1
|
Atta S, Mandal A, Saha R, Majumdar A. Reduction of nitrite to nitric oxide and generation of reactive chalcogen species by mononuclear Fe(II) and Zn(II) complexes of thiolate and selenolate. Dalton Trans 2024; 53:949-965. [PMID: 38126213 DOI: 10.1039/d3dt03768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Comparative reactivity of a series of new Zn(II) and Fe(II) compounds, [(Py2ald)M(ER)] (E = S, R = Ph: M = Zn, 1aZn; M = Fe, 1aFe; E = S, R = 2,6-Me2-C6H3: M = Zn, 1bZn; M = Fe, 1bFe; E = Se, R = Ph: M = Zn, 2Zn; M = Fe, 2Fe), and [(Py2ald)M]22+ (M = Zn, 5Zn; M = Fe, 5Fe) is presented. Compound 1aZn could react with nitrite (NO2-) to produce [(Py2ald)Zn(ONO)] (3Zn), which, upon treatment with thiols and PhSeH (proton source), could regenerate either 1aZn/5Zn and 2Zn respectively, along with the production of nitric oxide (NO) where the yield of NO increases in the order tBuSH ≪ PhCH2SH < PhSH < PhSeH. In contrast to this, 1aFe, 2Fe and 5Fe could affect the direct reduction of NO2- in the absence of protons to generate NO and [{(Py2ald)(ONO)Fe}2-μ2-O] (8Fe). Moreover, 8Fe could regenerate 5Fe and 1aFe/2Fe upon treatment with 4 and 6 equiv. of PhEH (E = S/Se), respectively, along with the generation of NO. Finally, a comparative study of the mononuclear Zn(II) and Fe(II) compounds for the transfer of the coordinated thiolate/selenolate and the generation and transfer of reactive sulfur/selenium species (RES-, E = Se, S) to a series of organic substrates has been provided.
Collapse
Affiliation(s)
- Sayan Atta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.
| | - Amit Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.
| | - Rahul Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.
| |
Collapse
|
2
|
Mondal A, Maffe P, Wilson SN, Ghalei S, Palacio R, Handa H, Brisbois EJ. Catalytic effect of transition metal-doped medical grade polymer on S-nitrosothiol decomposition and its biological response. MATERIALS ADVANCES 2023; 4:3197-3206. [PMID: 38013687 PMCID: PMC10388399 DOI: 10.1039/d3ma00191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/04/2023] [Indexed: 11/29/2023]
Abstract
Nitric oxide (NO)-release from polymer metal composites is achieved through the incorporation of NO donors such as S-nitrosothiols (RSNO). Several studies have shown that metal nanoparticles catalytically decompose RSNO to release NO. In polymer composites, the NO surface flux from the surface can be modulated by the application of metal nanoparticles with a varying degree of catalytic activity. In this study, we compare the NO-releasing polymer composite design strategy - demonstrating how different ways of incorporating RSNO and metal nanoparticles can affect NO flux, donor leaching, or biological activity of the films. The first approach included blending both the RSNO and metal nanoparticle in the matrix (non-layered), while the second approach involved dip-coating metal nanoparticle/polymer layer on the RSNO-containing polymer composite (layered). Secondly, we compare both designs with respect to metal nanoparticles, including iron (Fe), copper (Cu), nickel (Ni), zinc (Zn), and silver (Ag). Differential NO surface flux is observed for each metal nanoparticle, with the Cu-containing polymer composites showing the highest flux for layered composites, whereas Fe demonstrated the highest NO flux for non-layered composites in 24 h. Additionally, a comparative study on NO flux modulation via the choice of metal nanoparticles is shown. Furthermore, mouse fibroblast cell viability when exposed to leachates from the polymer metal composites was dependent on (1) the design of the polymer composite where the layered approach performed better than non-layered composites (2) diffusion of metal nanoparticles from the composites plays a key role. Antibacterial activity on methicillin-resistant Staphylococcus aureus was also dependent on individual metal nanoparticles and flux levels in a 24 h in vitro CDC bioreactor study. Therefore, the study establishes the need for a layered polymer metal composite strategy that synergizes NO flux without negatively affecting biocompatibility.
Collapse
Affiliation(s)
- Arnab Mondal
- School of Chemical, Materials & Biomedical Engineering, University of Georgia 302 E Campus Road, Suite 2212 GA 30605 Athens 30602 USA
| | - Patrick Maffe
- School of Chemical, Materials & Biomedical Engineering, University of Georgia 302 E Campus Road, Suite 2212 GA 30605 Athens 30602 USA
| | - Sarah N Wilson
- School of Chemical, Materials & Biomedical Engineering, University of Georgia 302 E Campus Road, Suite 2212 GA 30605 Athens 30602 USA
| | - Sama Ghalei
- School of Chemical, Materials & Biomedical Engineering, University of Georgia 302 E Campus Road, Suite 2212 GA 30605 Athens 30602 USA
| | - Ricky Palacio
- School of Chemical, Materials & Biomedical Engineering, University of Georgia 302 E Campus Road, Suite 2212 GA 30605 Athens 30602 USA
| | - Hitesh Handa
- School of Chemical, Materials & Biomedical Engineering, University of Georgia 302 E Campus Road, Suite 2212 GA 30605 Athens 30602 USA
- Department of Pharmaceutical & Biomedical Sciences, University of Georgia Athens 30602 USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia 302 E Campus Road, Suite 2212 GA 30605 Athens 30602 USA
| |
Collapse
|
3
|
Tang X, Ren J, Wei X, Wang T, Li H, Sun Y, Liu Y, Chi M, Zhu S, Lu L, Zhang J, Yang B. Exploiting synergistic effect of CO/NO gases for soft tissue transplantation using a hydrogel patch. Nat Commun 2023; 14:2417. [PMID: 37105981 PMCID: PMC10140290 DOI: 10.1038/s41467-023-37959-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Autologous skin flap transplantation is a common method for repairing complex soft tissue defects caused by cancer, trauma, and congenital malformations. Limited blood supply range and post-transplantation ischemia-reperfusion injury can lead to distal necrosis of the flap and long-term functional loss, which severely restricts the decision-making regarding the optimal surgical plan. To address this issue, we develop a hydrogel patch that releases carbon monoxide and nitric oxide gases on demand, to afford a timely blood supply for skin flap transplantation during surgery. Using an ischemia-reperfusion dorsal skin flap model in rats, we show that the hydrogel patch maintains the immediate opening of blood flow channels in transplanted tissue and effective blood perfusion throughout the perioperative period, activating perfusion of the hemodynamic donor site. We demonstrate that the hydrogel patch promotes distal vascularization and long-term functional reconstruction of transplanted tissues by inhibiting inflammatory damage and accelerating blood vessel formation.
Collapse
Affiliation(s)
- Xiaoduo Tang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | - Jingyan Ren
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | - Xin Wei
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Tao Wang
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Haiqiu Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Yihan Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | - Yang Liu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Mingli Chi
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China.
| | - Laijin Lu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China.
| | - Junhu Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China.
| | - Bai Yang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| |
Collapse
|
4
|
Qian H, Ye Z, Pi L, Ao J. Roles and current applications of S-nitrosoglutathione in anti-infective biomaterials. Mater Today Bio 2022; 16:100419. [PMID: 36105674 PMCID: PMC9465324 DOI: 10.1016/j.mtbio.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
Abstract
Bacterial infections can compromise the physical and biological functionalities of humans and pose a huge economical and psychological burden on infected patients. Nitric oxide (NO) is a broad-spectrum antimicrobial agent, whose mechanism of action is not affected by bacterial resistance. S-nitrosoglutathione (GSNO), an endogenous donor and carrier of NO, has gained increasing attention because of its potent antibacterial activity and efficient biocompatibility. Significant breakthroughs have been made in the application of GSNO in biomaterials. This review is based on the existing evidence that comprehensively summarizes the progress of antimicrobial GSNO applications focusing on their anti-infective performance, underlying antibacterial mechanisms, and application in anti-infective biomaterials. We provide an accurate overview of the roles and applications of GSNO in antibacterial biomaterials and shed new light on the avenues for future studies.
