1
|
Cantano LMR, Luchesi LC, Takata JT, Monticelli PF. Behavioral repertoire of the Brazilian spiny-rats, Trinomys setosus and Clyomys laticeps: different levels of sociality. BRAZ J BIOL 2021; 83:e241164. [PMID: 34231655 DOI: 10.1590/1519-6984.241164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
Behavior is a useful trait for comparative studies that provide the comprehension of phylogenetic relationships among species. Here, we present a description of two spiny-rats species' behavioral repertoire, Clyomys laticeps and Trinomys setosus (Rodentia: Echimyidae). The affiliative and agonistic behavioral patterns were sampled during a three-year study of captive populations of wild animals. Observational data were collected in two phases under different arrangements of individuals in groups. We also compare the behavioral traits of T. setosus and C. laticeps with the known behavioral patterns of Trinomys yonenagae. We add categories to the previous descriptions of T. setosus and a standard ethogram for C. laticeps. Trinomys setosus showed a visual and vocal display we called foot-trembling, which was not described in this form and function for other species studied until now. We discuss the differences in their sociality levels and similarities and differences among behavior patterns and repertoires.
Collapse
Affiliation(s)
- L M R Cantano
- Universidade de São Paulo - USP, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Departamento de Psicologia, Laboratório de Etologia e Bioacústica - EBAC, Programa de Pós-Graduação em Psicobiologia em Psicobiologia, Ribeirão Preto, SP, Brasil
| | - L C Luchesi
- Universidade de São Paulo - USP, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Departamento de Psicologia, Laboratório de Etologia e Bioacústica - EBAC, Programa de Pós-Graduação em Psicobiologia em Psicobiologia, Ribeirão Preto, SP, Brasil
| | - J T Takata
- Universidade de São Paulo - USP, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Departamento de Psicologia, Laboratório de Etologia e Bioacústica - EBAC, Programa de Pós-Graduação em Psicobiologia em Psicobiologia, Ribeirão Preto, SP, Brasil
| | - P F Monticelli
- Universidade de São Paulo - USP, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Departamento de Psicologia, Laboratório de Etologia e Bioacústica - EBAC, Programa de Pós-Graduação em Psicobiologia em Psicobiologia, Ribeirão Preto, SP, Brasil
| |
Collapse
|
2
|
Hurtado-Parrado C, González-León C, Arias-Higuera MA, Cardona A, Medina LG, García-Muñoz L, Sánchez C, Cifuentes J, Forigua JC, Ortiz A, Acevedo-Triana CA, Rico JL. Assessing Mongolian gerbil emotional behavior: effects of two shock intensities and response-independent shocks during an extended inhibitory-avoidance task. PeerJ 2017; 5:e4009. [PMID: 29152417 PMCID: PMC5689020 DOI: 10.7717/peerj.4009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/18/2017] [Indexed: 12/28/2022] Open
Abstract
Despite step-down inhibitory avoidance procedures that have been widely implemented in rats and mice to study learning and emotion phenomena, performance of other species in these tasks has received less attention. The case of the Mongolian gerbil is of relevance considering the discrepancies in the parameters of the step-down protocols implemented, especially the wide range of foot-shock intensities (i.e., 0.4–4.0 mA), and the lack of information on long-term performance, extinction effects, and behavioral patterning during these tasks. Experiment 1 aimed to (a) characterize gerbils’ acquisition, extinction, and steady-state performance during a multisession (i.e., extended) step-down protocol adapted for implementation in a commercially-available behavioral package (Video Fear Conditioning System—MED Associates Fairfax, VT, USA), and (b) compare gerbils’ performance in this task with two shock intensities – 0.5 vs. 1.0 mA—considered in the low-to-mid range. Results indicated that the 1.0 mA protocol produced more reliable and clear evidence of avoidance learning, extinction, and reacquisition in terms of increments in freezing and on-platform time as well as suppression of platform descent. Experiment 2 aimed to (a) assess whether an alternate protocol consisting of a random delivery of foot shocks could replicate the effects of Experiment 1 and (b) characterize gerbils’ exploratory behavior during the step-down task (jumping, digging, rearing, and probing). Random shocks did not reproduce the effects observed with the first protocol. The data also indicated that a change from random to response-dependent shocks affects (a) the length of each visit to the platform, but not the frequency of platform descends or freezing time, and (b) the patterns of exploratory behavior, namely, suppression of digging and rearing, as well as increments in probing and jumping. Overall, the study demonstrated the feasibility of the extended step-down protocol for studying steady performance, extinction, and reacquisition of avoidance behavior in gerbils, which could be easily implemented in a commercially available system. The observation that 1.0 mA shocks produced a clear and consistent avoidance behavior suggests that implementation of higher intensities is unnecessary for reproducing aversive-conditioning effects in this species. The observed patterning of freezing, platform descents, and exploratory responses produced by the change from random to periodic shocks may relate to the active defensive system of the gerbil. Of special interest is the probing behavior, which could be interpreted as risk assessment and has not been reported in other rodent species exposed to step-down and similar tasks.
