1
|
Bastola S, Jahromi S, Chikara R, Stufflebeam SM, Ottensmeyer MP, De Novi G, Papadelis C, Alexandrakis G. Improved Dipole Source Localization from Simultaneous MEG-EEG Data by Combining a Global Optimization Algorithm with a Local Parameter Search: A Brain Phantom Study. Bioengineering (Basel) 2024; 11:897. [PMID: 39329639 PMCID: PMC11428344 DOI: 10.3390/bioengineering11090897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dipole localization, a fundamental challenge in electromagnetic source imaging, inherently constitutes an optimization problem aimed at solving the inverse problem of electric current source estimation within the human brain. The accuracy of dipole localization algorithms is contingent upon the complexity of the forward model, often referred to as the head model, and the signal-to-noise ratio (SNR) of measurements. In scenarios characterized by low SNR, often corresponding to deep-seated sources, existing optimization techniques struggle to converge to global minima, thereby leading to the localization of dipoles at erroneous positions, far from their true locations. This study presents a novel hybrid algorithm that combines simulated annealing with the traditional quasi-Newton optimization method, tailored to address the inherent limitations of dipole localization under low-SNR conditions. Using a realistic head model for both electroencephalography (EEG) and magnetoencephalography (MEG), it is demonstrated that this novel hybrid algorithm enables significant improvements of up to 45% in dipole localization accuracy compared to the often-used dipole scanning and gradient descent techniques. Localization improvements are not only found for single dipoles but also in two-dipole-source scenarios, where sources are proximal to each other. The novel methodology presented in this work could be useful in various applications of clinical neuroimaging, particularly in cases where recordings are noisy or sources are located deep within the brain.
Collapse
Affiliation(s)
- Subrat Bastola
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX 76019, USA; (S.J.); (R.C.); (C.P.); (G.A.)
| | - Saeed Jahromi
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX 76019, USA; (S.J.); (R.C.); (C.P.); (G.A.)
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, Fort Worth, TX 76104, USA
| | - Rupesh Chikara
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX 76019, USA; (S.J.); (R.C.); (C.P.); (G.A.)
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, Fort Worth, TX 76104, USA
| | - Steven M. Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA;
| | - Mark P. Ottensmeyer
- Medical Device & Simulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (M.P.O.); (G.D.N.)
| | - Gianluca De Novi
- Medical Device & Simulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (M.P.O.); (G.D.N.)
| | - Christos Papadelis
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX 76019, USA; (S.J.); (R.C.); (C.P.); (G.A.)
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, Fort Worth, TX 76104, USA
| | - George Alexandrakis
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX 76019, USA; (S.J.); (R.C.); (C.P.); (G.A.)
| |
Collapse
|
2
|
Erdbrügger T, Höltershinken M, Radecke J, Buschermöhle Y, Wallois F, Pursiainen S, Gross J, Lencer R, Engwer C, Wolters C. CutFEM-based MEG forward modeling improves source separability and sensitivity to quasi-radial sources: A somatosensory group study. Hum Brain Mapp 2024; 45:e26810. [PMID: 39140847 PMCID: PMC11323619 DOI: 10.1002/hbm.26810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/21/2024] [Accepted: 07/20/2024] [Indexed: 08/15/2024] Open
Abstract
Source analysis of magnetoencephalography (MEG) data requires the computation of the magnetic fields induced by current sources in the brain. This so-called MEG forward problem includes an accurate estimation of the volume conduction effects in the human head. Here, we introduce the Cut finite element method (CutFEM) for the MEG forward problem. CutFEM's meshing process imposes fewer restrictions on tissue anatomy than tetrahedral meshes while being able to mesh curved geometries contrary to hexahedral meshing. To evaluate the new approach, we compare CutFEM with a boundary element method (BEM) that distinguishes three tissue compartments and a 6-compartment hexahedral FEM in an n = 19 group study of somatosensory evoked fields (SEF). The neural generators of the 20 ms post-stimulus SEF components (M20) are reconstructed using both an unregularized and a regularized inversion approach. Changing the forward model resulted in reconstruction differences of about 1 centimeter in location and considerable differences in orientation. The tested 6-compartment FEM approaches significantly increase the goodness of fit to the measured data compared with the 3-compartment BEM. They also demonstrate higher quasi-radial contributions for sources below the gyral crowns. Furthermore, CutFEM improves source separability compared with both other approaches. We conclude that head models with 6 compartments rather than 3 and the new CutFEM approach are valuable additions to MEG source reconstruction, in particular for sources that are predominantly radial.
Collapse
Affiliation(s)
- Tim Erdbrügger
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
- Institute for Analysis and Numerics, University of MünsterMünsterGermany
| | - Malte Höltershinken
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
- Institute for Analysis and Numerics, University of MünsterMünsterGermany
| | - Jan‐Ole Radecke
- Deptartment of Psychiatry and PsychotherapyUniversity of LübeckLübeckGermany
- Center for Brain, Behaviour and Metabolism (CBBM)University of LübeckLübeckGermany
| | - Yvonne Buschermöhle
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| | - Fabrice Wallois
- Institut National de la Santé et de la Recherche Médicale, University of Picardie Jules VerneAmiensFrance
| | - Sampsa Pursiainen
- Computing Sciences Unit, Faculty of Information Technology and Communication SciencesTampere UniversityTampereFinland
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| | - Rebekka Lencer
- Deptartment of Psychiatry and PsychotherapyUniversity of LübeckLübeckGermany
- Center for Brain, Behaviour and Metabolism (CBBM)University of LübeckLübeckGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
- Institute for Translational Psychiatry, University of MünsterMünsterGermany
| | - Christian Engwer
- Institute for Analysis and Numerics, University of MünsterMünsterGermany
| | - Carsten Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| |
Collapse
|
3
|
Jiao M, Yang S, Xian X, Fotedar N, Liu F. Multi-Modal Electrophysiological Source Imaging With Attention Neural Networks Based on Deep Fusion of EEG and MEG. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2492-2502. [PMID: 38976470 PMCID: PMC11329068 DOI: 10.1109/tnsre.2024.3424669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The process of reconstructing underlying cortical and subcortical electrical activities from Electroencephalography (EEG) or Magnetoencephalography (MEG) recordings is called Electrophysiological Source Imaging (ESI). Given the complementarity between EEG and MEG in measuring radial and tangential cortical sources, combined EEG/MEG is considered beneficial in improving the reconstruction performance of ESI algorithms. Traditional algorithms mainly emphasize incorporating predesigned neurophysiological priors to solve the ESI problem. Deep learning frameworks aim to directly learn the mapping from scalp EEG/MEG measurements to the underlying brain source activities in a data-driven manner, demonstrating superior performance compared to traditional methods. However, most of the existing deep learning approaches for the ESI problem are performed on a single modality of EEG or MEG, meaning the complementarity of these two modalities has not been fully utilized. How to fuse the EEG and MEG in a more principled manner under the deep learning paradigm remains a challenging question. This study develops a Multi-Modal Deep Fusion (MMDF) framework using Attention Neural Networks (ANN) to fully leverage the complementary information between EEG and MEG for solving the ESI inverse problem, which is termed as MMDF-ANN. Specifically, our proposed brain source imaging approach consists of four phases, including feature extraction, weight generation, deep feature fusion, and source mapping. Our experimental results on both synthetic dataset and real dataset demonstrated that using a fusion of EEG and MEG can significantly improve the source localization accuracy compared to using a single-modality of EEG or MEG. Compared to the benchmark algorithms, MMDF-ANN demonstrated good stability when reconstructing sources with extended activation areas and situations of EEG/MEG measurements with a low signal-to-noise ratio.
Collapse
|
4
|
Vorwerk J, Wolters CH, Baumgarten D. Global sensitivity of EEG source analysis to tissue conductivity uncertainties. Front Hum Neurosci 2024; 18:1335212. [PMID: 38532791 PMCID: PMC10963400 DOI: 10.3389/fnhum.2024.1335212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/22/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction To reliably solve the EEG inverse problem, accurate EEG forward solutions based on a detailed, individual volume conductor model of the head are essential. A crucial-but often neglected-aspect in generating a volume conductor model is the choice of the tissue conductivities, as these may vary from subject to subject. In this study, we investigate the sensitivity of EEG forward and inverse solutions to tissue conductivity uncertainties for sources distributed over the whole cortex surface. Methods We employ a detailed five-compartment head model distinguishing skin, skull, cerebrospinal fluid, gray matter, and white matter, where we consider uncertainties of skin, skull, gray matter, and white matter conductivities. We use the finite element method (FEM) to calculate EEG forward solutions and goal function scans (GFS) as inverse approach. To be able to generate the large number of EEG forward solutions, we employ generalized polynomial chaos (gPC) expansions. Results For sources up to a depth of 4 cm, we find the strongest influence on the signal topography of EEG forward solutions for the skull conductivity and a notable effect for the skin conductivity. For even deeper sources, e.g., located deep in the longitudinal fissure, we find an increasing influence of the white matter conductivity. The conductivity variations translate to varying source localizations particularly for quasi-tangential sources on sulcal walls, whereas source localizations of quasi-radial sources on the top of gyri are less affected. We find a strong correlation between skull conductivity and the variation of source localizations and especially the depth of the reconstructed source for quasi-tangential sources. We furthermore find a clear but weaker correlation between depth of the reconstructed source and the skin conductivity. Discussion Our results clearly show the influence of tissue conductivity uncertainties on EEG source analysis. We find a particularly strong influence of skull and skin conductivity uncertainties.
Collapse
Affiliation(s)
- Johannes Vorwerk
- Institute of Electrical and Biomedical Engineering, UMIT TIROL—Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Carsten H. Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Daniel Baumgarten
- Institute of Electrical and Biomedical Engineering, UMIT TIROL—Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| |
Collapse
|
5
|
Lahtinen J, Koulouri A, Rampp S, Wellmer J, Wolters C, Pursiainen S. Standardized hierarchical adaptive Lp regression for noise robust focal epilepsy source reconstructions. Clin Neurophysiol 2024; 159:24-40. [PMID: 38244372 DOI: 10.1016/j.clinph.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/02/2023] [Accepted: 12/02/2023] [Indexed: 01/22/2024]
Abstract
OBJECTIVE To investigate the ability of standardization to reduce source localization errors and measurement noise uncertainties for hierarchical Bayesian algorithms with L1- and L2-norms as priors in electroencephalography and magnetoencephalography of focal epilepsy. METHODS Description of the standardization methodology relying on the Hierarchical Bayesian framework, referred to as the Standardized Hierarchical Adaptive Lp-norm Regularization (SHALpR). The performance was tested using real data from two focal epilepsy patients. Simulated data that resembled the available real data was constructed for further localization and noise robustness investigation. RESULTS The proposed algorithms were compared to their non-standardized counterparts, Standardized low-resolution brain electromagnetic tomography, Standardized Shrinking LORETA-FOCUSS, and Dynamic statistical parametric maps. Based on the simulations, the standardized Hierarchical adaptive algorithm using L2-norm was noise robust for 10 dB signal-to-noise ratio (SNR), whereas the L1-norm prior worked robustly also with 5 dB SNR. The accuracy of the standardized L1-normed methodology to localize focal activity was under 1 cm for both patients. CONCLUSIONS Numerical results of the proposed methodology display improved localization and noise robustness. The proposed methodology also outperformed the compared methods when dealing with real data. SIGNIFICANCE The proposed standardized methodology, especially when employing the L1-norm, could serve as a valuable assessment tool in surgical decision-making.
Collapse
Affiliation(s)
- Joonas Lahtinen
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere 33720, Finland.
| | - Alexandra Koulouri
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere 33720, Finland.