Collapse
Key Words
- A.baumannii, Acinetobacter baumannii
- AgNPs, Silver nanoparticles
- Antibacterial property
- BMSCs, Bone marrow stem cells
- Bacterial resistance
- Biomaterials
- C.albicans, Candida albicans
- CS/GE, Chitosan/gelatin
- Cu, copper
- DMSO, Dimethyl sulfoxide
- DPA, Diethylenetriamine pentaacetic acid
- E. coli, Escherichia coli
- E.tenella, Eimeria tenella
- ECC, Extracorporeal circulation
- ECM, Experimental cerebral malaria
- GSNO, S-Nitrosoglutathione
- GSNOR, S-Nitrosoglutathione Reductase
- H.pylori, Helicobacter pylori
- HCC, Human cervical carcinoma
- HDFs, Human dermal fibroblasts
- HUVEC, Human umbilical vein endothelial cells
- ICR, Imprinted control region
- Infection
- K.Pneumonia, Klebsiella Pneumonia
- L.amazonensis, Leishmania amazonensis
- L.major, Leishmania major
- M.Tuberculosis, Mycobacterium tuberculosis
- M.smegmatis, Mycobacterium smegmatis
- MOF, Metal–organic framework
- MRPA, Multidrug-resistant Pseudomonas aeruginosa
- MRSA, Methicillin resistant Staphylococcus aureus
- N. gonorrhoeae, Neisseria gonorrhoeae
- N.meningitidis, Neisseria meningitidis
- NA, Not available
- NO-np, NO-releasing nanoparticulate platform
- NP, Nanoparticle
- P.aeruginosa, Pseudomonas aeruginosa
- P.berghei, Plasmodium berghei
- P.mirabilis, Proteus mirabilis
- PCL, Polycaprolactone
- PCVAD, Porcine circovirus-associated disease
- PDA-GSNO NPs, Polydopamine nanoparticles containing GSNO
- PDAM@Cu, polydopamine based copper coatings
- PEG, polyethylene glycol
- PHB, polyhydroxybutyrate
- PLA, polylactic acid
- PLGA, poly(lactic-co-glycolic acid)
- PTT, Photothermal therapy
- PVA, poly(vinyl alcohol)
- PVA/PEG, poly(vinyl alcohol)/poly(ethylene glycol)
- PVC, poly(vinyl chloride)
- S-nitrosoglutathione
- S. typhimurium, Salmonella typhimurium
- S.aureus, Staphylococcus aureus
- S.epidermidis, Staphylococcus epidermidis
- S.pneumoniae, Streptococcus pneumoniae
- SAKI, Septic acute kidney injury
- SCI, Spinal cord slices
- Se, Selenium
- Sp3, Specificity proteins 3
- TDC, Tunneled dialysis catheters
- TMOS, Tetramethylorthosilicate
- ZnO, Zinc oxide
- cftr, cystic fibrosis transmembrane conductance regulatory gene
- d, day
- h, hour
- min, minute
- pSiNPs, porous silicon nanoparticles
- w, week
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimin Ye
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lanping Pi
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Ahmed R, Augustine R, Chaudhry M, Akhtar UA, Zahid AA, Tariq M, Falahati M, Ahmad IS, Hasan A. Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends. Pharmacotherapy 2022; 149:112707. [PMID: 35303565 DOI: 10.1016/j.biopha.2022.112707] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Impaired diabetic wounds are serious pathophysiological complications associated with persistent microbial infections including failure in the closure of wounds, and the cause of a high frequency of lower limb amputations. The healing of diabetic wounds is attenuated due to the lack of secretion of growth factors, prolonged inflammation, and/or inhibition of angiogenic activity. Diabetic wound healing can be enhanced by supplying nitric oxide (NO) endogenously or exogenously. NO produced inside the cells by endothelial nitric oxide synthase (eNOS) naturally aids wound healing through its beneficial vasculogenic effects. However, during hyperglycemia, the activity of eNOS is affected, and thus there becomes an utmost need for the topical supply of NO from exogenous sources. Thus, NO-donors that can release NO are loaded into wound healing patches or wound coverage matrices to treat diabetic wounds. The burst release of NO from its donors is prevented by encapsulating them in polymeric hydrogels or nanoparticles for supplying NO for an extended duration of time to the diabetic wounds. In this article, we review the etiology of diabetic wounds, wound healing strategies, and the role of NO in the wound healing process. We further discuss the challenges faced in translating NO-donors as a clinically viable nanomedicine strategy for the treatment of diabetic wounds with a focus on the use of biomaterials for the encapsulation and in vivo controlled delivery of NO-donors.
Collapse
Affiliation(s)
- Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar; Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Maryam Chaudhry
- Department of Continuing Education, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Usman A Akhtar
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Muhammad Tariq
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan
| | - Mojtaba Falahati
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| | - Irfan S Ahmad
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana Champaign, IL, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
6
|
Ling P, Gao X, Zang X, Sun X, Gao F. Understanding the Performance of Metal-Organic Frameworks for Modulation of Nitric oxide Release from S-nitrosothiols. Chem Asian J 2022; 17:e202101358. [PMID: 35178879 DOI: 10.1002/asia.202101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/25/2022] [Indexed: 11/09/2022]
Abstract
S-Nitrosothiols (RSNOs) which were important intermediates in circulating reservoirs of nitric oxide (NO), transport and numerous NO signaling pathway plays intricate roles in the etiology of several pathologies. However, it is still a challenge to control release of NO from nitrosylated compounds under physiological pH. In this paper, for the first time, we report the catalytic activity and kinetic study for modulation of NO release from RSNOs by an array of metal-organic frameworks (MOFs) (M-MOF (M'); M = Zr, Cu; and M' = Cu, Pd, no metal) under physiological conditions via time-dependent absorbance spectra. The result showed that metal active site and the morphology and pore size of MOFs exhibited different activities toward RSNOs. The order of catalytic activity of these MOFs toward RSNOs is ordered in the decreasing sequence: Cu-MOF(Pd) ˃ Cu-MOF(Cu) ˃ Cu-MOF(no metal) ˃ Zr-MOF(Pd) ˃ Zr-MOF(Cu) ˃ Zr-MOF(no metal). In addition, Zr-MOF(Pd) was as model for cell experiment, demonstrated Zr-MOF(Pd) could react with RSNOs to generate NO in the complex environment of cell. Collectively, these findings establish a platform for MOFs-based, highly catalyze RSNOs in biological samples, a powerful tool for expanding the knowledge of the biology and chemistry of NO-mediated phenomena.
Collapse
Affiliation(s)
- Pinghua Ling
- Anhui Normal University, college of chemistry and materials, 189 Jiuhua South Road, 241002, wuhu, CHINA
| | - Xianping Gao
- Anhui Normal University, college of Chemistry and Materials Science, 189 Jiuhua South Road, Wuhu, CHINA
| | - Xiaona Zang
- Anhui Normal University, College of Chemistry and Materials Science, 189 Jiuhua South Road, Wuhu, CHINA
| | - Xinyu Sun
- Anhui Normal University, College of Chemistry and Materials Science, 189 Jiuhua South Road, Wuhu, CHINA
| | - Feng Gao
- Anhui Normal University, College of Chemistry and Materials Science, 189 Jiuhua South Road, Wuhu, CHINA
| |
Collapse
|
7
|
Jin G, Gao Z, Liu Y, Zhao J, Ou H, Xu F, Ding D. Polymeric Nitric Oxide Delivery Nanoplatforms for Treating Cancer, Cardiovascular Diseases, and Infection. Adv Healthc Mater 2021; 10:e2001550. [PMID: 33314793 DOI: 10.1002/adhm.202001550] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Indexed: 02/06/2023]
Abstract
The shortened Abstract is as follows: Therapeutic gas nitric oxide (NO) has demonstrated the unique advances in biomedical applications due to its prominent role in regulating physiological/pathophysiological activities in terms of vasodilation, angiogenesis, chemosensitizing effect, and bactericidal effect. However, it is challenging to deliver NO, due to its short half-life (<5 s) and short diffusion distances (20-160 µm). To address these, various polymeric NO delivery nanoplatforms (PNODNPs) have been developed for cancer therapy, antimicrobial and cardiovascular therapeutics, because of the important advantages of polymeric delivery nanoplatforms in terms of controlled release of therapeutics and the extremely versatile nature. This reviews highlights the recent significant advances made in PNODNPs for NO storing and targeting delivery. The ideal and unique criteria that are required for PNODNPs for treating cancer, cardiovascular diseases and infection, respectively, are summarized. Hopefully, effective storage and targeted delivery of NO in a controlled manner using PNODNPs could pave the way for NO-sensitized synergistic therapy in clinical practice for treating the leading death-causing diseases.
Collapse
Affiliation(s)
- Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 China
| | - Zhiyuan Gao
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Yangjing Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 China
| | - Jing Zhao
- Shaanxi Key Lab Degradable Biomedical Materials School of Chemical Engineering Northwest University 229 North Taibai North Road Xi'an 710069 China
| | - Hanlin Ou
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Carneiro MFH, Machado ART, Antunes LMG, Souza TE, Freitas VA, Oliveira LCA, Rodrigues JL, Pereira MC, Barbosa F. Gold-Coated Superparamagnetic Iron Oxide Nanoparticles Attenuate Collagen-Induced Arthritis after Magnetic Targeting. Biol Trace Elem Res 2020; 194:502-513. [PMID: 31313244 DOI: 10.1007/s12011-019-01799-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/24/2019] [Indexed: 01/15/2023]
Abstract
The aim of the study was to evaluate if gold-coated superparamagnetic iron oxide nanoparticles (AuSPION) magnetic-targeted to the arthritic articulation of collagen induced arthritis (CIA) rats are able to ameliorate rheumatoid arthritis without producing significant biological adverse effects in comparison to colloidal Au nanoparticles (AuC) and metotrexate (MTX). Male Wistar rats were divided into control; arthritic; AuSPION (150 μg kg-1); AuC (150 μg kg-1) and MTX (2.5 μg kg-1). Treatments were administered thrice every other day by the intraperitoneal route 15 min after all groups had a neodymium magnet coupled to the right ankle joint (kept for 1 h). Paw edema and body weight were measured weekly. Joint sections were evaluated by Haematoxylin & Eosin and immunohistochemistry (TNF-α, IL-1β). Biomarkers of oxidative stress were used to evaluate toxicity. Among the evaluated treatments, AuSPION led to significant clinical improvements (decreased edema and infiltration by leukocytes as well as less positively immunostained cells for both TNF-α and IL-1β in synovium) accompanied by a lack of toxicity as indicated by redox state and genotoxicity assays. Our results clearly indicate that the magnetic targeting of AuSPION suppresses joint edema and inflammation, cytokine expression as well as the redox imbalance, thereby contributing to an amelioration of arthritis severity in CIA rats. The results demonstrate for the first time the potentiality of AuSPION administration under a magnetic field as an attractive alternative for future treatments of rheumatic diseases.
