1
|
Furfaro G, Mariottini P. Looking at the Nudibranch Family Myrrhinidae (Gastropoda, Heterobranchia) from a Mitochondrial '2D Folding Structure' Point of View. Life (Basel) 2021; 11:583. [PMID: 34207329 PMCID: PMC8235141 DOI: 10.3390/life11060583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/16/2023] Open
Abstract
Integrative taxonomy is an evolving field of multidisciplinary studies often utilised to elucidate phylogenetic reconstructions that were poorly understood in the past. The systematics of many taxa have been resolved by combining data from different research approaches, i.e., molecular, ecological, behavioural, morphological and chemical. Regarding molecular analysis, there is currently a search for new genetic markers that could be diagnostic at different taxonomic levels and that can be added to the canonical ones. In marine Heterobranchia, the most widely used mitochondrial markers, COI and 16S, are usually analysed by comparing the primary sequence. The 16S rRNA molecule can be folded into a 2D secondary structure that has been poorly exploited in the past study of heterobranchs, despite 2D molecular analyses being sources of possible diagnostic characters. Comparison of the results from the phylogenetic analyses of a concatenated (the nuclear H3 and the mitochondrial COI and 16S markers) dataset (including 30 species belonging to eight accepted genera) and from the 2D folding structure analyses of the 16S rRNA from the type species of the genera investigated demonstrated the diagnostic power of this RNA molecule to reveal the systematics of four genera belonging to the family Myrrhinidae (Gastropoda, Heterobranchia). The "molecular morphological" approach to the 16S rRNA revealed to be a powerful tool to delimit at both species and genus taxonomic levels and to be a useful way of recovering information that is usually lost in phylogenetic analyses. While the validity of the genera Godiva, Hermissenda and Phyllodesmium are confirmed, a new genus is necessary and introduced for Dondice banyulensis, Nemesis gen. nov. and the monospecific genus Nanuca is here synonymised with Dondice, with Nanuca sebastiani transferred into Dondice as Dondice sebastiani comb. nov.
Collapse
Affiliation(s)
- Giulia Furfaro
- Department of Biological and Environmental Sciences and Technologies—DiSTeBA, University of Salento, I-73100 Lecce, Italy
| | - Paolo Mariottini
- Department of Science, University of Roma Tre, I-00146 Rome, Italy;
| |
Collapse
|
2
|
The Role of Intracellular Calcium in Changing of ElectricalCharacteristics of Premotor Interneurons in Intact Snails and Snails During Various Forms of Plasticity. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00669-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Baker KD, Edwards TM, Rickard NS. The role of intracellular calcium stores in synaptic plasticity and memory consolidation. Neurosci Biobehav Rev 2013; 37:1211-39. [PMID: 23639769 DOI: 10.1016/j.neubiorev.2013.04.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 12/20/2022]
Abstract
Memory processing requires tightly controlled signalling cascades, many of which are dependent upon intracellular calcium (Ca(2+)). Despite this, most work investigating calcium signalling in memory formation has focused on plasma membrane channels and extracellular sources of Ca(2+). The intracellular Ca(2+) release channels, ryanodine receptors (RyRs) and inositol (1,4,5)-trisphosphate receptors (IP3Rs) have a significant capacity to regulate intracellular Ca(2+) signalling. Evidence at both cellular and behavioural levels implicates both RyRs and IP3Rs in synaptic plasticity and memory formation. Pharmacobehavioural experiments using young chicks trained on a single-trial discrimination avoidance task have been particularly useful by demonstrating that RyRs and IP3Rs have distinct roles in memory formation. RyR-dependent Ca(2+) release appears to aid the consolidation of labile memory into a persistent long-term memory trace. In contrast, IP3Rs are required during long-term memory. This review discusses various functions for RyRs and IP3Rs in memory processing, including neuro- and glio-transmitter release, dendritic spine remodelling, facilitating vasodilation, and the regulation of gene transcription and dendritic excitability. Altered Ca(2+) release from intracellular stores also has significant implications for neurodegenerative conditions.
Collapse
Affiliation(s)
- Kathryn D Baker
- School of Psychology and Psychiatry, Monash University, Clayton 3800, Victoria, Australia.
| | | | | |
Collapse
|
4
|
Uno Y, Fujiyuki T, Morioka M, Kubo T. Mushroom body-preferential expression of proteins/genes involved in endoplasmic reticulum Ca(2+)-transport in the worker honeybee (Apis mellifera L.) brain. INSECT MOLECULAR BIOLOGY 2013; 22:52-61. [PMID: 23170949 DOI: 10.1111/imb.12002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To identify the molecular characteristics specific to the mushroom body (MB, a higher processing centre) neurones in the honeybee brain, we previously used proteomics to identify proteins that are preferentially expressed in these MBs. Here we continued our proteomic analysis to show that reticulocalbin, which is involved in endoplasmic reticulum (ER) Ca(2+) transport, is also preferentially expressed in the MBs in the honeybee brain. Gene expression analysis revealed that reticulocalbin is preferentially expressed in the large-type Kenyon cells, which are MB-intrinsic neurones. In addition, the gene for the ryanodine receptor, which is also involved in ER Ca(2+) transport, was also preferentially expressed in the large-type Kenyon cells. In contrast, the expression of three other ER-related genes, protein disulphide isomerase, sec61 and erp60, was not enriched in the MBs. These findings further support the notion that the function of ER Ca(2+)-signalling, but not the mere intracellular density of ER, is specifically enhanced in the large-type Kenyon cells in the honeybee brain.