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Halle (Saale), Halle 06097, Germany; Department of Neurosurgery, University Hospital Erlangen, Erlangen 91054, Germany; Department of Neuroradiology, University Hospital Erlangen, Erlangen 91054, Germany.
| | - Jörg Wellmer
- Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr-University, Bochum44892, Germany.
| | - Carsten Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster 48149, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany.
| | - Sampsa Pursiainen
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere 33720, Finland.
| |
Collapse
|
6
|
Hirata A, Niitsu M, Phang CR, Kodera S, Kida T, Rashed EA, Fukunaga M, Sadato N, Wasaka T. High-resolution EEG source localization in personalized segmentation-free head model with multi-dipole fitting. Phys Med Biol 2024; 69:055013. [PMID: 38306964 DOI: 10.1088/1361-6560/ad25c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Objective. Electroencephalograms (EEGs) are often used to monitor brain activity. Several source localization methods have been proposed to estimate the location of brain activity corresponding to EEG readings. However, only a few studies evaluated source localization accuracy from measured EEG using personalized head models in a millimeter resolution. In this study, based on a volume conductor analysis of a high-resolution personalized human head model constructed from magnetic resonance images, a finite difference method was used to solve the forward problem and to reconstruct the field distribution.Approach. We used a personalized segmentation-free head model developed using machine learning techniques, in which the abrupt change of electrical conductivity occurred at the tissue interface is suppressed. Using this model, a smooth field distribution was obtained to address the forward problem. Next, multi-dipole fitting was conducted using EEG measurements for each subject (N= 10 male subjects, age: 22.5 ± 0.5), and the source location and electric field distribution were estimated.Main results.For measured somatosensory evoked potential for electrostimulation to the wrist, a multi-dipole model with lead field matrix computed with the volume conductor model was found to be superior than a single dipole model when using personalized segmentation-free models (6/10). The correlation coefficient between measured and estimated scalp potentials was 0.89 for segmentation-free head models and 0.71 for conventional segmented models. The proposed method is straightforward model development and comparable localization difference of the maximum electric field from the target wrist reported using fMR (i.e. 16.4 ± 5.2 mm) in previous study. For comparison, DUNEuro based on sLORETA was (EEG: 17.0 ± 4.0 mm). In addition, somatosensory evoked magnetic fields obtained by Magnetoencephalography was 25.3 ± 8.5 mm using three-layer sphere and sLORETA.Significance. For measured EEG signals, our procedures using personalized head models demonstrated that effective localization of the somatosensory cortex, which is located in a non-shallower cortex region. This method may be potentially applied for imaging brain activity located in other non-shallow regions.
Collapse
Affiliation(s)
- Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Masamune Niitsu
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Chun Ren Phang
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Tetsuo Kida
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Japan
| | - Essam A Rashed
- Graduate School of Information Science, University of Hyogo, Kobe 650-0047, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Toshiaki Wasaka
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
7
|
Galaz Prieto F, Lahtinen J, Samavaki M, Pursiainen S. Multi-compartment head modeling in EEG: Unstructured boundary-fitted tetra meshing with subcortical structures. PLoS One 2023; 18:e0290715. [PMID: 37729152 PMCID: PMC10511141 DOI: 10.1371/journal.pone.0290715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/12/2023] [Indexed: 09/22/2023] Open
Abstract
This paper introduces an automated approach for generating a finite element (FE) discretization of a multi-compartment human head model for electroencephalographic (EEG) source localization. We aim to provide an adaptable FE mesh generation tool for EEG studies. Our technique relies on recursive solid angle labeling of a surface segmentation coupled with smoothing, refinement, inflation, and optimization procedures to enhance the mesh quality. In this study, we performed numerical meshing experiments with the three-layer Ary sphere and a magnetic resonance imaging (MRI)-based multi-compartment head segmentation which incorporates a comprehensive set of subcortical brain structures. These experiments are motivated, on one hand, by the sensitivity of non-invasive subcortical source localization to modeling errors and, on the other hand, by the present lack of open EEG software pipelines to discretize all these structures. Our approach was found to successfully produce an unstructured and boundary-fitted tetrahedral mesh with a sub-one-millimeter fitting error, providing the desired accuracy for the three-dimensional anatomical details, EEG lead field matrix, and source localization. The mesh generator applied in this study has been implemented in the open MATLAB-based Zeffiro Interface toolbox for forward and inverse processing in EEG and it allows for graphics processing unit acceleration.
Collapse
Affiliation(s)
- Fernando Galaz Prieto
- Computing Sciences, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Pirkanmaa, Finland
| | - Joonas Lahtinen
- Computing Sciences, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Pirkanmaa, Finland
| | - Maryam Samavaki
- Computing Sciences, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Pirkanmaa, Finland
| | - Sampsa Pursiainen
- Computing Sciences, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Pirkanmaa, Finland
| |
Collapse
|
8
|
Chikara RK, Jahromi S, Tamilia E, Madsen JR, Stufflebeam SM, Pearl PL, Papadelis C. Electromagnetic source imaging predicts surgical outcome in children with focal cortical dysplasia. Clin Neurophysiol 2023; 153:88-101. [PMID: 37473485 PMCID: PMC10528204 DOI: 10.1016/j.clinph.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE To evaluate the diagnostic accuracy of electromagnetic source imaging (EMSI) in localizing spikes and predict surgical outcome in children with drug resistant epilepsy (DRE) due to focal cortical dysplasia (FCD). METHODS We retrospectively analyzed magnetoencephalography (MEG) and high-density (HD-EEG) data from 23 children with FCD-associated DRE who underwent intracranial EEG and surgery. We localized spikes using equivalent current dipole (ECD) fitting, dipole clustering, and dynamical statistical parametric mapping (dSPM) on EMSI, electric source imaging (ESI), and magnetic source imaging (MSI). We calculated the distance from the seizure onset zone (DSOZ) and resection (DRES). We estimated receiver operating characteristic (ROC) curves with Youden's index (J) to predict outcome. RESULTS EMSI presented shorter DSOZ (15.18 ± 9.06 mm) and DRES (8.56 ± 6.24 mm) compared to ESI (DSOZ: 25.04 ± 16.20 mm, p < 0.009; DRES: 18.88 ± 17.30 mm, p < 0.03) and MSI (DSOZ: 23.37 ± 8.98 mm, p < 0.03; DRES: 15.51 ± 10.11 mm, p < 0.02) for clustering in patients with good outcome. Clustering showed shorter DSOZ and DRES compared to ECD fitting and dSPM (p < 0.05). EMSI had higher performance as outcome predictor (J = 70.63%) compared to ESI (J = 41.27%) and MSI (J = 33.33%) for clustering. CONCLUSIONS EMSI provides superior localization and improved predictive performance than individual modalities. SIGNIFICANCE EMSI can help the surgical planning and facilitate the localization of epileptogenic foci.
Collapse
Affiliation(s)
- Rupesh Kumar Chikara
- Jane and John Justin Institute for Mind Health, Neuroscience Research, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Saeed Jahromi
- Jane and John Justin Institute for Mind Health, Neuroscience Research, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steve M Stufflebeam
- Athinoula Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Jane and John Justin Institute for Mind Health, Neuroscience Research, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA; School of Medicine, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
9
|
Levy M, Weinstein M, Mirson A, Madar S, Lorberboym M, Getter N, Zer-Zion M, Sepkuty J. SEEG-RF for revealing and treating Geschwind syndrome's epileptic network: A case study. Epilepsy Behav Rep 2023; 24:100617. [PMID: 37649961 PMCID: PMC10462843 DOI: 10.1016/j.ebr.2023.100617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
Stereotypic neural networks are repeatedly activated in drug-refractory epilepsies (DRE), reinforcing the expression of certain psycho-affective traits. Geschwind syndrome (GS) can serve as a model for such phenomena among patients with temporal lobe DRE. We describe stereo-electroencephalogram (SEEG) exploration in a 34-year-old male with DRE and GS, and his treatment by SEEG-radiofrequency (SEEG-RF) ablation. We hypothesized that this approach could reveal the underlying epileptic network and map eloquent faculties adjacent to SEEG-RF targets, which can be further used to disintegrate the epileptic network. The patient underwent a multi-modal pre-surgical evaluation consisting of video EEG (VEEG), EEG source localization, 18-fluorodexyglucose-PET/MRI, neuropsychological and psychiatric assessments. Pre-surgical multi-modal analyses suggested a T4-centered seizure onset zone. SEEG further localized the SOZ within the right amygdalo-hippocampal region and temporal neocortex, with the right parieto-temporal region as the propagation zone. SEEG-RF ablation under awake conditions and continuous EEG monitoring confirmed the abolishment of epileptic activity. Follow-up at 20 months showed seizure suppression (Engel 1A/ILEA 1) and a significantly improved and stable psycho-affective state. To the best of our knowledge this is the first description of the intracranial biomarkers of GS and its further treatment through SEEG-RF ablation within the scope of DRE.
Collapse
Affiliation(s)
- Mikael Levy
- Functional Neurosurgery Group, Assuta Medical Centers, Tel Aviv, Israel
| | - Maya Weinstein
- Functional Neurosurgery Group, Assuta Medical Centers, Tel Aviv, Israel
| | - Alexie Mirson
- Functional Neurosurgery Group, Assuta Medical Centers, Tel Aviv, Israel
| | - Sandi Madar
- Functional Neurosurgery Group, Assuta Medical Centers, Tel Aviv, Israel
| | - Mordechai Lorberboym
- Nuclear Medicine Unit, Shamir Medical Center, Beer Ya’akov, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Nuclear Medicine Unit, Assuta Medical Centers, Tel Aviv, Israel
| | - Nir Getter
- Functional Neurosurgery Group, Assuta Medical Centers, Tel Aviv, Israel
- Department of Brain and Cognitive Sciences, Ben-Gurion of the Negev, Beer Sheva, Israel
- Department of Psychology and Education, The Open University of Israel, Raanana, Israel
| | - Moshe Zer-Zion
- Functional Neurosurgery Group, Assuta Medical Centers, Tel Aviv, Israel
| | - Jehuda Sepkuty
- Functional Neurosurgery Group, Assuta Medical Centers, Tel Aviv, Israel
- Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Delatolas T, Antonakakis M, Wolters CH, Zervakis M. EEG Source Analysis with a Convolutional Neural Network and Finite Element Analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083731 DOI: 10.1109/embc40787.2023.10340742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
To reconstruct the electrophysiological activity of brain responses, source analysis is performed through the solution of the forward and inverse problems. The former contains a unique solution while the latter is ill-posed. In this regard, many algorithms have been suggested relying on different prior information for solving the inverse problem. Recently, neural networks have been used to deal with source analysis. However, their underlying training for inverse solutions is based on suboptimal forward modeling. In this work, we propose a CNN that is able to reconstruct EEG brain activity. To train our proposed CNN, a skull-conductivity calibrated and white matter anisotropic head model. Based on this model, we generate simulated EEG data and used them to train our CNN. We first evaluate the performance of our CNN using the simulated EEG data while a realistic application with somatosensory evoked potentials follows. From the results, we observed that the CCN correctly localized the P20/N20 component at the subject-specific Brodmann area 3b and it can potentially localize deeper sources. A comparison is also presented with well-known inverse solutions (single dipole scans and sLORETA) showing similar localization performance. Through these results, an emerging potential for real applications appears on the basis of realistic head modeling.
Collapse
|
11
|
Lahtinen J, Moura F, Samavaki M, Siltanen S, Pursiainen S. In silicostudy of the effects of cerebral circulation on source localization using a dynamical anatomical atlas of the human head. J Neural Eng 2023; 20. [PMID: 36808911 DOI: 10.1088/1741-2552/acbdc1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/21/2023] [Indexed: 02/23/2023]
Abstract
Objective.This study focuses on the effects of dynamical vascular modeling on source localization errors in electroencephalography (EEG). Our aim of thisin silicostudy is to (a) find out the effects of cerebral circulation on the accuracy of EEG source localization estimates, and (b) evaluate its relevance with respect to measurement noise and interpatient variation.Approach.We employ a four-dimensional (3D + T) statistical atlas of the electrical properties of the human head with a cerebral circulation model to generate virtual patients with different cerebral circulatory conditions for EEG source localization analysis. As source reconstruction techniques, we use the linearly constraint minimum variance (LCMV) beamformer, standardized low-resolution brain electromagnetic tomography (sLORETA), and the dipole scan (DS).Main results.Results indicate that arterial blood flow affects source localization at different depths and with varying significance. The average flow rate plays an important role in source localization performance, while the pulsatility effects are very small. In cases where a personalized model of the head is available, blood circulation mismodeling causes localization errors, especially in the deep structures of the brain where the main cerebral arteries are located. When interpatient variations are considered, the results show differences up to 15 mm for sLORETA and LCMV beamformer and 10 mm for DS in the brainstem and entorhinal cortices regions. In regions far from the main arteries vessels, the discrepancies are smaller than 3 mm. When measurement noise is added and interpatient differences are considered in a deep dipolar source, the results indicate that the effects of conductivity mismatch are detectable even for moderate measurement noise. The signal-to-noise ratio limit for sLORETA and LCMV beamformer is 15 dB, while the limit is under 30 dB for DS.Significance.Localization of the brain activity via EEG constitutes an ill-posed inverse problem, where any modeling uncertainty, e.g. a slight amount of noise in the data or material parameter discrepancies, can lead to a significant deviation of the estimated activity, especially in the deep structures of the brain. Proper modeling of the conductivity distribution is necessary in order to obtain an appropriate source localization. In this study, we show that the conductivity of the deep brain structures is particularly impacted by blood flow-induced changes in conductivity because large arteries and veins access the brain through that region.