Collapse
Affiliation(s)
- Camilo Hurtado-Parrado
- Animal Behavior Laboratory, Faculty of Psychology, Fundación Universitaria Konrad Lorenz, Bogota, D.C., Colombia
| | - Camilo González-León
- Animal Behavior Laboratory, Faculty of Psychology, Fundación Universitaria Konrad Lorenz, Bogota, D.C., Colombia
| | - Mónica A Arias-Higuera
- Animal Behavior Laboratory, Faculty of Psychology, Fundación Universitaria Konrad Lorenz, Bogota, D.C., Colombia
| | - Angelo Cardona
- Animal Behavior Laboratory, Faculty of Psychology, Fundación Universitaria Konrad Lorenz, Bogota, D.C., Colombia
| | - Lucia G Medina
- Animal Behavior Laboratory, Faculty of Psychology, Fundación Universitaria Konrad Lorenz, Bogota, D.C., Colombia
| | - Laura García-Muñoz
- Animal Behavior Laboratory, Faculty of Psychology, Fundación Universitaria Konrad Lorenz, Bogota, D.C., Colombia
| | - Christian Sánchez
- Animal Behavior Laboratory, Faculty of Psychology, Fundación Universitaria Konrad Lorenz, Bogota, D.C., Colombia
| | - Julián Cifuentes
- Animal Behavior Laboratory, Faculty of Psychology, Fundación Universitaria Konrad Lorenz, Bogota, D.C., Colombia
| | - Juan Carlos Forigua
- Animal Behavior Laboratory, Faculty of Psychology, Fundación Universitaria Konrad Lorenz, Bogota, D.C., Colombia
| | - Andrea Ortiz
- Animal Behavior Laboratory, Faculty of Psychology, Fundación Universitaria Konrad Lorenz, Bogota, D.C., Colombia
| | | | - Javier L Rico
- Animal Behavior Laboratory, Faculty of Psychology, Fundación Universitaria Konrad Lorenz, Bogota, D.C., Colombia
| |
Collapse
|
3
|
Ando Y, Hayashi T, Ito K, Suzuki E, Mine N, Miyamoto A, Oya M, Matsuda H, Isaji A, Nakanishi T, Imaizumi K, Shibata T, Okada T, Sakurai K, Naito K, Uyama I, Kawada K, Takahashi H, Yamada S. Comparison between 5-day aprepitant and single-dose fosaprepitant meglumine for preventing nausea and vomiting induced by cisplatin-based chemotherapy. Support Care Cancer 2015. [PMID: 26206077 PMCID: PMC4689777 DOI: 10.1007/s00520-015-2856-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Purpose We aimed to compare the preventive effect of 5-day administration of aprepitant with single administration of fosaprepitant meglumine against nausea and vomiting symptoms due to highly emetogenic chemotherapy regimens comprising cisplatin (CDDP). Methods Subjects were inpatients who underwent chemotherapy for gastric cancer, esophageal cancer, lung cancer, or head and neck cancer with a regimen comprising 60 mg/m2 or higher dose of CDDP. In this randomised, open-label, controlled study, the subjects were assigned to a group given aprepitant for 5 days or a group given a single administration of fosaprepitant meglumine. The nausea and vomiting symptoms that emerged within 7 days after the first CDDP administration were investigated with a questionnaire form; the results were compared between the two groups. Risk factors affecting nausea and vomiting symptoms were also investigated. Results Of the 101 patients enrolled, 93 patients were included (48 in the 5-day aprepitant group and 45 in the single fosaprepitant meglumine group). No significant intergroup differences in the complete response rate or the complete control rate were found over the entire period. The nausea score tended to increase from day 3 in both groups, but no significant intergroup difference was observed. Furthermore, the investigation of risk factors affecting moderate or severe nausea symptoms indicated that the fosaprepitant meglumine administration was not a risk factor. Conclusions Single administration of fosaprepitant meglumine was not inferior to 5-day administration of aprepitant for preventing acute and delayed nausea and vomiting symptoms occurring after administration of CDDP (60 mg/m2 or higher).
