1
|
Denizci E, Altun G, Kaplan S. Morphological evidence for the potential protective effects of curcumin and Garcinia kola against diabetes in the rat hippocampus. Brain Res 2024; 1839:149020. [PMID: 38788929 DOI: 10.1016/j.brainres.2024.149020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
This research investigated the effects of sciatic nerve transection and diabetes on the hippocampus, and the protective effects of Garcinia kola and curcumin. Thirty-five adults male Wistar albino rats were divided into five groups: a control group (Cont), a transected group (Sham group), a transected + diabetes mellitus group (DM), a transected + diabetes mellitus + Garcinia kola group (DM + GK), and a transected + DM + curcumin group (DM + Cur), each containing seven animals. The experimental diabetes model was created with the intraperitoneal injection of a single dose of streptozotocin. No procedure was applied to the Cont group, while sciatic nerve transection was performed on the other groups. Garcinia kola was administered to the rats in DM + GK, and curcumin to those in DM + Cur. Cardiac perfusion was performed at the end of the experimental period. Brain tissues were dissected for stereological, histopathological, and immunohistochemical evaluations. The volume ratios of hippocampal layers to the entire hippocampus volume were compared between the groups. Anti-S100, anti-caspase 3, and anti-SOX 2 antibodies were used for immunohistochemical analysis. No statistically significant difference was observed in the volume ratios of the four hippocampal layers. However, the volume ratio of the stratum lucidum was higher in the Sham, DM, and DM + Cur groups compared to the Cont group. While curcumin exhibited a protective effect on hippocampal tissue following diabetes induction, Garcinia kola had only a weak protective effect. Increased cell density and nuclear deterioration due to diabetes and nerve transection can be partially ameliorated by treatment with Garcinia kola and curcumin.
Collapse
Affiliation(s)
- Eda Denizci
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun 55139, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun 55139, Turkey
| | - Süleyman Kaplan
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun 55139, Turkey; Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
| |
Collapse
|
2
|
Zarei SA, Shahriari-Khalaji M, Andolina IM, Behzadi G. Antinociceptive effects of vitamin B-complex: A behavioral and histochemical study in rats. IBRO Neurosci Rep 2023; 15:270-280. [PMID: 37860709 PMCID: PMC10582472 DOI: 10.1016/j.ibneur.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
B-vitamins have been evaluated as a useful adjuvant therapy to treat pain. In spite of clinical and experimental evidence indicating the analgesic effect of B-vitamins, few studies have investigated their effect on aspects of the inflammatory pain response. In the present study, we investigated the analgesic effect of chronic application of B-complex vitamins (Neurobion) using an inflammatory experimental pain model in rats. Nociceptive behavioral responses were evaluated in male Wistar rats after plantar injection of formalin, comparing the treatment group (TG) with Neurobion pretreatment to the control group (CG) without the pretreatment. In addition, neuronal activity in the central pain pathway was evaluated using c-Fos immunohistochemical reactivity and NADPH-d histochemistry. A highly significant reduction of painful behaviors such as licking and flinching were observed in TG, especially during the secondary phase of the formalin test compared to CG. Results suggest that long-term pre-treatment using Neurobion can have a beneficial effect in reducing the chronic phase of pain. In addition, we observed a downregulation of c-Fos and NADPH-d in dorsal spinal neurons, suggesting that the antinociceptive effect induced by Neurobion could be due to a suppression of nociceptive transmission at the spinal level, particularly in the afferent regions of the dorsal spinal horn, which these neurons utilizing nitric oxide at least as one of their pain neurotransmitters.
Collapse
Affiliation(s)
- Shahab A. Zarei
- Center for Excellence in Brain Science and Intelligence Technology (Institute of Neuroscience), Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ian Max Andolina
- Center for Excellence in Brain Science and Intelligence Technology (Institute of Neuroscience), Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Rahdar M, Hajisoltani R, Davoudi S, Karimi SA, Borjkhani M, Khatibi VA, Hosseinmardi N, Behzadi G, Janahmadi M. Alterations in the intrinsic discharge activity of CA1 pyramidal neurons associated with possible changes in the NADPH diaphorase activity in a rat model of autism induced by prenatal exposure to valproic acid. Brain Res 2022; 1792:148013. [PMID: 35841982 DOI: 10.1016/j.brainres.2022.148013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 07/10/2022] [Indexed: 11/02/2022]
Abstract
Autism spectrum disorder is a neurodevelopmental disorder characterized by sensory abnormalities, social skills impairment and cognitive deficits. Although recent evidence indicated that induction of autism-like behavior in animal models causes abnormal neuronal excitability, the impact of autism on neuronal properties is still an important issue. Thus, new findings at the cellular level may shed light on the pathophysiology of autism and may help to find effective treatment strategies. Here, we investigated the behavioral, electrophysiological and histochemical impacts of prenatal exposure to valproic acid (VPA) in rats. Findings revealed that VPA exposure caused a significant increase in the hot plate response latency. The novel object recognition ability was also impaired in VPA-exposed rats. Along with these behavioral alterations, neurons from VPA-exposed animals exhibited altered excitability features in response to depolarizing current injections relative to control neurons. In the VPA-exposed group, these changes consisted of a significant increase in the amplitude, evoked firing frequency and the steady-state standard deviation of spike timing of action potentials (APs). Moreover, the half-width, the AHP amplitude and the decay time constant of APs were significantly decreased in this group. These changes in the evoked electrophysiological properties were accompanied by intrinsic hyperexcitability and lower spike-frequency adaptation and also a significant increase in the number of NADPH-diaphorase stained neurons in the hippocampal CA1 area of the VPA-exposed rats. Taken together, findings demonstrate that abnormal nociception and recognition memory is associated with alterations in the neuronal responsiveness and nitrergic system in a rat model of autism-like.