Collapse
Affiliation(s)
| | - Ana Rita T Machado
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lusânia M G Antunes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Talita E Souza
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG,, Brazil
| | - Victor A Freitas
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG,, Brazil
| | - Luiz C A Oliveira
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG,, Brazil
| | - Jairo L Rodrigues
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG,, Brazil
| | - Marcio C Pereira
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG,, Brazil
| | - Fernando Barbosa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Dou J, Wang Y, Jin X, Li P, Wang L, Yuan J, Shen J. PCL/sulfonated keratin mats for vascular tissue engineering scaffold with potential of catalytic nitric oxide generation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110246. [DOI: 10.1016/j.msec.2019.110246] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022]
|
11
|
Pokidova ОV, Luzhkov VB, Emel'yanova NS, Krapivin VB, Kotelnikov AI, Sanina NA, Aldoshin SM. Effect of albumin on the transformation of dinitrosyl iron complexes with thiourea ligands. Dalton Trans 2020; 49:12674-12685. [DOI: 10.1039/d0dt02452j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BSA binds the Fe(NO)2+ fragment of DNIC and multiple molecules of [Fe(SC(NH2)2)2(NO)2]+ that prolongs NO donation by this DNIC.
Collapse
Affiliation(s)
- Оlesya V. Pokidova
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
| | - Victor B. Luzhkov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Nina S. Emel'yanova
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Vladimir B. Krapivin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
| | - Alexander I. Kotelnikov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Natalia A. Sanina
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Sergey M. Aldoshin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| |
Collapse
|
12
|
Darder M, Karan A, Real GD, DeCoster MA. Cellulose-based biomaterials integrated with copper-cystine hybrid structures as catalysts for nitric oxide generation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110369. [PMID: 31923961 DOI: 10.1016/j.msec.2019.110369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 11/19/2022]
Abstract
Bionanocomposite materials were developed from the assembly of polymer-coated copper-cystine high-aspect ratio structures (CuHARS) and cellulose fibers. The coating of the metal-organic materials with polyallylamine hydrochloride (PAH) allows their covalent linkage to TEMPO-oxidized cellulose by means of EDC/NHS. The resulting materials can be processed as films or macroporous foams by solvent casting and lyophilization, respectively. The films show good mechanical behavior with Young's moduli around 1.5 GPa as well as resistance in water, while the obtained foams show an open network of interconnected macropores with average diameters around 130 μm, depending on the concentration of the initial suspension, and compression modulus values around 450 kPa, similar to other reported freeze-dried nanocellulose-based aerogels. Based on these characteristics, the cellulose/PAH-CuHARS composites are promising for potential biomedical applications as implants or wound dressing materials. They have proved to be effective in the decomposition of low molecular weight S-nitrosothiols (RSNOs), similar to those existing in blood, releasing nitric oxide (NO). This effect is attributed to the presence of copper in the crystalline structure of the CuHARS building unit, which can be gradually released in the presence of redox species like ascorbic acid, typically found in blood. The resulting biomaterials can offer the interesting properties associated with NO, like antimicrobial activity as preliminary tests showed here with Escherichia coli and Staphylococcus epidermidis. In the presence of physiological concentration of RSNOs the amount of generated NO (around 360 nM) is not enough to show bactericidal effect on the studied bacteria, but it could provide other properties inherent to NO even at low concentration in the nM range like anti-inflammatory and anti-thrombotic effects. The cytotoxic effect recorded of the films on rat brain endothelial cells (BMVECs) is least significant and proves them to be friendly enough for further biological studies.
Collapse
Affiliation(s)
- Margarita Darder
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 28049, Madrid, Spain.
| | - Anik Karan
- Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, 71270, Louisiana, USA
| | - Gustavo Del Real
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km 7,5, 28040, Madrid, Spain
| | - Mark A DeCoster
- Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, 71270, Louisiana, USA; Cellular Neuroscience Laboratory, Institute for Micromanufacturing, College of Engineering and Science, Louisiana Tech University, 71270, Louisiana, USA
| |
Collapse
|
13
|
Nitric oxide releasing chitosan-poly (vinyl alcohol) hydrogel promotes angiogenesis in chick embryo model. Int J Biol Macromol 2019; 136:901-910. [DOI: 10.1016/j.ijbiomac.2019.06.136] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/09/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023]
|
14
|
S-Nitrosoglutathione exhibits greater stability than S-nitroso-N-acetylpenicillamine under common laboratory conditions: A comparative stability study. Nitric Oxide 2019; 92:18-25. [PMID: 31398487 DOI: 10.1016/j.niox.2019.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/20/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
S-Nitrosothiols (RSNOs) such as S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylpenicillamine (SNAP) are susceptible to decomposition by stimuli including heat, light, and trace metal ions. Using stepwise isothermal thermogravimetric analysis (TGA), we observed that NO-forming homolytic cleavage of the S-N bond occurs at 134.7 ± 0.8 °C in GSNO and 132.8 ± 0.9 °C in SNAP, contrasting with the value of 150 °C that has been previously reported for both RSNOs. Using mass spectrometry (MS), nuclear magnetic resonance (NMR), and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), we analyzed the decomposition products from TGA experiments. The organic product of GSNO decomposition was glutathione disulfide, while SNAP decomposed to form N-acetylpenicillamine disulfide as well as other products, including tri- and tetrasulfides. In addition, we assessed the relative solution stabilities of GSNO and SNAP under common laboratory conditions, which include variable temperature, pH, and light exposure with rigorous exclusion of trace metal ions by chelation. GSNO exhibited greater stability than SNAP over a 7-day period except in one instance. Both RSNOs demonstrated an inverse relationship between solution stability and temperature, with refrigeration considerably extending shelf life. A decrease in pH from 7.4 to 5.0 also enhanced the stability of both RSNOs. A further decrease in pH from 5.0 to 3.0 resulted in decreased stability for both RSNOs, and is notably the only occasion in which SNAP proved more stable than GSNO. After 1 h of exposure to overhead fluorescent lighting, both RSNOs displayed high susceptibility to light-induced decomposition. After 7 h, GSNO and SNAP decomposed 19.3 ± 0.5% and 30 ± 2%, respectively.
Collapse
|
15
|
Gresele P, Momi S, Guglielmini G. Nitric oxide-enhancing or -releasing agents as antithrombotic drugs. Biochem Pharmacol 2019; 166:300-312. [DOI: 10.1016/j.bcp.2019.05.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
|
16
|
Cohn D, Sloutski A, Elyashiv A, Varma VB, Ramanujan R. In Situ Generated Medical Devices. Adv Healthc Mater 2019; 8:e1801066. [PMID: 30828989 DOI: 10.1002/adhm.201801066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/25/2018] [Indexed: 12/19/2022]
Abstract
Medical devices play a major role in all areas of modern medicine, largely contributing to the success of clinical procedures and to the health of patients worldwide. They span from simple commodity products such as gauzes and catheters, to highly advanced implants, e.g., heart valves and vascular grafts. In situ generated devices are an important family of devices that are formed at their site of clinical function that have distinct advantages. Among them, since they are formed within the body, they only require minimally invasive procedures, avoiding the pain and risks associated with open surgery. These devices also display enhanced conformability to local tissues and can reach sites that otherwise are inaccessible. This review aims at shedding light on the unique features of in situ generated devices and to underscore leading trends in the field, as they are reflected by key developments recently in the field over the last several years. Since the uniqueness of these devices stems from their in situ generation, the way they are formed is crucial. It is because of this fact that in this review, the medical devices are classified depending on whether their in situ generation entails chemical or physical phenomena.
Collapse
Affiliation(s)
- Daniel Cohn
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Aaron Sloutski
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Ariel Elyashiv
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Vijaykumar B. Varma
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| | - Raju Ramanujan
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| |
Collapse
|
17
|
de Souza GFP, Denadai JP, Picheth GF, de Oliveira MG. Long-term decomposition of aqueous S-nitrosoglutathione and S-nitroso-N-acetylcysteine: Influence of concentration, temperature, pH and light. Nitric Oxide 2019; 84:30-37. [PMID: 30630056 DOI: 10.1016/j.niox.2019.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/17/2018] [Accepted: 01/04/2019] [Indexed: 02/03/2023]
Abstract
Primary S-nitrosothiols (RSNOs) have received significant attention for their ability to modulate NO signaling in many physiological and pathophysiological processes. Such actions and their potential pharmaceutical uses demand a better knowledge of their stability in aqueous solutions. Herein, we investigated the effects of concentration, temperature, pH, room light and metal ions on the long-term kinetic behavior of two representative primary RSNOs, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylcysteine (SNAC). The thermal decomposition of GSNO and SNAC were shown to be affected by the auto-catalytic action of the thiyl radicals. At 25 °C in the dark and protected from the catalytic action of metal ions, GSNO and SNAC solutions 1 mM showed half-lives of 49 and 76 days, and apparent activation energies of 84 ± 14 and 90 ± 6 kJ mol-1, respectively. Both GSNO and SNAC exhibited increased stability in the pH range 5-7. At high pH the decomposition pathway of GSNO involves the formation of an intermediate (GS-NO22-), which decomposes generating GSH and nitrite. GSNO solutions displayed lower sensitivity to the catalytic action of metal ions than SNAC and the exposure to room light led to a 5-fold increase in the initial rates of decomposition of both RSNOs. In all comparisons, SNAC solutions showed higher stability than GSNO solutions. These findings provide strategic information about the stability of GSNO and SNAC and may open new perspectives for their use as experimental or therapeutic NO donors.