Collapse
Affiliation(s)
- Yosuke Ando
- Department of Clinical Pharmacy, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Takahiro Hayashi
- Department of Clinical Pharmacy, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan.
| | - Kaori Ito
- Department of Pharmacy, Fujita Health University Hospital, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan.,Department of Hematology, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Eri Suzuki
- Department of Pharmacy, Fujita Health University Hospital, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Naoyuki Mine
- Department of Pharmacy, Fujita Health University Hospital, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Ayumi Miyamoto
- Department of Pharmacy, Fujita Health University Hospital, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Miyuki Oya
- Department of Clinical Pharmacy, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Hidezo Matsuda
- Department of Clinical Pharmacy, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Ami Isaji
- Department of Clinical Pharmacy, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Toru Nakanishi
- Department of Respiratory Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Tatsuyoshi Okada
- Department of Otolaryngology, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Kazuo Sakurai
- Department of Otolaryngology, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Kensei Naito
- Department of Otolaryngology, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Ichiro Uyama
- Department of Upper Gastrointestinal Surgery, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Kenji Kawada
- Department of Medical Oncology, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Hiroshi Takahashi
- Division of Medical Statistics, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Shigeki Yamada
- Department of Clinical Pharmacy, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
4
|
Pintér E, Pozsgai G, Hajna Z, Helyes Z, Szolcsányi J. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions. Br J Clin Pharmacol 2015; 77:5-20. [PMID: 23432438 DOI: 10.1111/bcp.12097] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/08/2013] [Indexed: 12/19/2022] Open
Abstract
Cross-talk between the nervous, endocrine and immune systems exists via regulator molecules, such as neuropeptides, hormones and cytokines. A number of neuropeptides have been implicated in the genesis of inflammation, such as tachykinins and calcitonin gene-related peptide. Development of their receptor antagonists could be a promising approach to anti-inflammatory pharmacotherapy. Anti-inflammatory neuropeptides, such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, α-melanocyte-stimulating hormone, urocortin, adrenomedullin, somatostatin, cortistatin, ghrelin, galanin and opioid peptides, are also released and act on their own receptors on the neurons as well as on different inflammatory and immune cells. The aim of the present review is to summarize the most prominent data of preclinical animal studies concerning the main pharmacological effects of ligands acting on the neuropeptide receptors. Promising therapeutic impacts of these compounds as potential candidates for the development of novel types of anti-inflammatory drugs are also discussed.
