1
|
Alecki C, Rizwan J, Le P, Jacob-Tomas S, Fernandez-Comaduran M, Verbrugghe M, Xu JSM, Minotti S, Lynch J, Biswas J, Wu T, Durham H, Yeo GW, Vera M. Localized synthesis of molecular chaperones sustains neuronal proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560761. [PMID: 37873158 PMCID: PMC10592939 DOI: 10.1101/2023.10.03.560761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Neurons are challenged to maintain proteostasis in neuronal projections, particularly with the physiological stress at synapses to support intercellular communication underlying important functions such as memory and movement control. Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. Using high-resolution fluorescent microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites, particularly more proximal regions, and increase this asymmetric localization following proteotoxic stress through microtubule-based transport from the soma. The most abundant chaperone mRNA in dendrites encodes the constitutive heat shock protein 70, HSPA8. Proteotoxic stress in cultured neurons, induced by inhibiting proteasome activity or inducing oxidative stress, enhanced transport of Hspa8 mRNAs to dendrites and the percentage of mRNAs engaged in translation on mono and polyribosomes. Knocking down the ALS-related protein Fused in Sarcoma (FUS) and a dominant mutation in the heterogenous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) impaired stress-mediated localization of Hspa8 mRNA to dendrites in cultured murine motor neurons and human iPSC-derived neurons, respectively, revealing the importance of these RNA-binding proteins in maintaining proteostasis. These results reveal the increased dendritic localization and translation of the constitutive HSP70 Hspa8 mRNA as a crucial neuronal stress response to uphold proteostasis and prevent neurodegeneration.
Collapse
|
2
|
Ugalde MV, Alecki C, Rizwan J, Le P, Jacob-Tomas S, Xu JM, Minotti S, Wu T, Durham H, Yeo G. Localized molecular chaperone synthesis maintains neuronal dendrite proteostasis. RESEARCH SQUARE 2023:rs.3.rs-3673702. [PMID: 38168440 PMCID: PMC10760236 DOI: 10.21203/rs.3.rs-3673702/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress. The most abundant dendritic chaperone mRNA encodes a constitutive heat shock protein 70 family member (HSPA8). Proteotoxic stress also enhanced HSPA8 mRNA translation efficiency in dendrites. Stress-mediated HSPA8 mRNA localization to the dendrites was impaired by depleting fused in sarcoma-an amyotrophic lateral sclerosis-related protein-in cultured mouse motor neurons and expressing a pathogenic variant of heterogenous nuclear ribonucleoprotein A2/B1 in neurons derived from human induced pluripotent stem cells. These results reveal a crucial and unexpected neuronal stress response in which RNA-binding proteins increase the dendritic localization of HSPA8 mRNA to maintain proteostasis and prevent neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gene Yeo
- University of California, San Diego
| |
Collapse
|
3
|
Wang Q, Xu Y, Xiao C, Zhu F. The effect of white spot syndrome virus (WSSV) envelope protein VP28 on innate immunity and resistance to white spot syndrome virus in Cherax quadricarinatus. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108795. [PMID: 37149234 DOI: 10.1016/j.fsi.2023.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
VP28 is the most abundant membrane protein of WSSV, and the recombinant protein VP28 (VP26 or VP24) was constructed for the immune protection experiment in this study. Crayfish were immunized by intramuscular injection of recombinant protein V28 (VP26 or VP24) at a dose of 2 μg/g. The survival rate of crayfish immunized by VP28 showed a higher value than by VP26 or VP24 after WSSV challenge. Compared with the WSSV-positive control group, the VP28-immunized group could inhibit the replication of WSSV in crayfish, increasing the survival rate of crayfish to 66.67% after WSSV infection. The results of gene expression showed that VP28 treatment could enhance the expression of immune genes, mainly JAK and STAT genes. VP28 treatment also enhanced total hemocyte counts and enzyme activities including PO, SOD, and CAT in crayfish. VP28 treatment reduced the apoptosis of hemocytes in crayfish, as well as after WSSV infection. In conclusion, VP28 treatment can enhance the innate immunity of crayfish and has a significant effect on resistance to WSSV, and can be used as a preventive tool.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Chongyang Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
4
|
Heat shock proteins and the calcineurin-crz1 signaling regulate stress responses in fungi. Arch Microbiol 2022; 204:240. [PMID: 35377020 DOI: 10.1007/s00203-022-02833-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022]
Abstract
The heat shock proteins (Hsps) act as a molecular chaperone to stabilize client proteins involved in various cell functions in fungi. Hsps are classified into different families such as HSP90, HSP70, HSP60, HSP40, and small HSPs (sHsps). Hsp90, a well-studied member of the Hsp family proteins, plays a role in growth, cell survival, and pathogenicity in fungi. Hsp70 and sHsps are involved in the development, tolerance to stress conditions, and drug resistance in fungi. Hsp60 is a mitochondrial chaperone, and Hsp40 regulates fungal ATPase machinery. In this review, we describe the cell functions, regulation, and the molecular link of the Hsps with the calcineurin-crz1 calcium signaling pathway for their role in cell survival, growth, virulence, and drug resistance in fungi and related organisms.
Collapse
|
5
|
Mi J, Yang Y, Yao H, Huan Z, Xu C, Ren Z, Li W, Tang Y, Fu R, Ge X. Inhibition of heat shock protein family A member 8 attenuates spinal cord ischemia-reperfusion injury via astrocyte NF-κB/NLRP3 inflammasome pathway : HSPA8 inhibition protects spinal ischemia-reperfusion injury. J Neuroinflammation 2021; 18:170. [PMID: 34362408 PMCID: PMC8349068 DOI: 10.1186/s12974-021-02220-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022] Open
Abstract
Background Astrocyte over-activation and extensive neuron loss are the main characteristic pathological features of spinal cord ischemia–reperfusion injury (SCII). Prior studies have placed substantial emphasis on the role of heat shock protein family A member 8 (HSPA8) on postischemic myocardial inflammation and cardiac dysfunction. However, it has never been determined whether HSPA8 participates in astrocyte activation and thus mediated neuroinflammation associated with SCII. Methods The left renal artery ligation-induced SCII rat models and oxygen–glucose deprivation and reoxygenation (OGD/R)-induced rat primary cultured astrocytes were established. The lentiviral vector encoding short hairpin RNA targeting HSPA8 was delivered to the spinal cord by intrathecal administration or to culture astrocytes. Then, the spinal neuron survival, gliosis, and nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome and its related pro-inflammatory cytokines were analyzed. Results SCII significantly enhanced the GFAP and HSPA8 expression in the spinal cord, resulting in blood–brain barrier breakdown and the dramatical loss of spinal neuron and motor function. Moreover, injury also increased spinal nuclear factor-kappa B (NF-κB) p65 phosphorylation, NLRP3 inflammasome-mediated caspase-1 activation, and subsequent interleukin (IL)-1β as well as IL-18 secretion. Silencing the HSPA8 expression efficiently ameliorated the spinal cord tissue damage and promoted motor function recovery after SCII, through blockade of the astrocyte activation and levels of phosphorylated NF-κB, NLRP3, caspase-1, IL-1β, and IL-18. Further in vitro studies confirmed that HSPA8 knockdown protected astrocytes from OGD/R-induced injury via the blockade of NF-κB and NLRP3 inflammasome activation. Conclusion Our findings indicate that knockdown of HSPA8 inhibits spinal astrocytic damage after SCII, which may provide a promising therapeutic strategy for SCII treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02220-0.
Collapse
Affiliation(s)
- Jingyi Mi
- Department of Sports Medicine, Wuxi 9Th Affiliated Hospital of Soochow University, Wuxi, 214000, Jiangsu, China
| | - Yang Yang
- Department of Neurosurgery, Central Hospital of Jinzhou, Jinzhou, 121001, Liaoning, China
| | - Hao Yao
- Department of ICU, Wuxi 9Th Affiliated Hospital of Soochow University, Wuxi, 214000, Jiangsu, China
| | - Zhirong Huan
- Department of ICU, Wuxi 9Th Affiliated Hospital of Soochow University, Wuxi, 214000, Jiangsu, China
| | - Ce Xu
- Department of ICU, Wuxi 9Th Affiliated Hospital of Soochow University, Wuxi, 214000, Jiangsu, China
| | - Zhiheng Ren
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Ying Tang
- Department of Microbiology, Biochemistry, & Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, 07103, NJ, USA.,Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Xin Ge
- Department of ICU, Wuxi 9Th Affiliated Hospital of Soochow University, Wuxi, 214000, Jiangsu, China. .,Orthopedic Institution of Wuxi City, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
6
|
Role of a Heat Shock Transcription Factor and the Major Heat Shock Protein Hsp70 in Memory Formation and Neuroprotection. Cells 2021; 10:cells10071638. [PMID: 34210082 PMCID: PMC8305005 DOI: 10.3390/cells10071638] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Heat shock proteins (Hsps) represent the most evolutionarily ancient, conserved, and universal system for protecting cells and the whole body from various types of stress. Among Hsps, the group of proteins with a molecular weight of 70 kDa (Hsp70) plays a particularly important role. These proteins are molecular chaperones that restore the native conformation of partially denatured proteins after exposure to proteotoxic forms of stress and are critical for the folding and intracellular trafficking of de novo synthesized proteins under normal conditions. Hsp70s are expressed at high levels in the central nervous system (CNS) of various animals and protect neurons from various types of stress, including heat shock, hypoxia, and toxins. Numerous molecular and behavioral studies have indicated that Hsp70s expressed in the CNS are important for memory formation. These proteins contribute to the folding and transport of synaptic proteins, modulate signaling cascades associated with synaptic activation, and participate in mechanisms of neurotransmitter release. In addition, HSF1, a transcription factor that is activated under stress conditions and mediates Hsps transcription, is also involved in the transcription of genes encoding many synaptic proteins, whose levels are increased in neurons under stress and during memory formation. Thus, stress activates the molecular mechanisms of memory formation, thereby allowing animals to better remember and later avoid potentially dangerous stimuli. Finally, Hsp70 has significant protective potential in neurodegenerative diseases. Increasing the level of endogenous Hsp70 synthesis or injecting exogenous Hsp70 reduces neurodegeneration, stimulates neurogenesis, and restores memory in animal models of ischemia and Alzheimer’s disease. These findings allow us to consider recombinant Hsp70 and/or Hsp70 pharmacological inducers as potential drugs for use in the treatment of ischemic injury and neurodegenerative disorders.
