1
|
Androgen receptors and muscle: a key mechanism underlying life history trade-offs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:51-60. [DOI: 10.1007/s00359-017-1222-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 12/18/2022]
|
2
|
Sengelaub DR, Forger NG. The spinal nucleus of the bulbocavernosus: firsts in androgen-dependent neural sex differences. Horm Behav 2008; 53:596-612. [PMID: 18191128 PMCID: PMC2423220 DOI: 10.1016/j.yhbeh.2007.11.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 11/01/2007] [Accepted: 11/05/2007] [Indexed: 11/30/2022]
Abstract
Cell number in the spinal nucleus of the bulbocavernosus (SNB) of rats was the first neural sex difference shown to differentiate under the control of androgens, acting via classical intracellular androgen receptors. SNB motoneurons reside in the lumbar spinal cord and innervate striated muscles involved in copulation, including the bulbocavernosus (BC) and levator ani (LA). SNB cells are much larger and more numerous in males than in females, and the BC/LA target muscles are reduced or absent in females. The relative simplicity of this neuromuscular system has allowed for considerable progress in pinpointing sites of hormone action, and identifying the cellular bases for androgenic effects. It is now clear that androgens act at virtually every level of the SNB system, in development and throughout adult life. In this review we focus on effects of androgens on developmental cell death of SNB motoneurons and BC/LA muscles; the establishment and maintenance of SNB motoneuron soma size and dendritic length; BC/LA muscle morphology and physiology; and behaviors controlled by the SNB system. We also describe new data on neurotherapeutic effects of androgens on SNB motoneurons after injury in adulthood.
Collapse
Affiliation(s)
- Dale R Sengelaub
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
3
|
Neal JK, Wade J. Courtship and copulation in the adult male green anole: effects of season, hormone and female contact on reproductive behavior and morphology. Behav Brain Res 2006; 177:177-85. [PMID: 17174414 PMCID: PMC2892282 DOI: 10.1016/j.bbr.2006.11.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/20/2006] [Accepted: 11/21/2006] [Indexed: 12/26/2022]
Abstract
Interactions among reproductive season, testosterone (T) and female presence were investigated on the structure and function of forebrain and neuromuscular systems controlling courtship and copulation in the green anole lizard. Under breeding (BS) or non-breeding (NBS) environmental conditions, male green anoles were implanted with either T or blank capsules and exposed to one of three female stimulus conditions: physical, visual or no female contact. T and at least visual exposure to females increased courtship displays (extension of a throat fan, or dewlap), and these effects were greater during the BS than NBS. T also facilitated copulation, and did so to a greater extent in the BS. The hormone increased soma size in the preoptic area (POA) and amygdala (AMY), and in the AMY the effects were greater in the BS than NBS. Cross-sectional areas of copulatory organs and associated muscle fibers were enhanced by T, and more so in the BS than NBS. However, no effects on morphology of dewlap motoneurons or muscles or copulatory motoneurons were detected. Thus, (1) changes in behavior and neural and/or muscular morphology are not always parallel and (2) differences in responsiveness to T exist across seasons and among tissues.
Collapse
Affiliation(s)
- Jennifer K Neal
- Michigan State University, Neuroscience Program, East Lansing, MI 48824-1101, United States.
| | | |
Collapse
|
4
|
Abstract
This review focuses on the effect of gonadal steroid hormones, androgen and estrogen, on dendrites in the adult rat central nervous system (CNS). Four hormone-responsive nuclei are considered: The spinal nucleus of the bulbocavernosus (SNB), the medial nucleus of the amygdala (MeA), the ventromedial nucleus of the hypothalamus (VMN), and the CA1 region of the dorsal hippocampus. Particular emphasis is placed on the mode of hormone action in each nucleus. In the SNB, VMN, and hippocampus, hormones appear to mediate their effects indirectly, via cells other than those that display morphological plasticity. In the MeA, estrogen and/or androgen appears to act primarily on those cells whose dendrites are modulated by the hormone. Importantly, increasing levels of gonadal hormones do not simply result in increases in dendritic parameters. In the VMN, high levels of estrogen associated with proestrus increase dendritic spine density in one subset of cells and reduce spine density in another subset. The pyramidal cells of dorsal CA1 also undergo phasic changes in dendritic spine and synapse density across the estrous cycle. The estrogen-induced excitatory synapses connect with preexisting axonal boutons that also form synapses with other CA1 cells, thereby increasing the divergence of excitatory afferents to dorsal CA1. These findings indicate that gonadal steroids have a profound impact on the morphology of dendrites and patterns of synaptic connectivity. Consequently, the experimental manipulation of hormone levels is a powerful tool to study structure-function relationships in the mammalian brain.