Collapse
Affiliation(s)
- Joonas Lahtinen
- Computing Sciences Unit, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
| | - Fernando Moura
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.,Engineering, Modelling and Applied Social Sciences Center, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Maryam Samavaki
- Computing Sciences Unit, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
| | - Samuli Siltanen
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Sampsa Pursiainen
- Computing Sciences Unit, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
12
|
Khan A, Antonakakis M, Suntrup-Krueger S, Lencer R, Nitsche MA, Paulus W, Groß J, Wolters CH. Can individually targeted and optimized multi-channel tDCS outperform standard bipolar tDCS in stimulating the primary somatosensory cortex? Brain Stimul 2023; 16:1-16. [PMID: 36526154 DOI: 10.1016/j.brs.2022.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has emerged as a non-invasive neuro-modulation technique. Most studies show that anodal tDCS increases cortical excitability, however, with variable outcomes. Previously, we have shown in computer simulations that our multi-channel tDCS (mc-tDCS) approach, the distributed constrained maximum intensity (D-CMI) method can potentially lead to better controlled tDCS results due to the improved directionality of the injected current at the target side for individually optimized D-CMI montages. OBJECTIVE In this study, we test the application of the D-CMI approach in an experimental study to stimulate the somatosensory P20/N20 target source in Brodmann area 3b and compare it with standard bipolar tDCS and sham conditions. METHODS We applied anodal D-CMI, the standard bipolar and D-CMI based Sham tDCS for 10 min to target the 20 ms post-stimulus somatosensory P20/N20 target brain source in Brodmann area 3b reconstructed using combined magnetoencephalography (MEG) and electroencephalography (EEG) source analysis in realistic head models with calibrated skull conductivity in a group-study with 13 subjects. Finger-stimulated somatosensory evoked fields (SEF) were recorded and the component at 20 ms post-stimulus (M20) was analyzed before and after the application of the three tDCS conditions in order to read out the stimulation effect on Brodmann area 3b. RESULTS Analysis of the finger stimulated SEF M20 peak before (baseline) and after tDCS shows a significant increase in source amplitude in Brodmann area 3b for D-CMI (6-16 min after tDCS), while no significant effects are found for standard bipolar (6-16 min after tDCS) and sham (6-16 min after tDCS) stimulation conditions. For the later time courses (16-26 and 27-37 min post-stimulation), we found a significant decrease in M20 peak source amplitude for standard bipolar and sham tDCS, while there was no effect for D-CMI. CONCLUSION Our results indicate that targeted and optimized, and thereby highly individualized, mc-tDCS can outperform standard bipolar stimulation and lead to better control over stimulation outcomes with, however, a considerable amount of additional work compared to standard bipolar tDCS.
Collapse
Affiliation(s)
- Asad Khan
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.
| | - Marios Antonakakis
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | | | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Dortmund, Germany
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, München, Germany; Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Joachim Groß
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| |
Collapse
|
13
|
Satzer D, Esengul YT, Warnke PC, Issa NP, Nordli DR. Source localization of ictal SEEG to predict postoperative seizure outcome. Clin Neurophysiol 2022; 144:142-150. [PMID: 36088217 DOI: 10.1016/j.clinph.2022.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Stereo-electroencephalography (SEEG) is inherently-three-dimensional and can be modeled using source localization. This study aimed to assess the validity of ictal SEEG source localization. METHODS The dominant frequency at ictal onset was used for source localization in the time and frequency domains using rotating dipoles and current density maps. Validity was assessed by concordance with the epileptologist-defined seizure onset zone (conventional SOZ) and the surgical treatment volume (TV) of seizure-free versus non-seizure-free patients. RESULTS Source localization was performed on 68 seizures from 27 patients. Median distance to nearest contact in the conventional SOZ was 7 (IQR 6-12) mm for time-domain dipoles. Current density predicted ictal activity with up to 86 % (60-87 %) accuracy. Distance from time-domain dipoles to the TV was smaller (P = 0.045) in seizure-free (2 [0-4] mm) versus non-seizure-free (12 [2-17] mm) patients, and predicted surgical outcome with 91 % sensitivity and 63 % specificity. Removing near-field data from contacts within the TV negated outcome prediction (P = 0.51). CONCLUSIONS Source localization of SEEG accurately mapped ictal onset compared with conventional interpretation. Proximity of dipoles to the TV predicted seizure outcome when near-field recordings were analyzed. SIGNIFICANCE Ictal SEEG source localization is useful in corroborating the epileptogenic zone, assuming near-field recordings are obtained.
Collapse
Affiliation(s)
- David Satzer
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA.
| | - Yasar T Esengul
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Peter C Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA
| | - Naoum P Issa
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Douglas R Nordli
- Section of Child Neurology, Department of Pediatrics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Ahmed Mahmutoglu M, Rupp A, Naumgärtner U. Simultaneous EEG/MEG yields complementary information of nociceptive evoked responses. Clin Neurophysiol 2022; 143:21-35. [DOI: 10.1016/j.clinph.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2022]
|
15
|
Acar ZA, Makeig S. Evaluation of skull conductivity using SCALE head tissue conductivity estimation using EEG. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4826-4829. [PMID: 36086241 DOI: 10.1109/embc48229.2022.9872004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inaccurate estimation of skull conductivity is the largest impediment to high-resolution EEG source imaging because of its strong influence and wide variability across individuals. Nonetheless, there is yet no widely applied method for noninvasively measuring individual skull conductivity. We presented a skull conductivity and source location estimation algorithm (SCALE) for simultaneously estimating skull conductivity and the cortical distributions of 18-20 effective sources derived from the EEG data by independent component analysis (ICA). SCALE combines a realistic Finite Element Method (FEM) head model built from a magnetic resonance (MR) head image with the effective source scalp maps to estimate brain-to-skull conductivity ratio (BSCR) and to map the effective sources on the cortical surface. To estimate the robustness of SCALE BSCR estimates, we applied SCALE to MR image and high-density EEG data from ten participants, five having data from 2-3 different tasks and sessions. As expected, across participants SCALE BSCR estimates differed widely (mean 32.8, range 18-78). Within-participant SCALE BSCR estimates were far more consistent than between participants. By incorporating SCALE-optimized distributed EEG source localization, stable functional imaging of cortical EEG effective sources can become routine, giving relatively low-cost EEG imaging a spatial resolution compatible with other brain imaging results and uniquely capable for studying brain dynamics supporting thought and action in laboratory, virtual, and natural environments.
Collapse
|
16
|
Directionality of the injected current targeting the P20/N20 source determines the efficacy of 140 Hz transcranial alternating current stimulation (tACS)-induced aftereffects in the somatosensory cortex. PLoS One 2022; 17:e0266107. [PMID: 35324989 PMCID: PMC8947130 DOI: 10.1371/journal.pone.0266107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Interindividual anatomical differences in the human cortex can lead to suboptimal current directions and may result in response variability of transcranial electrical stimulation methods. These differences in brain anatomy require individualized electrode stimulation montages to induce an optimal current density in the targeted area of each individual subject. We aimed to explore the possible modulatory effects of 140 Hz transcranial alternating current stimulation (tACS) on the somatosensory cortex using personalized multi-electrode stimulation montages. In two randomized experiments using either tactile finger or median nerve stimulation, we measured by evoked potentials the plasticity aftereffects and oscillatory power changes after 140 Hz tACS at 1.0 mA as compared to sham stimulation (n = 17, male = 9). We found a decrease in the power of oscillatory mu-rhythms during and immediately after tactile discrimination tasks, indicating an engagement of the somatosensory system during stimulus encoding. On a group level both the oscillatory power and the evoked potential amplitudes were not modulated by tACS neither after tactile finger stimulation nor after median nerve stimulation as compared to sham stimulation. On an individual level we could however demonstrate that lower angular difference (i.e., differences between the injected current vector in the target region and the source orientation vector) is associated with significantly higher changes in both P20/N20 and N30/P30 source activities. Our findings suggest that the higher the directionality of the injected current correlates to the dipole orientation the greater the tACS-induced aftereffects are.
Collapse
|
17
|
Exploring brain activity for positive and negative emotions by means of EEG microstates. Sci Rep 2022; 12:3404. [PMID: 35233057 PMCID: PMC8888606 DOI: 10.1038/s41598-022-07403-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/17/2022] [Indexed: 11/12/2022] Open
Abstract
Microstate analysis applied to electroencephalographic signals (EEG) allows both temporal and spatial imaging exploration and represents the activity across the scalp. Despite its potential usefulness in understanding brain activity during a specific task, it has been mostly exploited at rest. We extracted EEG microstates during the presentation of emotional expressions, presented either unilaterally (a face in one visual hemifield) or bilaterally (two faces, one in each hemifield). Results revealed four specific microstate’s topographies: (i) M1 involves the temporal areas, mainly in the right hemisphere, with a higher occurrence for stimuli presented in the left than in the right visual field; (ii) M2 is localized in the left temporal cortex, with higher occurrence and coverage for unilateral than bilateral presentations; (iii) M3, with a bilateral temporo-parietal localization, shows higher coverage for bilateral than unilateral presentation; (iv) M4, mainly localized in the right fronto-parietal areas and possibly representing the hemispheric specialization for the peculiar stimulus category, shows higher occurrence and coverage for unilateral stimuli presented in the left than in the right visual field. These results suggest that microstate analysis is a valid tool to explore the cerebral response to emotions and can add new insights on the cerebral functioning, with respect to other EEG markers.
Collapse
|
18
|
Satzer D, Esengul YT, Warnke PC, Issa NP, Nordli DR. SEEG in 3D: Interictal Source Localization From Intracerebral Recordings. Front Neurol 2022; 13:782880. [PMID: 35211078 PMCID: PMC8861202 DOI: 10.3389/fneur.2022.782880] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Stereo-electroencephalography (SEEG) uses a three-dimensional configuration of depth electrodes to localize epileptiform activity, but traditional analysis of SEEG is spatially restricted to the point locations of the electrode contacts. Interpolation of brain activity between contacts might allow for three-dimensional representation of epileptiform activity and avoid pitfalls of SEEG interpretation. OBJECTIVE The goal of this study was to validate SEEG-based interictal source localization and assess the ability of this technique to monitor far-field activity in non-implanted brain regions. METHODS Interictal epileptiform discharges were identified on SEEG in 26 patients who underwent resection, ablation, or disconnection of the suspected epileptogenic zone. Dipoles without (free) and with (scan) gray matter restriction, and current density (sLORETA and SWARM methods), were calculated using a finite element head model. Source localization results were compared to the conventional irritative zone (IZ) and the surgical treatment volumes (TV) of seizure-free vs. non-seizure-free patients. RESULTS The median distance from dipole solutions to the nearest contact in the conventional IZ was 7 mm (interquartile range 4-15 mm for free dipoles and 4-14 mm for scan dipoles). The IZ modeled with SWARM predicted contacts within the conventional IZ with 83% (75-100%) sensitivity and 94% (88-100%) specificity. The proportion of current within the TV was greater in seizure-free patients (P = 0.04) and predicted surgical outcome with 45% sensitivity and 93% specificity. Dipole solutions and sLORETA results did not correlate with seizure outcome. Addition of scalp EEG led to more superficial modeled sources (P = 0.03) and negated the ability to predict seizure outcome (P = 0.23). Removal of near-field data from contacts within the TV resulted in smearing of the current distribution (P = 0.007) and precluded prediction of seizure freedom (P = 0.20). CONCLUSIONS Source localization accurately represented interictal discharges from SEEG. The proportion of current within the TV distinguished between seizure-free and non-seizure-free patients when near-field recordings were obtained from the surgical target. The high prevalence of deep sources in this cohort likely obscured any benefit of concurrent scalp EEG. SEEG-based interictal source localization is useful in illustrating and corroborating the epileptogenic zone. Additional techniques are needed to localize far-field epileptiform activity from non-implanted brain regions.