Collapse
Affiliation(s)
- Y Uno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
5
|
Perisse E, Raymond-Delpech V, Néant I, Matsumoto Y, Leclerc C, Moreau M, Sandoz JC. Early calcium increase triggers the formation of olfactory long-term memory in honeybees. BMC Biol 2009; 7:30. [PMID: 19531205 PMCID: PMC2713209 DOI: 10.1186/1741-7007-7-30] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 06/16/2009] [Indexed: 11/23/2022] Open
Abstract
Background Synaptic plasticity associated with an important wave of gene transcription and protein synthesis underlies long-term memory processes. Calcium (Ca2+) plays an important role in a variety of neuronal functions and indirect evidence suggests that it may be involved in synaptic plasticity and in the regulation of gene expression correlated to long-term memory formation. The aim of this study was to determine whether Ca2+ is necessary and sufficient for inducing long-term memory formation. A suitable model to address this question is the Pavlovian appetitive conditioning of the proboscis extension reflex in the honeybee Apis mellifera, in which animals learn to associate an odor with a sucrose reward. Results By modulating the intracellular Ca2+ concentration ([Ca2+]i) in the brain, we show that: (i) blocking [Ca2+]i increase during multiple-trial conditioning selectively impairs long-term memory performance; (ii) conversely, increasing [Ca2+]i during single-trial conditioning triggers long-term memory formation; and finally, (iii) as was the case for long-term memory produced by multiple-trial conditioning, enhancement of long-term memory performance induced by a [Ca2+]i increase depends on de novo protein synthesis. Conclusion Altogether our data suggest that during olfactory conditioning Ca2+ is both a necessary and a sufficient signal for the formation of protein-dependent long-term memory. Ca2+ therefore appears to act as a switch between short- and long-term storage of learned information.
Collapse
Affiliation(s)
- Emmanuel Perisse
- Centre de Recherches sur Cognition Animale, Université de Toulouse, CNRS, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
6
|
Silant’eva DI, Gainutdinova TK, Andrianov VV, Gainutdinov KL. Electrophysiological Studies of the Effects of Chronic Administration of Caffeine on the Formation of a Conditioned Defensive Reflex in the Common Snail. ACTA ACUST UNITED AC 2009; 39:403-7. [DOI: 10.1007/s11055-009-9136-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 11/12/2007] [Indexed: 10/20/2022]
|
7
|
Inhibition of mGluR1 and IP3Rs impairs long-term memory formation in young chicks. Neurobiol Learn Mem 2008; 90:269-74. [PMID: 18495503 DOI: 10.1016/j.nlm.2008.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 04/05/2008] [Accepted: 04/07/2008] [Indexed: 11/21/2022]
Abstract
Calcium (Ca(2+)) is involved in a myriad of cellular functions in the brain including synaptic plasticity. However, the role of intracellular Ca(2+) stores in memory processing remains poorly defined. The current study explored a role for glutamate-dependent intracellular Ca(2+) release in memory processing via blockade of metabotropic glutamate receptor subtype 1 (mGluR1) and inositol (1,4,5)-trisphosphate receptors (IP(3)Rs). Using a single-trial discrimination avoidance task developed for the young chick, administration of the specific and potent mGluR1 antagonist JNJ16259685 (500nM, immediately post-training, ic), or the IP(3)R antagonist Xestospongin C (5microM, immediately post-training, ic), impaired retention from 90min post-training. These findings are consistent with mGluR1 activating IP(3)Rs to release intracellular Ca(2+) required for long-term memory formation and have been interpreted within an LTP2 model. The consequences of different patterns of retention loss following ryanodine receptor (RyR) and IP(3)R inhibition are discussed.
Collapse
|
8
|
Geiger JE, Magoski NS. Ca2+-induced Ca2+ release in Aplysia bag cell neurons requires interaction between mitochondrial and endoplasmic reticulum stores. J Neurophysiol 2008; 100:24-37. [PMID: 18463180 DOI: 10.1152/jn.90356.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intracellular Ca2+ is influenced by both Ca2+ influx and release. We examined intracellular Ca2+ following action potential firing in the bag cell neurons of Aplysia californica. Following brief synaptic input, these neuroendocrine cells undergo an afterdischarge, resulting in elevated Ca2+ and the secretion of neuropeptides to initiate reproduction. Cultured bag cell neurons were injected with the Ca2+ indicator, fura-PE3, and subjected to simultaneous imaging and electrophysiology. Delivery of a 5-Hz, 1-min train of action potentials (mimicking the fast phase of the afterdischarge) produced a Ca2+ rise that markedly outlasted the initial influx, consistent with Ca2+-induced Ca2+ release (CICR). This response was attenuated by about half with ryanodine or depletion of the endoplasmic reticulum (ER) by cyclopiazonic acid. However, depletion of the mitochondria, with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone, essentially eliminated CICR. Dual depletion of the ER and mitochondria did not reduce CICR further than depletion of the mitochondria alone. Moreover, tetraphenylphosphonium, a blocker of mitochondrial Ca2+ release, largely prevented CICR. The Ca2+ elevation during and subsequent to a stimulus mimicking the full afterdischarge was prominent and enhanced by protein kinase C activation. Traditionally, the ER is seen as the primary Ca2+ source for CICR. However, bag cell neuron CICR represents a departure from this view in that it relies on store interaction, where Ca2+ released from the mitochondria may in turn liberate Ca2+ from the ER. This unique form of CICR may be used by both bag cell neurons, and other neurons, to initiate secretion, activate channels, or induce gene expression.