Collapse
Affiliation(s)
- Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razieh Hajisoltani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Asaad Karimi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Tehran, Iran
| | - Mehdi Borjkhani
- Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran
| | - Vahid Ahli Khatibi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Araújo LTFD, Reis MEMD, Andrade WMGD, Resende NDS, Lima RRMD, Nascimento ESD, Costa MSMDO, Cavalcante JC. Distribution of nitric oxide in the rock cavy (Kerodon rupestris) brain II: The brainstem. J Chem Neuroanat 2021; 116:101989. [PMID: 34126223 DOI: 10.1016/j.jchemneu.2021.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
In a recent paper, we described the distribution of Nitric oxide (NO) in the diencephalon of the rock cavy (Kerodon rupestris). This present paper follows this work, showing the distribution of NO synthesizing neurons in the rock cavy's brainstem. For this, we used immunohistochemistry against the neuronal form of nitric oxide synthase (NOS) and NADPH diaphorase histochemistry. In contrast to the diencephalon in the rock cavy, where the NOS neurons were seen to be limited to some nuclei in the thalamus and hypothalamus, the distribution of NOS in the brainstem is widespread. Neurons immunoreactive to NOS (NOS-ir) were seen as rostral as the precommissural nuclei and as caudal as the caudal and gelatinous parts of the spinal trigeminal nucleus. Places such as the raphe nuclei, trigeminal complex, superior and inferior colliculus, oculomotor complex, periaqueductal grey matter, solitary tract nucleus, laterodorsal tegmental nucleus, pedunculopontine tegmental, and other nuclei of the reticular formation are among the locations with the most NOS-ir neurons. This distribution is similar, but with some differences, to those described for other rodents, indicating that NO also has an important role in rock cavy's physiology.
Collapse
Affiliation(s)
- Lucimário Thiago Félix de Araújo
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maria Emanuela Martins Dos Reis
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Wylqui Mikael Gomes de Andrade
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Nayra da Silva Resende
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ruthnaldo Rodrigues Melo de Lima
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Expedito Silva do Nascimento
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Judney Cley Cavalcante
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
5
|
Silva C, McNaughton N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog Neurobiol 2019; 177:33-72. [DOI: 10.1016/j.pneurobio.2019.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/19/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
|
6
|
Shao L, Liu Y, Xiao J, Wang Q, Liu F, Ding J. Activating metabotropic glutamate receptor‑7 attenuates visceral hypersensitivity in neonatal maternally separated rats. Int J Mol Med 2018; 43:761-770. [PMID: 30569115 PMCID: PMC6317681 DOI: 10.3892/ijmm.2018.4022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence has indicated that metabotropic glutamate receptor-7 (mGluR7) is an important target for reducing anxiety and stress-associated behaviours. Notably, mood disorders exhibit high levels of comorbidity with gastrointestinal dysfunction; however, the role of mGluR7 outside of the central nervous system is currently unknown. Activating mGluR7 likely increases colonic secretory function. Therefore, the present study aimed to evaluate the possible effects of mGluR7 on the visceral hypersensitivity of irritable bowel syndrome (IBS) in rats. The expression levels of mGluR7 were assessed in the colon tissues of rats with neonatal maternal separation (NMS)-induced visceral hypersensitivity using reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry. In addition, the mGluR7 agonist AMN082 (3 or 10 mg/kg; i.p.) was administered 1 h prior to the visceral hypersensitivity test, and the effects of AMN082 were then observed on the nuclear factor (NF)-κB signalling pathway. The mRNA and protein expression levels of mGluR7 were upregulated in the colon mucosa of NMS rats compared with in normal control rats. Notably, administration of AMN082 (10 mg/kg) attenuated colorectal distension (CRD)-induced visceral hypersensitivity in NMS rats. In addition, interleukin-10 and transforming growth factor-β mRNA expression levels were upregulated, whereas interferon-γ mRNA expression levels were downregulated in the NMS + AMN082 group compared with in NMS rats. The number of cluster of differentiation 3+ T cells in the intestinal mucosa and myeloperoxidase activity were decreased in NMS + AMN082 rats. Furthermore, AMN082 treatment reduced the protein expression levels of phosphorylated-NF-κB in the colon tissue of NMS rats. These results indicated that activation of mGluR7 may attenuate CRD-induced visceral hypersensitivity in experimental IBS and reduce the abnormal immune cytokine response. In addition, it was suggested that the role of AMN082 in modulating the inflammatory response may be partially associated with inhibiting NF-κB activation. These data suggested that targeting mGluR7 may be useful in the treatment of stress-associated IBS.
Collapse
Affiliation(s)
- Limei Shao
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang 321000, P.R. China
| | - Yanbing Liu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, Shanghai 200092, P.R. China
| | - Junhua Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Qunying Wang
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang 321000, P.R. China
| | - Fei Liu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, Shanghai 200092, P.R. China
| | - Jin Ding
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
7
|
Tyrtyshnaia AA, Manzhulo IV, Sultanov RM, Ermolenko EV. Adult hippocampal neurogenesis in neuropathic pain and alkyl glycerol ethers treatment. Acta Histochem 2017; 119:812-821. [PMID: 29107326 DOI: 10.1016/j.acthis.2017.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/02/2017] [Accepted: 10/23/2017] [Indexed: 12/31/2022]
Abstract
Neuropathic pain manifested by a number of sensory symptoms is often accompanied by disorders of higher nervous activity, such as memory impairment, depression, anxiety, anhedonia, etc. This emphasizes the involvement of supraspinal structures including the hippocampus in neuropathic pain pathogenesis. In the present study, we focused on the impact of chronic neuropathic pain on hippocampal neurogenesis and microglial state. In addition, we test the effect of alkyl glycerol ethers on hippocampal neuronal and microglial plasticity as well as behavioral parameters. Neuropathic pain was induced using the model of sciatic nerve chronic constriction injury. We found an impairment of working memory and locomotor activity in animals with neuropathic pain, which was prevented by alkyl glycerol ethers treatment. Sciatic nerve ligation in mice contributed to the decrease in hippocampal neurogenesis intensity. Alkyl glycerol ethers administration significantly reduced this effect. Neuropathic pain-associated neurogenesis reduction was accompanied by an increased percentage of Iba1-labeled area in the CA1 hippocampal region on the 14th and 28th days after surgery. In addition, we observed a decrease in hippocampal pro-inflammatory microglia marker CD86 immunostaining on day 28 after surgery in alkyl glycerol ethers-treated mice with sciatic nerve ligation. These results are consistent with data on pro- and anti-inflammatory cytokines expression in the hippocampus. Alkyl glycerol ethers administration increased IL-10 and decreased IL-1β hippocampal expression in animals with neuropathic pain. Taken together, these data suggest that neuropathic pain-behavior in rodents is accompanied by changes in microglia polarization, thereby contributing to neurogenesis impairment and cognitive disturbances. Alkyl glycerol ethers prevented M1 microglial activation, contributing to the maintenance of normal neurogenesis levels within the hippocampus and normalizing working memory.