Collapse
Affiliation(s)
- David Satzer
- Department of Neurosurgery, University of Chicago, Chicago, IL, United States
| | - Yasar T Esengul
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Peter C Warnke
- Department of Neurosurgery, University of Chicago, Chicago, IL, United States
| | - Naoum P Issa
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Douglas R Nordli
- Section of Child Neurology, Department of Pediatrics, University of Chicago, Chicago, IL, United States
| |
Collapse
|
19
|
Validating EEG, MEG and Combined MEG and EEG Beamforming for an Estimation of the Epileptogenic Zone in Focal Cortical Dysplasia. Brain Sci 2022; 12:brainsci12010114. [PMID: 35053857 PMCID: PMC8796031 DOI: 10.3390/brainsci12010114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
MEG and EEG source analysis is frequently used for the presurgical evaluation of pharmacoresistant epilepsy patients. The source localization of the epileptogenic zone depends, among other aspects, on the selected inverse and forward approaches and their respective parameter choices. In this validation study, we compare the standard dipole scanning method with two beamformer approaches for the inverse problem, and we investigate the influence of the covariance estimation method and the strength of regularization on the localization performance for EEG, MEG, and combined EEG and MEG. For forward modelling, we investigate the difference between calibrated six-compartment and standard three-compartment head modelling. In a retrospective study, two patients with focal epilepsy due to focal cortical dysplasia type IIb and seizure freedom following lesionectomy or radiofrequency-guided thermocoagulation (RFTC) used the distance of the localization of interictal epileptic spikes to the resection cavity resp. RFTC lesion as reference for good localization. We found that beamformer localization can be sensitive to the choice of the regularization parameter, which has to be individually optimized. Estimation of the covariance matrix with averaged spike data yielded more robust results across the modalities. MEG was the dominant modality and provided a good localization in one case, while it was EEG for the other. When combining the modalities, the good results of the dominant modality were mostly not spoiled by the weaker modality. For appropriate regularization parameter choices, the beamformer localized better than the standard dipole scan. Compared to the importance of an appropriate regularization, the sensitivity of the localization to the head modelling was smaller, due to similar skull conductivity modelling and the fixed source space without orientation constraint.
Collapse
|
20
|
Reconstructing subcortical and cortical somatosensory activity via the RAMUS inverse source analysis technique using median nerve SEP data. Neuroimage 2021; 245:118726. [PMID: 34838947 DOI: 10.1016/j.neuroimage.2021.118726] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/22/2021] [Accepted: 11/12/2021] [Indexed: 11/23/2022] Open
Abstract
This study concerns reconstructing brain activity at various depths based on non-invasive EEG (electroencephalography) scalp measurements. We aimed at demonstrating the potential of the RAMUS (randomized multiresolution scanning) technique in localizing weakly distinguishable far-field sources in combination with coinciding cortical activity. As we have shown earlier theoretically and through simulations, RAMUS is a novel mathematical method that by employing the multigrid concept, allows marginalizing noise and depth bias effects and thus enables the recovery of both cortical and subcortical brain activity. To show this capability with experimental data, we examined the 14-30 ms post-stimulus somatosensory evoked potential (SEP) responses of human median nerve stimulation in three healthy adult subjects. We aim at reconstructing the different response components by evaluating a RAMUS-based estimate for the primary current density in the nervous tissue. We present source reconstructions obtained with RAMUS and compare them with the literature knowledge of the SEP components and the outcome of the unit-noise gain beamformer (UGNB) and standardized low-resolution brain electromagnetic tomography (sLORETA). We also analyzed the effect of the iterative alternating sequential technique, the optimization technique of RAMUS, compared to the classical minimum norm estimation (MNE) technique. Matching with our previous numerical studies, the current results suggest that RAMUS could have the potential to enhance the detection of simultaneous deep and cortical components and the distinction between the evoked sulcal and gyral activity.
Collapse
|
21
|
Individually optimized multi-channel tDCS for targeting somatosensory cortex. Clin Neurophysiol 2021; 134:9-26. [PMID: 34923283 DOI: 10.1016/j.clinph.2021.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/19/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) is a non-invasive neuro-modulation technique that delivers current through the scalp by a pair of patch electrodes (2-Patch). This study proposes a new multi-channel tDCS (mc-tDCS) optimization method, the distributed constrained maximum intensity (D-CMI) approach. For targeting the P20/N20 somatosensory source at Brodmann area 3b, an integrated combined magnetoencephalography (MEG) and electroencephalography (EEG) source analysis is used with individualized skull conductivity calibrated realistic head modeling. METHODS Simulated electric fields (EF) for our new D-CMI method and the already known maximum intensity (MI), alternating direction method of multipliers (ADMM) and 2-Patch methods were produced and compared for the individualized P20/N20 somatosensory target for 10 subjects. RESULTS D-CMI and MI showed highest intensities parallel to the P20/N20 target compared to ADMM and 2-Patch, with ADMM achieving highest focality. D-CMI showed a slight reduction in intensity compared to MI while reducing side effects and skin level sensations by current distribution over multiple stimulation electrodes. CONCLUSION Individualized D-CMI montages are preferred for our follow up somatosensory experiment to provide a good balance between high current intensities at the target and reduced side effects and skin sensations. SIGNIFICANCE An integrated combined MEG and EEG source analysis with D-CMI montages for mc-tDCS stimulation potentially can improve control, reproducibility and reduce sensitivity differences between sham and real stimulations.
Collapse
|
22
|
Sensory-Motor Modulations of EEG Event-Related Potentials Reflect Walking-Related Macro-Affordances. Brain Sci 2021; 11:brainsci11111506. [PMID: 34827505 PMCID: PMC8615990 DOI: 10.3390/brainsci11111506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
One fundamental principle of the brain functional organization is the elaboration of sensory information for the specification of action plans that are most appropriate for interaction with the environment. Using an incidental go/no-go priming paradigm, we have previously shown a facilitation effect for the execution of a walking-related action in response to far vs. near objects/locations in the extrapersonal space, and this effect has been called “macro-affordance” to reflect the role of locomotion in the coverage of extrapersonal distance. Here, we investigated the neurophysiological underpinnings of such an effect by recording scalp electroencephalography (EEG) from 30 human participants during the same paradigm. The results of a whole-brain analysis indicated a significant modulation of the event-related potentials (ERPs) both during prime and target stimulus presentation. Specifically, consistent with a mechanism of action anticipation and automatic activation of affordances, a stronger ERP was observed in response to prime images framing the environment from a far vs. near distance, and this modulation was localized in dorso-medial motor regions. In addition, an inversion of polarity for far vs. near conditions was observed during the subsequent target period in dorso-medial parietal regions associated with spatially directed foot-related actions. These findings were interpreted within the framework of embodied models of brain functioning as arising from a mechanism of motor-anticipation and subsequent prediction error which was guided by the preferential affordance relationship between the distant large-scale environment and locomotion. More in general, our findings reveal a sensory-motor mechanism for the processing of walking-related environmental affordances.
Collapse
|
23
|
Piastra MC, Nüßing A, Vorwerk J, Clerc M, Engwer C, Wolters CH. A comprehensive study on electroencephalography and magnetoencephalography sensitivity to cortical and subcortical sources. Hum Brain Mapp 2021; 42:978-992. [PMID: 33156569 PMCID: PMC7856654 DOI: 10.1002/hbm.25272] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
Signal-to-noise ratio (SNR) maps are a good way to visualize electroencephalography (EEG) and magnetoencephalography (MEG) sensitivity. SNR maps extend the knowledge about the modulation of EEG and MEG signals by source locations and orientations and can therefore help to better understand and interpret measured signals as well as source reconstruction results thereof. Our work has two main objectives. First, we investigated the accuracy and reliability of EEG and MEG finite element method (FEM)-based sensitivity maps for three different head models, namely an isotropic three and four-compartment and an anisotropic six-compartment head model. As a result, we found that ignoring the cerebrospinal fluid leads to an overestimation of EEG SNR values. Second, we examined and compared EEG and MEG SNR mappings for both cortical and subcortical sources and their modulation by source location and orientation. Our results for cortical sources show that EEG sensitivity is higher for radial and deep sources and MEG for tangential ones, which are the majority of sources. As to the subcortical sources, we found that deep sources with sufficient tangential source orientation are recordable by the MEG. Our work, which represents the first comprehensive study where cortical and subcortical sources are considered in highly detailed FEM-based EEG and MEG SNR mappings, sheds a new light on the sensitivity of EEG and MEG and might influence the decision of brain researchers or clinicians in their choice of the best modality for their experiment or diagnostics, respectively.
Collapse
Affiliation(s)
- Maria Carla Piastra
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
- Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical CenterNijmegenThe Netherlands
| | - Andreas Nüßing
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
| | - Johannes Vorwerk
- Institute of Electrical and Biomedical Engineering, University for Health SciencesMedical Informatics and TechnologyHall in TirolAustria
| | - Maureen Clerc
- Inria Sophia Antipolis‐MediterranéeBiotFrance
- Université Côte d'AzurNiceFrance
| | - Christian Engwer
- Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
- Cluster of Excellence EXC 1003, Cells in Motion, CiM, University of MünsterMünsterGermany
| | - Carsten H. Wolters
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| |
Collapse
|
24
|
Schrader S, Antonakakis M, Rampp S, Engwer C, Wolters CH. A novel method for calibrating head models to account for variability in conductivity and its evaluation in a sphere model. Phys Med Biol 2020; 65:245043. [PMID: 33113524 DOI: 10.1088/1361-6560/abc5aa] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The accuracy in electroencephalography (EEG) and combined EEG and magnetoencephalography (MEG) source reconstructions as well as in optimized transcranial electric stimulation (TES) depends on the conductive properties assigned to the head model, and most importantly on individual skull conductivity. In this study, we present an automatic pipeline to calibrate head models with respect to skull conductivity based on the reconstruction of the P20/N20 response using somatosensory evoked potentials and fields. In order to validate in a well-controlled setup without interplay with numerical errors, we evaluate the accuracy of this algorithm in a 4-layer spherical head model using realistic noise levels as well as dipole sources at different eccentricities with strengths and orientations related to somatosensory experiments. Our results show that the reference skull conductivity can be reliably reconstructed for sources resembling the generator of the P20/N20 response. In case of erroneous assumptions on scalp conductivity, the resulting skull conductivity parameter counterbalances this effect, so that EEG source reconstructions using the fitted skull conductivity parameter result in lower errors than when using the standard value. We propose an automatized procedure to calibrate head models which only relies on non-invasive modalities that are available in a standard MEG laboratory, measures under in vivo conditions and in the low frequency range of interest. Calibrated head modeling can improve EEG and combined EEG/MEG source analysis as well as optimized TES.
Collapse
Affiliation(s)
- S Schrader
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | | | | | | | | |
Collapse
|
25
|
Rezaei A, Antonakakis M, Piastra M, Wolters CH, Pursiainen S. Parametrizing the Conditionally Gaussian Prior Model for Source Localization with Reference to the P20/N20 Component of Median Nerve SEP/SEF. Brain Sci 2020; 10:E934. [PMID: 33287441 PMCID: PMC7761863 DOI: 10.3390/brainsci10120934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
In this article, we focused on developing the conditionally Gaussian hierarchical Bayesian model (CG-HBM), which forms a superclass of several inversion methods for source localization of brain activity using somatosensory evoked potential (SEP) and field (SEF) measurements. The goal of this proof-of-concept study was to improve the applicability of the CG-HBM as a superclass by proposing a robust approach for the parametrization of focal source scenarios. We aimed at a parametrization that is invariant with respect to altering the noise level and the source space size. The posterior difference between the gamma and inverse gamma hyperprior was minimized by optimizing the shape parameter, while a suitable range for the scale parameter can be obtained via the prior-over-measurement signal-to-noise ratio, which we introduce as a new concept in this study. In the source localization experiments, the primary generator of the P20/N20 component was detected in the Brodmann area 3b using the CG-HBM approach and a parameter range derived from the existing knowledge of the Tikhonov-regularized minimum norm estimate, i.e., the classical Gaussian prior model. Moreover, it seems that the detection of deep thalamic activity simultaneously with the P20/N20 component with the gamma hyperprior can be enhanced while using a close-to-optimal shape parameter value.