Collapse
Affiliation(s)
- Julia E Geiger
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
9
|
Edwards TM, Rickard NS. New perspectives on the mechanisms through which nitric oxide may affect learning and memory processes. Neurosci Biobehav Rev 2007; 31:413-25. [PMID: 17188748 DOI: 10.1016/j.neubiorev.2006.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/01/2006] [Accepted: 11/02/2006] [Indexed: 12/27/2022]
Abstract
Nitric oxide (NO) has been well established as a molecule necessary for memory consolidation. Interestingly, the majority of research has focused on only a single mechanism through which NO acts, namely the up-regulation of guanylate cyclase (GC). However, since NO and NO-derived reactive nitrogen species are capable of interacting with a broad array of enzymes, ion channels and receptors, a singular focus on GC appears short-sighted. Although NO inhibits the action of a number of molecules there are four, in addition to GC, which are up-regulated by the direct presence of NO, or NO-derived radicals, and implicated in memory processing. They are: cyclic nucleotide-gated channels; large conductance calcium-activated potassium channels; ryanodine receptor calcium release (RyR) channels; and the enzyme mono(ADP-ribosyl) transferase. This review presents evidence that not only are these four molecules worthy of investigation as GC-independent mechanisms through which NO may act, but that behavioural evidence already exists suggesting a relationship between NO and the RyR channel.
Collapse
Affiliation(s)
- T M Edwards
- School of Psychology, Psychiatry and Psychological Medicine, Monash University-Clayton, Wellington Road, Clayton, 3800 Vic., Australia.
| | | |
Collapse
|
10
|
Woodward OM, Willows AOD. Nervous control of ciliary beating by Cl-, Ca2+ and calmodulin inTritonia diomedea. J Exp Biol 2006; 209:2765-73. [PMID: 16809467 DOI: 10.1242/jeb.02377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYIn vertebrates, motile cilia line airways, oviducts and ventricles. Invertebrate cilia often control feeding, swimming and crawling, or gliding. Yet control and coordination of ciliary beating remains poorly understood. Evidence from the nudibranch mollusc, Tritonia diomedea, suggests that locomotory ciliated epithelial cells may be under direct electrical control. Here we report that depolarization of ciliated pedal epithelial (CPE)cells increases ciliary beating frequency (CBF), and elicits CBF increases similar to those caused by dopamine and the neuropeptide, TPep-NLS. Further,four CBF stimulants (zero external Cl-, depolarization, dopamine and TPep-NLS) depend on a common mode of action, viz. Ca2+influx, possibly through voltage-gated Ca2+ channels, and can be blocked by nifedipine. Ca2+ influx alone, however, does not provide all the internal Ca2+ necessary for CBF change. Ryanodine receptor(RyR) channel-gated internal stores are also necessary for CBF excitation. Caffeine can stimulate CBF and is sensitive to the presence of the RyR blocker dantrolene. Dantrolene also reduces CBF excitation induced by dopamine and TPep-NLS. Finally, W-7 and calmidazolium both block CBF excitation by caffeine and dopamine, and W-7 is effective at blocking TPep-NLS excitation. The effects of calmidazolium and W-7 suggest a role for Ca2+-calmodulin in regulating CBF, either directly or via Ca2+-calmodulin dependent kinases or phosphodiesterases. From these results we hypothesize dopamine and TPep-NLS induce depolarization-driven Ca2+ influx and Ca2+ release from internal stores that activates Ca2+-calmodulin, thereby increasing CBF.
Collapse
Affiliation(s)
- Owen M Woodward
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA.
| | | |
Collapse
|
11
|
Blackwell KT. Subcellular, cellular, and circuit mechanisms underlying classical conditioning in Hermissenda crassicornis. ACTA ACUST UNITED AC 2006; 289:25-37. [PMID: 16437555 PMCID: PMC2778840 DOI: 10.1002/ar.b.20090] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A breakthrough for studying the neuronal basis of learning emerged when invertebrates with simple nervous systems, such as the sea slug Hermissenda crassicornis, were shown to exhibit classical conditioning. Hermissenda learns to associate light with turbulence: prior to learning, naive animals move toward light (phototaxis) and contract their foot in response to turbulence; after learning, conditioned animals delay phototaxis in response to light. The photoreceptors of the eye, which receive monosynaptic inputs from statocyst hair cells, are both sensory neurons and the first site of sensory convergence. The memory of light associated with turbulence is stored as changes in intrinsic and synaptic currents in these photoreceptors. The subcellular mechanisms producing these changes include activation of protein kinase C and MAP kinase, which act as coincidence detectors because they are activated by convergent signaling pathways. Pathways of interneurons and motorneurons, where additional changes in excitability and synaptic connections are found, contribute to delayed phototaxis. Bursting activity recorded at several points suggest the existence of small networks that produce complex spatiotemporal firing patterns. Thus, the change in behavior may be produced by a nonlinear transformation of spatiotemporal firing patterns caused by plasticity of synaptic and intrinsic channels. The change in currents and the activation of PKC and MAPK produced by associative learning are similar to those observed in hippocampal and cerebellar neurons after rabbit classical conditioning, suggesting that these represent general mechanisms of memory storage. Thus, the knowledge gained from further study of Hermissenda will continue to illuminate mechanisms of mammalian learning.
