMC4679057 DOI: 10.1073/pnas.1501372112] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pain hypersensitivity at the site of inflammation as a result of chronic immune diseases, pathogenic infection, and tissue injury is a common medical condition. However, the specific contributions of the innate and adaptive immune system to the generation of pain during inflammation have not been systematically elucidated. We therefore set out to characterize the cellular and molecular immune response in two widely used preclinical models of inflammatory pain: (i) intraplantar injection of complete Freund's adjuvant (CFA) as a model of adjuvant- and pathogen-based inflammation and (ii) a plantar incisional wound as a model of tissue injury-based inflammation. Our findings reveal differences in temporal patterns of immune cell recruitment and activation states, cytokine production, and pain in these two models, with CFA causing a nonresolving granulomatous inflammatory response whereas tissue incision induced resolving immune and pain responses. These findings highlight the significant differences and potential clinical relevance of the incisional wound model compared with the CFA model. By using various cell-depletion strategies, we find that, whereas lymphocyte antigen 6 complex locus G (Ly)6G(+)CD11b(+) neutrophils and T-cell receptor (TCR) β(+) T cells do not contribute to the development of thermal or mechanical pain hypersensitivity in either model, proliferating CD11b(+)Ly6G(-) myeloid cells were necessary for mechanical hypersensitivity during incisional pain, and, to a lesser extent, CFA-induced inflammation. However, inflammatory (CCR2(+)Ly6C(hi)) monocytes were not responsible for these effects. The finding that a population of proliferating CD11b(+)Ly6G(-) myeloid cells contribute to mechanical inflammatory pain provides a potential cellular target for its treatment in wound inflammation.
Collapse
Affiliation(s)
- Nader Ghasemlou
- F. M. Kirby Neurobiology Center, Boston Children's Hospital & Harvard Medical School, Boston, MA 02115
| | - Isaac M Chiu
- F. M. Kirby Neurobiology Center, Boston Children's Hospital & Harvard Medical School, Boston, MA 02115; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Jean-Pierre Julien
- Research Centre of Institut Universitaire en Santé Mentale de Québec and Department of Psychiatry and Neuroscience, Laval University, Quebec City, QC, Canada G1J 2G3
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center, Boston Children's Hospital & Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
44
|
Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol 2015; 130:605-18. [PMID: 26419777 DOI: 10.1007/s00401-015-1482-4] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 01/08/2023]
Abstract
The peripheral nervous system (PNS) has remarkable regenerative abilities after injury. Successful PNS regeneration relies on both injured axons and non-neuronal cells, including Schwann cells and immune cells. Macrophages are the most notable immune cells that play key roles in PNS injury and repair. Upon peripheral nerve injury, a large number of macrophages are accumulated at the injury sites, where they not only contribute to Wallerian degeneration, but also are educated by the local microenvironment and polarized to an anti-inflammatory phenotype (M2), thus contributing to axonal regeneration. Significant progress has been made in understanding how macrophages are educated and polarized in the injured microenvironment as well as how they contribute to axonal regeneration. Following the discussion on the main properties of macrophages and their phenotypes, in this review, we will summarize the current knowledge regarding the mechanisms of macrophage infiltration after PNS injury. Moreover, we will discuss the recent findings elucidating how macrophages are polarized to M2 phenotype in the injured PNS microenvironment, as well as the role and underlying mechanisms of macrophages in peripheral nerve injury, Wallerian degeneration and regeneration. Furthermore, we will highlight the potential application by targeting macrophages in treating peripheral nerve injury and peripheral neuropathies.
Collapse
|
45
|
DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 2015; 302:174-203. [PMID: 25242643 PMCID: PMC4366367 DOI: 10.1016/j.neuroscience.2014.09.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/25/2022]
Abstract
Peripheral nerves regenerate following injury due to the effective activation of the intrinsic growth capacity of the neurons and the formation of a permissive pathway for outgrowth due to Wallerian degeneration (WD). WD and subsequent regeneration are significantly influenced by various immune cells and the cytokines they secrete. Although macrophages have long been known to play a vital role in the degenerative process, recent work has pointed to their importance in influencing the regenerative capacity of peripheral neurons. In this review, we focus on the various immune cells, cytokines, and chemokines that make regeneration possible in the peripheral nervous system, with specific attention placed on the role macrophages play in this process.