Collapse
Affiliation(s)
- Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624, Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság u. 20., H-7624, Pécs, Hungary
| | | | | | | | | |
Collapse
|
5
|
Yoshino-Furukawa T, Maeda Y, Kikuchi A, Sakuma H, Imazumi K, Yamakuni H, Sogabe H, Matsuo M, Manda T, Uchida W. Pharmacological Properties of FK886, a New, Centrally Active Neurokinin-1 Receptor Antagonist. Biol Pharm Bull 2013; 36:76-81. [DOI: 10.1248/bpb.b12-00631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yasue Maeda
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc
| | - Aya Kikuchi
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc
| | - Hiroyuki Sakuma
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc
| | - Katsunori Imazumi
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc
| | - Hisashi Yamakuni
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc
| | - Hajime Sogabe
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc
| | - Masahiko Matsuo
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc
| | - Toshitaka Manda
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc
| | - Wataru Uchida
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc
| |
Collapse
|
6
|
Classical and novel approaches to the preclinical testing of anxiolytics: A critical evaluation. Neurosci Biobehav Rev 2012; 37:2318-30. [PMID: 22981935 DOI: 10.1016/j.neubiorev.2012.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/21/2012] [Accepted: 09/05/2012] [Indexed: 01/11/2023]
Abstract
Over 80% of current anxiety studies employ one of the tests that were developed earlier than, or concurrently with the elevated plus-maze, i.e. before 1985. Considering 1985 as a historical reference point, we briefly review here 115 new tests and models of anxiety, the development of which was likely prompted by the poor predictive validity of classical tests as shown here by the comparison of preclinical and clinical findings with putative novel anxiolytics. The new approaches comprise major innovations to classical tests, the pre-test application of manipulations that mimic etiological factors of anxiety disorders, and entirely new approaches including anxiety disorder-specific tests. Thus, intensive test development over the last 27 years created a large pool of novel approaches. However, these are infrequently used and as such, their impact on anxiolytic drug development remains low. We suggest here that test/model development should step over the intensive phase when several new methods are proposed each year and should start selecting and establishing the methodologies that would successfully replace or complement classical tests. We propose here a novel strategy for improving the validity of anxiety testing that includes the retrospective analysis of the predictive validity of new procedures (as opposed to classical pharmacological validation), and a call for concerted international efforts at both the conceptual and practical levels. Similar endeavors proved recently successful with other psychiatric disorders.
Collapse
|
7
|
Duffy RA, Morgan C, Naylor R, Higgins GA, Varty GB, Lachowicz JE, Parker EM. Rolapitant (SCH 619734): A potent, selective and orally active neurokinin NK1 receptor antagonist with centrally-mediated antiemetic effects in ferrets. Pharmacol Biochem Behav 2012; 102:95-100. [DOI: 10.1016/j.pbb.2012.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/24/2012] [Accepted: 03/24/2012] [Indexed: 10/28/2022]
|
8
|
Translational and reverse translational research on the role of stress in drug craving and relapse. Psychopharmacology (Berl) 2011; 218:69-82. [PMID: 21494792 PMCID: PMC3192289 DOI: 10.1007/s00213-011-2263-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 03/13/2011] [Indexed: 12/14/2022]
Abstract
RATIONALE AND BACKGROUND High relapse rates during abstinence are a pervasive problem in drug addiction treatment. Relapse is often associated with stress exposure, which can provoke a subjective state of drug craving that can also be demonstrated under controlled laboratory conditions. Stress-induced relapse and craving in humans can be modeled in mice, rats, and monkeys using a reinstatement model in which drug-taking behaviors are extinguished and then reinstated by acute exposure to certain stressors. Studies using the reinstatement model in rats have identified the role of several neurotransmitters and brain sites in stress-induced reinstatement of drug seeking, but the degree to which these preclinical findings are relevant to the human condition is largely unknown. OBJECTIVES AND HIGHLIGHTS Here, we address this topic by discussing recent results on the effect of alpha-2 adrenoceptors and substance P-NK1 receptor antagonists on stress-induced reinstatement in mice and rats and stress-induced craving and potentially stress-induced relapse in humans. We also discuss brain sites and circuits involved in stress-induced reinstatement of drug seeking in rats and those activated during stress-induced craving in humans. CONCLUSIONS There is evidence that alpha-2 adrenoceptor agonists and NK1 receptor antagonists decrease stress-induced drug seeking in rats and stress-induced craving in humans. Whether these drugs would also prevent stress-induced drug relapse in humans and whether similar or different brain mechanisms are involved in stress-induced reinstatement in non-humans and stress-induced drug craving and relapse in humans are subjects for future research.