Collapse
Affiliation(s)
- Kim T Blackwell
- School of Computational Sciences, and the Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA.
| |
Collapse
|
12
|
Bravarenko NI, Onufriev MV, Stepanichev MY, Ierusalimsky VN, Balaban PM, Gulyaeva NV. Caspase-like activity is essential for long-term synaptic plasticity in the terrestrial snail Helix. Eur J Neurosci 2006; 23:129-40. [PMID: 16420423 DOI: 10.1111/j.1460-9568.2005.04549.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although caspase activity in the nervous system of mollusks has not been described before, we suggested that these cysteine proteases might be involved in the phenomena of neuroplasticity in mollusks. We directly measured caspase-3 (DEVDase) activity in the Helix lucorum central nervous system (CNS) using a fluorometrical approach and showed that the caspase-3-like immunoreactivity is present in the central neurons of Helix. Western blots revealed the presence of caspase-3-immunoreactive proteins with a molecular mass of 29 kDa. Staurosporin application, routinely used to induce apoptosis in mammalian neurons through the activating cleavage of caspase-3, did not result in the appearance of a smaller subunit corresponding to the active caspase in the snail. However, it did increase the enzyme activity in the snail CNS. This suggests differences in the regulation of caspase-3 activity in mammals and snails. In the snail CNS, the caspase homolog seems to possess an active center without activating cleavage typical for mammals. In electrophysiological experiments with identified snail neurons, selective blockade of the caspase-3 with the irreversible and cell-permeable inhibitor of caspase-3 N-benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp-(OMe)-fluoro-methylketone prevented development of the long-term stage of synaptic input sensitization, suggesting that caspase is necessary for normal synaptic plasticity in snails. The results of our study give the first direct evidence that the caspase-3-like activity is essential for long-term plasticity in the invertebrate neurons. This activity is presumably involved in removing inhibitory constraints on the storage of long-term memory.
Collapse
Affiliation(s)
- N I Bravarenko
- Institute of Higher Nervous Activity and Neurophysiology, Butlerova 5A, Moscow 117485, Russia
| | | | | | | | | | | |
Collapse
|
13
|
Aton E, Renault T, Gagnaire B, Thomas-Guyon H, Cognard C, Imbert N. A flow cytometric approach to study intracellular-free Ca2+ in Crassostrea gigas haemocytes. FISH & SHELLFISH IMMUNOLOGY 2006; 20:493-502. [PMID: 16102975 DOI: 10.1016/j.fsi.2005.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/12/2005] [Accepted: 06/28/2005] [Indexed: 05/04/2023]
Abstract
Bivalve haemocytes are essential in defence mechanisms including phagocytosis. They also produce molecules including hydrolytic enzymes and antimicrobial peptides that contribute to pathogen destruction. Although haemocyte activities have been extensively studied, relatively little is known about the intracellular signalling pathways that are evoked during haemocyte activation and especially the role of calcium. Flow cytometry has been used for the first time to define the effect of cell incubation in haemolymph and artificial sea water (ASW) on Pacific oyster, Crassostrea gigas, haemocytes. Cell viability, enzymatic activities (esterases and aminopeptidases), phagocytosis and granulocyte percentage were analysed. Viability and some activities were different in haemolymph and ASW. Cytoplasmic-free calcium in circulating haemocytes was then investigated by flow cytometry in both media using a calcium probe (Fluo-3/AM). To explore calcium homeostasis, different calcium modulators were tested. The calcium chelator Bapta/AM (10 microM) reduced significantly the percentage of Fluo-3-positive cells in ASW. In addition, ryanodine (5 microM) induced a significant enhancement of the percentage of Fluo-3 positive cells in haemolymph and in ASW. Flow cytometry may be used to study calcium movements in C. gigas haemocytes, but several haemocyte incubation media need to be tested in order to confirm results. The objective of the study should be considered before selecting a particular experimental medium.
Collapse
Affiliation(s)
- E Aton
- Université de La Rochelle, Laboratoire de Biologie et Environnement Marin (LBEM) FRE 2727, avenue Michel Crépeau, 17042 La Rochelle, France
| | | | | | | | | | | |
Collapse
|
14
|
Edwards TM, Rickard NS. Pharmaco-behavioural evidence indicating a complex role for ryanodine receptor calcium release channels in memory processing for a passive avoidance task. Neurobiol Learn Mem 2006; 86:1-8. [PMID: 16473029 DOI: 10.1016/j.nlm.2005.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 12/22/2005] [Accepted: 12/24/2005] [Indexed: 10/25/2022]
Abstract
Calcium signalling is an important process underlying neuronal function and consequently behaviour. The release of calcium from intracellular stores via the ryanodine receptor calcium release (RyR) channel has been implicated in both synaptic plasticity and to a limited extent in memory processing. While past investigations have suggested a role for RyR channels in long-term memory, the present study suggests their action is more complex. Using a single trial passive avoidance task developed for the day-old chick, it is proposed that RyR channels are necessary both prior to the expression of long-term memory and also in retrieval processes. Specifically, 5 mM dantrolene (a specific RyR channel blocker) resulted in a persistent retention loss from 40 min post-training while 10 nM dantrolene produced a transient retention loss centred at 40 min post-training. We speculate that in the context of memory formation, RyR channels may be activated by nitric oxide and in the context of memory retrieval may lead to the activation of large conductance calcium-activated potassium BK(Ca) channels which, when blocked by 50 nM iberiotoxin, also demonstrated a transient retention loss centred at 40 min post-training.