Collapse
Affiliation(s)
- Anna A Tyrtyshnaia
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str, 17, Vladivostok, 690041, Russian Federation; School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690091, Russian Federation.
| | - Igor V Manzhulo
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str, 17, Vladivostok, 690041, Russian Federation; School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690091, Russian Federation.
| | - Ruslan M Sultanov
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str, 17, Vladivostok, 690041, Russian Federation.
| | - Ekaterina V Ermolenko
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str, 17, Vladivostok, 690041, Russian Federation.
| |
Collapse
|
8
|
Yin JB, Wu HH, Dong YL, Zhang T, Wang J, Zhang Y, Wei YY, Lu YC, Wu SX, Wang W, Li YQ. Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray. Front Neural Circuits 2014; 8:137. [PMID: 25477786 PMCID: PMC4238372 DOI: 10.3389/fncir.2014.00137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 10/31/2014] [Indexed: 12/18/2022] Open
Abstract
The periaqueductal gray (PAG) modulates nociception via a descending pathway that relays in the rostral ventromedial medulla (RVM) and terminates in the spinal cord. Previous behavioral pharmacology and electrophysiological evidence suggests that brain-derived neurotrophic factor (BDNF) plays an important role in descending pain modulation, likely through the PAG-RVM pathway. However, detailed information is still lacking on the distribution of BDNF, activation of BDNF-containing neurons projecting to RVM in the condition of pain, and neurochemical properties of these neurons within the PAG. Through fluorescent in situ hybridization (FISH) and immunofluorescent staining, the homogenous distributions of BDNF mRNA and protein were observed in the four subregions of PAG. Both neurons and astrocytes expressed BDNF, but not microglia. By combining retrograde tracing methods and formalin pain model, there were more BDNF-containing neurons projecting to RVM being activated in the ventrolateral subregion of PAG (vlPAG) than other subregions of PAG. The neurochemical properties of BDNF-containing projection neurons in the vlPAG were investigated. BDNF-containing projection neurons expressed the autoreceptor TrkB in addition to serotonin (5-HT), neurotensin (NT), substance P (SP), calcitonin gene related peptide (CGRP), nitric oxide synthase (NOS), and parvalbumin (PV) but not tyrosine decarboxylase (TH). It is speculated that BDNF released from projection neurons in the vlPAG might participate in the descending pain modulation through enhancing the presynaptic release of other neuroactive substances (NSs) in the RVM.
Collapse
Affiliation(s)
- Jun-Bin Yin
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Huang-Hui Wu
- Department of Anesthesiology, Fuzhou General Hospital Affiliated to Fujian Medical University Fuzhou, China
| | - Yu-Lin Dong
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Ting Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Jian Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Yong Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Yan-Yan Wei
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Ya-Cheng Lu
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Sheng-Xi Wu
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Wen Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| |
Collapse
|
9
|
Barbaresi P, Mensà E, Lariccia V, Pugnaloni A, Amoroso S, Fabri M. Differential distribution of parvalbumin- and calbindin-D28K-immunoreactive neurons in the rat periaqueductal gray matter and their colocalization with enzymes producing nitric oxide. Brain Res Bull 2013; 99:48-62. [PMID: 24107244 DOI: 10.1016/j.brainresbull.2013.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
The distribution, colocalization with enzymes producing nitric oxide (NO), and the synaptic organization of neurons containing two calcium-binding proteins (CaBPs) - parvalbumin (Parv) and calbindin-D28K (Calb) - were investigated in the rat periaqueductal gray matter (PAG). Parv-immunopositive (ParvIP) neurons were detected in the mesencephalic nucleus and rarely in the PAG. CalbIP neurons were found both in the dorsolateral (PAG-dl) and ventrolateral PAG (PAG-vl); their size ranged from 112.96 μm(2) (PAG-dl) to 125.13 μm(2) (PAG-vl). Ultrastructurally Parv and Calb immunoreactivity was mostly found in dendritic profiles. Axon terminals containing each of the two CaBPs formed symmetric synapses. Moreover both Parv and Calb were used to label a subpopulation of NO-producing neurons. Colocalization was investigated using two protocols: (i) a combination of Calb and Parv immunocytochemistry (Icc) with nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry (Hi) and (ii) neuronal NO synthase-Icc (nNOS) (immunofluorescence). Both techniques demonstrated a complete lack of colocalization of Parv and NADPH-d/nNOS in PAG neurons. Double-labeled (DL) neurons (Calb-NADPH-d; Calb-nNOS) were detected in PAG-dl. NADPH-d-Hi/Calb-Icc indicated that 41-47% of NADPH-d-positive neurons contained Calb, whereas 17-23% of CalbIP cells contained NADPH-d. Two-color immunofluorescence revealed that 53-66% of nNOSIP cells colocalized with Calb and 24-34% of CalbIP neurons contained nNOS. DL neuron size was 104.44 μm(2); neurons labeled only with NADPH-d or Calb measured 89.793 μm(2) and 113.48 μm(2), respectively. Together with previous findings (Barbaresi et al. [2012]) these data suggest that: Therefore the important aspect of the PAG intrinsic organization emerging from this and previous double-labeling studies is the chemical diversity of NO-synthesizing neurons, which is likely related to the different functions in which these neurons are involved.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, I-60020 Ancona, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Damasceno F, Skinner GO, Araújo PC, Ferraz MMD, Tenório F, de Almeida OMMS. Nitric oxide modulates the hyperalgesic response to mechanical noxious stimuli in sleep-deprived rats. BMC Neurosci 2013; 14:92. [PMID: 23987566 PMCID: PMC3765713 DOI: 10.1186/1471-2202-14-92] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/22/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Sleep restriction alters pain perception in animals and humans, and many studies have indicated that paradoxical sleep deprivation (PSD) promotes hyperalgesia. The hyperalgesia observed after mechanical nociceptive stimulus is reversed through nitric oxide synthase (NOS) inhibition. Both nitric oxide (NO) and the dorsolateral periaqueductal gray matter (dlPAG) area of the brainstem are involved in hyperalgesia. Thus, in this work, we investigated the pain-related behavior response after mechanical noxious stimuli (electronic von Frey test), and the activity of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), an indicator of NOS activity, within the dlPAG of paradoxical sleep-deprived rats. We also evaluated the effects of pre-treatment with L-NAME on these parameters. RESULTS These data revealed that PSD reduced the hindpaw withdrawal threshold (-47%, p < 0.0001) confirming the hyperalgesic effect of this condition. In addition, there were more NADPH-d positive cells in dlPAG after PSD than in control rats (+ 59%, p < 0.0001). L-NAME treatment prevented the reduction in the hindpaw withdrawal threshold (+ 93%, p < 0.0001) and the increase in the NADPH-d positive cells number in the dlPAG of PSD-treated rats (-36%, p < 0.0001). CONCLUSION These data suggest that the hyperalgesic response to mechanical noxious stimuli in paradoxical sleep-deprived rats is associated with increased NOS activity in the dlPAG, which presumably influences the descending antinociceptive pathway.