Collapse
Affiliation(s)
- Bradley M Cooke
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
5
|
Holmes MM, Wade J. Seasonal plasticity in the copulatory neuromuscular system of green anole lizards: a role for testosterone in muscle but not motoneuron morphology. ACTA ACUST UNITED AC 2004; 60:1-11. [PMID: 15188267 DOI: 10.1002/neu.10334] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The copulatory system of green anoles is highly sexually dimorphic. Males possess bilateral copulatory organs called hemipenes, each independently controlled by two muscles: the transversus penis (TPN) and retractor penis magnus (RPM). The TPN everts the hemipene through the cloaca and the RPM retracts it. Adult females do not possess hemipenes or either of these two muscles. The spinal nucleus projecting to the TPN and RPM contains more and larger motoneurons in males than females. Because anoles breed seasonally, two experiments were designed to test whether adult copulatory morphology varies with environmental condition, and if so, whether the effect is mediated by testicular androgens. Three groups of adult males were used in each experiment: males from breeding environmental conditions with reproductive testes (BS); males in breeding conditions with regressed testes (BS-X); and males in nonbreeding conditions with regressed testes (NBS). Experiment 1 compared gonadally intact males and Experiment 2 compared castrated males treated with either testosterone (T) or an empty implant. In both experiments, copulatory and control motoneurons appeared smaller in NBS males, but T did not affect their size. In contrast, while hemipene and RPM muscle fiber size were not plastic across season in gonadally intact males, T in castrated males significantly increased both measures under BS and BS-X, but not NBS, conditions. These results demonstrate that neuron soma size might change on a general level and environmental cues can mediate T-induced changes in peripheral structures, suggesting that plasticity across copulatory system components is regulated by different mechanisms.
Collapse
|
6
|
Weeks JC. Thinking globally, acting locally: steroid hormone regulation of the dendritic architecture, synaptic connectivity and death of an individual neuron. Prog Neurobiol 2003; 70:421-42. [PMID: 14511700 DOI: 10.1016/s0301-0082(03)00102-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Steroid hormones act via evolutionarily conserved nuclear receptors to regulate neuronal phenotype during development, maturity and disease. Steroid hormones exert 'global' effects in organisms to produce coordinated physiological responses whereas, at the 'local' level, individual neurons can respond to a steroidal signal in highly specific ways. This review focuses on two phenomena-the loss of dendritic processes and the programmed cell death (PCD) of neurons-that can be regulated by steroid hormones (e.g. during sexual differentiation in vertebrates). In insects such as the moth, Manduca sexta, and fruit fly, Drosophila melanogaster, ecdysteroids orchestrate a reorganization of neural circuits during metamorphosis. In Manduca, accessory planta retractor (APR) motoneurons undergo dendritic loss at the end of larval life in response to a rise in 20-hydroxyecdysone (20E). Dendritic regression is associated with a decrease in the strength of monosynaptic inputs, a decrease in the number of contacts from pre-synaptic neurons, and the loss of a behavior mediated by these synapses. The APRs in different abdominal segments undergo segment-specific PCD at pupation and adult emergence that is triggered directly and cell-autonomously by a genomic action of 20E, as demonstrated in cell culture. The post-emergence death of APRs provides a model for steroid-mediated neuroprotection. APR death occurs by autophagy, not apoptosis, and involves caspase activation and the aggregation and ultracondensation of mitochondria. Manduca genes involved in segmental identity, 20E signaling and PCD are being sought by suppressive subtractive hybridization (SSH) and cDNA microarrays. Experiments utilizing Drosophila as a complementary system have been initiated. These insect model systems contribute toward understanding the causes and functional consequences of dendritic loss and neurodegeneration in human neurological disorders.