Collapse
Affiliation(s)
- T M Edwards
- School of Psychology, Psychiatry and Psychological Medicine, Monash University, 3800 Vic., Australia.
| | | |
Collapse
|
15
|
Abstract
The sea slug Hermissenda learns to associate light and hair cell stimulation, but not when the stimuli are temporally uncorrelated. Memory storage, which requires an elevation in calcium, occurs in the photoreceptors, which receive monosynaptic input from hair cells that sense acceleration stimuli such as turbulence. Both light and hair cell activity increase calcium concentration in the photoreceptor, but it is unknown whether paired calcium signals combine supralinearly to initiate memory storage. A correlate of memory storage is an enhancement of the long lasting depolarization (LLD) after light offset, which is attributed to a reduction in voltage dependent potassium currents; however, it is unclear what causes the LLD in the untrained animal. These issues were addressed using a multi-compartmental computer model of phototransduction, calcium dynamics, and ionic currents of the Hermissenda photoreceptor. Simulations of the interaction between light and hair cell activity show that paired stimuli do not produce a greater calcium increase than unpaired stimuli. This suggests that hair cell activity is acting via some other pathway to initiate memory storage. In addition, simulations show that a potassium leak channel, which closes with an increase in calcium, is required to produce both the untrained LLD and the enhanced LLD due to the decrease in voltage dependent potassium currents. Thus, the expression of this correlate of classical conditioning may depend on a leak potassium current.
Collapse
Affiliation(s)
- Kim T Blackwell
- School of Computational Sciences, and the Krasnow Institute for Advanced Study, George Mason University, MS 2A1, Fairfax, VA 22030, USA.
| |
Collapse
|
16
|
Kawai R, Horikoshi T, Sakakibara M. Involvement of the Ryanodine Receptor in Morphologic Modification ofHermissendaType B Photoreceptors After In Vitro Conditioning. J Neurophysiol 2004; 91:728-35. [PMID: 14561689 DOI: 10.1152/jn.00757.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined whether Ca2+induced Ca2+release through ryanodine receptors is involved in the conditioning of specific morphologic changes at the axon terminals of type B photoreceptors in the isolated circumesophageal ganglion of Hermissenda. Calcium chelation by bis(2-aminophenoxy) ethane- N,N,N′, N′-tetraacetic acid prevented the conformational change at the terminals after five paired presentations of light and vibration, which produce terminal branch contraction of B photoreceptors. Two ryanodine receptor blockers, dantrolene and micromolar concentrations of ryanodine, depressed the increase in excitability due to in vitro conditioning and the increase in intracellular Ca2+in response to membrane depolarization. Although the ability to increase intracellular Ca2+was depressed, synaptic transmission was preserved in the normal state from hair cells under dantrolene and ryanodine incubation. Ryanodine receptor blockers also prevented contraction at the B photoreceptor axon terminals. These results suggest that the ryanodine receptor has a crucial role in inducing the in vitro conditioning specific changes both physiologically and morphologically, including “focusing” at the B photoreceptor axon terminal.
Collapse
Affiliation(s)
- Ryo Kawai
- Laboratory of Neurobiological Engineering, Department of Biological Science and Technology, School of High-Technology for Human Welfare, Tokai University, Numazu 410-0321, Shizuoka, Japan
| | | | | |
Collapse
|
17
|
Comparison of Hermissenda type a and type B photoreceptors: response to light as a function of intensity and duration. J Neurosci 2003. [PMID: 12954863 DOI: 10.1523/jneurosci.23-22-08020.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hermissenda crassicornis is an invertebrate model used to study classical conditioning using light as the conditioned stimulus. The memory of the association is stored in type B photoreceptors, the output of which depends on interactions with type A photoreceptors. To understand the effect of classical conditioning on the output of type B photoreceptors in response to light, we measured the effect of light duration and intensity on membrane potential in both photoreceptor types of Hermissenda. The results show that, independent of light stimulus, the afterhyperpolarization is significantly greater in type A than in type B photoreceptors. In response to light, the generator potential (GP) rises linearly with an increase in either intensity or duration for both type A and type B photoreceptors. However, the difference between type A and type B photoreceptors depends on the time after light onset; the increase in peak GP with intensity is steeper in type A than type B, but by 14 sec after light onset, membrane potential is greater in type B than type A photoreceptors. Similarly, firing frequency increases with intensity and duration in both photoreceptor types but with a difference that is time dependent. During the first second after light onset, type A photoreceptors have a significantly higher firing frequency than type B photoreceptors; after this time, firing frequency is higher in type B than type A photoreceptors. Although membrane potential is correlated with firing frequency, this correlation is much lower in type A than type B photoreceptors, suggesting that some other conductance influences firing frequency in type A photoreceptors.