Collapse
|
9
|
Malherbe P, Knoflach F, Hernandez MC, Hoffmann T, Schnider P, Porter RH, Wettstein JG, Ballard TM, Spooren W, Steward L. Characterization of RO4583298 as a novel potent, dual antagonist with in vivo activity at tachykinin NK₁ and NK₃ receptors. Br J Pharmacol 2011; 162:929-46. [PMID: 21039418 DOI: 10.1111/j.1476-5381.2010.01096.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Clinical results of osanetant and talnetant (selective-NK₃ antagonists) indicate that blocking the NK₃ receptor could be beneficial for the treatment of schizophrenia. The objective of this study was to characterize the in vitro and in vivo properties of a novel dual NK₁/NK₃ antagonist, RO4583298 (2-phenyl-N-(pyridin-3-yl)-N-methylisobutyramide derivative). EXPERIMENTAL APPROACH RO4583298 in vitro pharmacology was investigated using radioligand binding ([³H]-SP, [³H]-osanetant, [³H]-senktide), [³H]-inositol-phosphate accumulation Schild analysis (SP- or [MePhe⁷]-NKB-induced) and electrophysiological studies in guinea-pig substantia nigra pars compacta (SNpc). The in vivo activity of RO4583298 was assessed using reversal of GR73632-induced foot tapping in gerbils (GFT; NK₁) and senktide-induced tail whips in mice (MTW; NK₃). KEY RESULTS RO4583298 has a high-affinity for NK₁ (human and gerbil) and NK₃ (human, cynomolgus monkey, gerbil and guinea-pig) receptors and behaves as a pseudo-irreversible antagonist. Unusually it binds with high-affinity to mouse and rat NK₃, yet with a partial non-competitive mode of antagonism. In guinea-pig SNpc, RO4583298 inhibited the senktide-induced potentiation of spontaneous activity of dopaminergic neurones with an apparent non-competitive mechanism of action. RO4583298 (p.o.) robustly blocked the GFT response, and inhibited the MTW. CONCLUSIONS AND IMPLICATIONS RO4583298 is a high-affinity, non-competitive, long-acting in vivo NK₁/NK₃ antagonist; hence providing a useful in vitro and in vivo pharmacological tool to investigate the roles of NK₁ and NK₃ receptors in psychiatric disorders.
Collapse
Affiliation(s)
- P Malherbe
- Discovery Research CNS, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Anxiolytic-like effects of the neurokinin 1 receptor antagonist GR-205171 in the elevated plus maze and contextual fear-potentiated startle model of anxiety in gerbils. Behav Pharmacol 2011; 20:584-95. [PMID: 19675456 DOI: 10.1097/fbp.0b013e32832ec594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gerbils show a neurokinin (NK)1 receptor pharmacological profile, which is similar to that observed in humans, and thus have become a commonly used species to test efficacy of NK1 receptor antagonists. The aim of this study was to determine whether systemic administration of the NK1 receptor antagonist GR-205171 produced anxiolytic-like effects in the elevated plus maze and in a novel contextual conditioned fear test using fear-potentiated startle (FPS). On the elevated plus maze, treatment with GR-205171 at 0, 0.3, 1.0, and 5.0 mg/kg doses, 30 min before testing produced anxiolytic-like effects in an increasing dose-response manner as measured by the percentage of open arm time and percentage of open arm entries. For contextual fear conditioning, gerbils were given 10 unsignaled footshocks (0.6 mA) at a 2-min variable interstimulus interval in a distinctive training context. Twenty-four hours after training, gerbils received treatment of GR-205171 at 0, 0.3, 1.0, and 5.0 mg/kg doses, 30 min before testing in which startle was elicited in the same context in which they were trained. Contextual FPS was defined as an increase in startle over pretraining baseline values. All drug dose levels (0.3, 1.0, and 5.0 mg/kg) significantly attenuated contextual FPS when compared with the vehicle control group. A control group, which received testing in a different context, showed little FPS. These findings support other evidence for anxiolytic activity of NK1 receptor antagonists and provide a novel conditioned fear test that may be an appropriate procedure to test other NK1 antagonists for preclinical anxiolytic activity in gerbils.