Collapse
|
7
|
Zatsepina OG, Nikitina EA, Shilova VY, Chuvakova LN, Sorokina S, Vorontsova JE, Tokmacheva EV, Funikov SY, Rezvykh AP, Evgen'ev MB. Hsp70 affects memory formation and behaviorally relevant gene expression in Drosophila melanogaster. Cell Stress Chaperones 2021; 26:575-594. [PMID: 33829398 PMCID: PMC8065088 DOI: 10.1007/s12192-021-01203-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins, in particular Hsp70, play a central role in proteostasis in eukaryotic cells. Due to its chaperone properties, Hsp70 is involved in various processes after stress and under normal physiological conditions. In contrast to mammals and many Diptera species, inducible members of the Hsp70 family in Drosophila are constitutively synthesized at a low level and undergo dramatic induction after temperature elevation or other forms of stress. In the courtship suppression paradigm used in this study, Drosophila males that have been repeatedly rejected by mated females during courtship are less likely than naive males to court other females. Although numerous genes with known function were identified to play important roles in long-term memory, there is, to the best of our knowledge, no direct evidence implicating Hsp70 in this process. To elucidate a possible role of Hsp70 in memory formation, we used D. melanogaster strains containing different hsp70 copy numbers, including strains carrying a deletion of all six hsp70 genes. Our investigations exploring the memory of courtship rejection paradigm demonstrated that a low constitutive level of Hsp70 is apparently required for learning and the formation of short and long-term memories in males. The performed transcriptomic studies demonstrate that males with different hsp70 copy numbers differ significantly in the expression of a few definite groups of genes involved in mating, reproduction, and immunity in response to rejection. Specifically, our analysis reveals several major pathways that depend on the presence of hsp70 in the genome and participate in memory formation and consolidation, including the cAMP signaling cascade.
Collapse
Affiliation(s)
- O G Zatsepina
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - E A Nikitina
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Department of Human and Animal Anatomy and Physiology, Herzen State Pedagogical University, St. Petersburg, Russia
| | - V Y Shilova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - L N Chuvakova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - S Sorokina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - J E Vorontsova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - E V Tokmacheva
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - S Y Funikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - A P Rezvykh
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
8
|
Gene expression in the epileptic (EL) mouse hippocampus. Neurobiol Dis 2020; 147:105152. [PMID: 33153970 DOI: 10.1016/j.nbd.2020.105152] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 11/24/2022] Open
Abstract
The neuropathology of hippocampal seizure foci in human temporal lobe epilepsy (TLE) and several animal models of epilepsy reveal extensive neuronal loss along with astrocyte and microglial activation. Studies of these models have advanced hypotheses that propose both pathological changes are essential for seizure generation. However, some seizure foci in human TLE show an extreme loss of neurons in all hippocampal fields, giving weight to hypotheses that favor neuroglia as major players. The epileptic (EL) mouse is a seizure model in which there is no observable neuron loss but associated proliferation of microglia and astrocytes and provides a good model to study the role of activated neuroglia in the presence of an apparently normal population of neurons. While many studies have been carried out on the EL mouse, there is a paucity of studies on the molecular changes in the EL mouse hippocampus, which may provide insight on the role of neuroglia in epileptogenesis. In this paper we have applied high throughput gene expression analysis to identify the molecular changes in the hippocampus that may explain the pathological processes. We have observed several classes of genes whose expression levels are changed. It is hypothesized that the upregulation of heat shock proteins (HSP70, HSP72, FOSL2 (HSP40), and their molecular chaperones BAG3 and DNAJB5 along with the down regulated gene MALAT1 may contribute to the neuroprotection observed. The increased expression of BDNF along with immediate early gene expression (FosB, JunB, ERG4, NR4A1, NR4A2, FBXO3) and the down regulation of GABRD, DBP and MALAT1 it is hypothesized may contribute to the hyperexcitability of the hippocampal neurons in this model. Activated astrocytes and microglia may also contribute to excitability pathomechanisms. Activated astrocytes in the ELS mouse are deficient in glutamine synthetase and thus reduce the clearance of extracellular glutamate. Activated microglia which may be associated with C1Q and MHC class I molecules we propose may mediate a process of selective removal of defective GABAergic synapses through a process akin to trogocytosis that may reduce neuronal inhibition and favor hyperexcitability.
Collapse
|
9
|
Gupta A, Bansal A, Hashimoto-Torii K. HSP70 and HSP90 in neurodegenerative diseases. Neurosci Lett 2020; 716:134678. [PMID: 31816334 PMCID: PMC7336893 DOI: 10.1016/j.neulet.2019.134678] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
Molecular chaperones have a role to stabilize proteins or assist them in reaching their native fold. Heat shock proteins (HSPs) are a family of molecular chaperons that protect proteins from cellular stress during the assembly of protein complexes and also prevent the proteins from aggregation and disassembly. The immediate increase of HSPs is crucial for cellular adaptation to environmental changes and protection of other proteins from denaturation, thereby maintaining the cellular homeostasis and increasing the longevity of an organism. HSP70 and HSP90 are the most studied HSPs in this very large HSP family. Notably, HSP90 also stabilizes the disease-related proteins in neurodegenerative disorders. Therefore, small molecules that inhibit the HSP90 but also increase the HSP70 has been tested as potential drugs for neurodegenerative disorders.
Collapse
Affiliation(s)
- Abha Gupta
- University Institute of Biotechnology, Chandigarh University, Gharuan, 140413, India
| | - Ankush Bansal
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20010, USA.
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20010, USA; Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
10
|
Truncating biallelic variant in DNAJA1, encoding the co-chaperone Hsp40, is associated with intellectual disability and seizures. Neurogenetics 2019; 20:109-115. [PMID: 30972502 DOI: 10.1007/s10048-019-00573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Intellectual disability poses a huge burden on the health care system, and it is one of the most common referral reasons to the genetic and child neurology clinic. Intellectual disability (ID) is genetically heterogeneous, and it is associated with several other neurological conditions. Exome sequencing is a robust genetic tool and has revolutionized the process of molecular diagnosis and novel gene discovery. Besides its diagnostic clinical value, novel gene discovery is prime in reverse genetics, when human mutations help to understand the function of a gene and may aid in better understanding of the human brain and nervous system. Using WES, we identified a biallelic truncating variant in DNAJA1 gene (c.511C>T p.(Gln171*) in a multiplex Saudi consanguineous family. The main phenotype shared between the siblings was intellectual disability and seizure disorder.
Collapse
|
11
|
Porto RR, de Oliveira Alvares L. Role of HSP70 in Plasticity and Memory. HEAT SHOCK PROTEINS IN NEUROSCIENCE 2019. [DOI: 10.1007/978-3-030-24285-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Zhang R, Liu C, Cao Y, Jamal M, Chen X, Zheng J, Li L, You J, Zhu Q, Liu S, Dai J, Cui M, Fu ZF, Cao G. Rabies viruses leader RNA interacts with host Hsc70 and inhibits virus replication. Oncotarget 2018; 8:43822-43837. [PMID: 28388579 PMCID: PMC5546443 DOI: 10.18632/oncotarget.16517] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/13/2017] [Indexed: 12/25/2022] Open
Abstract
Viruses have been shown to be equipped with regulatory RNAs to evade host defense system. It has long been known that rabies virus (RABV) transcribes a small regulatory RNA, leader RNA (leRNA), which mediates the transition from viral RNA transcription to replication. However, the detailed molecular mechanism remains enigmatic. In the present study, we determined the genetic architecture of RABV leRNA and demonstrated its inhibitory effect on replication of wild-type rabies, DRV-AH08. The RNA immunoprecipitation results suggest that leRNA inhibits RABV replication via interfering the binding of RABV nucleoprotein with genomic RNA. Furthermore, we identified heat shock cognate 70 kDa protein (Hsc70) as a leRNA host cellular interacting protein, of which the expression level was dynamically regulated by RABV infection. Notably, our data suggest that Hsc70 was involved in suppressing RABV replication by leader RNA. Finally, our experiments imply that leRNA might be potentially useful as a novel drug in rabies post-exposure prophylaxis. Together, this study suggested leRNA in concert with its host interacting protein Hsc70, dynamically down-regulate RABV replication.
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuangang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunzi Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Jamal
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinfang Zheng
- Department of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing You
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyong Liu
- Department of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinxia Dai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Frinchi M, Scaduto P, Cappello F, Belluardo N, Mudò G. Heat shock protein (Hsp) regulation by muscarinic acetylcholine receptor (mAChR) activation in the rat hippocampus. J Cell Physiol 2018; 233:6107-6116. [DOI: 10.1002/jcp.26454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| | - Pietro Scaduto
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neurosciences, div. of AnatomyUniversity of PalermoPalermoItaly
- Euro‐Mediterranean Institute of Science and TechnologyPalermoItaly
- Department of BiologyTemple UniversityPhiladelphiaPennsylvania
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| |
Collapse
|
14
|
Porto RR, Dutra FD, Crestani AP, Holsinger RMD, Quillfeldt JA, Homem de Bittencourt PI, de Oliveira Alvares L. HSP70 Facilitates Memory Consolidation of Fear Conditioning through MAPK Pathway in the Hippocampus. Neuroscience 2018; 375:108-118. [PMID: 29374537 DOI: 10.1016/j.neuroscience.2018.01.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 01/08/2023]
Abstract
Heat shock proteins of the 70-kDa (HSP70) family are cytoprotective molecular chaperones that are present in neuronal cells and can be induced by a variety of homeostatically stressful situations (not only proteostatic insults), but also by synaptic activity, including learning tasks. Physiological stimuli that induce long-term memory formation are also capable of stimulating the synthesis of HSP70 through the activation of heat shock transcription factor-1 (HSF1). In this study, we investigated the influence of HSP70 on fear memory consolidation and MAPK activity. Male rats were trained in contextual fear conditioning task and HSP70 content was analyzed by western blot in the hippocampus at different time points. We observed rapid and transient elevations in HSP70 60 min following training. Double immunofluorescence with GFAP and HSP72 revealed that astrocytes were not the site for HSP72 induction by CFC training. HSP72 distribution markedly surrounded synapses between Shaffer collateral and CA1 pyramidal cells. Infusion of recombinant HSP70 (hspa1a) into the dorsal hippocampus immediately after training facilitated memory consolidation and enhanced ERK activity while decreasing the activated forms of JNK and p38 in the hippocampus. Blocking endogenous extracellular HSP70 through the administration of specific antibody did not produce any further effect on memory consolidation when applied immediately after training, suggesting that it is indeed acting intracellularly. Induction of HSP70 after fear conditioning is fast and can act as a signaling molecule, modulating MAPK downstream signaling during memory consolidation in the hippocampus, which is crucial for fear memory formation.
