1
|
Kokabi F, Ebrahimi S, Mirzavi F, Ghiasi Nooghabi N, Hashemi SF, Hashemy SI. The neuropeptide substance P/neurokinin-1 receptor system and diabetes: From mechanism to therapy. Biofactors 2023. [PMID: 36651605 DOI: 10.1002/biof.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Diabetes is a significant public health issue known as the world's fastest-growing disease condition. It is characterized by persistent hyperglycemia and subsequent chronic complications leading to organ dysfunction and, ultimately, the failure of target organs. Substance P (SP) is an undecapeptide that belongs to the family of tachykinin (TK) peptides. The SP-mediated activation of the neurokinin 1 receptor (NK1R) regulates many pathophysiological processes in the body. There is also a relation between the SP/NK1R system and diabetic processes. Importantly, deregulated expression of SP has been reported in diabetes and diabetes-associated chronic complications. SP can induce both diabetogenic and antidiabetogenic effects and thus affect the pathology of diabetes destructively or protectively. Here, we review the current knowledge of the functional relevance of the SP/NK1R system in diabetes pathogenesis and its exploitation for diabetes therapy. A comprehensive understanding of the role of the SP/NK1R system in diabetes is expected to shed further light on developing new therapeutic possibilities for diabetes and its associated chronic conditions.
Collapse
Affiliation(s)
- Fariba Kokabi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | | | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Abstract
Neuropathy is a common complication of long-term diabetes that impairs quality of life by producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. Studies in animal models of diabetes have identified multiple plausible mechanisms of glucotoxicity to the nervous system including post-translational modification of proteins by glucose and increased glucose metabolism by aldose reductase, glycolysis and other catabolic pathways. However, it is becoming increasingly apparent that factors not necessarily downstream of hyperglycemia can also contribute to the incidence, progression and severity of neuropathy and neuropathic pain. For example, peripheral nerve contains insulin receptors that transduce the neurotrophic and neurosupportive properties of insulin, independent of systemic glucose regulation, while the detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream mechanisms identified in cell and animal models of diabetes that may contribute to the pathogenesis of diabetic neuropathy and neuropathic pain.
Collapse
|
3
|
Muley MM, Krustev E, Reid AR, McDougall JJ. Prophylactic inhibition of neutrophil elastase prevents the development of chronic neuropathic pain in osteoarthritic mice. J Neuroinflammation 2017; 14:168. [PMID: 28835277 PMCID: PMC5569523 DOI: 10.1186/s12974-017-0944-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
Background A subset of osteoarthritis (OA) patients experience joint pain with neuropathic characteristics. Mediators such as neutrophil elastase, a serine proteinase, may be released during acute OA inflammatory flares. We have previously shown that local administration of neutrophil elastase causes joint inflammation and pain via activation of proteinase-activated receptor-2 (PAR2). The aim of this study was to examine the contribution of endogenous neutrophil elastase and PAR2 to the development of joint inflammation, pain, and neuropathy associated with monoiodoacetate (MIA)-induced experimental OA. Methods MIA (0.3 mg/10 μl) was injected into the right knee joint of male C57BL/6 mice (20–34 g). Joint inflammation (edema, leukocyte kinetics), neutrophil elastase proteolytic activity, tactile allodynia, and saphenous nerve demyelination were assessed over 14 days post-injection. The effects of inhibiting neutrophil elastase during the early inflammatory phase of MIA (days 0 to 3) were determined using sivelestat (50 mg/kg i.p.) and serpinA1 (10 μg i.p.). Involvement of PAR2 in the development of MIA-induced joint inflammation and pain was studied using the PAR2 antagonist GB83 (5 μg i.p. days 0 to 1) and PAR2 knockout animals. Results MIA caused an increase in neutrophil elastase proteolytic activity on day 1 (P < 0.0001), but not on day 14. MIA also generated a transient inflammatory response which peaked on day 1 (P < 0.01) then subsided over the 2-week time course. Joint pain appeared on day 1 and persisted to day 14 (P < 0.0001). By day 14, the saphenous nerve showed signs of demyelination. Early treatment with sivelestat and serpinA1 blocked the proteolytic activity of neutrophil elastase on day 1 (P < 0.001), and caused lasting improvements in joint inflammation, pain, and saphenous nerve damage (P < 0.05). MIA-induced synovitis was reversed by early treatment with GB83 and attenuated in PAR2 knockout mice (P < 0.05). PAR2 knockout mice also showed reduced MIA-induced joint pain (P < 0.0001) and less nerve demyelination (P = 0.81 compared to saline control). Conclusions Neutrophil elastase and PAR2 contribute significantly to the development of joint inflammation, pain, and peripheral neuropathy associated with experimental OA, suggesting their potential as therapeutic targets.