Collapse
Affiliation(s)
- Atena Rezaei
- Computing Sciences, Faculty of Information Technology and Communication Sciences, Tampere University, Hervanta Campus, P.O. Box 1001, 33014 Tampere, Finland;
| | - Marios Antonakakis
- Institute of Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, D-48149 Münster, Germany; (M.A.); (M.P.); (C.H.W.)
| | - MariaCarla Piastra
- Institute of Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, D-48149 Münster, Germany; (M.A.); (M.P.); (C.H.W.)
- Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands
| | - Carsten H. Wolters
- Institute of Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, D-48149 Münster, Germany; (M.A.); (M.P.); (C.H.W.)
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Sampsa Pursiainen
- Computing Sciences, Faculty of Information Technology and Communication Sciences, Tampere University, Hervanta Campus, P.O. Box 1001, 33014 Tampere, Finland;
| |
Collapse
|
26
|
Wennberg R, Tarazi A, Zumsteg D, Garcia Dominguez L. Electromagnetic evidence that benign epileptiform transients of sleep are traveling, rotating hippocampal spikes. Clin Neurophysiol 2020; 131:2915-2925. [DOI: 10.1016/j.clinph.2020.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/05/2020] [Accepted: 07/23/2020] [Indexed: 12/01/2022]
|
27
|
Antonakakis M, Schrader S, Aydin Ü, Khan A, Gross J, Zervakis M, Rampp S, Wolters CH. Inter-Subject Variability of Skull Conductivity and Thickness in Calibrated Realistic Head Models. Neuroimage 2020; 223:117353. [DOI: 10.1016/j.neuroimage.2020.117353] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/19/2020] [Accepted: 09/05/2020] [Indexed: 01/11/2023] Open
|
28
|
The Value of Source Localization for Clinical Magnetoencephalography: Beyond the Equivalent Current Dipole. J Clin Neurophysiol 2020; 37:537-544. [DOI: 10.1097/wnp.0000000000000487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Lecaignard F, Bertrand O, Caclin A, Mattout J. Empirical Bayes evaluation of fused EEG-MEG source reconstruction: Application to auditory mismatch evoked responses. Neuroimage 2020; 226:117468. [PMID: 33075561 DOI: 10.1016/j.neuroimage.2020.117468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
We here turn the general and theoretical question of the complementarity of EEG and MEG for source reconstruction, into a practical empirical one. Precisely, we address the challenge of evaluating multimodal data fusion on real data. For this purpose, we build on the flexibility of Parametric Empirical Bayes, namely for EEG-MEG data fusion, group level inference and formal hypothesis testing. The proposed approach follows a two-step procedure by first using unimodal or multimodal inference to derive a cortical solution at the group level; and second by using this solution as a prior model for single subject level inference based on either unimodal or multimodal data. Interestingly, for inference based on the same data (EEG, MEG or both), one can then formally compare, as alternative hypotheses, the relative plausibility of the two unimodal and the multimodal group priors. Using auditory data, we show that this approach enables to draw important conclusions, namely on (i) the superiority of multimodal inference, (ii) the greater spatial sensitivity of MEG compared to EEG, (iii) the ability of EEG data alone to source reconstruct temporal lobe activity, (iv) the usefulness of EEG to improve MEG based source reconstruction. Importantly, we largely reproduce those findings over two different experimental conditions. We here focused on Mismatch Negativity (MMN) responses for which generators have been extensively investigated with little homogeneity in the reported results. Our multimodal inference at the group level revealed spatio-temporal activity within the supratemporal plane with a precision which, to our knowledge, has never been achieved before with non-invasive recordings.
Collapse
Affiliation(s)
- Françoise Lecaignard
- Lyon Neuroscience Research Center, CRNL; INSERM, U1028; CNRS, UMR5292; Brain Dynamics and Cognition Team, Lyon, F-69000, France; University Lyon 1, Lyon, F-69000, France.
| | - Olivier Bertrand
- Lyon Neuroscience Research Center, CRNL; INSERM, U1028; CNRS, UMR5292; Brain Dynamics and Cognition Team, Lyon, F-69000, France; University Lyon 1, Lyon, F-69000, France
| | - Anne Caclin
- Lyon Neuroscience Research Center, CRNL; INSERM, U1028; CNRS, UMR5292; Brain Dynamics and Cognition Team, Lyon, F-69000, France; University Lyon 1, Lyon, F-69000, France
| | - Jérémie Mattout
- Lyon Neuroscience Research Center, CRNL; INSERM, U1028; CNRS, UMR5292; Brain Dynamics and Cognition Team, Lyon, F-69000, France; University Lyon 1, Lyon, F-69000, France
| |
Collapse
|
30
|
Rezaei A, Koulouri A, Pursiainen S. Randomized Multiresolution Scanning in Focal and Fast E/MEG Sensing of Brain Activity with a Variable Depth. Brain Topogr 2020; 33:161-175. [PMID: 32076899 PMCID: PMC7066097 DOI: 10.1007/s10548-020-00755-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/04/2020] [Indexed: 11/28/2022]
Abstract
We focus on electro-/magnetoencephalography imaging of the neural activity and, in particular, finding a robust estimate for the primary current distribution via the hierarchical Bayesian model (HBM). Our aim is to develop a reasonably fast maximum a posteriori (MAP) estimation technique which would be applicable for both superficial and deep areas without specific a priori knowledge of the number or location of the activity. To enable source distinguishability for any depth, we introduce a randomized multiresolution scanning (RAMUS) approach in which the MAP estimate of the brain activity is varied during the reconstruction process. RAMUS aims to provide a robust and accurate imaging outcome for the whole brain, while maintaining the computational cost on an appropriate level. The inverse gamma (IG) distribution is applied as the primary hyperprior in order to achieve an optimal performance for the deep part of the brain. In this proof-of-the-concept study, we consider the detection of simultaneous thalamic and somatosensory activity via numerically simulated data modeling the 14-20 ms post-stimulus somatosensory evoked potential and field response to electrical wrist stimulation. Both a spherical and realistic model are utilized to analyze the source reconstruction discrepancies. In the numerically examined case, RAMUS was observed to enhance the visibility of deep components and also marginalizing the random effects of the discretization and optimization without a remarkable computation cost. A robust and accurate MAP estimate for the primary current density was obtained in both superficial and deep parts of the brain.
Collapse
Affiliation(s)
- A Rezaei
- Faculty of Information Technology and Communication Sciences, Tampere University, P.O. Box 692, 33101, Tampere, Finland.
| | - A Koulouri
- Faculty of Information Technology and Communication Sciences, Tampere University, P.O. Box 692, 33101, Tampere, Finland
| | - S Pursiainen
- Faculty of Information Technology and Communication Sciences, Tampere University, P.O. Box 692, 33101, Tampere, Finland
| |
Collapse
|
31
|
Zhang X, Yang S, Jiang M. Rapid implicit extraction of abstract orthographic patterns of Chinese characters during reading. PLoS One 2020; 15:e0229590. [PMID: 32084247 PMCID: PMC7034908 DOI: 10.1371/journal.pone.0229590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/11/2020] [Indexed: 11/19/2022] Open
Abstract
Orthographic processing is crucial in reading. For the Chinese language, sub-lexical processing has already taken place at radical level. Previous literature reported early position-specific radical representations and later position-general radical representations, implying a possible separating process of abstract position information irrespective of radicals per se from radical representations during orthographic processing. However, it remains largely unclear whether the abstract pattern of spatial arrangement of radicals can be rapidly extracted, and if so, whether this extraction takes place at the visual cortex, the very first processing center. As the visual cortex is documented to actively participate in orthographic processing, it may also play a role in the possible extraction of abstract orthographic patterns of Chinese characters. Hence, we hypothesize that abstract orthographic patterns of Chinese characters are covertly extracted at the visual cortex during reading. In this study, we investigated whether the visual cortex could rapidly extract abstract structural patterns of Chinese characters, using the event-related potential (ERP) technique. We adopted an active oddball paradigm with two types of deviant stimuli different only in one feature, structural or tonal, from standard stimuli; in each of the two sessions, subjects focused conscious attention on one feature and neglected the other. We observed that the ERPs recorded at occipital electrodes responded differentially to standard and structural deviant stimuli in both sessions, especially within the time range of the occipital P200 component. Then, we extracted three source waves arising from different levels of the visual cortex. Early response differences (from 88 to 456 ms after stimulus onset) were observed between the source waves, probably arising from left primary/secondary and bilateral associative visual cortices, in response to standard and deviant stimuli that violated abstract structural patterns, whether subjects focused their attention on the character structure or not. This suggests rapid extraction of abstract structural patterns of Chinese characters in the visual cortex, no matter the abstract structural pattern was explicit or implicit to subjects. Note that the source waves arising from right primary/secondary visual cortices in response to standard and structural deviant stimuli did not differ at all, indicating that this extraction of the abstract structural pattern of Chinese characters was left-lateralized. Besides, no difference was observed between source waves originating from any level of the visual cortex to standard and deviant stimuli that violated abstract tonal patterns, until 768 ms when a late effect related to conscious detection of targets occurred at higher levels of the visual cortex. Note that at late stages (later than 698 ms after stimulus onset), responses arising from bilateral associative visual cortices to standard and target stimuli differed for both sessions, no matter the structural or tonal feature was attended to. Our findings support the primitive intelligence of visual cortex to rapidly extract abstract orthographic patterns of Chinese characters that might be engaged in further lexical processing. Our findings also suggest that this rapid extraction can take place implicitly during reading.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siqin Yang
- Center for Psychology and Cognitive Science, Tsinghua University, Beijing, China
- Lab of Computational Linguistics, School of Humanities, Tsinghua University, Beijing, China
| | - Minghu Jiang
- Center for Psychology and Cognitive Science, Tsinghua University, Beijing, China
- Lab of Computational Linguistics, School of Humanities, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
32
|
Plummer C, Vogrin SJ, Woods WP, Murphy MA, Cook MJ, Liley DTJ. Interictal and ictal source localization for epilepsy surgery using high-density EEG with MEG: a prospective long-term study. Brain 2019; 142:932-951. [PMID: 30805596 PMCID: PMC6459284 DOI: 10.1093/brain/awz015] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/07/2018] [Accepted: 12/05/2018] [Indexed: 11/17/2022] Open
Abstract
Drug-resistant focal epilepsy is a major clinical problem and surgery is under-used. Better non-invasive techniques for epileptogenic zone localization are needed when MRI shows no lesion or an extensive lesion. The problem is interictal and ictal localization before propagation from the epileptogenic zone. High-density EEG (HDEEG) and magnetoencephalography (MEG) offer millisecond-order temporal resolution to address this but co-acquisition is challenging, ictal MEG studies are rare, long-term prospective studies are lacking, and fundamental questions remain. Should HDEEG-MEG discharges be assessed independently [electroencephalographic source localization (ESL), magnetoencephalographic source localization (MSL)] or combined (EMSL) for source localization? Which phase of the discharge best characterizes the epileptogenic zone (defined by intracranial EEG and surgical resection relative to outcome)? Does this differ for interictal and ictal discharges? Does MEG detect mesial temporal lobe discharges? Thirteen patients (10 non-lesional, three extensive-lesional) underwent synchronized HDEEG-MEG (72–94 channel EEG, 306-sensor MEG). Source localization (standardized low-resolution tomographic analysis with MRI patient-individualized boundary-element method) was applied to averaged interictal epileptiform discharges (IED) and ictal discharges at three phases: ‘early-phase’ (first latency 90% explained variance), ‘mid-phase’ (first of 50% rising-phase, 50% mean global field power), ‘late-phase’ (negative peak). ‘Earliest-solution’ was the first of the three early-phase solutions (ESL, MSL, EMSL). Prospective follow-up was 3–21 (median 12) months before surgery, 14–39 (median 21) months after surgery. IEDs (n = 1474) were recorded, seen in: HDEEG only, 626 (42%); MEG only, 232 (16%); and both 616 (42%). Thirty-three seizures were captured, seen in: HDEEG only, seven (21%); MEG only, one (3%); and both 25 (76%). Intracranial EEG was done in nine patients. Engel scores were I (9/13, 69%), II (2/13,15%), and III (2/13). MEG detected baso-mesial temporal lobe epileptogenic zone sources. Epileptogenic zone OR [odds ratio(s)] were significantly higher for earliest-solution versus early-phase IED-surgical resection and earliest-solution versus all mid-phase and late-phase solutions. ESL outperformed EMSL for ictal-surgical resection [OR 3.54, 95% confidence interval (CI) 1.09–11.55, P = 0.036]. MSL outperformed EMSL for IED-intracranial EEG (OR 4.67, 95% CI 1.19–18.34, P = 0.027). ESL outperformed MSL for ictal-surgical resection (OR 3.73, 95% CI 1.16–12.03, P = 0.028) but was outperformed by MSL for IED-intracranial EEG (OR 0.18, 95% CI 0.05–0.73, P = 0.017). Thus, (i) HDEEG and MEG source solutions more accurately localize the epileptogenic zone at the earliest resolvable phase of interictal and ictal discharges, not mid-phase (as is common practice) or late peak-phase (when signal-to-noise ratios are maximal); (ii) from empirical observation of the differential timing of HDEEG and MEG discharges and based on the superiority of ESL plus MSL over either modality alone and over EMSL, concurrent HDEEG-MEG signals should be assessed independently, not combined; (iii) baso-mesial temporal lobe sources are detectable by MEG; and (iv) MEG is not ‘more accurate’ than HDEEG—emphasis is best placed on the earliest signal (whether HDEEG or MEG) amenable to source localization. Our findings challenge current practice and our reliance on invasive monitoring in these patients.