Collapse
Affiliation(s)
- Rossana R Porto
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Laboratory of Cellular Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil; Laboratory of Molecular Neuroscience and Dementia, Brain & Mind Centre, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Fabrício D Dutra
- Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - Ana Paula Crestani
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - R M Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, Brain & Mind Centre, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Jorge A Quillfeldt
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil.
| |
Collapse
|
15
|
Gorenberg EL, Chandra SS. The Role of Co-chaperones in Synaptic Proteostasis and Neurodegenerative Disease. Front Neurosci 2017; 11:248. [PMID: 28579939 PMCID: PMC5437171 DOI: 10.3389/fnins.2017.00248] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
Synapses must be preserved throughout an organism's lifespan to allow for normal brain function and behavior. Synapse maintenance is challenging given the long distances between the termini and the cell body, reliance on axonal transport for delivery of newly synthesized presynaptic proteins, and high rates of synaptic vesicle exo- and endocytosis. Hence, synapses rely on efficient proteostasis mechanisms to preserve their structure and function. To this end, the synaptic compartment has specific chaperones to support its functions. Without proper synaptic chaperone activity, local proteostasis imbalances lead to neurotransmission deficits, dismantling of synapses, and neurodegeneration. In this review, we address the roles of four synaptic chaperones in the maintenance of the nerve terminal, as well as their genetic links to neurodegenerative disease. Three of these are Hsp40 co-chaperones (DNAJs): Cysteine String Protein alpha (CSPα; DNAJC5), auxilin (DNAJC6), and Receptor-Mediated Endocytosis 8 (RME-8; DNAJC13). These co-chaperones contain a conserved J domain through which they form a complex with heat shock cognate 70 (Hsc70), enhancing the chaperone's ATPase activity. CSPα is a synaptic vesicle protein known to chaperone the t-SNARE SNAP-25 and the endocytic GTPase dynamin-1, thereby regulating synaptic vesicle exocytosis and endocytosis. Auxilin binds assembled clathrin cages, and through its interactions with Hsc70 leads to the uncoating of clathrin-coated vesicles, a process necessary for the regeneration of synaptic vesicles. RME-8 is a co-chaperone on endosomes and may have a role in clathrin-coated vesicle endocytosis on this organelle. These three co-chaperones maintain client function by preserving folding and assembly to prevent client aggregation, but they do not break down aggregates that have already formed. The fourth synaptic chaperone we will discuss is Heat shock protein 110 (Hsp110), which interacts with Hsc70, DNAJAs, and DNAJBs to constitute a disaggregase. Hsp110-related disaggregase activity is present at the synapse and is known to protect against aggregation of proteins such as α-synuclein. Congruent with their importance in the nervous system, mutations of these co-chaperones lead to familial neurodegenerative disease. CSPα mutations cause adult neuronal ceroid lipofuscinosis, while auxilin mutations result in early-onset Parkinson's disease, demonstrating their significance in preservation of the nervous system.
Collapse
Affiliation(s)
- Erica L Gorenberg
- Interdepartmental Neuroscience Program, Yale UniversityNew Haven, CT, United States
| | - Sreeganga S Chandra
- Department of Neurology, Yale UniversityNew Haven, CT, United States.,Department of Neuroscience, Yale UniversityNew Haven, CT, United States
| |
Collapse
|
16
|
Bittencourt A, Porto RR. eHSP70/iHSP70 and divergent functions on the challenge: effect of exercise and tissue specificity in response to stress. Clin Physiol Funct Imaging 2015; 37:99-105. [DOI: 10.1111/cpf.12273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/01/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Aline Bittencourt
- Department of Biochemistry; Institute of Basic Health Sciences; Federal University of Rio Grande do Sul (UFRGS); Porto Alegre RS Brazil
| | - Rossana Rosa Porto
- Department of Neuroscience; Institute of Basic Health Sciences; Federal University of Rio Grande do Sul (UFRGS); Porto Alegre RS Brazil
| |
Collapse
|
17
|
Zhao L, Sakagami H, Suzuki T. Detergent-dependent separation of postsynaptic density, membrane rafts and other subsynaptic structures from the synaptic plasma membrane of rat forebrain. J Neurochem 2014; 131:147-62. [PMID: 24985044 DOI: 10.1111/jnc.12807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/13/2014] [Accepted: 06/30/2014] [Indexed: 02/07/2023]
Abstract
We systematically investigated the purification process of post-synaptic density (PSD) and post-synaptic membrane rafts (PSRs) from the rat forebrain synaptic plasma membranes by examining the components and the structures of the materials obtained after the treatment of synaptic plasma membranes with TX-100, n-octyl β-d-glucoside (OG) or 3-([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO). These three detergents exhibited distinct separation profiles for the synaptic subdomains. Type I and type II PSD proteins displayed mutually exclusive distribution. After TX-100 treatment, type I PSD was recovered in two fractions: a pellet and an insoluble fraction 8, which contained partially broken PSD-PSR complexes. Conventional PSD was suggested to be a mixture of these two PSD pools and did not contain type II PSD. An association of type I PSD with PSRs was identified in the TX-100 treatment, and those with type II PSD in the OG and CHAPSO treatments. An association of GABA receptors with gephyrin was easily dissociated. OG at a high concentration solubilized the type I PSD proteins. CHAPSO treatment resulted in a variety of distinct fractions, which contained certain novel structures. Two different pools of GluA, either PSD or possibly raft-associated, were identified in the OG and CHAPSO treatments. These results are useful in advancing our understanding of the structural organization of synapses at the molecular level. We systematically investigated the purification process of post-synaptic density (PSD) and synaptic membrane rafts by examining the structures obtained after treatment of the SPMs with TX-100, n-octyl β-d-glucoside or CHAPSO. Differential distribution of type I and type II PSD, synaptic membrane rafts, and other novel subdomains in the SPM give clues to understand the structural organization of synapses at the molecular level.
Collapse
Affiliation(s)
- LiYing Zhao
- Department of Neuroplasticity, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Shinshu University Academic Assembly, Matsumoto, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tatsuo Suzuki
- Department of Neuroplasticity, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Shinshu University Academic Assembly, Matsumoto, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| |
Collapse
|
18
|
Klenke C, Widera D, Engelen T, Müller J, Noll T, Niehaus K, Schmitz ML, Kaltschmidt B, Kaltschmidt C. Hsc70 is a novel interactor of NF-kappaB p65 in living hippocampal neurons. PLoS One 2013; 8:e65280. [PMID: 23762333 PMCID: PMC3676459 DOI: 10.1371/journal.pone.0065280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/23/2013] [Indexed: 12/29/2022] Open
Abstract
Signaling via NF-κB in neurons depends on complex formation with interactors such as dynein/dynactin motor complex and can be triggered by synaptic activation. However, so far a detailed interaction map for the neuronal NF-κB is missing. In this study we used mass spectrometry to identify novel interactors of NF-κB p65 within the brain. Hsc70 was identified as a novel neuronal interactor of NF-κB p65. In HEK293 cells, a direct physical interaction was shown by co-immunoprecipitation and verified via in situ proximity ligation in healthy rat neurons. Pharmacological blockade of Hsc70 by deoxyspergualin (DSG) strongly decreased nuclear translocation of NF-κB p65 and transcriptional activity shown by reporter gene assays in neurons after stimulation with glutamate. In addition, knock down of Hsc70 via siRNA significantly reduced neuronal NF-κB activity. Taken together these data provide evidence for Hsc70 as a novel neuronal interactor of NF-κB p65.
Collapse
Affiliation(s)
| | - Darius Widera
- Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Thomas Engelen
- Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Janine Müller
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | - Thomas Noll
- Cell Culture Technology, University of Bielefeld, Bielefeld, Germany
| | - Karsten Niehaus
- Proteome and Metabolome Research, University of Bielefeld, Bielefeld, Germany
| | - M. Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Barbara Kaltschmidt
- Cell Biology, University of Bielefeld, Bielefeld, Germany
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | | |
Collapse
|
19
|
Carnini A, Scott LOM, Ahrendt E, Proft J, Winkfein RJ, Kim SW, Colicos MA, Braun JEA. Cell line specific modulation of extracellular aβ42 by Hsp40. PLoS One 2012; 7:e37755. [PMID: 22666389 PMCID: PMC3362613 DOI: 10.1371/journal.pone.0037755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/24/2012] [Indexed: 01/17/2023] Open
Abstract
Heat shock proteins (Hsps) are a set of molecular chaperones involved in cellular repair. They provide protective mechanisms that allow cells to survive potentially lethal insults, In response to a conditioning stress their expression is increased. Here we examined the connection between Hsps and Aβ(42), the amyloid peptide involved in the pathological sequence of Alzheimer's disease (AD). Extracellular Aβ(42) associates with neuronal cells and is a major constituent of senile plaques, one of the hallmarks of AD. Although Hsps are generally thought to prevent accumulation of misfolded proteins, there is a lack of mechanistic evidence that heat shock chaperones directly modulate Aβ(42) toxicity. In this study we show that neither extracellular Aβ(42) nor Aβ(42/)PrP(C) trigger the heat shock response in neurons. To address the influence of the neuroprotective heat shock response on cellular Aβ(42), Western analysis of Aβ(42) was performed following external Aβ(42) application. Five hours after a conditioning heat shock, Aβ(42) association with CAD cells was increased compared to control neurons. However, at forty-eight hours following heat shock Aβ(42) levels were reduced compared to that found for control cells. Moreover, transient transfection of the stress induced Hsp40, decreased CAD levels of Aβ(42). In contrast to CAD cells, hippocampal neurons transfected with Hsp40 retained Aβ(42) indicating that Hsp40 modulation of Aβ(42) proteostasis is cell specific. Mutation of the conserved HPD motif within Hsp40 significantly reduced the Hsp40-mediated Aβ(42) increase in hippocampal cultures indicating the importance of this motif in regulating cellular Aβ(42). Our data reveal a biochemical link between Hsp40 expression and Aβ(42) proteostasis that is cell specific. Therefore, increasing Hsp40 therapeutically with the intention of interfering with the pathogenic cascade leading to neurodegeneration in AD should be pursued with caution.