Collapse
Affiliation(s)
- Milind M Muley
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Eugene Krustev
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Allison R Reid
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jason J McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
4
|
Abstract
Painful neuropathy, like the other complications of diabetes, is a growing healthcare concern. Unfortunately, current treatments are of variable efficacy and do not target underlying pathogenic mechanisms, in part because these mechanisms are not well defined. Rat and mouse models of type 1 diabetes are frequently used to study diabetic neuropathy, with rats in particular being consistently reported to show allodynia and hyperalgesia. Models of type 2 diabetes are being used with increasing frequency, but the current literature on the progression of indices of neuropathic pain is variable and relatively few therapeutics have yet been developed in these models. While evidence for spontaneous pain in rodent models is sparse, measures of evoked mechanical, thermal and chemical pain can provide insight into the pathogenesis of the condition. The stocking and glove distribution of pain tantalizingly suggests that the generator site of neuropathic pain is found within the peripheral nervous system. However, emerging evidence demonstrates that amplification in the spinal cord, via spinal disinhibition and neuroinflammation, and also in the brain, via enhanced thalamic activity or decreased cortical inhibition, likely contribute to the pathogenesis of painful diabetic neuropathy. Several potential therapeutic strategies have emerged from preclinical studies, including prophylactic treatments that intervene against underlying mechanisms of disease, treatments that prevent gains of nociceptive function, treatments that suppress enhancements of nociceptive function, and treatments that impede normal nociceptive mechanisms. Ongoing challenges include unraveling the complexity of underlying pathogenic mechanisms, addressing the potential disconnect between the perceived location of pain and the actual pain generator and amplifier sites, and finding ways to identify which mechanisms operate in specific patients to allow rational and individualized choice of targeted therapies.
Collapse
Affiliation(s)
- Corinne A Lee-Kubli
- Graduate School of Biomedical Sciences, Sanford-Burnham Institute for Molecular Medicine, La Jolla, CA, USA; Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Harte SE, Meyers JB, Donahue RR, Taylor BK, Morrow TJ. Mechanical Conflict System: A Novel Operant Method for the Assessment of Nociceptive Behavior. PLoS One 2016; 11:e0150164. [PMID: 26915030 PMCID: PMC4767889 DOI: 10.1371/journal.pone.0150164] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/10/2016] [Indexed: 11/19/2022] Open
Abstract
A new operant test for preclinical pain research, termed the Mechanical Conflict System (MCS), is presented. Rats were given a choice either to remain in a brightly lit compartment or to escape to a dark compartment by crossing an array of height-adjustable nociceptive probes. Latency to escape the light compartment was evaluated with varying probe heights (0, .5, 1, 2, 3, and 4 mm above compartment floor) in rats with neuropathic pain induced by constriction nerve injury (CCI) and in naive control rats. Escape responses in CCI rats were assessed following intraperitoneal administration of pregabalin (10 and 30 mg/kg), morphine (2.5 and 5 mg/kg), and the tachykinin NK1 receptor antagonist, RP 67580 (1 and 10 mg/kg). Results indicate that escape latency increased as a function of probe height in both naive and CCI rats. Pregabalin (10 and 30 mg/kg) and morphine (5 mg/kg), but not RP 67580, decreased latency to escape in CCI rats suggesting an antinociceptive effect. In contrast, morphine (10 mg/kg) but not pregabalin (30 mg/kg) increased escape latency in naive rats suggesting a possible anxiolytic action of morphine in response to light-induced fear. No order effects following multiple test sessions were observed. We conclude that the MCS is a valid method to assess behavioral signs of affective pain in rodents.