Collapse
Affiliation(s)
| | | | - Guilherme F Picheth
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | | |
Collapse
|
18
|
Choi MS. Pathophysiological Role of S-Nitrosylation and Transnitrosylation Depending on S-Nitrosoglutathione Levels Regulated by S-Nitrosoglutathione Reductase. Biomol Ther (Seoul) 2018; 26:533-538. [PMID: 30464072 PMCID: PMC6254642 DOI: 10.4062/biomolther.2018.179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 09/27/2018] [Accepted: 10/06/2018] [Indexed: 12/23/2022] Open
Abstract
Nitric oxide (NO) mediates various physiological and pathological processes, including cell proliferation, differentiation, and inflammation. Protein S-nitrosylation (SNO), a NO-mediated reversible protein modification, leads to changes in the activity and function of target proteins. Recent findings on protein-protein transnitrosylation reactions (transfer of an NO group from one protein to another) have unveiled the mechanism of NO modulation of specific signaling pathways. The intracellular level of S-nitrosoglutathione (GSNO), a major reactive NO species, is controlled by GSNO reductase (GSNOR), a major regulator of NO/SNO signaling. Increasing number of GSNOR-related studies have shown the important role that denitrosylation plays in cellular NO/SNO homeostasis and human pathophysiology. This review introduces recent evidence of GSNO-mediated NO/SNO signaling depending on GSNOR expression or activity. In addition, the applicability of GSNOR as a target for drug therapy will be discussed in this review.
Collapse
Affiliation(s)
- Min Sik Choi
- Lab of Pharmacology, College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| |
Collapse
|
19
|
Eilertsen M, Allin SM, Pearson RJ. New 4-aryl-1,3,2-oxathiazolylium-5-olates: Chemical synthesis and photochemical stability of a novel series of S-nitrosothiols. Bioorg Med Chem Lett 2018; 28:1106-1110. [PMID: 29482942 DOI: 10.1016/j.bmcl.2018.01.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 01/12/2023]
Abstract
S-nitrosothiols (RSNOs) remain one of the most popular classes of NO-donating compounds due to their ability to release nitric oxide (NO) under non-enzymatic means whilst producing an inert disulphide by-product. However, alligning these compounds to the different biological fields of NO research has proved to be problematic due to the inherent instability of such compounds under a variety of conditions including heat, light and the presence of copper ions. 1,3,2-Oxathiazolylium-5-olates (OZOs) represent an interesting subclass of S-nitrosothiols that lock the -SNO moiety into a five membered heterocyclic ring in an attempt to improve the compound's overall stability. The synthesis of a novel series of halogen-containing OZOs was comprehensively studied resulting in a seven-step route and overall yields ranging between 21 and 37%. The photochemical stability of these compounds was assessed to determine if S-nitrosothiols locked within these mesoionic ring systems can offer greater stability and thereby release NO in a more controllable fashion than their non-cyclic counterparts.
Collapse
Affiliation(s)
- Monica Eilertsen
- School of Pharmacy, Keele University, Hornbeam Building, Keele, Staffordshire ST5 5BG, UK
| | - Steve M Allin
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Russell J Pearson
- School of Pharmacy, Keele University, Hornbeam Building, Keele, Staffordshire ST5 5BG, UK.
| |
Collapse
|
20
|
Gao J, Jiang L, Liang Q, Shi J, Hou D, Tang D, Chen S, Kong D, Wang S. The grafts modified by heparinization and catalytic nitric oxide generation used for vascular implantation in rats. Regen Biomater 2018; 5:105-114. [PMID: 29644092 PMCID: PMC5888227 DOI: 10.1093/rb/rby003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 01/03/2023] Open
Abstract
Small-diameter (<6 mm) vascular grafts are increasingly needed in peripheral vascular surgery but have few successes because of acute thrombosis, incomplete endothelialization and intimal hyperplasia after implantation. This study used electrospun poly(ε-caprolactone) as the matrix material. Heparin and selenium-containing catalyst-organoselenium modified polyethyleneimine were introduced through layer-by-layer assembly in order to build a vascular graft with in situ nitric oxide (NO) generation. The aim of this study was to explore the application of the graft with improved histocompatibility and biological function for vascular implantation in rats. After implantation in rats, compared to poly(ε-caprolactone), the modified grafts could promote the adhesion and proliferation of endothelial cells, and inhibit the adhesion of smooth muscle cells. The modified grafts remarkably promoted endothelialization, inhibited intimal hyperplasia and increased the ratio of alternatively activated macrophages (M2) to classical activated macrophages (M1). This work constructed a vascular graft with heparinization and catalytic NO generation for improving the vascularization, and accelerating the tissue regeneration by regulating the inflammatory response. The present study indicates that it is a promising method for regulating response and tissue regeneration of small diameter vascular grafts by a novel approach of combining heparinization and catalytic NO generation.
Collapse
Affiliation(s)
- Jingchen Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Li Jiang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qinge Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ding Hou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Di Tang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyuan Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Eytan D, Bitterman Y, Annich GM. VV extracorporeal life support for the Third Millennium: will we need anticoagulation? J Thorac Dis 2018; 10:S698-S706. [PMID: 29732189 DOI: 10.21037/jtd.2017.11.89] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since the late 1600's medicine and science have entertained the idea of extracorporeal circulation. With this technology to allow for cardiac and pulmonary support came the development of anticoagulation. Although this advanced the technology and capabilities of extracorporeal life support, it was not without complications and risks. The most common complications in extracorporeal life support (ECLS) present day are related to hemorrhage and thrombus due to the need for systemic anticoagulation and the challenges associated with it. This review focuses on present day techniques for anticoagulation for ECLS and what future surface modifications may do to obviate the use of systemic anticoagulation entirely.
Collapse
Affiliation(s)
- Danny Eytan
- Department of Pediatric Critical Care, Rambam Medical Center, Haifa, Israel
| | - Yuval Bitterman
- Department of Pediatric Critical Care, Rambam Medical Center, Haifa, Israel
| | - Gail M Annich
- Department of Critical Care Medicine, The Hospital for Sick Children University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Li X, Shen F, Wang K, Lin S, Zhou L, Chen S, Wang J, Huang N. Endothelial mimetic multifunctional surfaces fabricated via polydopamine mediated copper immobilization. J Mater Chem B 2018; 6:7582-7593. [DOI: 10.1039/c8tb01976b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nitric oxide (NO), which is continuously released from the normal healthy endodermis cell layer of the vascular system, plays a crucial role in the stability and health maintenance of blood vessels.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratories of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | | | - Kebing Wang
- Key Laboratories of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Shuang Lin
- Key Laboratories of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Lei Zhou
- Key Laboratories of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Si Chen
- Key Laboratories of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Jin Wang
- Key Laboratories of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Nan Huang
- Key Laboratories of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| |
Collapse
|
23
|
Annich GM, Zaulan O, Neufeld M, Wagner D, Reynolds MM. Thromboprophylaxis in Extracorporeal Circuits: Current Pharmacological Strategies and Future Directions. Am J Cardiovasc Drugs 2017; 17:425-439. [PMID: 28536932 DOI: 10.1007/s40256-017-0229-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of extracorporeal devices for organ support has been a part of medical history and progression since the late 1900s. These types of technology are primarily used and developed in the field of critical care medicine. Unfractionated heparin, discovered in 1916, has really been the only consistent form of thromboprophylaxis for attenuating or even preventing the blood-biomaterial reaction that occurs when such technologies are initiated. The advent of regional anticoagulation for procedures such as continuous renal replacement therapy and plasmapheresis have certainly removed the risks of systemic heparinization and heparin effect, but the challenges of the blood-biomaterial reaction and downstream effects remain. In addition, regional anticoagulation cannot realistically be applied in a system such as extracorporeal membrane oxygenation because of the high blood flow rates needed to support the patient. More recently, advances in the technology itself have resulted in smaller, more compact extracorporeal life support (ECLS) systems that can-at certain times and in certain patients-run without any form of anticoagulation. However, the majority of patients on ECLS systems require some type of systemic anticoagulation; therefore, the risks of bleeding and thrombosis persist, the most devastating of which is intracranial hemorrhage. We provide a concise overview of the primary and alternate agents and monitoring used for thromboprophylaxis during use of ECLS. In addition, we explore the potential for further biomaterial and technologic developments and what they could provide when applied in the clinical arena.