Collapse
|
18
|
Flynn M, Cai Y, Baxter DA, Crow T. A computational study of the role of spike broadening in synaptic facilitation of Hermissenda. J Comput Neurosci 2003; 15:29-41. [PMID: 12843693 DOI: 10.1023/a:1024418701765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pavlovian conditioning in Hermissenda produces a decrease in voltage-dependent (I(K,A) and I(Ca)) and Ca2+-dependent (I(K,Ca)) currents, and an increase in the action potential (AP) duration in type B-photoreceptors. In addition, synaptic connections between B and A photoreceptors and B photoreceptor and type I interneurons are facilitated. The increase in AP duration, produced by decreasing one or more K+ currents, may account for synaptic facilitation. The present study examined this issue by using a mathematical model of the B-photoreceptor and the neurosimulator SNNAP. In the model, decreasing g(K,A) by 70% increased the duration of the AP in the terminal by 41% and Ca2+ influx by 30%. However, if the decrease in g(K,A) was combined with a decrease in g(Ca), similar to what has been reported experimentally, the Ca2+ influx decreased by 54%. Therefore, the concomitant change in I(Ca) counter-acted the broadening-induced increase in Ca2+ influx in the synaptic terminal. This result suggests that a spike-duration independent process must contribute to the synaptic facilitation observed following Pavlovian conditioning.
Collapse
Affiliation(s)
- Mark Flynn
- Department of Neurobiology and Anatomy, The University of Texas-Houston Medical School, P.O. Box 20708, Houston, TX 77225, USA
| | | | | | | |
Collapse
|
19
|
Cavallaro S, D'Agata V, Manickam P, Dufour F, Alkon DL. Memory-specific temporal profiles of gene expression in the hippocampus. Proc Natl Acad Sci U S A 2002; 99:16279-84. [PMID: 12461180 PMCID: PMC138602 DOI: 10.1073/pnas.242597199] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2002] [Accepted: 10/03/2002] [Indexed: 11/18/2022] Open
Abstract
Many experiments in the past have demonstrated the requirement of de novo gene expression during the long-term retention of learning and memory. Although previous studies implicated individual genes or genetic pathways in learning and memory, they did not uncover the collective behaviors or patterns of the genes. We have used genome-scale screening to analyze gene expression during spatial learning of rats in the Morris water maze. Our results show distinct temporal gene expression profiles associated with learning and memory. Exogenous administration of one peptide whose sustained increase during memory retention was implicated by microarray analysis, fibroblast growth factor (FGF)-18, improved spatial learning behavior, suggesting that pharmacological modulation of pathways and targets identified may allow new therapeutic approaches for improving learning and memory. Results of this study also suggest that while learning and physical activity involve common groups of genes, the behavior of learning and memory emerges from unique patterns of gene expression across time.
Collapse
Affiliation(s)
- Sebastiano Cavallaro
- Blanchette Rockefeller Neurosciences Institute, West Virginia University, Rockville, MD 20850 USA.
| | | | | | | | | |
Collapse
|
20
|
Kawai R, Horikoshi T, Yasuoka T, Sakakibara M. In vitro conditioning induces morphological changes in Hermissenda type B photoreceptor. Neurosci Res 2002; 43:363-72. [PMID: 12135779 DOI: 10.1016/s0168-0102(02)00061-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Short- and long-term synaptic plasticity are considered to be cellular substrates of learning and memory. The mechanisms underlying synaptic plasticity especially with respect to morphology, however, are not known. In vitro conditioning in molluscan preparations is a well established form of short-term synaptic plasticity. Five paired presentations of light and vestibular stimulation to the isolated nervous system of Hermissenda results in an increase in excitability of the identified neuron, the type B photoreceptor, indicated by 2 measures, an increase in the input resistance and a cumulative depolarization after the cessation of light stimulus recorded from the cell soma. The terminal branches of type B photoreceptors iontophoretically injected with fluorescent dye were analyzed using computer-aided 3-dimensional reconstruction of images obtained using a confocal microscope under 'blind' conditions. The terminal branches contracted along the centro-lateral axis within an hour after conditioning, paralleling the increase in neuronal excitability. These data suggest that in vitro conditioning in Hermissenda is a form of short-term synaptic plasticity that involves changes in macromolecular synthesis.