Collapse
Affiliation(s)
- Anna Carnini
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Lucas O. M. Scott
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Eva Ahrendt
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Juliane Proft
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Robert J. Winkfein
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sung-Woo Kim
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael A. Colicos
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Janice E. A. Braun
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
20
|
Mokrushin AA, Pavlinova LI. Hsp70 promotes synaptic transmission in brain slices damaged by contact with blood clot. Eur J Pharmacol 2012; 677:55-62. [DOI: 10.1016/j.ejphar.2011.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 12/01/2011] [Accepted: 12/09/2011] [Indexed: 01/19/2023]
|
21
|
Vehniäinen ER, Vähäkangas K, Oikari A. UV-B exposure causes DNA damage and changes in protein expression in northern pike (Esox lucius) posthatched embryos. Photochem Photobiol 2012; 88:363-70. [PMID: 22145705 DOI: 10.1111/j.1751-1097.2011.01058.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ongoing anthropogenically caused ozone depletion and climate change has increased the amount of biologically harmful UV-B radiation, which is detrimental to fish in embryonal stages. The effects of UV-B radiation on the levels and locations of DNA damage manifested as cyclobutane pyrimidine dimers (CPDs), heat shock protein 70 (HSP70) and p53 protein in newly hatched embryos of pike were examined. Pike larvae were exposed in the laboratory to current and enhanced doses of UV-B radiation. UV-B exposure caused the formation of CPDs in a fluence rate-dependent manner, and the CPDs were found deeper in the tissues with increasing fluence rates. UV-B radiation induced HSP70 in epidermis, and caused plausible p53 activation in the brain and epidermis of some individuals. Also at a fluence rate occurring in nature, the DNA damage in the brain and eyes of pike and changes in protein expression were followed by severe behavioral disorders, suggesting that neural molecular changes were associated with functional consequences.
Collapse
Affiliation(s)
- Eeva-Riikka Vehniäinen
- University of Jyväskylä, Department of Biological and Environmental Science, University of Jyväskylä, Finland.
| | | | | |
Collapse
|
22
|
Food odor, visual danger stimulus, and retrieval of an aversive memory trigger heat shock protein HSP70 expression in the olfactory lobe of the crab Chasmagnathus granulatus. Neuroscience 2011; 201:239-51. [PMID: 22100787 DOI: 10.1016/j.neuroscience.2011.10.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 01/21/2023]
Abstract
Although some of the neuronal substrates that support memory process have been shown in optic ganglia, the brain areas activated by memory process are still unknown in crustaceans. Heat shock proteins (HSPs) are synthesized in the CNS not only in response to traumas but also after changes in metabolic activity triggered by the processing of different types of sensory information. Indeed, the expression of citosolic/nuclear forms of HSP70 (HSC/HSP70) has been repeatedly used as a marker for increases in neural metabolic activity in several processes, including psychophysiological stress, fear conditioning, and spatial learning in vertebrates. Previously, we have shown that, in the crab Chasmagnathus, two different environmental challenges, water deprivation and heat shock, trigger a rise in the number of glomeruli of the olfactory lobes (OLs) expressing HSC/HSP70. In this study, we initially performed a morphometric analysis and identified a total of 154 glomeruli in each OL of Chasmagnathus. Here, we found that crabs exposed to food odor stimuli also showed a significant rise in the number of olfactory glomeruli expressing HSC/HSP70. In the crab Chasmagnathus, a powerful memory paradigm based on a change in its defensive strategy against a visual danger stimulus (VDS) has been extensively studied. Remarkably, the iterative presentation of a VDS caused an increase as well. This increase was triggered in animals visually stimulated using protocols that either build up a long-term memory or generate only short-term habituation. Besides, memory reactivation was sufficient to trigger the increase in HSC/HSP70 expression in the OL. Present and previous results strongly suggest that, directly or indirectly, an increase in arousal is a sufficient condition to bring about an increase in HSC/HSP70 expression in the OL of Chasmagnathus.
Collapse
|
23
|
Suzuki T, Zhang J, Miyazawa S, Liu Q, Farzan MR, Yao WD. Association of membrane rafts and postsynaptic density: proteomics, biochemical, and ultrastructural analyses. J Neurochem 2011; 119:64-77. [PMID: 21797867 DOI: 10.1111/j.1471-4159.2011.07404.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED J. Neurochem. (2011) 119, 64-77. ABSTRACT Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. However, their molecular identities remain elusive. Further, how they interact with the well-established signaling specialization, the postsynaptic density (PSD), is poorly understood. We previously detected a number of conventional PSD proteins in detergent-resistant membranes (DRMs). Here, we have performed liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) analyses on postsynaptic membrane rafts and PSDs. Our comparative analysis identified an extensive overlap of protein components in the two structures. This overlapping could be explained, at least partly, by a physical association of the two structures. Meanwhile, a significant number of proteins displayed biased distributions to either rafts or PSDs, suggesting distinct roles for the two postsynaptic specializations. Using biochemical and electron microscopic methods, we directly detected membrane raft-PSD complexes. In vitro reconstitution experiments indicated that the formation of raft-PSD complexes was not because of the artificial reconstruction of once-solubilized membrane components and PSD structures, supporting that these complexes occurred in vivo. Taking together, our results provide evidence that postsynaptic membrane rafts and PSDs may be physically associated. Such association could be important in postsynaptic signal integration, synaptic function, and maintenance.
Collapse
Affiliation(s)
- Tatsuo Suzuki
- Department of Neuroplasticity, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Wen Y, Parrish JZ, He R, Zhai RG, Kim MD. Nmnat exerts neuroprotective effects in dendrites and axons. Mol Cell Neurosci 2011; 48:1-8. [PMID: 21596138 DOI: 10.1016/j.mcn.2011.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 11/30/2022] Open
Abstract
Dendrites can be maintained for extended periods of time after they initially establish coverage of their receptive field. The long-term maintenance of dendrites underlies synaptic connectivity, but how neurons establish and then maintain their dendritic arborization patterns throughout development is not well understood. Here, we show that the NAD synthase Nicotinamide mononucleotide adenylyltransferase (Nmnat) is cell-autonomously required for maintaining type-specific dendritic coverage of Drosophila dendritic arborization (da) sensory neurons. In nmnat heterozygous mutants, dendritic arborization patterns of class IV da neurons are properly established before increased retraction and decreased growth of terminal branches lead to progressive defects in dendritic coverage during later stages of development. Although sensory axons are largely intact in nmnat heterozygotes, complete loss of nmnat function causes severe axonal degeneration, demonstrating differential requirements for nmnat dosage in the maintenance of dendritic arborization patterns and axonal integrity. Overexpression of Nmnat suppresses dendrite maintenance defects associated with loss of the tumor suppressor kinase Warts (Wts), providing evidence that Nmnat, in addition to its neuroprotective role in axons, can function as a protective factor against progressive dendritic loss. Moreover, motor neurons deficient for nmnat show progressive defects in both dendrites and axons. Our studies reveal an essential role for endogenous Nmnat function in the maintenance of both axonal and dendritic integrity and present evidence of a broad neuroprotective role for Nmnat in the central nervous system.
Collapse
Affiliation(s)
- Yuhui Wen
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
25
|
Mileusnic R, Rose SPR. The memory enhancing effect of the APP-derived tripeptide Ac-rER is mediated through CRMP2. J Neurochem 2011; 118:616-25. [PMID: 21255016 DOI: 10.1111/j.1471-4159.2011.07193.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diasteromeric (D/L) form of the acetylated tripeptide rER (NH2-D-arg-L-glu-D-arg-COOH), derived from the external domain of amyloid precursor protein, protects against amyloid-β induced memory loss for a passive avoidance task in young chicks and enhances retention for a weak version of the task when injected peripherally up to 12 h prior to training. The tripeptide readily crosses the blood-brain barrier, binds to receptor sites in the brain and is without adverse effects on general behaviour. The mechanisms of its action are unknown, as are its target molecules/pathways. Here, we report the binding partners for Ac-rER are collapsin response mediator protein 2 (CRMP2), syntaxin binding protein 1 and heat shock protein 70. Behavioural studies of the effects of Ac-rER on memory retention confirmed that the effect of Ac-rER is mediated via CRMP2, as anti-CRMP2 antibodies if injected intracranially 30 min pre-training, induced amnesia for the passive avoidance task. However, Ac-rER, if injected prior to the anti-CRMP2, rescues the memory deficits induced by anti-CRMP2 antibodies. As CRMP2 is placed at the junction of many different cellular processes during brain development and in adult neuronal plasticity as well as being implicated in Alzheimer's disease, this strengthens the claim that Ac-rER may be a potential therapeutic agent in Alzheimer's disease, although its precise mode of action remains to be elucidated.
Collapse
Affiliation(s)
- Radmila Mileusnic
- Department of Life Sciences, The Open University, Milton Keynes, UK.
| | | |
Collapse
|
26
|
Machado P, Rostaing P, Guigonis JM, Renner M, Dumoulin A, Samson M, Vannier C, Triller A. Heat shock cognate protein 70 regulates gephyrin clustering. J Neurosci 2011; 31:3-14. [PMID: 21209184 PMCID: PMC6622739 DOI: 10.1523/jneurosci.2533-10.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/27/2010] [Accepted: 08/02/2010] [Indexed: 11/21/2022] Open
Abstract
Formation and stabilization of postsynaptic glycine receptor (GlyR) clusters result from their association with the polymerized scaffold protein gephyrin. At the cell surface, lateral diffusion and local trapping of GlyR by synaptic gephyrin clusters is one of the main factors controlling their number. However, the mechanisms regulating gephyrin/GlyR cluster sizes are not fully understood. To identify molecular binding partners able to control gephyrin cluster stability, we performed pull-down assays with full-length or truncated gephyrin forms incubated in a rat spinal cord extract, combined with mass spectrometric analysis. We found that heat shock cognate protein 70 (Hsc70), a constitutive member of the heat shock protein 70 (Hsp70) family, selectively binds to the gephyrin G-domain. Immunoelectron microscopy of mouse spinal cord sections showed that Hsc70 could be colocalized with gephyrin at inhibitory synapses. Furthermore, ternary Hsc70-gephyrin-GlyR coclusters were formed following transfection of COS-7 cells. Upon overexpression of Hsc70 in mouse spinal cord neurons, synaptic accumulation of gephyrin was significantly decreased, but GlyR amounts were unaffected. In the same way, Hsc70 inhibition increased gephyrin accumulation at inhibitory synapses without modifying GlyR clustering. Single particle tracking experiments revealed that the increase of gephyrin molecules reduced GlyR diffusion rates without altering GlyR residency at synapses. Our findings demonstrate that Hsc70 regulates gephyrin polymerization independently of its interaction with GlyR. Therefore, gephyrin polymerization and synaptic clustering of GlyR are uncoupled events.