Collapse
|
11
|
Anxiolytic and anxiogenic drug effects on male and female gerbils in the black-white box. Behav Brain Res 2011; 216:285-92. [DOI: 10.1016/j.bbr.2010.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 08/02/2010] [Accepted: 08/08/2010] [Indexed: 11/22/2022]
|
12
|
Heilig M, Thorsell A, Sommer WH, Hansson AC, Ramchandani VA, George DT, Hommer D, Barr CS. Translating the neuroscience of alcoholism into clinical treatments: from blocking the buzz to curing the blues. Neurosci Biobehav Rev 2010; 35:334-44. [PMID: 19941895 PMCID: PMC2891917 DOI: 10.1016/j.neubiorev.2009.11.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 11/16/2022]
Abstract
Understanding the pathophysiology of addictive disorders is critical for development of new treatments. A major focus of addiction research has for a long time been on systems that mediate acute positively reinforcing effects of addictive drugs, most prominently the mesolimbic dopaminergic (DA) system and its connections. This research line has been successful in shedding light on the physiology of both natural and drug reward, but has not led to therapeutic breakthroughs. The role of classical reward systems is perhaps least clear in alcohol addiction. Here, recent work is summarized that points to some clinically important conclusions. First, important pharmacogenetic differences exist with regard to positively reinforcing effects of alcohol and the ability of this drug to activate classical reward pathways. This offers an opportunity for personalized treatment approaches in alcoholism. Second, brain stress and fear systems become pathologically activated in later stages of alcoholism and their activation is a major influence in escalation of alcohol intake, sensitization of stress responses, and susceptibility to relapse. These findings offer a new category of treatment mechanisms. Corticotropin-releasing hormone (CRH) signaling through CRH1 receptors is a major candidate target in this category, but recent data indicate that antagonists for substance P (SP) neurokinin 1 (NK1) receptors may have a similar potential.
Collapse
Affiliation(s)
- Markus Heilig
- Laboratory of Clinical and Translational Studies, National Inst. on Alcohol Abuse and Alcoholism, National Inst of Health, Bethesda, MD, United States.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Millan MJ, Dekeyne A, Gobert A, Mannoury la Cour C, Brocco M, Rivet JM, Di Cara B, Lejeune F, Cremers TI, Flik G, de Jong TR, Olivier B, de Nanteuil G. S41744, a dual neurokinin (NK)1 receptor antagonist and serotonin (5-HT) reuptake inhibitor with potential antidepressant properties: a comparison to aprepitant (MK869) and paroxetine. Eur Neuropsychopharmacol 2010; 20:599-621. [PMID: 20483567 DOI: 10.1016/j.euroneuro.2010.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/23/2010] [Accepted: 04/09/2010] [Indexed: 12/19/2022]
Abstract
Though neurokinin(1) (NK(1)) receptors are implicated in depressed states and their treatment, selective antagonists have disappointed in clinical trials. Accordingly, we designed a novel ligand, S41744 (2-piperazin-1-yl-indan-2-carboxylic-acid-(3-chloro-5-fluoro-benzyl)-methyl-amide), which both blocks NK(1) receptors and interferes with serotonin (5-HT) reuptake. S41744 mimicked the selective antagonist aprepitant in binding human (h)NK(1) receptors and in antagonising Substance-P-mediated Extracellular-Regulated-Kinase phosphorylation (pK(B), 7.7). Further, it dose-dependently (0.63-40.0 mg/kg, i.p.) displaced ex vivo [(3)H]-[Sar(9),Met(O(2))(11)]-Substance P binding to gerbil striatum, attenuated formalin-induced hind-paw licking in gerbils, and antagonised locomotion induced by i.c.v. administration of the NK(1) agonist GR73632 to guinea pigs. Like paroxetine, S41744 recognised h5-HT transporters, reduced synaptosomal uptake of 5-HT (pK(B), 7.9), and dose-dependently (0.63-10.0 mg/kg) elevated dialysis levels of 5-HT in the hippocampus and frontal cortex of freely-moving guinea pigs. Further, S41744 increased extracellular levels of 5-HT in frontal cortex and hippocampus of rats to a greater extent than paroxetine, and its inhibitory influence upon serotonergic perikarya was blunted relative to its affinity for 5-HT transporters. S41744 more potently blocked stress-induced vocalizations in guinea pigs than aprepitant and paroxetine, and it was active in forced-swim and marble-burying procedures of putative antidepressant properties in mice. While aprepitant displayed anxiolytic actions in stress-induced foot-tapping and social interaction tests in gerbils, paroxetine was anxiogenic and S41744 "neutral", reflecting balanced NK(1) antagonism and suppression of 5-HT reuptake. Moreover, S41744 shared anxiolytic actions of aprepitant in the rat Vogel Conflict Test. In conclusion, S41744 is an innovative NK(1) antagonist/5-HT reuptake inhibitor justifying further evaluation for treatment of stress-related disorders.