Collapse
Affiliation(s)
- Fabio Damasceno
- Department of Pharmacology and Psychobiology, Institute of Biology, State University of Rio de Janeiro, Av. 28 de Setembro, 87-Fundos, 20551-030, Rio de Janeiro, Brazil
| | - Gabriela O Skinner
- Department of Pharmacology and Psychobiology, Institute of Biology, State University of Rio de Janeiro, Av. 28 de Setembro, 87-Fundos, 20551-030, Rio de Janeiro, Brazil
| | - Paulo C Araújo
- Department of Pharmacology and Psychobiology, Institute of Biology, State University of Rio de Janeiro, Av. 28 de Setembro, 87-Fundos, 20551-030, Rio de Janeiro, Brazil
| | - Marcia MD Ferraz
- Department of Pharmacology and Psychobiology, Institute of Biology, State University of Rio de Janeiro, Av. 28 de Setembro, 87-Fundos, 20551-030, Rio de Janeiro, Brazil
| | - Frank Tenório
- Department of Pharmacology and Psychobiology, Institute of Biology, State University of Rio de Janeiro, Av. 28 de Setembro, 87-Fundos, 20551-030, Rio de Janeiro, Brazil
| | - Olga MMS de Almeida
- Department of Pharmacology and Psychobiology, Institute of Biology, State University of Rio de Janeiro, Av. 28 de Setembro, 87-Fundos, 20551-030, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Smalls SL, Okere CO. Acute restraint increases varicosity density and reduces the inter-varicosity distance in NADPH diaphorase-containing neurons in the rat dorsolateral periaqueductal gray matter. Neurosci Lett 2012; 511:23-7. [PMID: 22285727 DOI: 10.1016/j.neulet.2012.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/07/2012] [Accepted: 01/10/2012] [Indexed: 11/16/2022]
Abstract
The periaqueductal gray (PAG) is important for the organization of organismal response to different types of stress and painful stimuli. Its dorsolateral (dlPAG) column is distinctly characterized by the presence of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), which in many brain regions, is an indication of constitutive nitric oxide (NO) synthase (NOS)-containing neurons. Different stress paradigms activate the dlPAG NOS machinery presumably by a presynaptic influence of NO on dlPAG neurons to modulate the nuclear dynamics to elicit an appropriate response. Since presynaptic components of synapses reside in axonal varicosities, this study assessed the number of varicosities and inter-varicosity spacing of NADPH-d neurons in the dlPAG of free-behaving (control) and acutely restrained male rats. The study tested the hypothesis that stress-induced increase in endogenous NO synthesis involved changes in synaptic density and inter-varicosity spacing and therefore, a non-synaptic component of NO involvement in the dlPAG response to stress. Compared with control, the number of NADPH-d-positive cells, the staining intensity and the number of varicosities per microgram tissue were significantly higher in restrained animals. Also, the inter-varicosity spacing was significantly higher in control than restrained rats, presumably due to the increase in varicosities induced by restraint. Since neural connectivity and synaptogenesis depend on mean varicosity spacing and pattern of varicosity, respectively, the present observations suggest a mechanism whereby restraint stress induces increased activity via synaptic and non-synaptic NO-mediated neurotransmission within the dlPAG.
Collapse
Affiliation(s)
- Shaneka L Smalls
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | | |
Collapse
|
12
|
Barbaresi P, Quaranta A, Amoroso S, Mensà E, Fabri M. Immunocytochemical localization of calretinin-containing neurons in the rat periaqueductal gray and colocalization with enzymes producing nitric oxide: a double, double-labeling study. Synapse 2011; 66:291-307. [PMID: 22121011 DOI: 10.1002/syn.21509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/11/2011] [Indexed: 11/06/2022]
Abstract
The pattern of distribution and colocalization of the calcium-binding protein calretinin (Cal) and of enzymes producing nitric oxide (NO) was examined in the rat periaqueductal gray matter (PAG) using two different experimental approaches, by combining Cal immunocytochemistry with NADPH-diaphorase (NADPH-d) histochemistry and with NOS immunocytochemistry, respectively. Cal-immunopositive neurons were found throughout the rostrocaudal extension of both dorsolateral (PAG-dl) and ventrolateral PAG (PAG-vl). Double-labeled neurons were found only in PAG-dl. The first experimental approach indicated that 33-41% of the NADPH-d-positive (Nadph+) cells were immunoreactive for Cal, whereas NADPH-d activity appeared in 19-26% of the Cal-immunopositive (Cal(IP) ) neurons. Two-color immunofluorescence revealed that ∼39-43% of NOS-immunoreactive (NOS(IR) ) neurons were double-labeled with Cal and ∼23% of Cal(IP) neurons expressed NOS immunoreactivity. Measurement in semithin sections of the size of the three neuronal populations found in PAG-dl, showed that Cal(IP) neurons had a cross-sectional area of 94.7 μm², whereas Nadph+ neurons and double-labeled neurons were slightly smaller, having a cross-sectional area of 90.5 and 91.4 μm², respectively. On electron microscopy, Cal(IP) axon terminals formed either symmetric or asymmetric synapses; although the latter synapses were more numerous, both types contacted preferentially Cal(IP) dendrites. These experiments suggest that PAG-dl is characterized by a high degree of heterogeneity.