Collapse
Affiliation(s)
| | - J A Lindborg
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - J P Niemi
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - R E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| |
Collapse
|
46
|
Ma F, Zhang L, Oz HS, Mashni M, Westlund KN. Dysregulated TNFα promotes cytokine proteome profile increases and bilateral orofacial hypersensitivity. Neuroscience 2015; 300:493-507. [PMID: 26033565 DOI: 10.1016/j.neuroscience.2015.05.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tumor necrosis factor alpha (TNFα) is increased in patients with headache, neuropathic pain, periodontal and temporomandibular disease. This study and others have utilized TNF receptor 1/2 (TNFR1/2) knockout (KO) animals to investigate the effect of TNFα dysregulation in generation and maintenance of chronic neuropathic pain. The present study determined the impact of TNFα dysregulation in a trigeminal inflammatory compression (TIC) nerve injury model comparing wild-type (WT) and TNFR1/2 KO mice. METHODS Chromic gut suture was inserted adjacent to the infraorbital nerve to induce the TIC model mechanical hypersensitivity. Cytokine proteome profiles demonstrated serology, and morphology explored microglial activation in trigeminal nucleus 10weeks post. RESULTS TIC injury induced ipsilateral whisker pad mechanical allodynia persisting throughout the 10-week study in both TNFR1/2 KO and WT mice. Delayed mechanical allodynia developed on the contralateral whisker pad in TNFR1/2 KO mice but not in WT mice. Proteomic profiling 10weeks after chronic TIC injury revealed TNFα, interleukin-1alpha (IL-1α), interleukin-5 (IL-5), interleukin-23 (IL-23), macrophage inflammatory protein-1β (MIP-1β), and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased more than 2-fold in TNFR1/2 KO mice compared to WT mice with TIC. Bilateral microglial activation in spinal trigeminal nucleus was detected only in TNFR1/2 KO mice. p38 mitogen-activated protein kinase (MAPK) inhibitor and microglial inhibitor minocycline reduced hypersensitivity. CONCLUSIONS The results suggest the dysregulated serum cytokine proteome profile and bilateral spinal trigeminal nucleus microglial activation are contributory to the bilateral mechanical hypersensitization in this chronic trigeminal neuropathic pain model in the mice with TNFα dysregulation. Data support involvement of both neurogenic and humoral influences in chronic neuropathic pain.
Collapse
Affiliation(s)
- F Ma
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - L Zhang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - H S Oz
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - M Mashni
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - K N Westlund
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| |
Collapse
|
47
|
Mika J, Jurga AM, Starnowska J, Wasylewski M, Rojewska E, Makuch W, Kwiatkowski K, Malek N, Przewlocka B. Effects of chronic doxepin and amitriptyline administration in naïve mice and in neuropathic pain mice model. Neuroscience 2015; 294:38-50. [PMID: 25769941 DOI: 10.1016/j.neuroscience.2015.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 02/02/2023]
Abstract
Neuropathic pain is a severe clinical problem, often appearing as a co-symptom of many diseases or manifesting as a result of damage to the nervous system. Many drugs and agents are currently used for the treatment of neuropathic pain, such as tricyclic antidepressants (TCAs). The aims of this paper were to test the effects of two classic TCAs, doxepin and amitriptyline, in naïve animals and in a model of neuropathic pain and to determine the role of cytokine activation in the effects of these drugs. All experiments were carried out with Albino-Swiss mice using behavioral tests (von Frey test and the cold plate test) and biochemical analyses (qRT-PCR and Western blot). In the mice subjected to chronic constriction injury (CCI), doxepin and amitriptyline attenuated the symptoms of neuropathic pain and diminished the CCI-induced increase in the levels of spinal interleukin (IL)-6 and -1β mRNA, but not the protein levels of these cytokines, measured on day 12. Unexpectedly, chronic administration of doxepin or amitriptyline for 12 days produced allodynia and hyperalgesia in naïve mice. The treatment with these drugs did not influence the spinal levels of IL-1β and IL-6 mRNA, however, the protein levels of these pronociceptive factors were increased. The administration of ondansetron (5-HT3 receptor antagonist) significantly weakened the allodynia and hyperalgesia induced by both antidepressants in naïve mice; in contrast, yohimbine (α2-adrenergic receptors antagonist) did not influence these effects. Allodynia and hyperalgesia induced in naïve animals by amitriptyline and doxepin may be associated with an increase in the levels of pronociceptive cytokines resulting from 5-HT3-induced hypersensitivity. Our results provide new and important information about the possible side effects of antidepressants. Further investigation of these mechanisms may help to guide decisions about the use of classic TCAs for therapy.