Collapse
Affiliation(s)
- Patricia Machado
- Institut de Biologie de l'Ecole Normale Supérieure
- Institut National de la Santé et de la Recherche Médicale U1024
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, 75005 Paris, France, and
| | - Philippe Rostaing
- Institut de Biologie de l'Ecole Normale Supérieure
- Institut National de la Santé et de la Recherche Médicale U1024
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, 75005 Paris, France, and
| | - Jean-Marie Guigonis
- Institut Fédératif de Recherche 50 - Université de Nice-Sophia Antipolis, Faculté de Médecine Pasteur, 06107 Nice, France
| | - Marianne Renner
- Institut de Biologie de l'Ecole Normale Supérieure
- Institut National de la Santé et de la Recherche Médicale U1024
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, 75005 Paris, France, and
| | - Andréa Dumoulin
- Institut de Biologie de l'Ecole Normale Supérieure
- Institut National de la Santé et de la Recherche Médicale U1024
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, 75005 Paris, France, and
| | - Michel Samson
- Institut Fédératif de Recherche 50 - Université de Nice-Sophia Antipolis, Faculté de Médecine Pasteur, 06107 Nice, France
| | - Christian Vannier
- Institut de Biologie de l'Ecole Normale Supérieure
- Institut National de la Santé et de la Recherche Médicale U1024
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, 75005 Paris, France, and
| | - Antoine Triller
- Institut de Biologie de l'Ecole Normale Supérieure
- Institut National de la Santé et de la Recherche Médicale U1024
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8197, 75005 Paris, France, and
| |
Collapse
|
27
|
Vydra N, Winiarski B, Rak-Raszewska A, Piglowski W, Mazurek A, Scieglinska D, Widlak W. The expression pattern of the 70-kDa heat shock protein Hspa2 in mouse tissues. Histochem Cell Biol 2009; 132:319-30. [PMID: 19462178 DOI: 10.1007/s00418-009-0605-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2009] [Indexed: 11/26/2022]
Abstract
The highest expression level of a 70-kDa heat shock protein family member Hspa2 is detected specifically in meiotic and post-meiotic male germ cells, which is reflected by original name of this protein, i.e., testis-specific Hsp70. However, this chaperon protein could be also detected in certain somatic tissues. Here, the extra-testicular expression pattern of mouse Hspa2 was analyzed. We found expression of Hspa2 in various epithelial cells including lining of bronchioles and oviduct, columnar epithelium of endometrium, epithelial reticular cells of thymus, transitional epithelium of the urinary bladder, or ependymal cells covering walls of the ventricular system of the brain. Surprisingly, Hspa2 was a putative secretory protein in intestine, endometrial glands and subcommissural organ. Hspa2 was detected in central and peripheral nervous system: in neuron's bodies and fiber tracts, in the subventricular zone of the lateral ventricles, in the dentate gyrus of the hippocampus, in enteric ganglia of the gastrointestinal tract. Hspa2 was also expressed in smooth muscles and at low level in immune system (in germinal centers associated with B-lymphocyte production). In addition to somatic tissues listed above, Hspa2 was detected in oocytes arrested at diplotene of the first meiotic division.
Collapse
Affiliation(s)
- Natalia Vydra
- Department of Tumor Biology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, 44-101, Gliwice, Poland
| | | | | | | | | | | | | |
Collapse
|
28
|
Luo S, Zhang B, Dong XP, Tao Y, Ting A, Zhou Z, Meixiong J, Luo J, Chiu FCA, Xiong WC, Mei L. HSP90 beta regulates rapsyn turnover and subsequent AChR cluster formation and maintenance. Neuron 2008; 60:97-110. [PMID: 18940591 DOI: 10.1016/j.neuron.2008.08.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 06/06/2008] [Accepted: 08/10/2008] [Indexed: 10/21/2022]
Abstract
Rapsyn, an acetylcholine receptor (AChR)-interacting protein, is essential for synapse formation at the neuromuscular junction (NMJ). Like many synaptic proteins, rapsyn turns over rapidly at synapses. However, little is known about molecular mechanisms that govern rapsyn stability. Using a differential mass-spectrometry approach, we identified heat-shock protein 90beta (HSP90beta) as a component in surface AChR clusters. The HSP90beta-AChR interaction required rapsyn and was stimulated by agrin. Inhibition of HSP90beta activity or expression, or disruption of its interaction with rapsyn attenuated agrin-induced formation of AChR clusters in vitro and impaired the development and maintenance of the NMJ in vivo. Finally, we showed that HSP90beta was necessary for rapsyn stabilization and regulated its proteasome-dependent degradation. Together, these results indicate a role of HSP90beta in NMJ development by regulating rapsyn turnover and subsequent AChR cluster formation and maintenance.
Collapse
Affiliation(s)
- Shiwen Luo
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Exercise can increase small heat shock proteins (sHSP) and pre- and post-synaptic proteins in the hippocampus. Brain Res 2008; 1249:191-201. [PMID: 19014914 DOI: 10.1016/j.brainres.2008.10.054] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/25/2008] [Accepted: 10/17/2008] [Indexed: 11/21/2022]
Abstract
The molecular events mediating the complex interaction between exercise and cognition are not well-understood. Although many aspects of the signal transduction pathways mediate exercise induced improvement in cognition are elucidated, little is known about the molecular events interrelating physiological stress with synaptic proteins, following physical exercise. Small heat shock proteins (sHSP), HSP27 and alpha-B-crystallin are co-localized to synapses and astrocytes, but their role in the brain is not well-understood. We investigated whether their levels in the hippocampus were modulated by exercise, using a well characterized voluntary exercise paradigm. Since sHSP are known to be regulated by many intracellular signaling molecules in other cells types outside the brain, we investigated whether similar regulation may serve a role in the brain by measuring protein kinase B (PKB/Akt), pGSK3 and the mitogen activated protein (MAP) kinases, p38, phospho-extracellular signal-regulated kinase (pERK) and phospho-c-Jun kinase (pJNK). Results demonstrated exercise-dependent increases in HSP27 and alpha-B-crystallin levels. We observed that increases in sHSP coincided with robust elevations in the presynaptic protein, SNAP25 and the post-synaptic proteins NR2b and PSD95. Exercise had a differential impact on kinases, significantly reducing pAkt and pERK, while increasing p38 MAPK. In conclusion, we demonstrate four early novel hippocampal responses to exercise that have not been identified previously: the induction of (1) sHSPs (2) the synaptic proteins SNAP-25, NR2b, and PSD-95, (3) the MAP kinase p38 and (4) the immediate early gene product MKP1. We speculate that sHSP may play a role in synaptic plasticity in response to exercise.
Collapse
|
30
|
Garcia GB, Biancardi ME, Quiroga AD. Vanadium (V)-Induced Neurotoxicity in the Rat Central Nervous System: A Histo-Immunohistochemical Study. Drug Chem Toxicol 2008; 28:329-44. [PMID: 16051558 DOI: 10.1081/dct-200064496] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As vanadium was found to induce oxidative stress in the central nervous system, the morphological alterations of neurons and astroglial cells in adult rat central nervous system after vanadium exposure was studied, using histological markers of cellular injury. Animals were intraperitoneally injected with 3 mg/kg body weight of sodium metavanadate for 5 consecutive days. NADPH diaphorase histochemistry and heat shock protein (hsp) 70, glial fibrillary acidic protein (GFAP), and S-100 immunohistochemistry were performed in floating sections of several brain areas. NADPHd staining was higher in the molecular and granular layers of the cerebellar cortex, and small NADPHd-stained interneurons were observed in hippocampal sections in V(+5)-exposed animals. hsp 70 immunostaining showed the presence of reactive neurons in cerebellum of treated animals. GFAP and S-100 immunohistochemistry showed enlarged astrocytes in cerebellum and hippocampus in the V(+5)-exposed animals. The histological markers used showed that the main areas affected by vanadium-mediated free-radical generation were the hippocampus and the cerebellum.
Collapse
Affiliation(s)
- Graciela Beatriz Garcia
- Morphology Department, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Santa Fe, Argentina.
| | | | | |
Collapse
|
31
|
Frenkel L, Dimant B, Portiansky EL, Maldonado H, Delorenzi A. Both heat shock and water deprivation trigger Hsp70 expression in the olfactory lobe of the crab Chasmagnathus granulatus. Neurosci Lett 2008; 443:251-6. [PMID: 18682274 DOI: 10.1016/j.neulet.2008.07.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/25/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
Abstract
Heat-shock proteins (Hsp) are synthesized in the central nervous system in response to traumas but also after physical exercise and psychophysiological stress. Therefore, an increase in Hsp expression is a good marker of changes in metabolic activity. In the crab Chasmagnathus, a powerful memory paradigm has been established. Memory modulation is possible by water shortage. The brain areas activated by either training protocols and/or water-deprivation are still unknown. Hsp expression might be a marker to sensing the increase in metabolic activity in crab Chasmagnathus brain neuropils engaged in the physiological responses triggered by water deprivation and cognitive processing. Here, we observed an increase in brain Hsp of 70kDa (Hsp70) expression after a heat-shock treatment. Additionally, immunohistochemistry analysis revealed that, under basal conditions, some glomeruli of the olfactory lobes showed Hsp70 immunoreactivity in an on-off manner. Both a hot environment and water deprivation increased the number of glomeruli expressing Hsp70. This marker of neuropil's activity might turn out to be a powerful tool to test whether crustacean olfactory lobes not only process olfactory information but also integrate multimodal signals.