Collapse
Affiliation(s)
- Steven E. Harte
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neurology Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Jessica B. Meyers
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neurology Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
| | - Renee R. Donahue
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Bradley K. Taylor
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Thomas J. Morrow
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neurology Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Müller-Stich BP, Billeter AT, Fleming T, Fischer L, Büchler MW, Nawroth PP. Nitrosative stress but not glycemic parameters correlate with improved neuropathy in nonseverely obese diabetic patients after Roux-Y gastric bypass. Surg Obes Relat Dis 2014; 11:847-54. [PMID: 25862183 DOI: 10.1016/j.soard.2014.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Diabetic neuropathy is common in type 2 diabetic patients (T2DM) but tight glycemic control does not improve the symptoms. In contrast, Roux-Y gastric bypass (RYGB) has a positive effect on active neuropathic symptoms, independent from glycemic control. The purpose of the present study was to identify potential mechanisms of improved diabetic neuropathic symptoms after RYGB. METHODS A prospective cohort of 20 patients with insulin-dependent T2DM and BMI < 35 kg/m(2) were treated with RYGB. Nineteen patients had complete follow-up. Fasting glucose, HbA1c (glycated hemoglobin), markers for nitrosative, carbonyl, and oxidative stress (nitrotyrosine, carboxylated-lysine (CML), methylglyoxal, oxidized low-density-lipoprotein (oxLDL)) as well as Neuropeptid Y and Neurokinin A were investigated over 12 months. Neuropathy was assessed using the Neuropathy Deficit Score (NDS). RESULTS The preoperative NDS improved within twelve months (5.1 ± 0.6 to 2.6 ± 0.4, P = .010). Fasting glucose and HbA1c also improved compared to preoperative values (201.1 ± 16.6 mg/dL to 128 ± 8.7 mg/dL, P = .004 and 8.5 ± 0.3% (53 ± 3.3 mmol/mol) to 7 ± 0.3% (67 ± 3.3 mmol/mol), P = .001, respectively). Nitrotyrosine, CML, and methylglyoxal all 3 decreased postoperatively (1067.3 ± 266.9 nM to 355.8 ± 36.4 nM, P = .003; 257.1 ± 10.2 ng/ml to 215.3 ± 18.3 ng/ml, P = .039; 402.3 ± 3.9 nM to 163.4 ± 10.3 nM, P = .002). OxLDL remained unchanged. Fasting glucose and HbA1c did not correlate with improved neuropathy. The decrease in nitrotyrosine correlated with improvement in the NDS after 6 and twelve months (r = .9, P < .001 and r = .68, P = .03). The decrease in methylglyoxal after 6 months correlated with decrease in NDS after twelve months (r = 0.897, P = .003). CONCLUSION RYGB seems to improve oxidative, nitrosative and carbonyl stress, known to have a causal role in diabetic neuropathy.
Collapse
Affiliation(s)
- Beat P Müller-Stich
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| | - Adrian T Billeter
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Lars Fischer
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Botz B, Imreh A, Sándor K, Elekes K, Szolcsányi J, Reglődi D, Quinn JP, Stewart J, Zimmer A, Hashimoto H, Helyes Z. Role of Pituitary Adenylate-Cyclase Activating Polypeptide and Tac1 gene derived tachykinins in sensory, motor and vascular functions under normal and neuropathic conditions. Peptides 2013; 43:105-12. [PMID: 23499760 DOI: 10.1016/j.peptides.2013.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
Pituitary Adenylate-Cyclase Activating Polypeptide (PACAP) and Tac1 gene-encoded tachykinins (substance P: SP, neurokinin A: NKA) are expressed in capsaicin-sensitive nerves, but their role in nociception, inflammation and vasoregulation is unclear. Therefore, we investigated the function of these neuropeptides and the NK1 tachykinin receptor (from Tacr1 gene) in the partial sciatic nerve ligation-induced traumatic mononeuropathy model using gene deficient (PACAP(-/-), Tac1(-/-), and Tacr1(-/-)) mice. Mechanonociceptive threshold of the paw was measured with dynamic plantar aesthesiometry, motor coordination with Rota-Rod and cutaneous microcirculation with laser Doppler imaging. Neurogenic vasodilation was evoked by mustard oil stimulating sensory nerves. In wildtype mice 30-40% mechanical hyperalgesia developed one week after nerve ligation, which was not altered in Tac1(-/-) and Tacr1(-/-) mice, but was absent in PACAP(-/-) animals. Motor coordination of the PACAP(-/-) and Tac1(-/-) groups was significantly worse both before and after nerve ligation compared to their wildtypes, but it did not change in Tacr1(-/-) mice. Basal postoperative microcirculation on the plantar skin of PACAP(-/-) mice did not differ from the wildtypes, but was significantly lower in Tac1(-/-) and Tacr1(-/-) ones. In contrast, mustard oil-induced neurogenic vasodilation was significantly smaller in PACAP(-/-) mice, but not in Tacr1(-/-) and Tac1(-/-) animals. Both PACAP and SP/NKA, but not NK1 receptors participate in normal motor coordination. Tachykinins maintain basal cutaneous microcirculation. PACAP is a crucial mediator of neuropathic mechanical hyperalgesia and neurogenic vasodilation. Therefore identifying its target and developing selective, potent antagonists, might open promising new perspectives for the treatment of neuropathic pain and vascular complications.