Collapse
Affiliation(s)
- Chris Plummer
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - Simon J Vogrin
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - William P Woods
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia
| | - Michael A Murphy
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - Mark J Cook
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia.,Graeme Clark Institute of Biomedical Engineering, University of Melbourne, Parkville, Australia
| | - David T J Liley
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia.,Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Australia
| |
Collapse
|
33
|
Wearable neuroimaging: Combining and contrasting magnetoencephalography and electroencephalography. Neuroimage 2019; 201:116099. [PMID: 31419612 PMCID: PMC8235152 DOI: 10.1016/j.neuroimage.2019.116099] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/27/2019] [Accepted: 08/12/2019] [Indexed: 02/04/2023] Open
Abstract
One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of 'wearable' neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an 'EEG-like' cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms.
Collapse
|
34
|
Antonakakis M, Schrader S, Wollbrink A, Oostenveld R, Rampp S, Haueisen J, Wolters CH. The effect of stimulation type, head modeling, and combined EEG and MEG on the source reconstruction of the somatosensory P20/N20 component. Hum Brain Mapp 2019; 40:5011-5028. [PMID: 31397966 PMCID: PMC6865415 DOI: 10.1002/hbm.24754] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/28/2019] [Indexed: 11/06/2022] Open
Abstract
Modeling and experimental parameters influence the Electro- (EEG) and Magnetoencephalography (MEG) source analysis of the somatosensory P20/N20 component. In a sensitivity group study, we compare P20/N20 source analysis due to different stimulation type (Electric-Wrist [EW], Braille-Tactile [BT], or Pneumato-Tactile [PT]), measurement modality (combined EEG/MEG - EMEG, EEG, or MEG) and head model (standard or individually skull-conductivity calibrated including brain anisotropic conductivity). Considerable differences between pairs of stimulation types occurred (EW-BT: 8.7 ± 3.3 mm/27.1° ± 16.4°, BT-PT: 9 ± 5 mm/29.9° ± 17.3°, and EW-PT: 9.8 ± 7.4 mm/15.9° ± 16.5° and 75% strength reduction of BT or PT when compared to EW) regardless of the head model used. EMEG has nearly no localization differences to MEG, but large ones to EEG (16.1 ± 4.9 mm), while source orientation differences are non-negligible to both EEG (14° ± 3.7°) and MEG (12.5° ± 10.9°). Our calibration results show a considerable inter-subject variability (3.1-14 mS/m) for skull conductivity. The comparison due to different head model show localization differences smaller for EMEG (EW: 3.4 ± 2.4 mm, BT: 3.7 ± 3.4 mm, and PT: 5.9 ± 6.8 mm) than for EEG (EW: 8.6 ± 8.3 mm, BT: 11.8 ± 6.2 mm, and PT: 10.5 ± 5.3 mm), while source orientation differences for EMEG (EW: 15.4° ± 6.3°, BT: 25.7° ± 15.2° and PT: 14° ± 11.5°) and EEG (EW: 14.6° ± 9.5°, BT: 16.3° ± 11.1° and PT: 12.9° ± 8.9°) are in the same range. Our results show that stimulation type, modality and head modeling all have a non-negligible influence on the source reconstruction of the P20/N20 component. The complementary information of both modalities in EMEG can be exploited on the basis of detailed and individualized head models.
Collapse
Affiliation(s)
- Marios Antonakakis
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Sophie Schrader
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Andreas Wollbrink
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Robert Oostenveld
- Donders Institute, Radboud University, Nijmegen, Netherlands.,Karolinska Institute, Stockholm, Sweden
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
| | - Jens Haueisen
- Institute for Biomedical Engineering and Informatics, Technical University of Ilmenau, Ilmenau, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
35
|
Vorwerk J, Aydin Ü, Wolters CH, Butson CR. Influence of Head Tissue Conductivity Uncertainties on EEG Dipole Reconstruction. Front Neurosci 2019; 13:531. [PMID: 31231178 PMCID: PMC6558618 DOI: 10.3389/fnins.2019.00531] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/08/2019] [Indexed: 11/28/2022] Open
Abstract
Reliable EEG source analysis depends on sufficiently detailed and accurate head models. In this study, we investigate how uncertainties inherent to the experimentally determined conductivity values of the different conductive compartments influence the results of EEG source analysis. In a single source scenario, the superficial and focal somatosensory P20/N20 component, we analyze the influence of varying conductivities on dipole reconstructions using a generalized polynomial chaos (gPC) approach. We find that in particular the conductivity uncertainties for skin and skull have a significant influence on the EEG inverse solution, leading to variations in source localization by several centimeters. The conductivity uncertainties for gray and white matter were found to have little influence on the source localization, but a strong influence on the strength and orientation of the reconstructed source, respectively. As the CSF conductivity is most accurately determined of all conductivities in a realistic head model, CSF conductivity uncertainties had a negligible influence on the source reconstruction. This small uncertainty is a further benefit of distinguishing the CSF in realistic volume conductor models.
Collapse
Affiliation(s)
- Johannes Vorwerk
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Institute of Electrical and Biomedical Engineering, UMIT - University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Ümit Aydin
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Carsten H. Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Christopher R. Butson
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States
- Departments of Biomedical Engineering, Neurology, and Psychiatry, University of Utah, Salt Lake City, UT, United States
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
36
|
Duez L, Tankisi H, Hansen PO, Sidenius P, Sabers A, Pinborg LH, Fabricius M, Rásonyi G, Rubboli G, Pedersen B, Leffers AM, Uldall P, Jespersen B, Brennum J, Henriksen OM, Fuglsang-Frederiksen A, Beniczky S. Electromagnetic source imaging in presurgical workup of patients with epilepsy: A prospective study. Neurology 2019; 92:e576-e586. [PMID: 30610090 PMCID: PMC6382058 DOI: 10.1212/wnl.0000000000006877] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/02/2018] [Indexed: 11/23/2022] Open
Abstract
Objective To determine the diagnostic accuracy and clinical utility of electromagnetic source imaging (EMSI) in presurgical evaluation of patients with epilepsy. Methods We prospectively recorded magnetoencephalography (MEG) simultaneously with EEG and performed EMSI, comprising electric source imaging, magnetic source imaging, and analysis of combined MEG-EEG datasets, using 2 different software packages. As reference standard for irritative zone (IZ) and seizure onset zone (SOZ), we used intracranial recordings and for localization accuracy, outcome 1 year after operation. Results We included 141 consecutive patients. EMSI showed localized epileptiform discharges in 94 patients (67%). Most of the epileptiform discharge clusters (72%) were identified by both modalities, 15% only by EEG, and 14% only by MEG. Agreement was substantial between inverse solutions and moderate between software packages. EMSI provided new information that changed the management plan in 34% of the patients, and these changes were useful in 80%. Depending on the method, EMSI had a concordance of 53% to 89% with IZ and 35% to 73% with SOZ. Localization accuracy of EMSI was between 44% and 57%, which was not significantly different from MRI (49%–76%) and PET (54%–85%). Combined EMSI achieved significantly higher odds ratio compared to electric source imaging and magnetic source imaging. Conclusion EMSI has accuracy similar to established imaging methods and provides clinically useful, new information in 34% of the patients. Classification of evidence This study provides Class IV evidence that EMSI had a concordance of 53%–89% and 35%–73% (depending on analysis) for the localization of epileptic focus as compared with intracranial recordings—IZ and SOZ, respectively.
Collapse
Affiliation(s)
- Lene Duez
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Hatice Tankisi
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Peter Orm Hansen
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Per Sidenius
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Anne Sabers
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Lars H Pinborg
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Martin Fabricius
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - György Rásonyi
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Guido Rubboli
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Birthe Pedersen
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Anne-Mette Leffers
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Peter Uldall
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Bo Jespersen
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Jannick Brennum
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Otto Mølby Henriksen
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Anders Fuglsang-Frederiksen
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark
| | - Sándor Beniczky
- From the Departments of Clinical Neurophysiology (L.D., H.T., P.O.H., A.F.-F., S.B.) and Neurology (P.S.), Aarhus University Hospital; Departments of Neurology (A.S., L.H.P.), Clinical Neurophysiology (M.F., G. Rásonyi), Pediatrics, Child Neurology (P.U.), Neurosurgery (B.J., J.B.), and Clinical Physiology, Nuclear Medicine and PET (O.M.H.), Copenhagen University Hospital Rigshospitalet; Danish Epilepsy Centre (G. Rubboli, B.P., S.B.), Dianalund; and Department of Diagnostic Radiology (A.-M.L.), Hvidovre Hospital, Denmark.
| |
Collapse
|
37
|
Rimpiläinen V, Koulouri A, Lucka F, Kaipio JP, Wolters CH. Improved EEG source localization with Bayesian uncertainty modelling of unknown skull conductivity. Neuroimage 2018; 188:252-260. [PMID: 30529398 DOI: 10.1016/j.neuroimage.2018.11.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022] Open
Abstract
Electroencephalography (EEG) source imaging is an ill-posed inverse problem that requires accurate conductivity modelling of the head tissues, especially the skull. Unfortunately, the conductivity values are difficult to determine in vivo. In this paper, we show that the exact knowledge of the skull conductivity is not always necessary when the Bayesian approximation error (BAE) approach is exploited. In BAE, we first postulate a probability distribution for the skull conductivity that describes our (lack of) knowledge on its value, and model the effects of this uncertainty on EEG recordings with the help of an additive error term in the observation model. Before the Bayesian inference, the likelihood is marginalized over this error term. Thus, in the inversion we estimate only our primary unknown, the source distribution. We quantified the improvements in the source localization when the proposed Bayesian modelling was used in the presence of different skull conductivity errors and levels of measurement noise. Based on the results, BAE was able to improve the source localization accuracy, particularly when the unknown (true) skull conductivity was much lower than the expected standard conductivity value. The source locations that gained the highest improvements were shallow and originally exhibited the largest localization errors. In our case study, the benefits of BAE became negligible when the signal-to-noise ratio dropped to 20 dB.