Collapse
Affiliation(s)
- Gail M Annich
- Department of Critical Care Medicine, The Hospital for Sick Children, University of Toronto, 555 University Avenue, M5G 1X8, Toronto, ON, Canada.
| | - Oshri Zaulan
- Department of Critical Care Medicine, The Hospital for Sick Children, University of Toronto, 555 University Avenue, M5G 1X8, Toronto, ON, Canada
| | - Megan Neufeld
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
| | - Deborah Wagner
- Departments of Pharmacology and Anesthesia, University of Michigan, Ann Arbor, Michigan, USA
| | - Melissa M Reynolds
- Department of Chemistry, School of Biomedical Engineering, Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
24
|
Neufeld MJ, Lutzke A, Jones WM, Reynolds MM. Nitric Oxide Generation from Endogenous Substrates Using Metal-Organic Frameworks: Inclusion within Poly(vinyl alcohol) Membranes To Investigate Reactivity and Therapeutic Potential. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35628-35641. [PMID: 28976734 PMCID: PMC6322413 DOI: 10.1021/acsami.7b11846] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cu-BTTri (H3BTTri = 1,3,5-tris[1H-1,2,3-triazol-5-yl]benzene) is a water-stable, copper-based metal-organic framework (MOF) that exhibits the ability to generate therapeutic nitric oxide (NO) from S-nitrosothiols (RSNOs) available within the bloodstream. Immobilization of Cu-BTTri within a polymeric membrane may allow for localized NO generation at the blood-material interface. This work demonstrates that Cu-BTTri can be incorporated within hydrophilic membranes prepared from poly(vinyl alcohol) (PVA), a polymer that has been examined for numerous biomedical applications. Following immobilization, the ability of the MOF to produce NO from the endogenous RSNO S-nitrosoglutathione (GSNO) is not significantly inhibited. Poly(vinyl alcohol) membranes containing dispersions of Cu-BTTri were tested for their ability to promote NO release from a 10 μM initial GSNO concentration at pH 7.4 and 37 °C, and NO production was observed at levels associated with antithrombotic therapeutic effects without significant copper leaching (<1%). Over 3.5 ± 0.4 h, 10 wt % Cu-BTTri/PVA membranes converted 97 ± 6% of GSNO into NO, with a maximum NO flux of 0.20 ± 0.02 nmol·cm-2·min-1. Furthermore, it was observed for the first time that Cu-BTTri is capable of inducing NO production from GSNO under aerobic conditions. At pH 6.0, the NO-forming reaction of 10 wt % Cu-BTTri/PVA membrane was accelerated by 22%, while an opposite effect was observed in the case of aqueous copper(II) chloride. Reduced temperature (20 °C) and the presence of the thiol-blocking reagent N-ethylmaleimide (NEM) impair the NO-forming reaction of Cu-BTTri/PVA with GSNO, with both conditions resulting in a decreased NO yield of 16 ± 1% over 3.5 h. Collectively, these findings suggest that Cu-BTTri/PVA membranes may have therapeutic utility through their ability to generate NO from endogenous substrates. Moreover, this work provides a more comprehensive analysis of the parameters that influence Cu-BTTri efficacy, permitting optimization for potential medical applications.
Collapse
Affiliation(s)
- Megan J. Neufeld
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Alec Lutzke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - W. Matthew Jones
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M. Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Corresponding Author: . Tel.: + 1 970 491 3775
| |
Collapse
|
25
|
Barnett SD, Buxton ILO. The role of S-nitrosoglutathione reductase (GSNOR) in human disease and therapy. Crit Rev Biochem Mol Biol 2017; 52:340-354. [PMID: 28393572 PMCID: PMC5597050 DOI: 10.1080/10409238.2017.1304353] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
S-nitrosoglutathione reductase (GSNOR), or ADH5, is an enzyme in the alcohol dehydrogenase (ADH) family. It is unique when compared to other ADH enzymes in that primary short-chain alcohols are not its principle substrate. GSNOR metabolizes S-nitrosoglutathione (GSNO), S-hydroxymethylglutathione (the spontaneous adduct of formaldehyde and glutathione), and some alcohols. GSNOR modulates reactive nitric oxide (•NO) availability in the cell by catalyzing the breakdown of GSNO, and indirectly regulates S-nitrosothiols (RSNOs) through GSNO-mediated protein S-nitrosation. The dysregulation of GSNOR can significantly alter cellular homeostasis, leading to disease. GSNOR plays an important regulatory role in smooth muscle relaxation, immune function, inflammation, neuronal development and cancer progression, among many other processes. In recent years, the therapeutic inhibition of GSNOR has been investigated to treat asthma, cystic fibrosis and interstitial lung disease (ILD). The direct action of •NO on cellular pathways, as well as the important regulatory role of protein S-nitrosation, is closely tied to GSNOR regulation and defines this enzyme as an important therapeutic target.
Collapse
Affiliation(s)
- Scott D Barnett
- a Department of Pharmacology , University of Nevada, Reno School of Medicine , Reno , NV , USA
| | - Iain L O Buxton
- a Department of Pharmacology , University of Nevada, Reno School of Medicine , Reno , NV , USA
| |
Collapse
|
26
|
Neufeld MJ, Lutzke A, Tapia JB, Reynolds MM. Metal-Organic Framework/Chitosan Hybrid Materials Promote Nitric Oxide Release from S-Nitrosoglutathione in Aqueous Solution. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5139-5148. [PMID: 28164705 PMCID: PMC6322424 DOI: 10.1021/acsami.6b14937] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
It has been previously demonstrated that copper-based metal-organic frameworks (MOFs) accelerate formation of the therapeutically active molecule nitric oxide (NO) from S-nitrosothiols (RSNOs). Because RSNOs are naturally present in blood, this function is hypothesized to permit the controlled production of NO through use of MOF-based blood-contacting materials. The practical implementation of MOFs in this application typically requires incorporation within a polymer support, yet this immobilization has been shown to impair the ability of the MOF to interact with the NO-forming RSNO substrate. Here, the water-stable, copper-based MOF H3[(Cu4Cl)3-(BTTri)8] (H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), or Cu-BTTri, was incorporated within the naturally derived polysaccharide chitosan to form membranes that were evaluated for their ability to enhance NO generation from the RSNO S-nitrosoglutathione (GSNO). This is the first report to evaluate MOF-induced NO release from GSNO, the most abundant small-molecule RSNO. At a 20 μM initial GSNO concentration (pH 7.4 phosphate buffered saline, 37 °C), chitosan/Cu-BTTri membranes induced the release of 97 ± 3% of theoretical NO within approximately 4 h, corresponding to a 65-fold increase over the baseline thermal decomposition of GSNO. Furthermore, incorporation of Cu-BTTri within hydrophilic chitosan did not impair the activity of the MOF, unlike earlier efforts using hydrophobic polyurethane or poly(vinyl chloride). The reuse of the membranes continued to enhance NO production from GSNO in subsequent experiments, suggesting the potential for continued use. Additionally, the major organic product of Cu-BTTri-promoted GSNO decomposition was identified as oxidized glutathione via mass spectrometry, confirming prior hypotheses. Structural analysis by pXRD and assessment of copper leaching by ICP-AES indicated that Cu-BTTri retains crystallinity and exhibits no significant degradation following exposure to GSNO. Taken together, these findings provide insight into the function and utility of polymer/Cu-BTTri systems and may support the development of future MOF-based biomaterials.
Collapse
Affiliation(s)
- Megan J. Neufeld
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Alec Lutzke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jesus B. Tapia
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M. Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
27
|
Wo Y, Brisbois EJ, Bartlett RH, Meyerhoff ME. Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO). Biomater Sci 2016; 4:1161-83. [PMID: 27226170 PMCID: PMC4955746 DOI: 10.1039/c6bm00271d] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomedical devices are essential for patient diagnosis and treatment; however, when blood comes in contact with foreign surfaces or homeostasis is disrupted, complications including thrombus formation and bacterial infections can interrupt device functionality, causing false readings and/or shorten device lifetime. Here, we review some of the current approaches for developing antithrombotic and antibacterial materials for biomedical applications. Special emphasis is given to materials that release or generate low levels of nitric oxide (NO). Nitric oxide is an endogenous gas molecule that can inhibit platelet activation as well as bacterial proliferation and adhesion. Various NO delivery vehicles have been developed to improve NO's therapeutic potential. In this review, we provide a summary of the NO releasing and NO generating polymeric materials developed to date, with a focus on the chemistry of different NO donors, the polymer preparation processes, and in vitro and in vivo applications of the two most promising types of NO donors studied thus far, N-diazeniumdiolates (NONOates) and S-nitrosothiols (RSNOs).