Collapse
Affiliation(s)
- Bálint Botz
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Szigeti u. 12, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tatsushima Y, Egashira N, Kawashiri T, Mihara Y, Yano T, Mishima K, Oishi R. Involvement of Substance P in Peripheral Neuropathy Induced by Paclitaxel but Not Oxaliplatin. J Pharmacol Exp Ther 2011; 337:226-35. [DOI: 10.1124/jpet.110.175976] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Nerve growth factor mediates mechanical allodynia in a mouse model of type 2 diabetes. J Neuropathol Exp Neurol 2009; 68:1229-43. [PMID: 19816194 DOI: 10.1097/nen.0b013e3181bef710] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
C57BLKS db/db (db/db) mice develop a neuropathy with features of human type 2 diabetic neuropathy. Here, we demonstrate that these mice develop transient mechanical allodynia at the early stage of diabetes. We hypothesized that nerve growth factor (NGF), which enhances the expression of key mediators of nociception (i.e. substance P [SP] and calcitonin gene-related peptide), contributes to the development of mechanical allodynia in these mice. We found that NGF, SP, and calcitonin gene-related peptide gene expression is upregulated in the dorsal root ganglion (DRG) of db/db mice before or during the period that they develop mechanical allodynia. There were more small- to medium-sized NGF-immunopositive DRG neurons in db/db mice than in control db+ mice; these neurons also expressed SP, consistent with its role in nociception. Nerve growth factor expression in the hind paw skin was also increased in a variety of dermal cell types and nerve fibers, suggesting the contribution of a peripheral source of NGF to mechanical allodynia. The upregulation of NGF coincided with enhanced tropomyosin-related kinase A receptor phosphorylation in the DRG. Finally, an antibody against NGF inhibited mechanical allodynia and decreased the numbers of SP-positive DRG neurons in db/db mice. These results suggest that inhibition of NGF action is a potential strategy for treating painful diabetic neuropathy.
Collapse
|
10
|
Lapirot O, Chebbi R, Monconduit L, Artola A, Dallel R, Luccarini P. NK1 receptor-expressing spinoparabrachial neurons trigger diffuse noxious inhibitory controls through lateral parabrachial activation in the male rat. Pain 2009; 142:245-254. [DOI: 10.1016/j.pain.2009.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 01/08/2009] [Accepted: 01/13/2009] [Indexed: 02/05/2023]
|
11
|
Abstract
Neuropeptides and kinins are important messengers in the nervous system and--on the basis of their anatomical localisation and the effects produced when the substances themselves are administered, to animals or to human subjects-a significant number of them have been suggested to have a role in pain and inflammation. Experiments in gene deletion (knock-out or null mutant) mice and parallel experiments with pharmacological receptor antagonists in a variety of species have strengthened the evidence that a number of peptides, notably substance P and calcitonin gene-related peptide (CGRP), and the kinins have a pathophysiological role in nociception. Clinical studies with non-peptide pharmacological antagonists are now in progress to determine if blocking the action of these peptides might have utility in the treatment of pain.