Collapse
Affiliation(s)
- Paolp Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, I-60020 Ancona, Italy.
| | | | | | | | | |
Collapse
|
13
|
Dai C, Guandalini S, Zhao DH, Jiang M. Antinociceptive effect of VSL#3 on visceral hypersensitivity in a rat model of irritable bowel syndrome: a possible action through nitric oxide pathway and enhance barrier function. Mol Cell Biochem 2011; 362:43-53. [PMID: 22020749 DOI: 10.1007/s11010-011-1126-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 10/12/2011] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by visceral hypersensitivity and altered bowel function. There are increasing evidences suggested that VSL#3 probiotics therapy has been recognized as an effective method to relieve IBS-induced symptoms. The aim of this study was to examine the effects of VSL#3 probiotics on visceral hypersensitivity (VH), nitric oxide (NO), fecal character, colonic epithelium permeability, and tight junction protein expression. IBS model was induced by intracolonic instillation of 4% acetic acid and restraint stress in rats. After subsidence of inflammation on the seventh experimental day, the rats were subjected to rectal distension, and then the abdominal withdrawal reflex and the number of fecal output were measured, respectively. Also, colonic permeability to Evans blue was measured in vivo, and tight junction protein expression was studied by immunohistochemistry and immunoblotting method. Rats had been pretreated with VSL#3 or aminoguanidine (NOS inhibitor) or VSL#3+ aminoguanidine before measurements. The rats at placebo group showed hypersensitive response to rectal distension (P < 0.05) and defecated more stools than control rats (P < 0.05), whereas VSL#3 treatment significantly attenuated VH and effectively reduced defecation. Aminoguanidine reduced the protective effects of VSL#3 on VH. A pronounced increase in epithelial permeability and decreased expression of tight junction proteins (occludin, ZO-1) in placebo group were prevented by VSL#3, but not aminoguanidine. VSL#3 treatment reduce the hypersensitivity, defecation, colonic permeability and increase the expression of tight junction proteins (occludin, ZO-1). As the part of this effect was lowered by NOS inhibitor, NO might play a role in the protective effect of VSL#3 to some extent.
Collapse
Affiliation(s)
- Cong Dai
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | | | | | | |
Collapse
|
14
|
Effects of inducible nitric oxide synthase blockade within the periaqueductal gray on cardiovascular responses during mechanical, heat, and cold nociception. Neurol Sci 2011; 33:69-78. [DOI: 10.1007/s10072-011-0661-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/10/2011] [Indexed: 12/20/2022]
|
15
|
Effects of D-kyotorphin on nociception and NADPH-d neurons in rat's periaqueductal gray after immobilization stress. Amino Acids 2010; 41:937-44. [PMID: 21046177 DOI: 10.1007/s00726-010-0793-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/15/2010] [Indexed: 09/29/2022]
Abstract
D-kyotorphin (D-Kyo) is a synthetic analogue of the neuropeptide kyotorphin and produces naloxone reversible analgesia. Stress-induced analgesia (SIA) is an in-built mammalian pain-suppression response that occurs during or following exposure to a stressful stimulus. The periaqueductal gray (PAG) is implicated as a critical site for processing strategies for coping with different types of stress and pain and NO affects its activity. The objectives of the present study were twofold: (1) to examine the effects of D-Kyo (5 mg/kg) on acute immobilization SIA; (2) to investigate the effect of peptide on NO activity in rat PAG after the stress procedure mentioned above. All drugs were injected intraperitoneally in male Wistar rats. The nociception was measured by the paw pressure and hot plate tests. A histochemical procedure for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d)-reactive neurons was used as indirect marker of NO activity. Our results revealed that D-Kyo has modulating effects on acute immobilization stress-induced analgesia in rats may be by opioid and non-opioid systems. Although D-Kyo is incapable of crossing the blood-brain barrier it showed an increased number of NADPH-d reactive neurons in dorsolateral periaqueductal gray (dlPAG) in control but not in stressed groups. We may speculate that the effect of D-Kyo in the brain is due to structural and functional interaction between opioidergic and NO-ergic systems or D-Kyo appears itself as a stressor. Further studies are needed to clarify the exact mechanisms of its action.
Collapse
|
16
|
Shamshiri H, Paragomi P, Paydar MJ, Moezi L, Bahadori M, Behfar B, Ardalan FA, Dehpour AR. Antinociceptive effect of chronic lithium on visceral hypersensitivity in a rat model of diarrhea-predominant irritable bowel syndrome: The role of nitric oxide pathway. J Gastroenterol Hepatol 2009; 24:672-80. [PMID: 19032458 DOI: 10.1111/j.1440-1746.2008.05652.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Lithium, a widely used drug in bipolar-affective disorders, plays gastro-protective roles. The effects of lithium on several tissues are mediated through nitric oxide (NO), which regulates gastrointestinal motility and mucosal integrity. The aim of this study was to investigate the protective effect of chronic lithium administration on visceral hypersensitivity and to investigate the role of NO as a potential mechanism of lithium in a rat model of irritable bowel syndrome. METHODS Colitis was induced by the intracolonic administration of acetic acid. After subsidence of inflammation on the seventh experimental day, nociception and defecation parameters were measured. A subgroup of animals had been pretreated with lithium carbonate (600 mg/L) for 35 days. Thereafter, either a non-selective NO synthase (NOS) inhibitor (N-nitro-L-arginine methyl ester [L-NAME], 10 mg/kg), a selective NOS inhibitor (aminoguanidine, 100 mg/kg), or saline were administered intraperitoneally 1 h before measurements. RESULTS Chronic lithium attenuated the visceral hypersensitivity, increased the nociceptive threshold, and decreased stool frequency. L-NAME and aminoguanidine decreased the nociceptive threshold and reduced the protective effects of lithium on visceral hypersensitivity. Stool frequency was increased in both the lithium-treated and water-treated groups by L-NAME administration, but not aminoguanidine. The form of defecation in the lithium-treated rats shifted toward hard stools rather than being soft and formless, but NOS inhibitors did not change the stool consistency pattern. CONCLUSION The results indicate the antinociceptive property of chronic lithium on visceral hypersensitivity. As this effect was lowered by NOS inhibitors, NO might play a role in the protective effect of lithium to some extent.