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Discovery of potent, balanced and orally active dual NK1/NK3 receptor ligands. Bioorg Med Chem Lett 2010; 20:3405-8. [DOI: 10.1016/j.bmcl.2010.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 03/31/2010] [Accepted: 04/05/2010] [Indexed: 11/30/2022]
|
15
|
Rotzinger S, Lovejoy DA, Tan LA. Behavioral effects of neuropeptides in rodent models of depression and anxiety. Peptides 2010; 31:736-56. [PMID: 20026211 DOI: 10.1016/j.peptides.2009.12.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
Abstract
In recent years, studies have advocated neuropeptide systems as modulators for the behavioral states found in mood disorders such as depression and anxiety disorders. Neuropeptides have been tested in traditional animal models and screening procedures that have been validated by known antidepressants and anxiolytics. However, it has become clear that although these tests are very useful, neuropeptides have distinct behavioral effects and dose-dependent characteristics, and therefore, use of these tests with neuropeptides must be done with an understanding of their unique characteristics. This review will focus on the behavioral actions of neuropeptides and their synthetic analogs, particularly in studies utilizing various preclinical tests of depression and anxiety. Specifically, the following neuropeptide systems will be reviewed: corticotropin-releasing factor (CRF), urocortin (Ucn), teneurin C-terminal associated peptide (TCAP), neuropeptide Y (NPY), arginine vasopressin (AVP), oxytocin, the Tyr-MIF-1 family, cholecystokinin (CCK), galanin, and substance P. These neuropeptide systems each have a unique role in the regulation of stress-like behavior, and therefore provide intriguing therapeutic targets for mood disorder treatment.
Collapse
Affiliation(s)
- Susan Rotzinger
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
16
|
Thorsell A, Schank JR, Singley E, Hunt SP, Heilig M. Neurokinin-1 receptors (NK1R:s), alcohol consumption, and alcohol reward in mice. Psychopharmacology (Berl) 2010; 209:103-11. [PMID: 20112009 DOI: 10.1007/s00213-010-1775-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 12/31/2009] [Indexed: 01/13/2023]
Abstract
RATIONALE Reduced voluntary alcohol consumption was recently found in neurokinin-1 receptor (NK1R)-deficient (KO) mice. It remains unknown whether this reflects developmental effects or direct regulation of alcohol consumption by NK1R:s, and whether the reduced consumption reflects motivational effects. OBJECTIVE The objective of this study is to obtain an expanded preclinical validation of NK1R antagonism as a candidate therapeutic mechanism in alcohol use disorders. METHODS The NK1R antagonist L-703,606 and NK1R KO mice were used in models that assess alcohol-related behaviors. RESULTS L-703,606 (3-10 mg/kg i.p.) dose-dependently suppressed alcohol intake in WT C57BL/6 mice under two-bottle free choice conditions but was ineffective in NK1R KO:s, demonstrating the receptor specificity of the effect. Alcohol reward, measured as conditioned place preference for alcohol, was reduced by NK1R receptor deletion in a gene dose-dependent manner. In a model where escalation of intake is induced by repeated cycles of deprivation and access, escalation was seen in WT mice, but not in KO mice. Among behavioral phenotypes previously reported for NK1R mice on a mixed background, an analgesic-like phenotype was maintained on the C57BL/6 background used here, while KO:s and WT:s did not differ in anxiety- and depression-related behaviors. CONCLUSIONS Acute blockade of NK1R:s mimics the effects of NKR1 gene deletion on alcohol consumption, supporting a direct rather than developmental role of the receptor in regulation of alcohol intake. Inactivation of NK1R:s critically modulates alcohol reward and escalation, two key characteristics of addiction. These data provide critical support for NK1R antagonism as a candidate mechanism for treatment of alcoholism.