Collapse
Affiliation(s)
- Ville Rimpiläinen
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, D-48149, Münster, Germany.
| | - Alexandra Koulouri
- Laboratory of Mathematics, Tampere University of Technology, P. O. Box 692, 33101, Tampere, Finland; Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 541 24, Greece
| | - Felix Lucka
- Computational Imaging, Centrum Wiskunde & Informatica, Science Park 123, 1098 XG, Amsterdam, the Netherlands; Centre for Medical Image Computing, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Jari P Kaipio
- Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; Department of Applied Physics, University of Eastern Finland, FI-90211, Kuopio, Finland
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, D-48149, Münster, Germany
| |
Collapse
|
38
|
Miinalainen T, Rezaei A, Us D, Nüßing A, Engwer C, Wolters CH, Pursiainen S. A realistic, accurate and fast source modeling approach for the EEG forward problem. Neuroimage 2018; 184:56-67. [PMID: 30165251 DOI: 10.1016/j.neuroimage.2018.08.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 11/20/2022] Open
Abstract
The aim of this paper is to advance electroencephalography (EEG) source analysis using finite element method (FEM) head volume conductor models that go beyond the standard three compartment (skin, skull, brain) approach and take brain tissue inhomogeneity (gray and white matter and cerebrospinal fluid) into account. The new approach should enable accurate EEG forward modeling in the thin human cortical structures and, more specifically, in the especially thin cortices in children brain research or in pathological applications. The source model should thus be focal enough to be usable in the thin cortices, but should on the other side be more realistic than the current standard mathematical point dipole. Furthermore, it should be numerically accurate and computationally fast. We propose to achieve the best balance between these demands with a current preserving (divergence conforming) dipolar source model. We develop and investigate a varying number of current preserving source basis elements n (n=1,…,n=5). For validation, we conducted numerical experiments within a multi-layered spherical domain, where an analytical solution exists. We show that the accuracy increases along with the number of basis elements, while focality decreases. The results suggest that the best balance between accuracy and focality in thin cortices is achieved with n=4 (or in extreme cases even n=3) basis functions, while in thicker cortices n=5 is recommended to obtain the highest accuracy. We also compare the current preserving approach to two further FEM source modeling techniques, namely partial integration and St. Venant, and show that the best current preserving source model outperforms the competing methods with regard to overall balance. For all tested approaches, FEM transfer matrices enable high computational speed. We implemented the new EEG forward modeling approaches into the open source duneuro library for forward modeling in bioelectromagnetism to enable its broader use by the brain research community. This library is build upon the DUNE framework for parallel finite elements simulations and integrates with high-level toolboxes like FieldTrip. Additionally, an inversion test has been implemented using the realistic head model to demonstrate and compare the differences between the aforementioned source models.
Collapse
Affiliation(s)
- Tuuli Miinalainen
- Laboratory of Mathematics, Tampere University of Technology, P.O. Box 692, 33101, Tampere, Finland; Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany, Malmedyweg 15, D-48149, Münster, Germany; Institute for Computational and Applied Mathematics, University of Münster, Germany, Einsteinstrasse 62, D-48149, Münster, Germany; Department of Applied Physics, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland
| | - Atena Rezaei
- Laboratory of Mathematics, Tampere University of Technology, P.O. Box 692, 33101, Tampere, Finland.
| | - Defne Us
- Laboratory of Mathematics, Tampere University of Technology, P.O. Box 692, 33101, Tampere, Finland; Laboratory of Signal Processing, Tampere University of Technology, Tampere, Finland, P.O. Box 553, 33101, Tampere, Finland
| | - Andreas Nüßing
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany, Malmedyweg 15, D-48149, Münster, Germany; Institute for Computational and Applied Mathematics, University of Münster, Germany, Einsteinstrasse 62, D-48149, Münster, Germany
| | - Christian Engwer
- Institute for Computational and Applied Mathematics, University of Münster, Germany, Einsteinstrasse 62, D-48149, Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany, Malmedyweg 15, D-48149, Münster, Germany
| | - Sampsa Pursiainen
- Laboratory of Mathematics, Tampere University of Technology, P.O. Box 692, 33101, Tampere, Finland
| |
Collapse
|
39
|
Vorwerk J, Oostenveld R, Piastra MC, Magyari L, Wolters CH. The FieldTrip-SimBio pipeline for EEG forward solutions. Biomed Eng Online 2018; 17:37. [PMID: 29580236 PMCID: PMC5870695 DOI: 10.1186/s12938-018-0463-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Accurately solving the electroencephalography (EEG) forward problem is crucial for precise EEG source analysis. Previous studies have shown that the use of multicompartment head models in combination with the finite element method (FEM) can yield high accuracies both numerically and with regard to the geometrical approximation of the human head. However, the workload for the generation of multicompartment head models has often been too high and the use of publicly available FEM implementations too complicated for a wider application of FEM in research studies. In this paper, we present a MATLAB-based pipeline that aims to resolve this lack of easy-to-use integrated software solutions. The presented pipeline allows for the easy application of five-compartment head models with the FEM within the FieldTrip toolbox for EEG source analysis. Methods The FEM from the SimBio toolbox, more specifically the St. Venant approach, was integrated into the FieldTrip toolbox. We give a short sketch of the implementation and its application, and we perform a source localization of somatosensory evoked potentials (SEPs) using this pipeline. We then evaluate the accuracy that can be achieved using the automatically generated five-compartment hexahedral head model [skin, skull, cerebrospinal fluid (CSF), gray matter, white matter] in comparison to a highly accurate tetrahedral head model that was generated on the basis of a semiautomatic segmentation with very careful and time-consuming manual corrections. Results The source analysis of the SEP data correctly localizes the P20 component and achieves a high goodness of fit. The subsequent comparison to the highly detailed tetrahedral head model shows that the automatically generated five-compartment head model performs about as well as a highly detailed four-compartment head model (skin, skull, CSF, brain). This is a significant improvement in comparison to a three-compartment head model, which is frequently used in praxis, since the importance of modeling the CSF compartment has been shown in a variety of studies. Conclusion The presented pipeline facilitates the use of five-compartment head models with the FEM for EEG source analysis. The accuracy with which the EEG forward problem can thereby be solved is increased compared to the commonly used three-compartment head models, and more reliable EEG source reconstruction results can be obtained. Electronic supplementary material The online version of this article (10.1186/s12938-018-0463-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Vorwerk
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany. .,Scientific Computing & Imaging (SCI) Institute, University of Utah, 72 Central Campus Dr., Salt Lake City, 84112, USA.
| | - Robert Oostenveld
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.,Department of Clinical Neuroscience, Karolinska Institutet, NatMEG, Nobels väg 9, 17177, Stockholm, Sweden
| | - Maria Carla Piastra
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany
| | - Lilla Magyari
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.,Department of General Psychology, Faculty of Humanities and Social Sciences, Pazmany Peter Catholic University, Mikszath Kalman Square 1, Budapest, 1088, Hungary
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany
| |
Collapse
|
40
|
Piastra MC, Nüßing A, Vorwerk J, Bornfleth H, Oostenveld R, Engwer C, Wolters CH. The Discontinuous Galerkin Finite Element Method for Solving the MEG and the Combined MEG/EEG Forward Problem. Front Neurosci 2018; 12:30. [PMID: 29456487 PMCID: PMC5801436 DOI: 10.3389/fnins.2018.00030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/15/2018] [Indexed: 11/17/2022] Open
Abstract
In Electro- (EEG) and Magnetoencephalography (MEG), one important requirement of source reconstruction is the forward model. The continuous Galerkin finite element method (CG-FEM) has become one of the dominant approaches for solving the forward problem over the last decades. Recently, a discontinuous Galerkin FEM (DG-FEM) EEG forward approach has been proposed as an alternative to CG-FEM (Engwer et al., 2017). It was shown that DG-FEM preserves the property of conservation of charge and that it can, in certain situations such as the so-called skull leakages, be superior to the standard CG-FEM approach. In this paper, we developed, implemented, and evaluated two DG-FEM approaches for the MEG forward problem, namely a conservative and a non-conservative one. The subtraction approach was used as source model. The validation and evaluation work was done in statistical investigations in multi-layer homogeneous sphere models, where an analytic solution exists, and in a six-compartment realistically shaped head volume conductor model. In agreement with the theory, the conservative DG-FEM approach was found to be superior to the non-conservative DG-FEM implementation. This approach also showed convergence with increasing resolution of the hexahedral meshes. While in the EEG case, in presence of skull leakages, DG-FEM outperformed CG-FEM, in MEG, DG-FEM achieved similar numerical errors as the CG-FEM approach, i.e., skull leakages do not play a role for the MEG modality. In particular, for the finest mesh resolution of 1 mm sources with a distance of 1.59 mm from the brain-CSF surface, DG-FEM yielded mean topographical errors (relative difference measure, RDM%) of 1.5% and mean magnitude errors (MAG%) of 0.1% for the magnetic field. However, if the goal is a combined source analysis of EEG and MEG data, then it is highly desirable to employ the same forward model for both EEG and MEG data. Based on these results, we conclude that the newly presented conservative DG-FEM can at least complement and in some scenarios even outperform the established CG-FEM approaches in EEG or combined MEG/EEG source analysis scenarios, which motivates a further evaluation of DG-FEM for applications in bioelectromagnetism.
Collapse
Affiliation(s)
- Maria Carla Piastra
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.,Institute for Computational and Applied Mathematics, University of Münster, Münster, Germany
| | - Andreas Nüßing
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.,Institute for Computational and Applied Mathematics, University of Münster, Münster, Germany
| | - Johannes Vorwerk
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | | | - Robert Oostenveld
- Donders Institute, Radboud University, Nijmegen, Netherlands.,NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Christian Engwer
- Institute for Computational and Applied Mathematics, University of Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion, CiM, University of Münster, Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| |
Collapse
|
41
|
Chowdhury RA, Pellegrino G, Aydin Ü, Lina JM, Dubeau F, Kobayashi E, Grova C. Reproducibility of EEG-MEG fusion source analysis of interictal spikes: Relevance in presurgical evaluation of epilepsy. Hum Brain Mapp 2017; 39:880-901. [PMID: 29164737 DOI: 10.1002/hbm.23889] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
Fusion of electroencephalography (EEG) and magnetoencephalography (MEG) data using maximum entropy on the mean method (MEM-fusion) takes advantage of the complementarities between EEG and MEG to improve localization accuracy. Simulation studies demonstrated MEM-fusion to be robust especially in noisy conditions such as single spike source localizations (SSSL). Our objective was to assess the reliability of SSSL using MEM-fusion on clinical data. We proposed to cluster SSSL results to find the most reliable and consistent source map from the reconstructed sources, the so-called consensus map. Thirty-four types of interictal epileptic discharges (IEDs) were analyzed from 26 patients with well-defined epileptogenic focus. SSSLs were performed on EEG, MEG, and fusion data and consensus maps were estimated using hierarchical clustering. Qualitative (spike-to-spike reproducibility rate, SSR) and quantitative (localization error and spatial dispersion) assessments were performed using the epileptogenic focus as clinical reference. Fusion SSSL provided significantly better results than EEG or MEG alone. Fusion found at least one cluster concordant with the clinical reference in all cases. This concordant cluster was always the one involving the highest number of spikes. Fusion yielded highest reproducibility (SSR EEG = 55%, MEG = 71%, fusion = 90%) and lowest localization error. Also, using only few channels from either modality (21EEG + 272MEG or 54EEG + 25MEG) was sufficient to reach accurate fusion. MEM-fusion with consensus map approach provides an objective way of finding the most reliable and concordant generators of IEDs. We, therefore, suggest the pertinence of SSSL using MEM-fusion as a valuable clinical tool for presurgical evaluation of epilepsy.
Collapse
Affiliation(s)
- Rasheda Arman Chowdhury
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada
| | | | - Ümit Aydin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada
| | - Jean-Marc Lina
- Ecole de Technologie Supérieure, Montréal, Québec, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada
| | - François Dubeau
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Eliane Kobayashi
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada.,Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.,Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada
| |
Collapse
|
42
|
Neugebauer F, Möddel G, Rampp S, Burger M, Wolters CH. The Effect of Head Model Simplification on Beamformer Source Localization. Front Neurosci 2017; 11:625. [PMID: 29209157 PMCID: PMC5701642 DOI: 10.3389/fnins.2017.00625] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/26/2017] [Indexed: 11/13/2022] Open
Abstract
Beamformers are a widely-used tool in brain analysis with magnetoencephalography (MEG) and electroencephalography (EEG). For the construction of the beamformer filters realistic head volume conductor modeling is necessary for accurately computing the EEG and MEG leadfields, i.e., for solving the EEG and MEG forward problem. In this work, we investigate the influence of including realistic head tissue compartments into a finite element method (FEM) model on the beamformer's localization ability. Specifically, we investigate the effect of including cerebrospinal fluid, gray matter, and white matter distinction, as well as segmenting the skull bone into compacta and spongiosa, and modeling white matter anisotropy. We simulate an interictal epileptic measurement with white sensor noise. Beamformer filters are constructed with unit gain, unit array gain, and unit noise gain constraint. Beamformer source positions are determined by evaluating power and excess sample kurtosis (g2) of the source-waveforms at all source space nodes. For both modalities, we see a strong effect of modeling the cerebrospinal fluid and white and gray matter. Depending on the source position, both effects can each be in the magnitude of centimeters, rendering their modeling necessary for successful localization. Precise skull modeling mainly effected the EEG up to a few millimeters, while both modalities could profit from modeling white matter anisotropy to a smaller extent of 5-10 mm. The unit noise gain or neural activity index beamformer behaves similarly to the array gain beamformer when noise strength is sufficiently high. Variance localization seems more robust against modeling errors than kurtosis.