Collapse
Affiliation(s)
- Hosein Shamshiri
- Basic Medical Sciences Research Center, Imam Khomeini Hospital, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chaitoff KA, Patel D, Ally A. Effects of endothelial NOS antagonism within the periaqueductal gray on cardiovascular responses and neurotransmission during mechanical, heat, and cold nociception. Brain Res 2008; 1236:93-104. [DOI: 10.1016/j.brainres.2008.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 07/25/2008] [Accepted: 08/05/2008] [Indexed: 11/27/2022]
|
18
|
Karlsson GA, Chaitoff KA, Hossain S, Böhlke M, Maher TJ, Ally A. Modulation of cardiovascular responses and neurotransmission during peripheral nociception following nNOS antagonism within the periaqueductal gray. Brain Res 2007; 1143:150-60. [PMID: 17320064 DOI: 10.1016/j.brainres.2007.01.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/19/2007] [Accepted: 01/20/2007] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO) within the dorsal periaqueductal gray matter (dPAG) attenuated cardiovascular responses and changes in the concentrations of glutamate during both mechanical and thermal nociceptive stimulation [Ishide, T., Amer, A., Maher, T.J., Ally, A., 2005. Nitric oxide within periaqueductal gray modulates glutamatergic neurotransmission and cardiovascular responses during mechanical and thermal stimuli. Neurosci. Res. 51, 93-103]. Nitric oxide is synthesized from l-arginine via the enzyme, NO synthase (NOS), which exists in 3 isoforms: endothelial (eNOS), neuronal (nNOS), and inducible (iNOS). In this study, we examined the role of nNOS within the dPAG on cardiovascular responses and extracellular glutamate and GABA concentrations during mechanical and thermal nociception in anesthetized rats. The noxious mechanical stimulus was applied by a bilateral hindpaw pinch for 5 s that increased mean arterial pressure (MAP) and heart rate (HR) by 24+/-4 mm Hg and 41+/-7 bpm, respectively (n=10). Extracellular glutamate levels within the dPAG increased by 10.7+/-1.3 ng/mul while GABA concentrations decreased by 1.9+/-0.5 ng/microl. Bilateral microdialysis of a selective nNOS antagonist, 1-(2-trifluoromethylphenyl)-imidazole (TRIM; 10.0 microM), into the dPAG had no effect on MAP, HR, glutamate and GABA values (P>0.05) during a mechanical stimulation. In a separate set of experiments, a noxious thermal stimulus was generated by immersing the metatarsus of a hindpaw in a water-bath at 52 degrees C for 5 s (n=10). Glutamate, MAP, and HR increased by 14.6+/-2 ng/microl, 45+/-6 mm Hg, and 47+/-7 bpm, while GABA decreased by 2.1+/-0.6 ng/microl. Administration of TRIM into the dPAG significantly enhanced the cardiovascular responses and glutamate increases (P<0.05) but further attenuated GABA changes (P<0.05) during subsequent thermal nociception. These results demonstrate that nNOS within the dPAG plays a differential role in modulating cardiovascular responses and glutamatergic/GABAergic neurotransmission during thermal and mechanical nociception.
Collapse
|
19
|
Okere CO, Waterhouse BD. Acute capsaicin injection increases nicotinamide adenine dinucleotide phosphate diaphorase staining independent of Fos activation in the rat dorsolateral periaqueductal gray. Neurosci Lett 2006; 404:288-93. [PMID: 16835009 DOI: 10.1016/j.neulet.2006.05.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 05/26/2006] [Indexed: 11/17/2022]
Abstract
The mesencephalic dorsolateral periaqueductal gray (dlPAG) mediates different modalities of aversive behaviors including pain and nociception and is anatomically delineated from other columns of the PAG by its content of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d). In many brain regions, neuronal NADPH-d is a nitric oxide (NO) synthase (NOS) and NO production mediates many nociceptive and aversive behavioral responses. The aim of this study was to determine how the noxious stimulant capsaicin affects intracellular dynamics in the dlPAG evidenced by Fos protein immunoreactivity (index of intracellular activation) and the NADPH-d reactivity. The basic hypothesis tested was that the effect of systemic capsaicin administration involved activation of the NO-producing machinery in the dlPAG. Compared to vehicle, capsaicin (50mg/kg, subcutaneous) significantly increased NADPH-d reactivity and Fos expression along the dlPAG neuraxis. However, less than one percent of the capsaicin-induced Fos activation occurred in NADPH-d-positive cells. This suggests that different intracellular mechanisms involving NO and activation of at least one other transmitter substance underlie the effects of capsaicin in the dlPAG. Although NADPH-d is a marker for constitutive NOS, only about two-thirds of the NADPH-d-positive neurons in the dlPAG were colocalized with neuronal NOS immunoreactive cells. This observation suggests that in contrast to other brain regions, neuronal NOS is unlikely to account for all NADPH-d activity in the dlPAG. Taken together, the present results show that the effect of capsaicin requires activation of at least one other transmitter and NADPH-d-dependent NO synthesis involving, but not limited to, the neuronal NOS isoform.
Collapse
Affiliation(s)
- Chuma O Okere
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | |
Collapse
|
20
|
Kuljis RO, Shapshak P, Alcabes P, Rodríguez de la Vega P, Fujimura R, Petito CK. Increased density of neurons containing NADPH diaphorase and nitric oxide synthase in the cerebral cortex of patients with HIV-1 infection and drug abuse. ACTA ACUST UNITED AC 2006; 2:19-36. [PMID: 16873197 DOI: 10.1300/j128v02n03_02] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To determine whether nitrogen monoxide (nitric oxide; NO) synthase (NOS) and NADPH diaphorase (NDP) co-containing cerebrocortical neurons (NOSN) neurons are affected in patients infected with human immunodeficiency virus type 1 (HIV-1) with and without associated intake of drugs of abuse, we examined the temporal neocortex of 24 individuals: 12 HIV-1 positive (including 3 drug users, 9 non-drug users) and 12 HIV-1 negative (including 6 drug users, and 6 non-drug users). Histochemical labeling for NDP-an enzymatic domain co-expressed in the NOS enzyme-was employed to visualize NOSN. Drug abuse and HIV-1 infection cause independently an increase in NOSN density, but combined they result in up to a 38-fold increase in NOSN density, suggesting that the combination of these factors induces NOS expression powerfully in neurons that normally do not synthesize NDP/NOS. This is associated with an increase in the proportion of NOSN displaying dystrophic changes, indicating that NOSN undergo massive degeneration in association with NOS synthesis induction. The increase in density of NOSN in HIV-1 infected drug abusers may be among the important sources of NO mediating cerebrocortical dysfunction, and the degeneration of NOS-containing local circuit neurons in patients with HIV-1 infection or drug abuse may underlie in part their neuropsychiatric manifestations.
Collapse
Affiliation(s)
- Rodrigo O Kuljis
- Deparment of Psychiatry and Behavioral Sciences, University of Miami School of Medicine, FL, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Jang MH, Shin MC, Koo GS, Lee CY, Kim EH, Kim CJ. Acupuncture decreases nitric oxide synthase expression in periaqueductal gray area of rats with streptozotocin-induced diabetes. Neurosci Lett 2003; 337:155-8. [PMID: 12536047 DOI: 10.1016/s0304-3940(02)01318-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Acupuncture has been used as a clinical treatment in Oriental medicine for various diseases including diabetes mellitus, one of the most common metabolic disorders in humans. In the present study, the effect of acupuncture on the expressions of neuronal nitric oxide synthase (nNOS) and nitric oxide synthase (NOS) in the dorsolateral periaqueductal gray (DL-PAG) area of rats with streptozotocin (STZ)-induced diabetes was investigated via nNOS immunohistochemistry and nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry. Enhanced expression of nNOS and NOS was detected in the DL-PAG of rats with STZ-induced diabetes, and acupunctural treatment at Zusanli acupoint suppressed the diabetes-induced enhancement in the expression of nNOS and NOS. The present results demonstrate that acupuncture is effective in the modulation of the expression of nNOS and NOS in the DL-PAG under diabetic conditions.