Collapse
Affiliation(s)
- Lia Frenkel
- Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA Ciudad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
32
|
Kreiling JA, Creton R, Reinisch C. Early embryonic exposure to polychlorinated biphenyls disrupts heat-shock protein 70 cognate expression in zebrafish. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1005-13. [PMID: 17497411 DOI: 10.1080/15287390601171868] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental contaminants that have documented neurological effects in children exposed in utero. To better define neuronally linked molecular targets during early development, zebrafish embryos were exposed to Aroclor 1254, a mixture of PCB congeners that are common environmental contaminants. Microarray analysis of the zebrafish genome revealed consistent significant changes in 38 genes. Of these genes, 55% (21) are neuronally related. One gene that showed a consistent 50% reduction in expression in PCB-treated embryos was heat-shock protein 70 cognate (Hsc70). The reduction in Hsc70 expression was confirmed by real-time polymerase chain reaction (PCR), revealing a consistent 30% reduction in expression in PCB-treated embryos. Early embryonic exposure to PCBs also induced structural changes in the ventro-rostral cluster as detected by immunocytochemistry. In addition, there was a significant reduction in dorso-rostral neurite outgrowth emanating from the RoL1 cell cluster following PCB exposure. The serotonergic neurons in the developing diencephalon showed a 34% reduction in fluorescence when labeled with a serotonin antibody following PCB exposure, corresponding to a reduction in serotonin concentration in the neurons. The total size of the labeled neurons was not significantly different between treated and control embryos, indicating that the development of the neurons was not affected, only the production of serotonin within the neurons. The structural and biochemical changes in the developing central nervous system following early embryonic exposure to Aroclor 1254 may lead to alterations in the function of the affected regions.
Collapse
Affiliation(s)
- Jill A Kreiling
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | | | | |
Collapse
|
33
|
Blard O, Feuillette S, Bou J, Chaumette B, Frébourg T, Campion D, Lecourtois M. Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum Mol Genet 2007; 16:555-66. [PMID: 17309878 DOI: 10.1093/hmg/ddm011] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tauopathies, including Alzheimer's disease and fronto-temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), are a group of neurodegenerative disorders characterized by the presence of intraneuronal filamentous inclusions of aberrantly phosphorylated-tau. Tau is a neuronal microtubule-associated protein involved in microtubule assembly and stabilization. Currently, the molecular mechanisms underlying tau-mediated cellular toxicity remain elusive. To address the determinants of tau neurotoxicity, we first characterized the cellular alterations resulting from the over-expression of a mutant form of human tau associated with FTDP-17 (tau V337M) in Drosophila. We found that the over-expression of tau V337M, in Drosophila larval motor neurons, induced disruption of the microtubular network at presynaptic nerve terminals and changes in neuromuscular junctions morphological features. Secondly, we performed a misexpression screen to identify genetic modifiers of the tau V337M-mediated rough eye phenotype. The screening of 1250 mutant Drosophila lines allowed us to identify several components of the cytoskeleton, and particularly from the actin network, as specific modifiers of tau V337M-induced neurodegeneration. Furthermore, we found that numerous tau modulators identified in our screen were involved in the maintenance of synaptic function. Taken together, these findings suggest that disruption of the microtubule network in presynaptic nerve terminals could constitute early events in the pathological process leading to synaptic dysfunction in tau V337M pathology.
Collapse
Affiliation(s)
- Olivier Blard
- Inserm U614 (IFRMP), University of Rouen & Department of Genetics, Rouen University Hospital, Institute for Biomedical Research, Rouen, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Dietrich JB, Arpin-Bott MP, Kao D, Dirrig-Grosch S, Aunis D, Zwiller J. Cocaine induces the expression of homer 1b/c, homer 3a/b, and hsp 27 proteins in rat cerebellum. Synapse 2007; 61:587-94. [PMID: 17455232 DOI: 10.1002/syn.20412] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The long homer proteins 1b/c, 2a/b, and 3a/b play an important role in postsynaptic neurons by clustering glutamate receptors and by coupling the receptors with various intracellular effectors. Using immunohistochemistry and Western-blot analysis, this study shows that the expression of the long homer isoforms 1b/c and 3a/b was induced in rat cerebellum in response to cocaine administration. Acute treatment produced a very robust induction of both constitutive isoforms, whereas repeated treatment for 10 days induced a large expression of homer 1b/c and a more modest increase in the expression of the 3a/b isoform. The heat shock protein hsp 27 was also considerably induced in the cerebellum of cocaine-treated rats, suggesting that it participates in assisting the correct folding of proteins, and by counteracting oxidative stress mechanisms triggered by the psychostimulant. In addition of being expressed in Purkinje neurons, homer 3a/b and hsp 27, but not homer 1b/c, were localized within Bergmann glial cells and in their extensions, which surround Purkinje cells, as assessed by coimmunoreactivity with glial fibrillary acidic protein. Cocaine was also found to induce both proteins in the Bergmann glial cells. Since we found that homer 3a/b colocalized with the mGluR1 receptor in Purkinje cells, the data suggest that the long homer isoforms are involved in the cocaine-induced neuroplasticity that takes place in the cerebellum, by reshaping postsynaptic densities in Purkinje cell dendrites.
Collapse
Affiliation(s)
- Jean-Bernard Dietrich
- Inserm, U575, Centre de Neurochimie, 5 rue Blaise Pascal, 67084 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
35
|
Buccellato MA, Carsillo T, Traylor Z, Oglesbee M. Heat shock protein expression in brain: a protective role spanning intrinsic thermal resistance and defense against neurotropic viruses. PROGRESS IN BRAIN RESEARCH 2007; 162:395-415. [PMID: 17645929 DOI: 10.1016/s0079-6123(06)62019-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heat shock proteins (HSPs) play an important role in the maintenance of cellular homeostasis, particularly in response to stressful conditions that adversely affect normal cellular structure and function, such as hyperthermia. A remarkable intrinsic resistance of brain to hyperthermia reflects protection mediated by constitutive and induced expression of HSPs in both neurons and glia. Induced expression underlies the phenomenon of hyperthermic pre-reconditioning, where transient, low-intensity heating induces HSPs that protect brain from subsequent insult, reflecting the prolonged half-life of HSPs. The expression and activity of HSPs that is characteristic of nervous tissue plays a role not just in the maintenance and defense of cellular viability, but also in the preservation of neuron-specific luxury functions, particularly those that support synaptic activity. In response to hyperthermia, HSPs mediate preservation or rapid recovery of synaptic function up to the point where damage in other organ systems becomes evident and life threatening. Given the ability of HSPs to enhance gene expression by neurotropic viruses, the constitutive and inducible HSP expression profiles would seem to place nervous tissues at risk. However, we present evidence that the virus-HSP relationship can promote viral clearance in animals capable of mounting effective virus-specific cell-mediated immune responses, potentially reflecting HSP-dependent increases in viral antigenic burden, immune adjuvant effects and cross-presentation of viral antigen. Thus, the protective functions of HSPs span the well-characterized intracellular roles as chaperones to those that may directly or indirectly promote immune function.
Collapse
Affiliation(s)
- Matthew A Buccellato
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Rd., Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
36
|
Suzuki T, Tian QB, Kuromitsu J, Kawai T, Endo S. Characterization of mRNA species that are associated with postsynaptic density fraction by gene chip microarray analysis. Neurosci Res 2006; 57:61-85. [PMID: 17049655 DOI: 10.1016/j.neures.2006.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 09/12/2006] [Accepted: 09/14/2006] [Indexed: 11/18/2022]
Abstract
We previously reported the partial identification by random sequencing of mRNA species that are associated with the postsynaptic density (PSD) fraction prepared from the rat forebrain [Tian et al., 1999. Mol. Brain Res. 72, 147-157]. We report here further characterization by gene chip analysis of the PSD fraction-associated mRNAs, which were prepared in the presence of RNase inhibitor. We found that mRNAs encoding various postsynaptic proteins, such as channels, receptors for neurotransmitters and neuromodulators, proteins involved in signaling, scaffold and adaptor proteins and cytoskeletal proteins, were highly concentrated in the PSD fraction, whereas those encoding housekeeping proteins, such as enzymes in the glycolytic pathway, were not. We extracted approximately 1900 mRNA species that were highly concentrated in the PSD fraction. mRNAs related to certain neuronal diseases were also enriched in the PSD fraction. We also constructed a cDNA library using the PSD fraction-associated mRNAs as templates, and identified 1152 randomly selected clones by sequencing. Our data suggested that the PSD fraction-associated mRNAs are a very useful resource, in which a number of as yet uncharacterized mRNAs are concentrated. Identification and functional characterization of them are essential for complete understanding of synaptic function.
Collapse
Affiliation(s)
- Tatsuo Suzuki
- Department of Neuroplasticity, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | | | | | | | | |
Collapse
|
37
|
Tian QB, Suzuki T, Yamauchi T, Sakagami H, Yoshimura Y, Miyazawa S, Nakayama K, Saitoh F, Zhang JP, Lu Y, Kondo H, Endo S. Interaction of LDL receptor-related protein 4 (LRP4) with postsynaptic scaffold proteins via its C-terminal PDZ domain-binding motif, and its regulation by Ca/calmodulin-dependent protein kinase II. Eur J Neurosci 2006; 23:2864-76. [PMID: 16819975 DOI: 10.1111/j.1460-9568.2006.04846.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We cloned here a full-length cDNA of Dem26[Tian et al. (1999)Mol. Brain Res., 72, 147-157], a member of the low-density lipoprotein (LDL) receptor gene family from the rat brain. We originally named the corresponding protein synaptic LDL receptor-related protein (synLRP) [Tian et al. (2002) Soc. Neurosci. Abstr., 28, 405] and have renamed it LRP4 to accord it systematic nomenclature (GenBank(TM) accession no. AB073317). LRP4 protein interacted with postsynaptic scaffold proteins such as postsynaptic density (PSD)-95 via its C-terminal tail sequence, and associated with N-methyl-D-aspartate (NMDA)-type glutamate receptor subunit. The mRNA of LRP4 was localized to dendrites, as well as somas, of neuronal cells, and the full-length protein of 250 kDa was highly concentrated in the brain and localized to various subcellular compartments in the brain, including synaptic fractions. Immunocytochemical study using cultured cortical neurons suggested surface localization in the neuronal cells both in somas and dendrites. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylated the C-terminal cytoplasmic region of LRP4 at Ser1887 and Ser1900, and the phosphorylation at the latter site suppressed the interaction of the protein with PSD-95 and synapse-associated protein 97 (SAP97). These findings suggest a postsynaptic role for LRP4, a putative endocytic multiligand receptor, and a mechanism in which CaMKII regulates PDZ-dependent protein-protein interactions and receptor dynamics.
Collapse
Affiliation(s)
- Qing-Bao Tian
- Department of Neuroplasticity, Institute on Ageing and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Graner MW, Bigner DD. Therapeutic aspects of chaperones/heat-shock proteins in neuro-oncology. Expert Rev Anticancer Ther 2006; 6:679-95. [PMID: 16759160 DOI: 10.1586/14737140.6.5.679] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tumors of the CNS frequently have devastating consequences in terms of cognitive and motor function, personality and mortality. Despite decades of work, current therapies have done little to alter the course of these deadly diseases. The discovery that chaperones/heat-shock proteins play an important role in tumor biology and immunology have sparked much interest in utilizing these proteins as targets of therapeutics, or as therapeutics themselves, in the treatments of a variety of cancers. Neuro-oncology has only recently taken notice of these entities, and the purpose of this review is to provide a background, an update and a view to the future for the roles of chaperones/heat-shock proteins in the treatment of brain tumors.