Collapse
Affiliation(s)
- Janis C Weeks
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| |
Collapse
|
7
|
Popova IY, Vinogradova OS, Kokoz YM, Ziganshin RK, Ivanov VT. Neuropeptide modulation of evoked responses of neurons in the medial septal region of hibernating ground squirrels in conditions of chronic isolation of the medial septal region from preoptic-hypothalamic structures. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2003; 33:521-8. [PMID: 12921184 DOI: 10.1023/a:1023475503848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Septal slices from hibernating ground squirrels were initially (for two weeks) subjected to basal separation of the septal region and were then used for studies of the effects of neuropeptides extracted from the brains of hibernating animals (TSKYR, TSKY, and DY) and monoaminergic neurotransmitters (noradrenaline and serotonin) on neuronal responses evoked by intraseptal electrical stimulation. Despite removal of a large complex of afferent connections and direct contacts with the preoptic region, the neurons retained their normal reactivity and the normal distribution of response types. Neuropeptides efficiently modulated responses, and had strong facilitatory effects on oligosynaptic short-latency responses consisting of single spikes. In most cases (78% of tests), effects on evoked activity were independent of effects on baseline discharge frequency. These data lead to the suggestion that neuropeptides have two influences on septal neurons: a direct, non-synaptic influence on the pacemaker potential responsible for baseline activity, and modulation of synaptic processes. Analysis showed that retention of descending septohippocampal connections was not critical for entry into hibernation and the tonic maintenance of this state. The effects of preoptic-hypothalamic mechanisms of hibernation determine the paradoxical latent excitability of septal cells, allowing the septohippocampal system to filter external signals and provide for urgent arousal of the forebrain during hibernation.
Collapse
Affiliation(s)
- I Yu Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino
| | | | | | | | | |
Collapse
|
8
|
Hegstrom CD, Jordan CL, Breedlove SM. Photoperiod and androgens act independently to induce spinal nucleus of the bulbocavernosus neuromuscular plasticity in the Siberian hamster, Phodopus sungorus. J Neuroendocrinol 2002; 14:368-74. [PMID: 12000542 DOI: 10.1046/j.0007-1331.2002.00791.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the Siberian hamster, Phodopus sungorus, short-day photoperiods induce the winter phenotype, which in males includes a decrease in the production of androgens and changes in physiology to inhibit reproduction. Motoneurones of the spinal nucleus of the bulbocavernosus (SNB) and their target muscles, the bulbocavernosus and the levator ani, a neuromuscular system involved in male copulation, also display seasonal plasticity in P. sungorus. It is not known whether the plasticity seen in the SNB system of gonadally intact hamsters is due to the effects of photoperiod per se, or to the photoperiod-induced changes in androgen production. To answer this question, we castrated adult male hamsters from long days and then implanted them with capsules containing either testosterone or blanks. Half of the hamsters from each hormone condition were moved into short photoperiod (8 : 16 h light/dark cycle) while the rest were maintained under long-day conditions (15 : 9 h light/dark cycle). After 15 weeks, many measures of the SNB system, such as somata size and weight of target muscles, responded only to androgen, not to photoperiod. However, there were effects of photoperiod on the neuromuscular junctions (NMJs) that were independent of androgen status. For example, the number of synaptic zones per NMJ and the area of the NMJs were significantly increased by short days and/or testosterone treatment. The two factors exerted an additive, rather than an interactive, effect on these measures. Another striated muscle, the extensor digitorum longus, which is present in both sexes and plays no specialized role in reproduction, displayed neither an effect of androgen nor of photoperiod on fibre size or NMJ structure. These results suggest that, in addition to androgenic effects on SNB plasticity, there is also an androgen-independent effect of photoperiod on the SNB neuromuscular system.
Collapse
Affiliation(s)
- C D Hegstrom
- Program in Infectious Diseases, School of Public Health, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
9
|
O'Bryant EL, Wade J. Sexual dimorphism in neuromuscular junction size on a muscle used in courtship by green anole lizards. JOURNAL OF NEUROBIOLOGY 2002; 50:24-30. [PMID: 11748630 DOI: 10.1002/neu.10004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The green anole lizard exhibits seasonal courtship behavior that is sexually dimorphic. This courtship consists of the extension of a bright red throat fan (dewlap) associated with head-bobbing display behavior. While males extend their dewlaps in aggressive encounters as well as in courtship, females use their considerably smaller dewlaps much less frequently and mainly in agonistic encounters. In parallel, a number of components of the neuromuscular system controlling dewlap extension are greater in males than in females during the breeding season, including dewlap motoneuron soma size and muscle fiber size and number. These features do not seem to change substantially in adulthood, despite a dramatic decline in dewlap use during the nonbreeding season. We explored the morphology of this neuromuscular system in more detail in the present experiment in males and females during both the breeding and nonbreeding seasons. Fiber and whole muscle length (approximately perpendicular to the fibers) were measured. Acetylcholinesterase histochemistry was used to visualize neuromuscular junctions (NMJs), and the surface area and density of NMJs were assessed for each animal. During the breeding season, NMJ size was larger in males than in females, but NMJ density along each fiber was equivalent between the sexes. In addition, whole muscle length and that of individual muscle fibers, was larger in males than in females. However, when corrected for body size, the sex difference in muscle fiber length disappeared. In the nonbreeding season, the sexual dimorphisms were maintained, suggesting that these features do not change substantially due to differences in circulating testosterone or a difference in use across seasons. Overall, these results are consistent with the idea that enhanced NMJ size is a relatively stable feature of the dewlap muscle in adulthood that either facilitates or is a consequence of using a larger muscle to extend a bigger dewlap in males compared to females.