Collapse
Affiliation(s)
- Yaqi Wo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
28
|
McCarthy CW, Guillory RJ, Goldman J, Frost MC. Transition-Metal-Mediated Release of Nitric Oxide (NO) from S-Nitroso-N-acetyl-d-penicillamine (SNAP): Potential Applications for Endogenous Release of NO at the Surface of Stents Via Corrosion Products. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10128-35. [PMID: 27031652 DOI: 10.1021/acsami.6b00145] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nitric oxide (NO), identified over the last several decades in many physiological processes and pathways as both a beneficial and detrimental signaling molecule, has been the subject of extensive research. Physiologically, NO is transported by a class of donors known as S-nitrosothiols. Both endogenous and synthetic S-nitrosothiols have been reported to release NO during interactions with certain transition metals, primarily Cu(2+) and Fe(2+). Ag(+) and Hg(2+) have also been identified, although these metals are not abundantly present in physiological systems. Here, we evaluate Pt(2+), Fe(2+), Fe(3+), Mg(2+), Zn(2+), Mn(2+), Co(2+), Ni(2+), and Cu(2+) for their ability to generate NO from S-nitroso-N-acetyl-d-penicillamine (SNAP) under physiological pH conditions. Specifically, we report NO generation from RSNOs initiated by three transition metal ions; Co(2+), Ni(2+), and Zn(2+), which have not been previously reported to generate NO. Additionally, preliminary in vivo evidence of zinc wires implanted in the rat arterial wall and circulating blood is presented which demonstrated inhibited thrombus formation after 6 months. One potentially useful application of these metal ions capable of generating NO from RSNOs is their use in the fabrication of biodegradable metallic stents capable of generating NO at the stent-blood interface, thereby reducing stent-related thrombosis and restenosis.
Collapse
Affiliation(s)
- Connor W McCarthy
- Department of Biomedical Engineering, Michigan Technological University , 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Roger J Guillory
- Department of Biomedical Engineering, Michigan Technological University , 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University , 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Megan C Frost
- Department of Biomedical Engineering, Michigan Technological University , 1400 Townsend Drive, Houghton, Michigan 49931, United States
| |
Collapse
|
29
|
Neufeld MJ, Harding JL, Reynolds MM. Immobilization of Metal-Organic Framework Copper(II) Benzene-1,3,5-tricarboxylate (CuBTC) onto Cotton Fabric as a Nitric Oxide Release Catalyst. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26742-50. [PMID: 26595600 DOI: 10.1021/acsami.5b08773] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Immobilization of metal-organic frameworks (MOFs) onto flexible polymeric substrates as secondary supports expands the versatility of MOFs for surface coatings for the development of functional materials. In this work, we demonstrate the deposition of copper(II) benzene-1,3,5-tricarboxylate (CuBTC) crystals directly onto the surface of carboxyl-functionalized cotton capable of generating the therapeutic bioagent nitric oxide (NO) from endogenous sources. Characterization of the CuBTC-cotton material by XRD, ATR-IR, and UV-vis indicate that CuBTC is successfully immobilized on the cotton fabric. In addition, SEM imaging reveals excellent surface coverage with well-defined CuBTC crystals. Subsequently, the CuBTC-cotton material was evaluated as a supported heterogeneous catalyst for the generation of NO using S-nitrosocysteamine as the substrate. The resulting reactivity is consistent with the activity observed for unsupported CuBTC particles. Overall, this work demonstrates deposition of MOFs onto a flexible polymeric material with excellent coverage as well as catalytic NO release from S-nitrosocysteamine at therapeutic levels.
Collapse
Affiliation(s)
- Megan J Neufeld
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Jacqueline L Harding
- Chemical and Biological Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| | - Melissa M Reynolds
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University , Fort Collins, Colorado 80523, United States
| |
Collapse
|
30
|
Yang Y, Qi P, Yang Z, Huang N. Nitric oxide based strategies for applications of biomedical devices. BIOSURFACE AND BIOTRIBOLOGY 2015. [DOI: 10.1016/j.bsbt.2015.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
31
|
An J, Chen S, Gao J, Zhang X, Wang Y, Li Y, Mikhalovsky S, Kong D, Wang S. Construction and evaluation of nitric oxide generating vascular graft material loaded with organoselenium catalyst via layer-by-layer self-assembly. SCIENCE CHINA-LIFE SCIENCES 2015; 58:765-72. [DOI: 10.1007/s11427-015-4870-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/12/2015] [Indexed: 12/24/2022]
Abstract
Abstract
A new biomimetic material for artificial blood vessel with in situ catalytic generation of nitric oxide (NO) was prepared in this study. Organoselenium immobilized polyethyleneimine as NO donor catalyst and sodium alginate were alternately loaded onto the surface of electrospun polycaprolactone matrix via electrostatic layer-by-layer self-assembly. This material revealed significant NO generation when contacting NO donor S-nitrosoglutathione (GSNO). Adhesion and spreading of smooth muscle cells were inhibited on this material in the presence of GSNO, while proliferation of endothelial cells was promoted. In vitro platelet adhesion and arteriovenous shunt experiments demonstrated good antithrombotic properties of this material, with inhibited platelet activation and aggregation, and prevention of acute thrombosis. This study may provide a new method of improving cellular function and antithrombotic property of vascular grafts.
Collapse
|
32
|
Hunter RA, Schoenfisch MH. S-Nitrosothiol analysis via photolysis and amperometric nitric oxide detection in a microfluidic device. Anal Chem 2015; 87:3171-6. [PMID: 25714120 DOI: 10.1021/ac503220z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A 530 nm light emitting diode was coupled to a microfluidic sensor to facilitate photolysis of nitrosothiols (i.e., S-nitrosoglutathione, S-nitrosocysteine, and S-nitrosoalbumin) and amperometric detection of the resulting nitric oxide (NO). This configuration allowed for maximum sensitivity and versatility, while limiting potential interference from nitrate decomposition caused by ultraviolet light. Compared to similar measurements of total S-nitrosothiol content in bulk solution, use of the microfluidic platform permitted significantly enhanced analytical performance in both phosphate-buffered saline and plasma (6-20× improvement in sensitivity depending on nitrosothiol type). Additionally, the ability to reduce sample volumes from milliliters to microliters provides increased clinical utility. To demonstrate its potential for biological analysis, this device was used to measure basal nitrosothiol levels from the vasculature of a healthy porcine model.
Collapse
Affiliation(s)
- Rebecca A Hunter
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
33
|
Wang Y, Chen S, Pan Y, Gao J, Tang D, Kong D, Wang S. Rapid in situ endothelialization of a small diameter vascular graft with catalytic nitric oxide generation and promoted endothelial cell adhesion. J Mater Chem B 2015; 3:9212-9222. [DOI: 10.1039/c5tb02080h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rapidin situendothelialization of a small diameter vascular graft with catalytic nitric oxide generation and promoted endothelial cell adhesion.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials for Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Siyuan Chen
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials for Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Yiwa Pan
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials for Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Jingchen Gao
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials for Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Di Tang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials for Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials for Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials for Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| |
Collapse
|
34
|
Chen S, An J, Weng L, Li Y, Xu H, Wang Y, Ding D, Kong D, Wang S. Construction and biofunctional evaluation of electrospun vascular graft loaded with selenocystamine for in situ catalytic generation of nitric oxide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:491-6. [DOI: 10.1016/j.msec.2014.09.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/21/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
|
35
|
Gregori B, Guidoni L, Chiavarino B, Scuderi D, Nicol E, Frison G, Fornarini S, Crestoni ME. Vibrational Signatures of S-Nitrosoglutathione as Gaseous, Protonated Species. J Phys Chem B 2014; 118:12371-82. [DOI: 10.1021/jp5072742] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Leonardo Guidoni
- Dipartimento
di Scienza Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio 2, Coppito, L’Aquila I-64100, Italy
| | | | - Debora Scuderi
- Laboratoire
de Chimie Physique, UMR8000 CNRS, Faculté des Sciences, Université Paris-Sud, Batiment 350, 91405 Orsay Cedex, France
| | - Edith Nicol
- Laboratoire
de Chimie Moléculaire, Ecole Polytechnique and CNRS, 91128 Palaiseau Cedex, France
| | - Gilles Frison
- Laboratoire
de Chimie Moléculaire, Ecole Polytechnique and CNRS, 91128 Palaiseau Cedex, France
| | | | | |
Collapse
|
36
|
Shaturnyĭ VI, Shakhidzhanov SS, Sveshnikova AN, Panteleev MA. [Activators, receptors and signal transduction pathways of blood platelets]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2014; 60:182-200. [PMID: 24837309 DOI: 10.18097/pbmc20146002182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Platelet participation in hemostatic plug formation requires transition into an activated state (or, rather, variety of states) upon action of agonists like ADP, thromboxane A , collagen, thrombin, and others. The mechanisms of action for different agonists, their receptors and signaling pathways associated with them, as well as the mechanisms of platelet response inhibition are the subject of the present review. Collagen exposed upon vessel wall damage induced initial platelet attachment and start of thrombus formation, which involves numerous processes such as aggregation, activation of integrins, granule secretion and increase of intracellular Ca2+. Thrombin, ADP, thromboxane A , and ATP activated platelets that were not initially in contact with the wall and induce additional secretion of activating substances. Vascular endothelium and secretory organs also affect platelet activation, producing both positive (adrenaline) an d negative (prostacyclin, nitric oxide) regulators, thereby determining the relation of activation and inhibition signals, which plays a significant role in the formation of platelet aggregate under normal and pathological conditions. The pathways of platelet signaling are still incompletely understood, and their exploration presents an important objective both for basic cell biology and for the development of new drugs, the methods of diagnostics and of treatment of hemostasis disorders.