Collapse
Affiliation(s)
- R G Hill
- Merck, Sharp and Dohme Research Laboratories, Terlings Park, Harlow, Essex CM20 2QR, UK.
| | | |
Collapse
|
12
|
Pitcher GM, Henry JL. Nociceptive response to innocuous mechanical stimulation is mediated via myelinated afferents and NK-1 receptor activation in a rat model of neuropathic pain. Exp Neurol 2004; 186:173-97. [PMID: 15026255 DOI: 10.1016/j.expneurol.2003.10.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2002] [Revised: 10/08/2003] [Accepted: 10/16/2003] [Indexed: 12/29/2022]
Abstract
Peripheral nerve injury in humans can produce a persistent pain state characterized by spontaneous pain and painful responses to normally innocuous stimuli (allodynia). Here we attempt to identify some of the neurophysiological and neurochemical mechanisms underlying neuropathic pain using an animal model of peripheral neuropathy induced in male Sprague-Dawley rats by placing a 2-mm polyethylene cuff around the left sciatic nerve according to the method of Mosconi and Kruger. von Frey hair testing confirmed tactile allodynia in all cuff-implanted rats before electrophysiological testing. Rats were anesthetized and spinalized for extracellular recording from single spinal wide dynamic range neurons (L(3-4)). In neuropathic rats (days 11-14 and 42-52 after cuff implantation), ongoing discharge was greater and hind paw receptive field size was expanded compared to control rats. Activation of low-threshold sensory afferents by innocuous mechanical stimulation (0.2 N for 3 s) in the hind paw receptive field evoked the typical brief excitation in control rats. However, in neuropathic rats, innocuous stimulation also induced a nociceptive-like afterdischarge that persisted 2-3 min. This afterdischarge was never observed in control rats, and, in this model, is the distinguishing feature of the spinal neural correlate of tactile allodynia. Electrical stimulation of the sciatic nerve at 4 and at 20 Hz each produced an initial discharge that was identical in control and in neuropathic rats. This stimulation also produced an afterdischarge that was similar at the two frequencies in control rats. However, in neuropathic rats, the afterdischarge produced by 20-Hz stimulation was greater than that produced by 4-Hz stimulation. Given that acutely spinalized rats were studied, only peripheral and/or spinal mechanisms can account for the data obtained; as synaptic responses from C fibers begin to fail above approximately 5-Hz stimulation [Pain 46 (1991) 327], the afterdischarge in response to 20-Hz stimulation suggests a change mainly in myelinated afferents and a predominant role of these fibers in eliciting this afterdischarge. These data are consistent with the suggestion that peripheral neuropathy induces phenotypic changes predominantly in myelinated afferents, the sensory neurons that normally respond to mechanical stimulation. The NK-1 receptor antagonist, CP-99,994 (0.5 mg/kg, i.v.), depressed the innocuous pressure-evoked afterdischarge but not the brief initial discharge of wide dynamic range neurons, and decreased the elevated ongoing rate of discharge in neuropathic rats. These results support the concept that following peripheral neuropathy, myelinated afferents may now synthesize and release substance P. A result of this is that tonic release of substance P from the central terminals of these phenotypically altered neurons would lead to ongoing excitation of NK-1-expressing nociceptive spinal neurons. In addition, these spinal neurons would also exhibit exaggerated responses to innocuous pressure stimulation. The data in this study put forth a possible neurophysiological and neurochemical basis of neuropathic pain and identify substance P and the NK-1 receptor as potential neurochemical targets for its management.
Collapse
Affiliation(s)
- Graham M Pitcher
- Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|
13
|
Maneuf YP, Blake R, Andrews NA, McKnight AT. Reduction by gabapentin of K+-evoked release of [3H]-glutamate from the caudal trigeminal nucleus of the streptozotocin-treated rat. Br J Pharmacol 2004; 141:574-9. [PMID: 14744819 PMCID: PMC1574225 DOI: 10.1038/sj.bjp.0705579] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recently, we showed that gabapentin can inhibit a facilitatory effect of substance P (SP) on K(+)-evoked glutamate release in rat trigeminal slices (Maneuf et al., 2001), and we have now examined the effect of gabapentin on glutamate release in the trigeminal slice from the streptozotocin (STZ)-treated rat. 1. At 4 weeks following STZ treatment (50 mg kg(-1) i.p.), blood glucose was increased in the majority of cases, compared to the control level. All the treated animals showed a significant degree (P<0.001) of tactile allodynia (assessed using von Frey filaments) that did not appear to correlate with blood glucose levels. 2. In this study, we demonstrated that, after STZ treatment, 30 microM gabapentin reduced K(+)-evoked release of [(3)H]-glutamate in either normal (11 mM) or high (30 mM) glucose conditions by 24 and 22%, respectively. In the normal rat, gabapentin (up to 100 microM) is ordinarily unable to affect release of glutamate from the trigeminal slice. 3. The uptake of glutamate in Sp5C punches from streptozotocin-treated rats was reduced under normal glucose conditions (41.7% of control), whereas high glucose restored uptake to normal (84.7% of control). 4. The addition of 1 microm substance P potentiated the evoked release of glutamate in both normal (40% increase) and high glucose (28%), and this was blocked by gabapentin (30 microM) in both conditions. It is interesting to speculate that this ability of gabapentin to reduce the release of glutamate in the trigeminal nucleus after streptozotocin treatment may be of relevance to the antihyperalgesic-allodynic actions of the drug.