Collapse
Affiliation(s)
- Michael W Graner
- Duke University Medical Center, Pathology/Preston Robert Tisch Brain Tumor Center, 177 MSRB, Box 3156, Durham, NC, USA.
| | | |
Collapse
|
39
|
Neal SJ, Karunanithi S, Best A, So AKC, Tanguay RM, Atwood HL, Westwood JT. Thermoprotection of synaptic transmission in aDrosophilaheat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1. Physiol Genomics 2006; 25:493-501. [PMID: 16595740 DOI: 10.1152/physiolgenomics.00195.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Drosophila larvae, acquired synaptic thermotolerance after heat shock has previously been shown to correlate with the induction of heat shock proteins (Hsps) including HSP70. We tested the hypothesis that synaptic thermotolerance would be significantly diminished in a temperature-sensitive strain ( Drosophila heat shock factor mutant hsf4), which has been reported not to be able to produce inducible Hsps in response to heat shock. Contrary to our hypothesis, considerable thermoprotection was still observed at hsf4larval synapses after heat shock. To investigate the cause of this thermoprotection, we conducted DNA microarray experiments to identify heat-induced transcript changes in these organisms. Transcripts of the hsp83, dnaJ-1 ( hsp40), and glutathione- S-transferase gstE1 genes were significantly upregulated in hsf4larvae after heat shock. In addition, increases in the levels of Hsp83 and DnaJ-1 proteins but not in the inducible form of Hsp70 were detected by Western blot analysis. The mode of heat shock administration differentially affected the relative transcript and translational changes for these chaperones. These results indicate that the compensatory upregulation of constitutively expressed Hsps, in the absence of the synthesis of the major inducible Hsp, Hsp70, could still provide substantial thermoprotection to both synapses and the whole organism.
Collapse
Affiliation(s)
- Scott J Neal
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Ancevska-Taneva N, Onoprishvili I, Andria ML, Hiller JM, Simon EJ. A member of the heat shock protein 40 family, hlj1, binds to the carboxyl tail of the human mu opioid receptor. Brain Res 2006; 1081:28-33. [PMID: 16542645 DOI: 10.1016/j.brainres.2006.01.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 12/20/2005] [Accepted: 01/22/2006] [Indexed: 10/24/2022]
Abstract
A yeast two-hybrid screen, using the carboxyl tail of the human mu opioid receptor as bait and a human brain cDNA library as target, indicated that the carboxyl terminal portion of hlj1, a member of the human heat shock protein 40 family, interacts with the carboxyl tail of the human mu opioid receptor. To determine if direct in vitro binding occurs between these two proteins, we performed overlay experiments. Results from the overlay experiments showed that binding occurs between the His fusion protein of hlj1 and the GST fusion protein of the carboxyl tail of the human mu opioid receptor. In contrast, no binding with the His fusion protein of hlj1 occurred with GST alone or the GST fusion protein of the third cytoplasmic loop of the human mu opioid receptor. Results from co-immunoprecipitation studies, carried out in whole HEK cell lysates, confirmed in vivo binding between these two proteins. Immunofluorescent studies, using laser scanning confocal microscopy, showed significant co-localization between hlj1 and the human mu opioid receptor in the cell membrane. The function of this protein-protein interaction and its physiological relevance in animal and human brain is yet to be determined.
Collapse
Affiliation(s)
- N Ancevska-Taneva
- Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
41
|
Salzmann J, Canestrelli C, Noble F, Marie-Claire C. Analysis of transcriptional responses in the mouse dorsal striatum following acute 3,4-methylenedioxymethamphetamine (ecstasy): identification of extracellular signal-regulated kinase-controlled genes. Neuroscience 2005; 137:473-82. [PMID: 16289835 PMCID: PMC1993848 DOI: 10.1016/j.neuroscience.2005.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 08/05/2005] [Accepted: 09/20/2005] [Indexed: 11/21/2022]
Abstract
3,4-Methylenedioxymethamphetamine (ecstasy), a widely used recreational drug with psychoactive properties, induces both serotonin and dopamine release in the brain. However, little is known about its intracellular effects. We previously showed that 3,4-methylenedioxymethamphetamine rewarding effects in mice were dependent upon extracellular signal-regulated kinase activation and that dorsal striatum was a critical region for mediating extracellular signal-regulated kinase-dependent Egr1 3,4-methylenedioxymethamphetamine-induced transcription. Here, we extend these findings by showing that 3,4-methylenedioxymethamphetamine is indeed able to activate extracellular signal-regulated kinase within this structure. To identify genes regulated by acute 3,4-methylenedioxymethamphetamine in the mice dorsal striatum, and selectively controlled by this kinase, we performed microarray experiments by using a selective inhibitor of extracellular signal-regulated kinase activation, SL327. Of the approximately 24,000 genes from the microarray, 27 showed altered expression after exposure to 3,4-methylenedioxymethamphetamine, and among these, 59% were partially or totally inhibited by SL327 pretreatment. Our results showed that the genes regulated by 3,4-methylenedioxymethamphetamine encode proteins that belong to transcription factors family, signaling pathways (phosphatases, cytoskeleton regulation), and synaptic functions. These early changes, and especially those controlled by extracellular signal-regulated kinase activation might play significant roles in the expression of many of the behaviors that occur following 3,4-methylenedioxymethamphetamine taking.
Collapse
|
42
|
Chen S, Bawa D, Besshoh S, Gurd JW, Brown IR. Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. J Neurosci Res 2005; 81:522-9. [PMID: 15948182 DOI: 10.1002/jnr.20575] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lipid rafts are specialized plasma membrane microdomains enriched in cholesterol and sphingolipids that serve as major assembly and sorting platforms for signal transduction complexes. Constitutively expressed heat shock proteins Hsp90, Hsc70, Hsp60, and Hsp40 and a range of neurotransmitter receptors are present in lipid rafts isolated from rat forebrain and cerebellum. Depletion of cholesterol dissociates these proteins from lipid rafts. After hyperthermic stress, flotillin-1, a lipid raft marker protein, does not show major change in levels. Stress-inducible Hsp70 is detected in lipid rafts at 1 hr posthyperthermia, with the peak levels attained at 24 hr, suggesting that Hsp70 may play roles in maintaining the stability of lipid raft-associated signal transduction complexes following neural stress.
Collapse
Affiliation(s)
- Sheng Chen
- Centre for the Neurobiology of Stress, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
43
|
Wilson KE, Marouga R, Prime JE, Pashby DP, Orange PR, Crosier S, Keith AB, Lathe R, Mullins J, Estibeiro P, Bergling H, Hawkins E, Morris CM. Comparative proteomic analysis using samples obtained with laser microdissection and saturation dye labelling. Proteomics 2005; 5:3851-8. [PMID: 16145713 DOI: 10.1002/pmic.200401255] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Comparative proteomic methods are rapidly being applied to many different biological systems including complex tissues. One pitfall of these methods is that in some cases, such as oncology and neuroscience, tissue complexity requires isolation of specific cell types and sample is limited. Laser microdissection (LMD) is commonly used for obtaining such samples for proteomic studies. We have combined LMD with sensitive thiol-reactive saturation dye labelling of protein samples and 2-D DIGE to identify protein changes in a test system, the isolated CA1 pyramidal neurone layer of a transgenic (Tg) rat carrying a human amyloid precursor protein transgene. Saturation dye labelling proved to be extremely sensitive with a spot map of over 5,000 proteins being readily produced from 5 mug total protein, with over 100 proteins being significantly altered at p < 0.0005. Of the proteins identified, all showed coherent changes associated with transgene expression. It was, however, difficult to identify significantly different proteins using PMF and MALDI-TOF on gels containing less than 500 mug total protein. The use of saturation dye labelling of limiting samples will therefore require the use of highly sensitive MS techniques to identify the significantly altered proteins isolated using methods such as LMD.
Collapse
Affiliation(s)
- Kate E Wilson
- MRC Building, Newcastle General Hospital, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nicoll WS, Boshoff A, Ludewig MH, Hennessy F, Jung M, Blatch GL. Approaches to the isolation and characterization of molecular chaperones. Protein Expr Purif 2005; 46:1-15. [PMID: 16199180 DOI: 10.1016/j.pep.2005.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/02/2005] [Accepted: 08/04/2005] [Indexed: 10/25/2022]
Abstract
Molecular chaperones are integral components of the cellular machinery involved in ensuring correct protein folding and the continued maintenance of protein structure. An understanding of these ubiquitous molecules is key to finding cures to protein misfolding diseases such as Alzheimer's and Creutzfeldt-Jacob diseases. In addition, further understanding of chaperones will enhance our comprehension of the way the body copes with the environmental stresses that humans encounter daily. Our laboratory and our collaborators specialize in the production and characterization of chaperones from a wide variety of sources in order to gain a fuller understanding of how chaperones function in the cell. In this review, we primarily use the Hsp70/Hsp40 chaperone pair as an example to discuss recent advances in technology and reductions in cost that lend themselves to chaperone purification from both native and recombinant sources. Common assays to assess purified chaperone activity are also discussed.