Collapse
|
37
|
Cardenas AJP, Abelman R, Warren TH. Conversion of nitrite to nitric oxide at zinc via S-nitrosothiols. Chem Commun (Camb) 2014; 50:168-70. [PMID: 24217415 DOI: 10.1039/c3cc46102e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitrite is an important reservoir of nitric oxide activity in the plasma and cells. Using a biomimetic model, we demonstrate the conversion of zinc-bound nitrite in the tris(pyrazolyl)borate complex (iPr2)TpZn(NO2) to the corresponding S-nitrosothiol RSNO and zinc thiolate (iPr2)TpZn-SR via reaction with thiols H-SR. Decomposition of the S-nitrosothiol formed releases nitric oxide gas.
Collapse
Affiliation(s)
- Allan Jay P Cardenas
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D.C. 20057, USA.
| | | | | |
Collapse
|
38
|
Harding JL, Reynolds MM. Composite materials with embedded metal organic framework catalysts for nitric oxide release from bioavailable S-nitrosothiols. J Mater Chem B 2014; 2:2530-2536. [DOI: 10.1039/c3tb21458c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Abstract
S-nitrosothiols (RSNO) are involved in post-translational modifications of many proteins analogous to protein phosphorylation. In addition, RSNO have many physiological roles similar to nitric oxide ((•)NO), which are presumably involving the release of (•)NO from the RSNO. However, the much longer life span in biological systems for RSNO than (•)NO suggests a dominant role for RSNO in mediating (•)NO bioactivity. RSNO are detected in plasma in low nanomolar levels in healthy human subjects. These RSNO are believed to be redirecting the (•)NO to the vasculature. However, the mechanism for the formation of RSNO in vivo has not been established. We have reviewed the reactions of (•)NO with oxygen, metalloproteins, and free radicals that can lead to the formation of RSNO and have evaluated the potential for each mechanism to provide a source for RSNO in vivo.
Collapse
Affiliation(s)
- Enika Nagababu
- Molecular Dynamics Section, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Rm No. 5B131, Baltimore, MD, 21224, USA,
| | | |
Collapse
|
40
|
Zhang S, Çelebi-Ölçüm N, Melzer MM, Houk KN, Warren TH. Copper(I) nitrosyls from reaction of copper(II) thiolates with S-nitrosothiols: mechanism of NO release from RSNOs at Cu. J Am Chem Soc 2013; 135:16746-9. [PMID: 24111922 DOI: 10.1021/ja406476y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
S-nitrosothiols (RSNOs) serve as ready sources of biological nitric oxide activity, especially in conjunction with copper centers. We report a novel pathway for the generation of NO within the coordination sphere of copper model complexes from reaction of copper(II) thiolates with S-nitrosothiols. Reaction of tris(pyrazolyl)borate copper(II) thiolates (iPr2)TpCu-SR (R = C6F5 or CPh3) with (t)BuSNO leads to formation of (iPr2)TpCu(NO) and the unsymmetrical disulfide RS-S(t)Bu. Quantum mechanical investigations with B3LYP-D3/6-311G(d) suggest formation of a κ(1)-N-RSNO adduct (iPr2)TpCu(SR)(R'SNO) that precedes release of RSSR' to deliver (iPr2)TpCu(NO). This process is reversible; reaction of (iPr2)TpCu(NO) (but not (iPr2)TpCu(NCMe)) with C6F5S-SC6F5 forms (iPr2)TpCu-SC6F5. Coupled with the facile, reversible reaction between (iPr2)TpCu(NO) and C6F5SNO to give (iPr2)TpCu-SC6F5 and 2 equiv NO, we outline a new, detailed catalytic cycle for NO generation from RSNOs at Cu.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Chemistry, Georgetown University , Box 571227-1227, Washington, DC 20057, United States
| | | | | | | | | |
Collapse
|
41
|
Quantitative Systems Pharmacology Model of NO Metabolome and Methemoglobin Following Long-Term Infusion of Sodium Nitrite in Humans. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2013; 2:e60. [PMID: 23903463 PMCID: PMC3731826 DOI: 10.1038/psp.2013.35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/09/2013] [Indexed: 01/08/2023]
Abstract
A long-term sodium nitrite infusion is intended for the treatment of vascular disorders. Phase I data demonstrated a significant nonlinear dose-exposure-toxicity relationship within the therapeutic dosage range. This study aims to develop a quantitative systems pharmacology model characterizing nitric oxide (NO) metabolome and methemoglobin after sodium nitrite infusion. Nitrite, nitrate, and methemoglobin concentration–time profiles in plasma and RBC were used for model development. Following intravenous sodium nitrite administration, nitrite undergoes conversion in RBC and tissue. Nitrite sequestered by RBC interacts more extensively with deoxyhemoglobin, which contributes greatly to methemoglobin formation. Methemoglobin is formed less-than-proportionally at higher nitrite doses as characterized with facilitated methemoglobin removal. Nitrate-to-nitrite reduction occurs in tissue and via entero-salivary recirculation. The less-than-proportional increase in nitrite and nitrate exposure at higher nitrite doses is modeled with a dose-dependent increase in clearance. The model provides direct insight into NO metabolome disposition and is valuable for nitrite dosing selection in clinical trials.
Collapse
|
42
|
Peng B, Meyerhoff ME. Reexamination of the Direct Electrochemical Reduction of S-Nitrosothiols. ELECTROANAL 2013; 25:914-921. [PMID: 25866455 PMCID: PMC4390089 DOI: 10.1002/elan.201200445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/18/2012] [Indexed: 01/21/2023]
Abstract
We report here on the electrochemical reduction of S-nitrosothiol species (RSNO). Nitric oxide (NO) is the reported common product from electrochemically reduced RSNOs at physiological pH. However, studies here at pH 7.4 show that during the reduction of RSNOs (-0.6 V to -0.9 V, vs. Ag/AgCl), no significant amount of NO is detected. Gas analysis suggests RSNO are reduced to nitrous oxide (N2O) at pH 7.4 and can only be converted back to NO at more oxidizing voltages. Interestingly, at pH 4.0, a direct one-electron reduction of RSNOs appears to occur and generates significant amounts of NO from RSNO species.
Collapse
Affiliation(s)
- Bo Peng
- Department of Chemistry, The University of Michigan, 930 North University Ave., Ann Arbor, MI 48109, USA
| | - Mark E. Meyerhoff
- Department of Chemistry, The University of Michigan, 930 North University Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
43
|
Naghavi N, de Mel A, Alavijeh OS, Cousins BG, Seifalian AM. Nitric oxide donors for cardiovascular implant applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:22-35. [PMID: 23136136 DOI: 10.1002/smll.201200458] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/13/2012] [Indexed: 06/01/2023]
Abstract
In an era of increased cardiovascular disease burden in the ageing population, there is great demand for devices that come in to contact with the blood such as heart valves, stents, and bypass grafts that offer life saving treatments. Nitric oxide (NO) elution from healthy endothelial tissue that lines the vessels maintains haemostasis throughout the vasculature. Surgical devices that release NO are desirable treatment options and N-diazeniumdiolates and S-nitrosothiols are recognized as preferred donor molecules. There is a keen interest to investigate newer methods by which NO donors can be retained within biomaterials so that their release and kinetic profiles can be optimized. A range of polymeric scaffolds incorporating microparticles and nanomaterials are presenting solutions to current challenges, and have been investigated in a range of clinical applications. This review outlines the application of NO donors for cardiovascular therapy using biomaterials that release NO locally to prevent thrombosis and intimal hyperplasia (IH) and enhance endothelialization in the fabrication of next generation cardiovascular device technology.
Collapse
Affiliation(s)
- Noora Naghavi
- UCL Centre for Nanotechnology & Regenerative Medicine, University College London, UK
| | | | | | | | | |
Collapse
|
44
|
Melzer MM, Mossin S, Cardenas AJP, Williams KD, Zhang S, Meyer K, Warren TH. A Copper(II) Thiolate from Reductive Cleavage of an S-Nitrosothiol. Inorg Chem 2012; 51:8658-60. [DOI: 10.1021/ic301356h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie M. Melzer
- Department of Chemistry, Georgetown University, Box 571227-1227,
Washington, D.C. 20057, United States
| | - Susanne Mossin
- Department of Chemistry
and Pharmacy, Friedrich-Alexander-University, Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen,
Germany
| | - Allan Jay P. Cardenas
- Department of Chemistry, Georgetown University, Box 571227-1227,
Washington, D.C. 20057, United States
| | - Kamille D. Williams
- Department of Chemistry, Georgetown University, Box 571227-1227,
Washington, D.C. 20057, United States
| | - Shiyu Zhang
- Department of Chemistry, Georgetown University, Box 571227-1227,
Washington, D.C. 20057, United States
| | - Karsten Meyer
- Department of Chemistry
and Pharmacy, Friedrich-Alexander-University, Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen,
Germany
| | - Timothy H. Warren
- Department of Chemistry, Georgetown University, Box 571227-1227,
Washington, D.C. 20057, United States
| |
Collapse
|
45
|
Liu K, Meyerhoff ME. Preparation and characterization of an improved Cu(2+)-cyclen polyurethane material that catalyzes generation of nitric oxide from S-nitrosothiols. ACTA ACUST UNITED AC 2012; 22:18784-18787. [PMID: 23049170 DOI: 10.1039/c2jm32726k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new, stable and highly efficient Cu(2+)-cyclen-polyurethane material is described and shown to exhibit improved performance compared to prior materials for the catalytic decomposition of S-nitrosothiols to physiologically active nitric oxide.