Collapse
Affiliation(s)
- Erin L O'Bryant
- Neuroscience Program and Department of Psychology, Michigan State University, 235 Psychology Research Bldg., East Lansing, Michigan 48824-1117, USA
| | | |
Collapse
|
10
|
Cooke BM, Hegstrom CD, Keen A, Breedlove SM. Photoperiod and social cues influence the medial amygdala but not the bed nucleus of the stria terminalis in the Siberian hamster. Neurosci Lett 2001; 312:9-12. [PMID: 11578833 DOI: 10.1016/s0304-3940(01)02173-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated whether the posterodorsal nucleus of the medial amygdala (MePD) and the posteromedial nucleus of the bed nucleus of the stria terminalis (BSTpm) undergo structural changes in response to photoperiod or social environment in the Siberian hamster, a seasonally breeding rodent. Adult male hamsters were either kept in long days (LD; 15:9 h light:dark) from birth or were transferred at 12-16 weeks of age to short days (SD; 8:16) and housed with a male conspecific for 11 weeks. Other males were transferred to SD but were housed with an unrelated female conspecific from LD. Males transferred to SD without a female cagemate displayed testicular regression, but males transferred to SD with a female cagemate did not. The regional volume and average soma size of the BSTpm and the MePD were estimated using Nissl-stained brain sections. Neither photoperiod nor social condition modified either of the BSTpm measures. Among males housed in same-sex groups, the average soma size in the MePD was significantly smaller in SD males than in LD males. Cohabitation with a female resulted in MePD volumes indistinguishable from LD males. These results indicate that the MePD, a nucleus implicated in socio-sexual behavior, can respond to photoperiodic as well as to social cues.
Collapse
Affiliation(s)
- B M Cooke
- Department of Psychology, 3210 Tolman Hall, University of California, Berkeley, CA 94720-1650, USA
| | | | | | | |
Collapse
|
11
|
Leitner S, Voigt C, Garcia-Segura LM, Van't Hof T, Gahr M. Seasonal activation and inactivation of song motor memories in wild canaries is not reflected in neuroanatomical changes of forebrain song areas. Horm Behav 2001; 40:160-8. [PMID: 11534977 DOI: 10.1006/hbeh.2001.1700] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Seasonal, testosterone-dependent changes in sexual behaviors are common in male vertebrates. In songbirds such seasonal changes occur in a learned behavior--singing. Domesticated male canaries (Serinus canaria) appear to lose song units (syllables) after the breeding season and learn new ones until the next breeding season. Here we demonstrate in a longitudinal field study of individual, free-living nondomesticated (wild) canaries (S. canaria) a different mode of seasonal behavioral plasticity, seasonal activation, and inactivation of auditory-motor memories. The song repertoire composition of wild canaries changes seasonally: about 25% of the syllables are sung seasonally; the remainder occur year-round, despite seasonal changes in the temporal patterns of song. In the breeding season, males sing an increased number of fast frequency-modulated syllables, which are sexually attractive for females, in correlation with seasonally increased testosterone levels. About 50% of the syllables that were lost after one breeding season reappear in the following breeding season. Furthermore, some identical syllable sequences are reactivated on an annual basis. The seasonal plasticity in vocal behavior occurred despite the gross anatomical and ultrastructural stability of the forebrain song control areas HVc and RA that are involved in syllable motor control.