Collapse
Affiliation(s)
- William S Nicoll
- Chaperone Research Group, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | | | | | | | | | | |
Collapse
|
45
|
Wang X, Tian QB, Okano A, Sakagami H, Moon IS, Kondo H, Endo S, Suzuki T. BAALC 1-6-8 protein is targeted to postsynaptic lipid rafts by its N-terminal myristoylation and palmitoylation, and interacts with alpha, but not beta, subunit of Ca/calmodulin-dependent protein kinase II. J Neurochem 2005; 92:647-59. [PMID: 15659234 DOI: 10.1111/j.1471-4159.2004.02902.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We cloned a rat BAALC 1-6-8 isoform cDNA (GenBank Accession No. AB073318) that encoded a 22-kDa protein, and identified endogenous BAALC 1-6-8 protein in the brain. The gene was expressed widely in the frontal part of the brain, and the protein was localized to the synaptic sites and was increased in parallel with synaptogenesis. The protein interacted with the alpha, but not beta, subunit of Ca(2+)/calmodulin-dependent protein kinase II (CaMKIIalpha). The interaction occurred between the N-terminal 35-amino-acid region of BAALC 1-6-8 protein and the C-terminal end of the regulatory domain of CaMKIIalpha, which contains alpha isoform-specific sequence. Thus, the interaction may be CaMKIIalpha-specific. We also found that BAALC 1-6-8 protein, as well as CaMKIIalpha, was localized to lipid rafts and that both myristoylation and palmitoylation of BAALC 1-6-8 N-terminal portion were required for targeting of the protein into lipid rafts. These findings suggest that BAALC 1-6-8 protein play a synaptic role at the postsynaptic lipid raft possibly through interaction with CaMKIIalpha.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neuroplasticity, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Suzuki T, Li W, Zhang JP, Tian QB, Sakagami H, Usuda N, Usada N, Kondo H, Fujii T, Endo S. A novel scaffold protein, TANC, possibly a rat homolog of Drosophila rolling pebbles (rols), forms a multiprotein complex with various postsynaptic density proteins. Eur J Neurosci 2005; 21:339-50. [PMID: 15673434 DOI: 10.1111/j.1460-9568.2005.03856.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We cloned from the rat brain a novel gene, tanc (GenBank Accession No. AB098072), which encoded a protein containing three tetratricopeptide repeats (TPRs), ten ankyrin repeats and a coiled-coil region, and is possibly a rat homolog of Drosophila rolling pebbles (rols). The tanc gene was expressed widely in the adult rat brain. Subcellular distribution, immunohistochemical study of the brain and immunocytochemical studies of cultured neuronal cells indicated the postsynaptic localization of TANC protein of 200 kDa. Pull-down experiments showed that TANC protein bound PSD-95, SAP97, and Homer via its C-terminal PDZ-binding motif, -ESNV, and fodrin via both its ankyrin repeats and the TPRs together with the coiled-coil domain. TANC also bound the alpha subunit of Ca2+/calmodulin-dependent protein kinase II. An immunoprecipitation study showed TANC association with various postsynaptic proteins, including guanylate kinase-associated protein (GKAP), alpha-internexin, and N-methyl-D-aspartate (NMDA)-type glutamate receptor 2B and AMPA-type glutamate receptor (GluR1) subunits. These results suggest that TANC protein may work as a postsynaptic scaffold component by forming a multiprotein complex with various postsynaptic density proteins.
Collapse
MESH Headings
- Age Factors
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Ankyrin Repeat/genetics
- Blotting, Northern
- Blotting, Western/methods
- Brain/cytology
- Brain/metabolism
- Cells, Cultured
- Cloning, Molecular/methods
- Crotalid Venoms/genetics
- Crotalid Venoms/metabolism
- Disks Large Homolog 4 Protein
- Drosophila
- Drosophila Proteins/chemistry
- Drosophila Proteins/genetics
- Gene Expression Regulation/physiology
- Humans
- Immunohistochemistry/methods
- Immunoprecipitation/methods
- In Situ Hybridization/methods
- Intracellular Signaling Peptides and Proteins
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Molecular Sequence Data
- Multiprotein Complexes/metabolism
- Muscle Proteins/chemistry
- Muscle Proteins/genetics
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- Protein Binding/physiology
- Protein Structure, Tertiary
- RNA, Messenger/biosynthesis
- Rats
- Receptors, AMPA/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Subcellular Fractions/metabolism
Collapse
Affiliation(s)
- Tatsuo Suzuki
- Department of Neuroplasticity, Institute on Ageing and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ambrosini MV, Mariucci G, Tantucci M, Van Hooijdonk L, Ammassari-Teule M. Hippocampal 72-kDa heat shock protein expression varies according to mice learning performance independently from chronic exposure to stress. Hippocampus 2005; 15:413-7. [PMID: 15719414 DOI: 10.1002/hipo.20069] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The possibility that the inducible 72-kDa heat shock protein (hsp72) is involved in learning-related plasticity mechanisms was investigated in two inbred strains of mice that show spontaneous differences in spatial learning performance as well as an opposite reactivity to stress. Induction of hsp72 after radial maze training was measured by immunoblotting in the hippocampus of C57BL/6 (C57) and DBA/2 (DBA) inbred mice exposed or nonexposed to chronic acoustic stress. In agreement with previous studies, inter-strain differences in radial maze performance were found in nonstressed mice with C57 mice showing the higher scores. Chronic acoustic stress, however, impaired performance in the high-learner C57 strain and improved performance in the low-learner DBA strain. Western blot analysis revealed that post-training expression of hsp72 was low in the condition each strain was showing the higher-performance (nonstressed C57 and stressed DBA) and high in the condition each strain was showing the lower performance (stressed C57 and nonstressed DBA). These findings indicate that expression of hsp72 in the hippocampus varies as a function of the learning performance independently from exposure to chronic acoustic stress.
Collapse
Affiliation(s)
- Maria Vittoria Ambrosini
- Department of Experimental Medicine and Biochemical Sciences, Division of Cellular and Molecular Biology, University of Perugia, Perugia, Italy
| | | | | | | | | |
Collapse
|
48
|
Gerges NZ, Tran IC, Backos DS, Harrell JM, Chinkers M, Pratt WB, Esteban JA. Independent functions of hsp90 in neurotransmitter release and in the continuous synaptic cycling of AMPA receptors. J Neurosci 2004; 24:4758-66. [PMID: 15152036 PMCID: PMC6729466 DOI: 10.1523/jneurosci.0594-04.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 04/05/2004] [Accepted: 04/05/2004] [Indexed: 11/21/2022] Open
Abstract
The delivery of neurotransmitter receptors into synapses is essential for synaptic function and plasticity. In particular, AMPA-type glutamate receptors (AMPA receptors) reach excitatory synapses according to two distinct routes: a regulated pathway, which operates transiently during synaptic plasticity, and a constitutive pathway, which maintains synaptic function under conditions of basal transmission. However, the specific mechanisms that distinguish these two trafficking pathways are essentially unknown. Here, we evaluate the role of the molecular chaperone hsp90 (heat shock protein 90) in excitatory synaptic transmission in the hippocampus. On one hand, we found that hsp90 is necessary for the efficient neurotransmitter release at the presynaptic terminal. In addition, we identified hsp90 as a critical component of the cellular machinery that delivers AMPA receptors into the postsynaptic membrane. Using the hsp90-specific inhibitors radicicol and geldanamycin, we show that hsp90 is required for the constitutive trafficking of AMPA receptors into synapses during their continuous cycling between synaptic and nonsynaptic sites. In contrast, hsp90 function is not required for either the surface delivery of AMPA receptors into the nonsynaptic plasma membrane or for the acute, regulated delivery of AMPA receptors into synapses during plasticity induction (long-term potentiation). The synaptic cycling of AMPA receptors was also blocked by an hsp90-binding tetratricopeptide repeat (TPR) domain, suggesting that the role of hsp90 in AMPA receptor trafficking is mediated by a TPR domain-containing protein. These results demonstrate new roles for hsp90 in synaptic function by controlling neurotransmitter release and, independently, by mediating the continuous cycling of synaptic AMPA receptors.
Collapse
Affiliation(s)
- Nashaat Z Gerges
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Li KW, Hornshaw MP, Van Der Schors RC, Watson R, Tate S, Casetta B, Jimenez CR, Gouwenberg Y, Gundelfinger ED, Smalla KH, Smit AB. Proteomics Analysis of Rat Brain Postsynaptic Density. J Biol Chem 2004; 279:987-1002. [PMID: 14532281 DOI: 10.1074/jbc.m303116200] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The postsynaptic density contains multiple protein complexes that together relay the presynaptic neurotransmitter input to the activation of the postsynaptic neuron. In the present study we took two independent proteome approaches for the characterization of the protein complement of the postsynaptic density, namely 1) two-dimensional gel electrophoresis separation of proteins in conjunction with mass spectrometry to identify the tryptic peptides of the protein spots and 2) isolation of the trypsin-digested sample that was labeled with isotope-coded affinity tag, followed by liquid chromatography-tandem mass spectrometry for the partial separation and identification of the peptides, respectively. Functional grouping of the identified proteins indicates that the postsynaptic density is a structurally and functionally complex organelle that may be involved in a broad range of synaptic activities. These proteins include the receptors and ion channels for glutamate neurotransmission, proteins for maintenance and modulation of synaptic architecture, sorting and trafficking of membrane proteins, generation of anaerobic energy, scaffolding and signaling, local protein synthesis, and correct protein folding and breakdown of synaptic proteins. Together, these results imply that the postsynaptic density may have the ability to function (semi-) autonomously and may direct various cellular functions in order to integrate synaptic physiology.
Collapse
Affiliation(s)
- Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Research Institute of Neurosciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Asaki C, Usuda N, Nakazawa A, Kametani K, Suzuki T. Localization of translational components at the ultramicroscopic level at postsynaptic sites of the rat brain. Brain Res 2003; 972:168-76. [PMID: 12711090 DOI: 10.1016/s0006-8993(03)02523-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the localization of components of translational machinery and their regulators in the postsynaptic region. We examined several components, especially those involved in translational regulation: components of (1) MAPK-Mnk-eIF4E, (2) PI3-kinase-PDK-Akt/PKB-FRAP/mTOR-PHAS/4EBP, (3) p70S6K-S6 ribosomal protein and (4) eEF2 kinase/CaMKIII-eEF2 pathways. Western blotting detected all the components examined in the synaptic fractions, and their differential localization to the synaptic subcompartments: initiation or elongation factors, except for eIF5, were detected predominantly in the dendritic lipid raft fraction, which contained ER marker proteins. In contrast, most of their regulatory kinases were distributed to both the postsynaptic density (PSD) and the dendritic lipid raft fractions, or enriched in the former fraction. Localization of eIF4E at synaptic sites was further examined immunohistochemically at the electron microscopic level. The eIF-4E-immunoreactivity was localized to the postsynaptic sites, especially to the microvesicle-like structures underneath the postsynaptic membrane in the spine, some of which were localized in close proximity to PSD. These results suggest that the postsynaptic local translational system, in at least four major regulatory pathways, is similar to those in the perinuclear one, and that it takes place, at least partly, immediately beneath the postsynaptic membrane. The results also suggest the presence of ER-associated type of translational machinery at the postsynaptic sites.
Collapse
Affiliation(s)
- Chie Asaki
- Department of Neuroplasticity, Research Center on Aging and Adaptation, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | | | |
Collapse
|