Collapse
Affiliation(s)
- J Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - A M Jurga
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - J Starnowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - M Wasylewski
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - E Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - W Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - K Kwiatkowski
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - N Malek
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - B Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
48
|
Van Steenwinckel J, Auvynet C, Sapienza A, Reaux-Le Goazigo A, Combadière C, Melik Parsadaniantz S. Stromal cell-derived CCL2 drives neuropathic pain states through myeloid cell infiltration in injured nerve. Brain Behav Immun 2015; 45:198-210. [PMID: 25449579 DOI: 10.1016/j.bbi.2014.10.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/18/2014] [Accepted: 10/18/2014] [Indexed: 12/24/2022] Open
Abstract
Neuropathic pain resulting from peripheral nerve injury involves many persistent neuroinflammatory processes including inflammatory chemokines that control leukocyte trafficking and activate resident cells. Several studies have shown that CCL2 chemokine, a potent attractant of monocytes, and its cognate receptor, CCR2, play a critical role in regulating nociceptive processes during neuropathic pain. However, the role of CCL2 in peripheral leukocyte infiltration-associated neuropathic pain remains poorly understood. In particular, the contribution of individual CCL2-expressing cell populations (i.e. stromal and leukocytes) to immune cell recruitment into the injured nerve has not been established. Here, in preclinical model of peripheral neuropathic pain (i.e. chronic constriction injury of the sciatic nerve), we have demonstrated that, CCL2 content was increased specifically in nerve fibers. This upregulation of CCL2 correlated with local monocyte/macrophage infiltration and pain processing. Furthermore, sciatic intraneural microinjection of CCL2 in naïve animals triggered long-lasting pain behavior associated with local monocyte/macrophage recruitment. Using a specific CCR2 antagonist and mice with a CCL2 genetic deletion, we have also established that the CCL2/CCR2 axis drives monocyte/macrophage infiltration and pain hypersensitivity in the CCI model. Finally, specific deletion of CCL2 in stromal or immune cells respectively using irradiated bone marrow-chimeric CCI mice demonstrated that stromal cell-derived CCL2 (in contrast to CCL2 immune cell-derived) tightly controls monocyte/macrophage recruitment into the lesion and plays a major role in the development of neuropathic pain. These findings demonstrate that in chronic pain states, CCL2 expressed by sciatic nerve cells predominantly drove local neuro-immune interactions and pain-related behavior through CCR2 signaling.
Collapse
Affiliation(s)
- Juliette Van Steenwinckel
- UMR 1141 INSERM, Hôpital Robert Debré, F-75019, Paris, France; Université Paris Diderot, Faculté de Médecine, F-75019, Paris, France; PremUP, 75014 Paris, France
| | - Constance Auvynet
- Sorbonne Universités, UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris). 91 Bd de l'hôpital, F-75013, Paris, France; Inserm, U1135, CIMI-Paris, 91 Bd de l'hôpital, F-75013, Paris, France; CNRS, ERL 8255, CIMI-Paris, 91 Bd de l'hôpital, F-75013, Paris, France
| | - Anaïs Sapienza
- Sorbonne Universités, UPMC Université Paris 06, Institut de la vision, équipe S12, 17 rue Moreau, F-75012, Paris, France; UMR_S 968 INSERM, 17 rue Moreau, F-75012, Paris, France; UMR 7210 CNRS, 17 rue Moreau, F-75012, Paris, France
| | - Annabelle Reaux-Le Goazigo
- Sorbonne Universités, UPMC Université Paris 06, Institut de la vision, équipe S12, 17 rue Moreau, F-75012, Paris, France; UMR_S 968 INSERM, 17 rue Moreau, F-75012, Paris, France; UMR 7210 CNRS, 17 rue Moreau, F-75012, Paris, France
| | - Christophe Combadière
- Sorbonne Universités, UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris). 91 Bd de l'hôpital, F-75013, Paris, France; Inserm, U1135, CIMI-Paris, 91 Bd de l'hôpital, F-75013, Paris, France; CNRS, ERL 8255, CIMI-Paris, 91 Bd de l'hôpital, F-75013, Paris, France
| | - Stéphane Melik Parsadaniantz
- Sorbonne Universités, UPMC Université Paris 06, Institut de la vision, équipe S12, 17 rue Moreau, F-75012, Paris, France; UMR_S 968 INSERM, 17 rue Moreau, F-75012, Paris, France; UMR 7210 CNRS, 17 rue Moreau, F-75012, Paris, France.
| |
Collapse
|
49
|
Old EA, Clark AK, Malcangio M. The role of glia in the spinal cord in neuropathic and inflammatory pain. Handb Exp Pharmacol 2015; 227:145-170. [PMID: 25846618 DOI: 10.1007/978-3-662-46450-2_8] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chronic pain, both inflammatory and neuropathic, is a debilitating condition in which the pain experience persists after the painful stimulus has resolved. The efficacy of current treatment strategies using opioids, NSAIDS and anticonvulsants is limited by the extensive side effects observed in patients, underlining the necessity for novel therapeutic targets. Preclinical models of chronic pain have recently provided evidence for a critical role played by glial cells in the mechanisms underlying the chronicity of pain, both at the site of damage in the periphery and in the dorsal horn of the spinal cord. Here microglia and astrocytes respond to the increased input from the periphery and change morphology, increase in number and release pro-nociceptive mediators such as ATP, cytokines and chemokines. These gliotransmitters can sensitise neurons by activation of their cognate receptors thereby contributing to central sensitization which is fundamental for the generation of allodynia, hyperalgesia and spontaneous pain.
Collapse
Affiliation(s)
- Elizabeth Amy Old
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | | | |
Collapse
|
50
|
Bali A, Singh N, Jaggi AS. Renin–angiotensin system in pain: Existing in a double life? J Renin Angiotensin Aldosterone Syst 2014; 15:329-40. [DOI: 10.1177/1470320313503694] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, India
| |
Collapse
|