Collapse
Affiliation(s)
- Ryo Kawai
- Graduate School of Science, Tokai University, Kita-Kaname, Hiratsuka 259-1292, Kanagawa, Japan
| | | | | | | |
Collapse
|
21
|
The effect of intensity and duration on the light-induced sodium and potassium currents in the Hermissenda type B photoreceptor. J Neurosci 2002. [PMID: 12019339 DOI: 10.1523/jneurosci.22-10-04217.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Light duration and intensity influence classical conditioning in Hermissenda through their effects on the light-induced currents. Furthermore, the contribution of voltage-dependent potassium currents to the long-lasting depolarization in type B photoreceptors depends on light-induced currents active at resting potentials. Thus, the present study measures the effect of holding potential, duration, and intensity on the light-induced currents in discontinuous single-electrode voltage clamp mode. Three distinct current components are distinguished by their temporal and voltage characteristics and sensitivity to pharmacological agents. One current component is a transient sodium current, I(Nalgt); another is a plateau sodium current, I(plateau), which persists for the duration of the light stimulus. Substitution of trimethylammonium chloride for sodium reduces both currents equally, suggesting that I(plateau) represents partial inactivation of I(Nalgt). The third current component is a prolonged reduction in potassium currents, I(Klgt); it is accompanied by an increase in input resistance, and it appears at potentials close to rest. An increase in light duration or intensity causes an increase in the peak conductance of both I(Nalgt) and I(Klgt). Latency of I(Nalgt) is decreased by intensity, whereas rise time is increased by duration. An increase in light duration or intensity causes an increase in the time-to-peak and duration of I(Klgt). Characteristics of these currents suggest that I(Klgt) is responsible for the long-lasting depolarization seen after light termination, and thus plays a role in classical conditioning.
Collapse
|
22
|
Blackwell KT. Calcium waves and closure of potassium channels in response to GABA stimulation in Hermissenda type B photoreceptors. J Neurophysiol 2002; 87:776-92. [PMID: 11826046 DOI: 10.1152/jn.00867.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Classical conditioning of Hermissenda crassicornis requires the paired presentation of a conditioned stimulus (light) and an unconditioned stimulus (turbulence). Light stimulation of photoreceptors leads to production of diacylglycerol, an activator of protein kinase C, and inositol triphosphate (IP(3)), which releases calcium from intracellular stores. Turbulence causes hair cells to release GABA onto the terminal branches of the type B photoreceptor. One prior study has shown that GABA stimulation produces a wave of calcium that propagates from the terminal branches to the soma and raises the possibility that two sources of calcium are required for memory storage. GABA stimulation also causes an inhibitory postsynaptic potential (IPSP) followed by a late depolarization and increase in input resistance, whose cause has not been identified. A model was developed of the effect of GABA stimulation on the Hermissenda type B photoreceptor to evaluate the currents underlying the late depolarization and to evaluate whether a calcium wave could propagate from the terminal branches to the soma. The model included GABA(A), GABA(B), and calcium-sensitive potassium leak channels; calcium dynamics including release of calcium from intracellular stores; and the biochemical reactions leading from GABA(B) receptor activation to IP(3) production. Simulations show that it is possible for a wave of calcium to propagate from the terminal branches to the soma. The wave is initiated by IP(3)-induced calcium release but propagation requires release through the ryanodine receptor channel where IP(3) concentration is small. Wave speed is proportional to peak calcium concentration at the crest of the wave, with a minimum speed of 9 microM/s in the absence of IP(3). Propagation ceases when peak concentration drops below 1.2 microM; this occurs if the rate of calcium pumping into the endoplasmic reticulum is too large. Simulations also show that both a late depolarization and an increase in input resistance occur after GABA stimulation. The duration of the late depolarization corresponds to the duration of potassium leak channel closure. Neither the late depolarization nor the increase in input resistance are observed when a transient calcium current and a hyperpolarization-activated current are added to the model as replacement for closure of potassium leak channels. Thus the late depolarization and input resistance elevation can be explained by a closure of calcium-sensitive leak potassium currents but cannot be explained by a transient calcium current and a hyperpolarization-activated current.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Animals
- Calcium Channels/physiology
- Calcium Signaling/physiology
- Conditioning, Classical/physiology
- Endoplasmic Reticulum, Smooth/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Models, Molecular
- Mollusca
- Muscle Fibers, Skeletal/physiology
- Neural Inhibition/physiology
- Photoreceptor Cells, Invertebrate/physiology
- Potassium Channels/physiology
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, GABA-A/physiology
- Receptors, GABA-B/physiology
- Ryanodine Receptor Calcium Release Channel/physiology
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- K T Blackwell
- School of Computational Sciences and the Krasnow Institute for Advanced Study, George Mason University, MS 281, Fairfax, Virginia 22030, USA.
| |
Collapse
|
23
|
Schultz LM, Butson CR, Clark GA. Post-light potentiation at type B to A photoreceptor connections in Hermissenda. Neurobiol Learn Mem 2001; 76:7-32. [PMID: 11525254 DOI: 10.1006/nlme.2000.3988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether the long (approximately 30-s) or short (approximately 3-s) light stimuli that have been used during behavioral training would induce post-light potentiation (PLP) at the type B to A photoreceptor connections of the isolated nervous system of Hermissenda. We found that a single approximately 30-s light step induced PLP at these connections relative to both pre-light baseline and seawater control preparations, as did a series of nine short (approximately 3-s) light steps. In addition, a 30-s step of depolarization-elicited type B cell activity induced potentiation comparable to that induced by a approximately 30-s light step, indicating that light-elicited type B cell activity contributes to the induction of PLP. By contrast, even though a series of short (3-s) light steps induced potentiation, short steps of depolarization-evoked type B cell activity did not. Hence, light-evoked processes other than type B cell depolarization or activity (e.g., perhaps intracellular Ca2+ release) also contribute to the induction of PLP. Further results suggest that these other light-evoked processes interact nonadditively with type B cell activity to generate PLP. Some but not all instances of synaptic potentiation were accompanied by various changes in parameters of type B cell action potentials and afterhyperpolarizing potentials, suggesting diverse underlying mechanisms, including increases in neurotransmitter release. Given that the type A cells have been proposed to polysynaptically excite the motor neurons that drive phototaxis, a light-evoked potentiation of synaptic strength at the inhibitory type B to A photoreceptor connections may play a mechanistic role in light-elicited nonassociative learning.