Collapse
Affiliation(s)
- S Leitner
- Max-Planck-Institut für Verhaltensphysiologie, D-82319 Seewiesen, Germany
| | | | | | | | | |
Collapse
|
12
|
Abstract
The present experiments investigated the effects of pubertal maturation and photoperiod on the size of brain regions that mediate mating behavior in the male Syrian hamster. We hypothesized that the low levels of reproductive behavior exhibited by prepubertal and photoinhibited males would be correlated with morphological changes in the neural circuit that mediates mating behavior. We found that the Nissl-stained cross-sectional area of the posterodorsal subdivision of the medial amygdala was significantly smaller in prepubertal and photoinhibited males compared to photostimulated adult males. These differences appear to be caused by a decrease in somal size of individual cells in the ventral aspect of this nucleus. We also found that prepubertal males have a larger anterior subdivision of the medial amygdala (MeA) compared to adults. This difference in the MeA does not appear to be caused by alteration in somal size since somal size did not differ significantly between juveniles and adults. It is concluded that the neural circuit that mediates male mating behavior in this species is capable of significant morphological plasticity during both pubertal development and in adulthood. Furthermore, these alterations may reflect underlying mechanisms of the deficits in sexual behavior exhibited by prepubertal and photoinhibited males.
Collapse
Affiliation(s)
- R D Romeo
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
13
|
Wade J. Sexual dimorphisms in avian and reptilian courtship: two systems that do not play by mammalian rules. BRAIN, BEHAVIOR AND EVOLUTION 2000; 54:15-27. [PMID: 10516401 DOI: 10.1159/000006608] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sexual dimorphisms in the central nervous system exist in numerous vertebrate species, and in many cases these structural differences between males and females parallel differences in the display of reproductive behaviors. Often both the behavioral and anatomical differences are controlled by exposure to gonadal steroid hormones, either during ontogeny or in adulthood. This article reviews some of the evidence supporting the hypothesis that in mammals, testosterone or its metabolites regulate the structure and function of neural and muscle systems involved in the control of masculine sexual behaviors. It then describes data suggesting that the mechanisms regulating sexually dimorphic courtship systems in zebra finches and green anole lizards are not completely parallel to the mammalian systems. Finally, some directions for future study are suggested, with the hope that they will stimulate thought about the nature of comparisons made across vertebrate models when investigators are attempting to determine both which morphological sex differences are important to the control of the reproductive behaviors, and which mechanisms regulating both structure and function are widely employed or are unique.
Collapse
Affiliation(s)
- J Wade
- Department of Psychology and Zoology, Programs in Neuroscience and Ecology, Evolution and Behavioral Biology, Michigan State University, East Lansing 48824-1117, USA.
| |
Collapse
|
14
|
Hegstrom CD, Breedlove SM. Short day lengths affect perinatal development of the male reproductive system in the Siberian hamster, Phodopus sungorus. J Biol Rhythms 1999; 14:402-8. [PMID: 10511007 DOI: 10.1177/074873099129000803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Siberian hamster, Phodopus sungorus, breeds seasonally. In the laboratory, seasonal breeding can be controlled by photoperiod, which affects the duration of nightly melatonin secretion. Winterlike, short day lengths induce gonadal regression in adult animals, and pups born and maintained in short days undergo pubertal gonadal development later than animals born into long days. However, to date there have been no reports of gestational photoperiod affecting fetal development of reproductive systems. The spinal nucleus of the bulbocavernosus (SNB) and its target muscles, the bulbocavernosus (BC) and levator ani (LA), compose a sexually dimorphic, androgen-sensitive neuromuscular system involved in male reproduction. The SNB neuromuscular system was studied in male Siberian hamsters maintained from conception in short-day (8 h light, 16 h dark; 8L:16D) versus long-day (16L:8D) conditions. On the day of birth, and at postnatal (PN) days 2 and 18, the BC/LA muscles of hamsters gestated and raised in the short photoperiod were significantly reduced relative to those of their long-day counterparts. Testes weights were not significantly different between groups until day 18. Thus, photoperiod exposure during gestation and after birth affects perinatal development of the SNB system in this species, and these effects can be seen as early as the day of birth. Because photoperiod did not significantly affect testes weights until PN18, these results suggest that either perinatal photoperiod affects fetal androgen production without affecting testes weight or it influences BC/LA development independently from androgen.
Collapse
Affiliation(s)
- C D Hegstrom
- Department of Psychology, University of California, Berkeley 94720-1650, USA
| | | |
Collapse
|