Collapse
Affiliation(s)
- Mi Hyeon Jang
- Department of Physiology, College of Medicine, Kyung Hee University, #1 Hoigi-dong, Dongdaemoon-gu, 130-701, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
22
|
De Oliveira RM, Del Bel EA, Guimarães FS. Effects of excitatory amino acids and nitric oxide on flight behavior elicited from the dorsolateral periaqueductal gray. Neurosci Biobehav Rev 2001; 25:679-85. [PMID: 11801293 DOI: 10.1016/s0149-7634(01)00050-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Microinjection of excitatory amino acids (EAA) into the dorsolateral periaqueductal gray (dlPAG) induces flight reactions while EAA antagonists show anxiolytic effects. Part of the effects mediated by NMDA receptors may involve an increase in nitric oxide (NO) production. We showed that nitric oxide synthase (NOS) inhibitors injected into the dlPAG induced anxiolytic effects. Conversely, SIN-1, a NO donor, produced orientated flight reactions that resemble stimulation of the medial hypothalamus. This compound also produced extensive Fos-like immunoreactivity in this region and in other areas related to defensive reactions such as the medial amygdala and cingulate cortex. Since part of the effects of NO involves increases in guanylate cyclase levels, we found that intra-dlPAG injection of 8-Br-cGMP induced a brief flight reaction followed by increased locomotion. In another experiment, we showed that single or repeated restraint stress produced an increased expression of neuronal NOS in the dlPAG and other areas related to defense, as measured by in situ hybridization, diaphorase histochemistry and immunocytochemistry. Together, these data suggest that NO may participate in the modulation of defensive responses in the dlPAG.
Collapse
Affiliation(s)
- R M De Oliveira
- Department of Pharmacology, School of Medicine, FMRP, Campus USP, 14049-900, SP, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
23
|
Clausen TR, Møller M, Woldbye DP. Inhibitory effect of neuropeptide Y on morphine withdrawal is accompanied by reduced c-fos expression in specific brain regions. J Neurosci Res 2001; 64:410-7. [PMID: 11340648 DOI: 10.1002/jnr.1092] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuropeptide Y (NPY) was previously shown in our laboratory to attenuate behavioral signs of morphine withdrawal. To further characterize the anti-withdrawal effect of NPY, the present study attempted to identify specific brain regions where NPY inhibits neuronal activity during withdrawal. Morphine dependence was induced in male Wistar rats by two daily subcutaneous injections of morphine at increasing doses, and the withdrawal syndrome was precipitated acutely by intraperitoneal administration of naloxone. Rats were pre-treated with an intracerebroventricular (icv) injection of NPY (12 nmol) or vehicle 30 min before the naloxone challenge. Withdrawal behavior was quantified using a point scoring technique based on motor- and non-motor-related signs. Brain areas involved in the attenuation of morphine withdrawal were delineated by radioactive in situ hybridization for the immediate early gene c-fos, which is a marker for neuronal activity. The present study confirmed the inhibitory effect of NPY on withdrawal behavior. Inhibition of behavioral signs of naloxone-precipitated morphine withdrawal was accompanied by significantly reduced c-fos expression in the locus coeruleus, lateral septal nucleus, ventral part of the periaqueductal grey, cingulate and frontal cortices, and septohippocampal nucleus. Our data suggest that neo- and allo-cortical areas as well as specific brainstem nuclei are involved in the anti-withdrawal effects of NPY.
Collapse
Affiliation(s)
- T R Clausen
- Laboratory of Neuropsychiatry, Department of Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
24
|
Silva E, Hernandez L, Contreras Q, Guerrero F, Alba G. Noxious stimulation increases glutamate and arginine in the periaqueductal gray matter in rats: a microdialysis study. Pain 2000; 87:131-135. [PMID: 10924806 DOI: 10.1016/s0304-3959(00)00275-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The periaqueductal gray matter (PAG) is an important center in the modulation of behavioral responses during nociception and stress. In the present experiment, extracellular excitatory amino acid overflow in the PAG was measured every 30 s during noxious stimulation. A combination of in vivo brain microdialysis in freely moving rats and capillary zone electrophoresis with laser induced-fluorescence detection allowed us to detect short lasting changes of excitatory amino acid in dialysates. A formalin injection in the hindpaw of the rat increased glutamate, arginine and aspartate concentration in PAG dialysates. This increase was calcium and nerve impulse-dependent, suggesting neuronal and glial origin of glutamate and arginine, respectively. Handling, pinching or saline injection in the hind paw did not increase glutamate showing that this neurochemical phenomenon is related to painful and persistent noxious stimulation. The results suggest that a rapid excitation of the PAG occurs during noxious stimulation. The role of glutamate and arginine in analgesia is discussed.
Collapse
Affiliation(s)
- Elizabeth Silva
- School of Medicine, Los Andes University, Merida, Venezuela Behavioral Physiology Laboratory, ULA, Merida, Venezuela Scientific Instrument Laboratory, Science Faculty, ULA, Merida, Venezuela
| | | | | | | | | |
Collapse
|
25
|
Rodella L, Rezzani R, Corsetti G, Bianchi R. Nitric oxide involvement in the trigeminal hyperalgesia in diabetic rats. Brain Res 2000; 865:112-5. [PMID: 10814740 DOI: 10.1016/s0006-8993(00)02235-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Trigeminal hyperalgesia frequently appears in diabetic neuralgia altering the transmission of orofacial sensory information. This study was designed to explore the effects of trigeminal hyperalgesia in streptozotocin-induced diabetes monitoring the expression of nitric oxide synthase in the trigeminal ganglion cells. The threshold to heat noxious stimuli decreased in diabetic animals. The number of NADPH-diaphorase (NADPH-d)-positive neurons significantly decreased in the diabetic rats compared with controls. Insulin treatment prevented the decreased nociceptive threshold and reduction of the number of NADPH-d-positive neurons. These findings point out that there is a relationship between the trigeminal nociceptive perception and NADPH-d neuronal expression suggesting that NO may play a role in the pathogenesis of trigeminal sensory neuropathy.