Collapse
Affiliation(s)
- Frank Neugebauer
- Institute for Biomagnetism und Biosignalanalysis, University of Münster, Münster, Germany
| | - Gabriel Möddel
- Department of Sleep Medicine and Neuromuscular Disorders, Epilepsy Center Münster-Osnabrück, University of Münster, Münster, Germany
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
| | - Martin Burger
- Institute for Computational and Applied Mathematics, University of Münster, Münster, Germany
| | - Carsten H. Wolters
- Institute for Biomagnetism und Biosignalanalysis, University of Münster, Münster, Germany
| |
Collapse
|
43
|
Reichert C, Dürschmid S, Heinze HJ, Hinrichs H. A Comparative Study on the Detection of Covert Attention in Event-Related EEG and MEG Signals to Control a BCI. Front Neurosci 2017; 11:575. [PMID: 29085279 PMCID: PMC5650628 DOI: 10.3389/fnins.2017.00575] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
In brain-computer interface (BCI) applications the detection of neural processing as revealed by event-related potentials (ERPs) is a frequently used approach to regain communication for people unable to interact through any peripheral muscle control. However, the commonly used electroencephalography (EEG) provides signals of low signal-to-noise ratio, making the systems slow and inaccurate. As an alternative noninvasive recording technique, the magnetoencephalography (MEG) could provide more advantageous electrophysiological signals due to a higher number of sensors and the magnetic fields not being influenced by volume conduction. We investigated whether MEG provides higher accuracy in detecting event-related fields (ERFs) compared to detecting ERPs in simultaneously recorded EEG, both evoked by a covert attention task, and whether a combination of the modalities is advantageous. In our approach, a detection algorithm based on spatial filtering is used to identify ERP/ERF components in a data-driven manner. We found that MEG achieves higher decoding accuracy (DA) compared to EEG and that the combination of both further improves the performance significantly. However, MEG data showed poor performance in cross-subject classification, indicating that the algorithm's ability for transfer learning across subjects is better in EEG. Here we show that BCI control by covert attention is feasible with EEG and MEG using a data-driven spatial filter approach with a clear advantage of the MEG regarding DA but with a better transfer learning in EEG.
Collapse
Affiliation(s)
- Christoph Reichert
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Stefan Dürschmid
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Hermann Hinrichs
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
44
|
Farahibozorg SR, Henson RN, Hauk O. Adaptive cortical parcellations for source reconstructed EEG/MEG connectomes. Neuroimage 2017; 169:23-45. [PMID: 28893608 PMCID: PMC5864515 DOI: 10.1016/j.neuroimage.2017.09.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 08/24/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022] Open
Abstract
There is growing interest in the rich temporal and spectral properties of the functional connectome of the brain that are provided by Electro- and Magnetoencephalography (EEG/MEG). However, the problem of leakage between brain sources that arises when reconstructing brain activity from EEG/MEG recordings outside the head makes it difficult to distinguish true connections from spurious connections, even when connections are based on measures that ignore zero-lag dependencies. In particular, standard anatomical parcellations for potential cortical sources tend to over- or under-sample the real spatial resolution of EEG/MEG. By using information from cross-talk functions (CTFs) that objectively describe leakage for a given sensor configuration and distributed source reconstruction method, we introduce methods for optimising the number of parcels while simultaneously minimising the leakage between them. More specifically, we compare two image segmentation algorithms: 1) a split-and-merge (SaM) algorithm based on standard anatomical parcellations and 2) a region growing (RG) algorithm based on all the brain vertices with no prior parcellation. Interestingly, when applied to minimum-norm reconstructions for EEG/MEG configurations from real data, both algorithms yielded approximately 70 parcels despite their different starting points, suggesting that this reflects the resolution limit of this particular sensor configuration and reconstruction method. Importantly, when compared against standard anatomical parcellations, resolution matrices of adaptive parcellations showed notably higher sensitivity and distinguishability of parcels. Furthermore, extensive simulations of realistic networks revealed significant improvements in network reconstruction accuracies, particularly in reducing false leakage-induced connections. Adaptive parcellations therefore allow a more accurate reconstruction of functional EEG/MEG connectomes. We introduce adaptive cortical parcellation algorithms for E/MEG source estimation. Optimum number, size and locations of parcels are found based on cross-talk functions Algorithms yielded ∼70 distinguishable parcels regardless of the starting point. Parcel resolution matrices were notably improved compared to anatomical atlases. Network reconstruction accuracies of simulated connectomes improved significantly.
Collapse
Affiliation(s)
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Olaf Hauk
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
45
|
Cichy RM, Pantazis D. Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space. Neuroimage 2017; 158:441-454. [DOI: 10.1016/j.neuroimage.2017.07.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/03/2017] [Accepted: 07/12/2017] [Indexed: 11/24/2022] Open
|
46
|
Puce A, Hämäläinen MS. A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies. Brain Sci 2017; 7:E58. [PMID: 28561761 PMCID: PMC5483631 DOI: 10.3390/brainsci7060058] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022] Open
Abstract
Electroencephalography (EEG) and magnetoencephalography (MEG) are non-invasive electrophysiological methods, which record electric potentials and magnetic fields due to electric currents in synchronously-active neurons. With MEG being more sensitive to neural activity from tangential currents and EEG being able to detect both radial and tangential sources, the two methods are complementary. Over the years, neurophysiological studies have changed considerably: high-density recordings are becoming de rigueur; there is interest in both spontaneous and evoked activity; and sophisticated artifact detection and removal methods are available. Improved head models for source estimation have also increased the precision of the current estimates, particularly for EEG and combined EEG/MEG. Because of their complementarity, more investigators are beginning to perform simultaneous EEG/MEG studies to gain more complete information about neural activity. Given the increase in methodological complexity in EEG/MEG, it is important to gather data that are of high quality and that are as artifact free as possible. Here, we discuss some issues in data acquisition and analysis of EEG and MEG data. Practical considerations for different types of EEG and MEG studies are also discussed.
Collapse
Affiliation(s)
- Aina Puce
- Psychological & Brain Sciences, Indiana University, 1101 East 10th St, Bloomington, IN 47405, USA.
| | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
47
|
Aydin Ü, Rampp S, Wollbrink A, Kugel H, Cho JH, Knösche TR, Grova C, Wellmer J, Wolters CH. Zoomed MRI Guided by Combined EEG/MEG Source Analysis: A Multimodal Approach for Optimizing Presurgical Epilepsy Work-up and its Application in a Multi-focal Epilepsy Patient Case Study. Brain Topogr 2017; 30:417-433. [PMID: 28510905 PMCID: PMC5495874 DOI: 10.1007/s10548-017-0568-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/25/2017] [Indexed: 10/25/2022]
Abstract
In recent years, the use of source analysis based on electroencephalography (EEG) and magnetoencephalography (MEG) has gained considerable attention in presurgical epilepsy diagnosis. However, in many cases the source analysis alone is not used to tailor surgery unless the findings are confirmed by lesions, such as, e.g., cortical malformations in MRI. For many patients, the histology of tissue resected from MRI negative epilepsy shows small lesions, which indicates the need for more sensitive MR sequences. In this paper, we describe a technique to maximize the synergy between combined EEG/MEG (EMEG) source analysis and high resolution MRI. The procedure has three main steps: (1) construction of a detailed and calibrated finite element head model that considers the variation of individual skull conductivities and white matter anisotropy, (2) EMEG source analysis performed on averaged interictal epileptic discharges (IED), (3) high resolution (0.5 mm) zoomed MR imaging, limited to small areas centered at the EMEG source locations. The proposed new diagnosis procedure was then applied in a particularly challenging case of an epilepsy patient: EMEG analysis at the peak of the IED coincided with a right frontal focal cortical dysplasia (FCD), which had been detected at standard 1 mm resolution MRI. Of higher interest, zoomed MR imaging (applying parallel transmission, 'ZOOMit') guided by EMEG at the spike onset revealed a second, fairly subtle, FCD in the left fronto-central region. The evaluation revealed that this second FCD, which had not been detectable with standard 1 mm resolution, was the trigger of the seizures.
Collapse
Affiliation(s)
- Ü Aydin
- Institute for Biomagnetism und Biosignalanalysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany. .,Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Quebec, Canada.
| | - S Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
| | - A Wollbrink
- Institute for Biomagnetism und Biosignalanalysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany
| | - H Kugel
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - J -H Cho
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - T R Knösche
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - C Grova
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Quebec, Canada.,Multimodal Functional Imaging Lab, Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - J Wellmer
- Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - C H Wolters
- Institute for Biomagnetism und Biosignalanalysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany
| |
Collapse
|
48
|
Merkel C, Hopf JM, Schoenfeld MA. Spatio-temporal dynamics of attentional selection stages during multiple object tracking. Neuroimage 2017; 146:484-491. [PMID: 27810524 DOI: 10.1016/j.neuroimage.2016.10.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022] Open
Abstract
Subjects can visually track several moving items simultaneously, a fact that is difficult to explain by classical attention models. Previous work revealed that building a global shape based on the spatial position of the tracked items improves performance. Here we investigated the involved neural processes and the role of attention. A task-irrelevant probe stimulus was presented during multiple objects tracking at a fixed spatial location. Depending on the tracked item's trajectories the probe appeared either outside, inside, or on the edge of aforementioned global shape. Event-related potentials to the probe stimulus revealed two subsequent stages of attentional selection during multiple object tracking. After 100ms attention was deployed on the edge/boundary of the figure formed by the tracked items. In the following 80ms, attention spread from the outline to the full figure. These findings clarify the eminent contribution of attentional mechanisms in multiple objects tracking.
Collapse
Affiliation(s)
- Christian Merkel
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.
| | - Jens-Max Hopf
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Mircea Ariel Schoenfeld
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz-Institute for Neurobiology, Magdeburg, Germany; Kliniken Schmieder Heidelberg, Heidelberg, Germany
| |
Collapse
|
49
|
Zhang X, Gong Q. Correlation between the frequency difference limen and an index based on principal component analysis of the frequency-following response of normal hearing listeners. Hear Res 2016; 344:255-264. [PMID: 27956352 DOI: 10.1016/j.heares.2016.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 12/01/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
Subcortical phase locking tends to reflect performance differences in tasks related to pitch perception across different types of populations. Enhancement or attenuation in its strength may correspond to population excellence or deficiency in pitch perception. However, it is still unclear whether differences in perceptual capability among individuals with normal hearing can be predicted by subcortical phase locking. In this study, we examined the brain-behavior relationship between frequency-following responses (FFRs) evoked by pure/sweeping tones and frequency difference limens (FDLs). FFRs are considered to reflect subcortical phase locking, and FDLs are a psychophysical measure of behavioral performance in pitch discrimination. Traditional measures of FFR strength were found to be poorly correlated with FDL. Here, we introduced principal component analysis into FFR analysis and extracted an FFR component that was correlated with individual pitch discrimination. The absolute value of the score of this FFR principal component (but not the original score) was negatively correlated with FDL, regardless of stimulus type. The topographic distribution of this component was relatively constant across individuals and across stimulus types, and the inferior colliculus was identified as its origin. The findings suggest that subcortical phase locking at certain but not all FFR generators carries the neural information required for the prediction of individual pitch perception among humans with normal hearing.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qin Gong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Research Center for Biomedical Engineering, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong Province, China.
| |
Collapse
|
50
|
Complex patterns of spatially extended generators of epileptic activity: Comparison of source localization methods cMEM and 4-ExSo-MUSIC on high resolution EEG and MEG data. Neuroimage 2016; 143:175-195. [DOI: 10.1016/j.neuroimage.2016.08.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 11/23/2022] Open
|