Collapse
Affiliation(s)
- Kun Liu
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109, USA. ; Tel: +1-734-7642169
| | | |
Collapse
|
46
|
Ye YC, Wang HJ, Xu L, Liu WW, Liu BB, Tashiro SI, Onodera S, Ikejima T. Oridonin induces apoptosis and autophagy in murine fibrosarcoma L929 cells partly via NO-ERK-p53 positive-feedback loop signaling pathway. Acta Pharmacol Sin 2012; 33:1055-61. [PMID: 22842735 DOI: 10.1038/aps.2012.53] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the role of nitric oxide (NO) in oridonin-induced apoptosis and autophagy in murine fibrosarcoma L929 cells and the underlying molecular mechanisms. METHODS Cell viability was measured using MTT assay. Intracellular NO level, SubG(1) cell ratio and autophagy cell ratios were analyzed with flow cytometry after diaminofluorescein-2 diacetate (DAF-2DA), propidium iodide (PI) and monodansylcadaverine (MDC) staining, respectively. Protein expression was examined using Western blot analysis. RESULTS Exposure of L929 cells to oridonin (50 μmol/L) for 24 h led to intracellular NO production. Pretreatment with NOS inhibitor 1400w or L-NAME inhibited oridonin-induced apoptosis and autophagy in L929 cells. The pretreatment decreased the apoptosis-related protein Bax translocation and cytochrome c release, increased Bcl-2 level, reversed the autophagy-associated protein Beclin 1 increase and conversion of LC3 I to LC3 II. Furthermore, pretreatment with NO scavenger DTT completely inhibited oridonin-induced apoptosis and autophagy in L929 cells. In addition, oridonin (50 μmol/L) activated ERK and p53 in L929 cells, and the interruption of ERK and p53 activation by PD 98059, pifithrin-α, or ERK siRNA decreased oridonin-induced apoptosis and autophagy. The inhibition of NO production reduced oridonin-induced ERK and p53 activation, and NO production was down-regulated by blocking ERK and p53 activation. CONCLUSION NO played a pivotal role in oridonin-induced apoptosis and autophagy in L929 cells. Taken together with our previous finding that ERK contributes to p53 activation, it appears that NO, ERK, and p53 form a positive feedback loop. Consequently, we suggest that oridonin-induced apoptosis and autophagy are modulated by the NO-ERK-p53 molecular signaling mechanism in L929 cells.
Collapse
|
47
|
Nacharaju P, Tuckman-Vernon C, Maier KE, Chouake J, Friedman A, Cabrales P, Friedman JM. A nanoparticle delivery vehicle for S-nitroso-N-acetyl cysteine: sustained vascular response. Nitric Oxide 2012; 27:150-60. [PMID: 22705913 DOI: 10.1016/j.niox.2012.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/11/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
Interest in the development of nitric oxide (NO) based therapeutics has grown exponentially due to its well elucidated and established biological functions. In line with this surge, S-nitroso thiol (RSNO) therapeutics are also receiving more attention in recent years both as potential stable sources of NO as well as for their ability to serve as S-nitrosating agents; S-nitrosation of protein thiols is implicated in many physiological processes. We describe two hydrogel based RSNO containing nanoparticle platforms. In one platform the SNO groups are covalently attached to the particles (SNO-np) and the other contains S-nitroso-N-acetyl cysteine encapsulated within the particles (NAC-SNO-np). Both platforms function as vehicles for sustained activity as trans-S-nitrosating agents. NAC-SNO-np exhibited higher efficiency for generating GSNO from GSH and maintained higher levels of GSNO concentration for longer time (24 h) as compared to SNO-np as well as a previously characterized nitric oxide releasing platform, NO-np (nitric oxide releasing nanoparticles). In vivo, intravenous infusion of the NAC-SNO-np and NO-np resulted in sustained decreases in mean arterial pressure, though NAC-SNO-np induced longer vasodilatory effects as compared to the NO-np. Serum chemistries following infusion demonstrated no toxicity in both treatment groups. Together, these data suggest that the NAC-SNO-np represents a novel means to both study the biologic effects of nitrosothiols and effectively capitalize on its therapeutic potential.
Collapse
Affiliation(s)
- Parimala Nacharaju
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Liu Q, Simpson DC, Gronert S. The reactivity of human serum albumin toward trans-4-hydroxy-2-nonenal. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:411-424. [PMID: 22689617 PMCID: PMC3531918 DOI: 10.1002/jms.2037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Mass spectrometry was used to probe the preferred locations of trans-4-hydroxy-2-nonenal (HNE) addition to the cysteine, histidine, and lysine residues of human serum albumin (HSA). Considering only those modified peptides supported by high mass accuracy Orbitrap precursor ion measurements (high confidence hits), with HNE:HSA ratios of 1:1 and 10:1, 3 and 15 addition sites, respectively, were identified. Using less stringent criteria, a total of 34 modifications were identified at the higher concentration. To gain quantitative data, iTRAQ labeling studies were completed. Previous work had identified Cys(34) , the only free cysteine, as the most reactive residue in HSA, and we have found that Lys(199) , His(242/7) , and His(288) are the next most reactive residues. Although the kinetic data indicate that the lysines and histidines can react at relatively similar rates, the results show that lysine addition is much less favorable thermodynamically; under our reaction conditions, lysine addition generally does not go to completion. This suggests that under physiological conditions, HNE addition to lysine is only relevant in situations where unusually high HNE concentrations or access to irreversible secondary reactions are found.
Collapse
Affiliation(s)
| | | | - Scott Gronert
- Address reprint requests to: Scott Gronert, Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, VA 23284-2006, , (804) 828-8551, (804) 828-8559 (FAX)
| |
Collapse
|
49
|
Riccio DA, Nutz ST, Schoenfisch MH. Visible photolysis and amperometric detection of S-nitrosothiols. Anal Chem 2011; 84:851-6. [PMID: 22201553 DOI: 10.1021/ac2031805] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The concentration of S-nitrosothiols (RSNOs), endogenous transporters of the signaling molecule nitric oxide (NO), fluctuate greatly in physiology often as a function of disease state. RSNOs may be measured indirectly by cleaving the S-N bond and monitoring the liberated NO. While ultraviolet photolysis and reductive-based cleavage both decompose RSNOs to NO, poor selectivity and the need for additional reagents preclude their utility clinically. Herein, we report the coupling of visible photolysis (i.e., 500-550 nm) and amperometric NO detection to quantify RSNOs with greater selectivity and sensitivity. Enhanced sensitivity (up to 1.56 nA μM(-1)) and lowered theoretical detection limits (down to 30 nM) were achieved for low molecular weight RSNOs (i.e., S-nitrosoglutathione, S-nitrosocysteine) by tuning the irradiation exposure. Detection of nitrosated proteins (i.e., S-nitrosoalbumin) was also possible, albeit at a decreased sensitivity (0.11 nA μM(-1)). This detection scheme was used to measure RSNOs in plasma and illustrate the potential of this method for future physiological studies.
Collapse
|
50
|
Stefano JT, Cogliati B, Santos F, Lima VMR, Mazo DC, Matte U, Alvares-da-Silva MR, Silveira TR, Carrilho FJ, Oliveira CPMS. S-Nitroso-N-acetylcysteine induces de-differentiation of activated hepatic stellate cells and promotes antifibrotic effects in vitro. Nitric Oxide 2011; 25:360-5. [PMID: 21820071 DOI: 10.1016/j.niox.2011.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/22/2011] [Accepted: 07/04/2011] [Indexed: 01/24/2023]
Abstract
Nitric oxide (NO) has been shown to act as a potent antifibrogenic agent by decreasing myofibroblast differentiation. S-Nitroso-N-acetylcysteine (SNAC), a NO donor, attenuates liver fibrosis in rats, but the cellular and molecular mechanisms on liver myofibroblast-like phenotype still remain unknown. Here, we investigate the antifibrotic effects of SNAC on hepatic stellate cells, the major fibrogenic cell type in the liver. A murine GRX cell line was incubated with SNAC (100μM) or vehicle (control group) for 72h. Cell viability was measured by MTT colorimetric assay and the conversion of myofibroblast into quiescent fat-storing cell phenotype was evaluated by Oil-Red-O staining. TGFβ-1, TIMP-1, and MMP-13 levels were measure in the supernatant by ELISA. Profibrogenic- and fibrolytic-related gene expression was quantified using real-time qPCR. SNAC induced phenotype conversion of myofibroblast-like phenotype into quiescent cells. SNAC decreased gene and protein expression of TGFβ-1 and MMP-2 compared to control groups. Besides, SNAC down-regulated profibrogenic molecules and up-regulated MMP-13 gene expression, which plays a key role in the degradation of interstitial collagen in liver fibrosis. In conclusion, these findings demonstrate that SNAC efficiently can modulate the activation and functionality of murine hepatic stellate cells and could be considered as an antifibrotic treatment to human liver fibrosis.
Collapse
Affiliation(s)
- J T Stefano
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|