Collapse
Affiliation(s)
- L Rodella
- Department of Biomedical Sciences and Biotechnology, Division of Human Anatomy, University of Brescia, Via Valsabbina 19, 25124, Brescia, Italy
| | | | | | | |
Collapse
|
26
|
Kanazawa M, Nomura T, Fukudo S, Hongo M. Abnormal visceral perception in patients with functional dyspepsia: use of cerebral potentials evoked by electrical stimulation of the oesophagus. Neurogastroenterol Motil 2000; 12:87-94. [PMID: 10744446 DOI: 10.1046/j.1365-2982.2000.00183.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Altered visceral perception is thought to be included in the pathogenesis of functional dyspepsia. However, in previous studies, the assessment of visceral perception has been based solely on patients self-reported symptoms. Cerebral evoked potential (EP), either by mechanical or electrical stimulation (ES) of the visceral organ, is used to evaluate visceral perception via afferent neural pathways. In this study, we investigated the visceral perception in patients with functional dyspepsia by EP to eliminate the possibility of self-reported bias. EP responses were recorded by oesophageal ES at 37 cm from the nostril in 14 patients with functional dyspepsia and 14 normal healthy control subjects. Threshold levels of perception, peak latencies and peak-to-peak amplitudes of EP were evaluated. There was no difference in the sensory threshold between the dyspeptic patients and the control subjects (median 6 mA, range 2-12 mA, vs. 8 mA, range 6-14 mA; P= 0.09). There was a strong trend towards a decreased discomfort threshold in the patients when compared to the control subjects (median 14 mA, range 6-24 mA vs. 20 mA, range 14-26 mA; P = 0.05). The latency of the later EP peak (N2) among the patients (154 ¿ 4 ms) was significantly shorter than that of the control subjects (171 ¿ 3 ms, P < 0.01) although there was no difference between the earlier peaks (Ni and P1). There was also no difference in the amplitudes (Ni/Pi and P1/N2) of EP between the patients and the control subjects. Half of the patients (seven out of 14) complained of nausea during ES but the control subjects were unaffected. The latency of the first EP peak (Ni) in the patients with nausea was significantly shorter (66 ¿ 3 ms) than that of the patients without nausea (79 ¿ 4 ms, P 0.05) or among the control subjects (80 ¿ 3 ms, P < 0.05). These results suggest that dyspeptic patients may recruit a greater number of fast conducting myelinated nerve fibres that convey visceral afferent impulses to the brain and/or that dyspeptic patients may have an altered central processing of the visceral perception. We conclude that EP recording by oesophageal ES provides an objective measurement of altered visceral perception in patients with functional dyspepsia.
Collapse
Affiliation(s)
- M Kanazawa
- Department of Psychosomatic Medicine, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | |
Collapse
|
27
|
Rouzade ML, Anton P, Fioramonti J, Garcia-Villar R, Theodorou V, Bueno L. Reduction of the nociceptive response to gastric distension by nitrate ingestion in rats. Aliment Pharmacol Ther 1999; 13:1235-41. [PMID: 10468707 DOI: 10.1046/j.1365-2036.1999.00611.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
BACKGROUND Dietary nitrates are known to produce nitric oxide in the stomach, which may influence gastric function. AIM To investigate whether nitrate ingestion modifies gastric sensitivity to distension through a mechanism involving nitric oxide production. METHODS Nociception, associated with gastric distension ranging from 10 to 40 mmHg, was assessed in anaesthetized rats by the amplitude of cardiovascular depressor responses. Gastric volume corresponding to each distension was recorded. The following intragastric administrations (1 mL) were performed before distension: water (control), KNO3, NaNO3, KCl, NaCl (all at 0.1 mmol/kg), standard food (0.5 g), sodium nitroprusside, a nitric oxide donor (5 mg/kg), and haemoglobin, a nitric oxide scavenger (150 mg/kg) given either with water or KNO3. RESULTS In controls, the fall in blood pressure increased from 7.8 +/- 2.0 to 31.6 +/- 2. 7 mmHg at distending pressures from 10 to 40 mmHg, respectively. KNO3 significantly reduced the amplitude of blood pressure response for the highest distending pressures (35 and 40 mmHg), while KCl induced a reduction in blood pressure response at all gastric pressures. NaNO3 and NaCl did not induce significant changes in distension-induced depressor responses. Administration of 0.5 g of standard food or sodium nitroprusside reproduced the effect of KNO3, which was reversed by haemoglobin. None of the compounds modified the gastric pressure-volume relationship, except KNO3, which increased gastric volume for the lowest distending pressures, and haemoglobin, which reduced the volume for the highest pressure. CONCLUSIONS Ingestion of potassium nitrate reduces the sensitivity to gastric distension, through a mechanism involving nitric oxide.
Collapse
Affiliation(s)
- M L Rouzade
- Neuro-Gastroenterology & Nutrition Unit, Institut National de la Recherche Agronomique, Toulouse, France
| | | | | | | | | | | |
Collapse
|
28
|
Rodella L, Rezzani R, Agostini C, Bianchi R. Expression of NADPH-diaphorase and colocalization with Fos in the brain neurons of the rat following visceral noxious stimulation. Brain Res 1999; 834:173-7. [PMID: 10407110 DOI: 10.1016/s0006-8993(99)01434-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We used double staining immunocytochemical techniques to determine whether nitric oxide (NO) and Fos immunoreactivity induced by noxious visceral stimulation were colocalized in the neurons of the supraspinal areas. We observed a considerable increase in Fos-positive neurons in many brain areas after noxious stimulation but only 15% of the Fos-positive neurons colocalized Nicotinamide Adenine Dinucleotide Phosphate Diaphorase (NADPH-d). The NADPH-d positive cells showed perikarya and cytoplasmic processes laying next to or more frequently apposed to Fos-positive neurons. This anatomical finding supported the hypothesis that also at supraspinal level NO is released near the neurons specifically activated and diffuses through the source cells to act on adjacent neurons playing a role in the central processing of pain transmission and modulation.
Collapse
Affiliation(s)
- L Rodella
- Department of Biomedical Sciences and Biotechnology, Division of Human Anatomy, University of Brescia, Via Valsabbina 19, 25124 Brescia, Italy
| | | | | | | |
Collapse
|
29
|
|