Collapse
Affiliation(s)
- Y P Maneuf
- Cambridge Biotechnology Ltd, PO Box 230, Cambridge CB2 1XJ.
| | | | | | | |
Collapse
|
14
|
Calcutt NA. Potential mechanisms of neuropathic pain in diabetes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 50:205-28. [PMID: 12198811 DOI: 10.1016/s0074-7742(02)50078-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abnormal sensations and pain are features of approximately 10% of all cases of diabvetic neuropathy and can cause marked diminution in the quality of life for these patients. The quality and distribution of pain are variable, although descriptions of burning pain in the hands and feet are commonly reported. Like other neuropathic pain states, painful diabetic neuropathy has an unknown pathogenesis and, in many cases, is not alleviated by nonsteriodal anti-inflammatory drugs or opiates. In the last decase, a number of behavioral and physiologic studies have revealed indices of sensory dysfunction in animal models of diabetes. These include hyperalgesia to mechanical and noxious chemical stimuli and allodynia to light touch. Animal models of painful diabetic neuropathy have been used to investigate the therapeutic potential of a range of experimental agents and also to explore potential etiologic mechanisms. There is relatively little evidence to suggest that the peripheral sensory nerves of diabetic rodents exhibit spontaneous activity or increased responsiveness to peripheral stimuli. Indeed, the weight of eveidence suggests that sensory input to the spinal cord is decreased rather than increased in diabetic rodents. Aberrant spinal or supraspinal modulation of sensory processing may therefore be involved in generating allodynia and hyperalgesia in these models. Studies have supported a role for spinally mediated hyeralgesia in diabetic rats that may reflect either a response to diminished peripheral input or a consequence of hyperglycemia on local or descending modulatory systems. Elucidating the affects of diabetes on spinal sensory processing may assist development of novel therapeutic strategies for preventing and alleviating painful diabetic neuropathy.
Collapse
Affiliation(s)
- Nigel A Calcutt
- Department of Pathology, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
15
|
Ardid D, Alloui A, Brousse G, Jourdan D, Picard P, Dubray C, Eschalier A. Potentiation of the antinociceptive effect of clomipramine by a 5-ht(1A) antagonist in neuropathic pain in rats. Br J Pharmacol 2001; 132:1118-26. [PMID: 11226143 PMCID: PMC1572640 DOI: 10.1038/sj.bjp.0703897] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2000] [Revised: 10/30/2000] [Accepted: 12/11/2000] [Indexed: 11/08/2022] Open
Abstract
The benefit of antidepressant treatment in human neuropathic pain is now well documented, but the effect is limited and slow to appear. It has been demonstrated that the association of a 5-HT(1A) antagonist and a serotoninergic antidepressant reduced the delay of action and increases the thymoanaleptic effect of the drug. The purpose of this work was to evaluate the combination of an antidepressant and a 5-HT(1A) antagonist in animal models of chronic neuropathic pain. We studied the antinociceptive effect of the co-administration of clomipramine and a 5-HT(1A) antagonist (WAY 100,635) in a pain test applied in normal rats and in two models of neurogenic sustained pain (mononeuropathic and diabetic rats). The results show an increase in the antinociceptive effect of acutely injected clomipramine due to WAY 100,635 in these models, which is majored when the two drugs are repeatedly injected. The 5-HT(1A) antagonist reduced the delay of onset and increased the maximal antinociceptive effect of clomipramine. These new findings argue for using the combination of an antidepressant and a 5-HT(1A) antagonist in human neuropathic pain therapy.
Collapse
Affiliation(s)
- D Ardid
- EPI INSERM 9904, Laboratoire de pharmacologie Médicale, Faculté de médecine, 63001 Clermont-Ferrand Cedex, France.
| | | | | | | | | | | | | |
Collapse
|