Collapse
Affiliation(s)
- L M Schultz
- Department of bioengineering, University of Utah, Salt Lake City 84112, USA.
| | | | | |
Collapse
|
24
|
Propagation of calcium waves in the Hermissenda type B photoreceptor. Neurocomputing 2001. [DOI: 10.1016/s0925-2312(01)00346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Muzzio IA, Gandhi CC, Manyam U, Pesnell A, Matzel LD. Receptor-stimulated phospholipase A(2) liberates arachidonic acid and regulates neuronal excitability through protein kinase C. J Neurophysiol 2001; 85:1639-47. [PMID: 11287487 DOI: 10.1152/jn.2001.85.4.1639] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Type B photoreceptors in Hermissenda exhibit increased excitability (e.g., elevated membrane resistance and lowered spike thresholds) consequent to the temporal coincidence of a light-induced intracellular Ca(2+) increase and the release of GABA from presynaptic vestibular hair cells. Convergence of these pre- and postsynaptically stimulated biochemical cascades culminates in the activation of protein kinase C (PKC). Paradoxically, exposure of the B cell to light alone generates an inositol triphosphate-regulated rise in diacylglycerol and intracellular Ca(2+), co-factors sufficient to stimulate conventional PKC isoforms, raising questions as to the unique role of synaptic stimulation in the activation of PKC. GABA receptors on the B cell are coupled to G proteins that stimulate phospholipase A(2) (PLA(2)), which is thought to regulate the liberation of arachidonic acid (AA), an "atypical" activator of PKC. Here, we directly assess whether GABA binding or PLA(2) stimulation liberates AA in these cells and whether free AA potentiates the stimulation of PKC. Free fatty-acid was estimated in isolated photoreceptors with the fluorescent indicator acrylodan-derivatized intestinal fatty acid-binding protein (ADIFAB). In response to 5 microM GABA, a fast and persistent increase in ADIFAB emission was observed, and this increase was blocked by the PLA(2) inhibitor arachidonyltrifluoromethyl ketone (50 microM). Furthermore, direct stimulation of PLA(2) by melittin (10 microM) increased ADIFAB emission in a manner that was kinetically analogous to GABA. In response to simultaneous exposure to the stable AA analogue oleic acid (OA, 20 microM) and light (to elevate intracellular Ca(2+)), B photoreceptors exhibited a sustained (>45 min) increase in excitability (membrane resistance and evoked spike rate). The excitability increase was blocked by the PKC inhibitor chelerythrine (20 microM) and was not induced by exposure of the cells to light alone. The increase in excitability in the B cell that followed exposure to light and OA persisted for > or =90 min when the pairing was conducted in the presence of the protein synthesis inhibitor anisomycin (1 microm), suggesting that the synergistic influence of these signaling agents on neuronal excitability did not require new protein synthesis. These results indicate that GABA binding to G-protein-coupled receptors on Hermissenda B cells stimulates a PLA(2) signaling cascade that liberates AA, and that this free AA interacts with postsynaptic Ca(2+) to synergistically stimulate PKC and enhance neuronal excitability. In this manner, the interaction of postsynaptic metabotropic receptors and intracellular Ca(2+) may serve as the catalyst for some forms of associative neuronal/synaptic plasticity.
Collapse
Affiliation(s)
- I A Muzzio
- Center for Neurobiology and Behavior, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
26
|
Blackwell KT. Evidence for a distinct light-induced calcium-dependent potassium current in Hermissenda crassicornis. J Comput Neurosci 2000; 9:149-70. [PMID: 11030519 DOI: 10.1023/a:1008919924579] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A model of phototransduction is developed as a first step toward a model for investigating the critical interaction of light and turbulence stimuli within the type B photoreceptor of Hermissenda crassicronis. The model includes equations describing phototransduction, release of calcium from intracellular stores, and other calcium regulatory mechanisms, as well as equations describing ligand-gating of a rhabdomeric sodium current. The model is used to determine the sources of calcium in the soma, whether calcium or IP3 is a plausible ligand of the light-induced sodium current, and whether the light-induced potassium current is equivalent to the calcium-dependent potassium current activated by light-induced calcium release. Simulations show that the early light-induced calcium elevation is due to influx through voltage-dependent channels, whereas the later calcium elevation is due to release from intracellular stores. Simulations suggest that the ligand of the fast, light-induced sodium current is IP3 but that there is a smaller, prolonged component of the light-induced sodium current that is activated by calcium. In the model, the calcium-dependent potassium current, located in the soma, is activated only slightly by light-induced calcium elevation, leading to the prediction that a calcium-dependent potassium current, active at resting potential, is located in the rhabdomere and is responsible for the light-induced potassium current.
Collapse
Affiliation(s)
- K T Blackwell
- Institute for Computational Sciences and Informatics, and Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA.
| |
Collapse
|