Collapse
Affiliation(s)
- Annika Thorsell
- The Laboratory of Clinical and Translational Studies, National Institute On Alcohol Abuse and Alcoholism, 10 Center Drive, 10-CRC/1-5330, Bethesda, MD 20892-1108, USA
| | | | | | | | | |
Collapse
|
17
|
Brocco M, Dekeyne A, Mannoury la Cour C, Touzard M, Girardon S, Veiga S, de Nanteuil G, deJong TR, Olivier B, Millan MJ. Cellular and behavioural profile of the novel, selective neurokinin1 receptor antagonist, vestipitant: a comparison to other agents. Eur Neuropsychopharmacol 2008; 18:729-50. [PMID: 18657401 DOI: 10.1016/j.euroneuro.2008.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 05/06/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
This study characterized the novel neurokinin (NK)(1) antagonist, vestipitant, under clinical evaluation for treatment of anxiety and depression. Vestipitant possessed high affinity for human NK(1) receptors (pK(i), 9.4), and potently blocked Substance P-mediated phosphorylation of Extracellular-Regulated-Kinase. In vivo, it occupied central NK(1) receptors in gerbils (Inhibitory Dose(50), 0.11 mg/kg). At similar doses, it abrogated nociception elicited by formalin in gerbils, and blocked foot-tapping and locomotion elicited by the NK(1) agonist, GR73632, in gerbils and guinea pigs, respectively. Further, vestipitant attenuated fear-induced foot-tapping in gerbils, separation-induced distress-vocalizations in guinea pigs, marble-burying behaviour in mice, and displayed anxiolytic actions in Vogel conflict and fear-induced ultrasonic vocalization procedures in rats. These actions were mimicked by CP99,994, L733,060 and GR205,171 which acted stereoselectively vs its less active isomer, GR226,206. In conclusion, vestipitant is a potent NK(1) receptor antagonist: its actions support the utility of NK(1) receptor blockade in the alleviation of anxiety and, possibly, depression.
Collapse
Affiliation(s)
- Mauricette Brocco
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 chemin de Ronde, Croissy/Seine, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wallace-Boone TL, Newton AE, Wright RN, Lodge NJ, McElroy JF. Behavioral and pharmacological validation of the gerbil forced-swim test: effects of neurokinin-1 receptor antagonists. Neuropsychopharmacology 2008; 33:1919-28. [PMID: 17912250 DOI: 10.1038/sj.npp.1301586] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several studies have suggested that neurokinin-1 (NK1) receptor antagonists may have therapeutic potential as novel antidepressant drugs. To test these compounds preclinically, gerbils have become one of the preferred species in that they demonstrate close NK1 receptor homology with humans and bind NK1 antagonists with higher affinity than rats and mice. The intent of the present study was to determine whether the forced-swim test (FST), one of the most commonly used animal tests of antidepressant-like activity, could be adapted for use with the gerbil. Critical factors in the establishment of this assay included swim tank diameter, weight, and sex of the animals tested. Pharmacological validation of the FST using standard antidepressant compounds (eg fluoxetine, paroxetine, desipramine) resulted in decreased immobility time during the test, indicative of an antidepressant-like effect. Similar to results reported for the rat and mouse FST, the antipsychotic drug haloperidol increased immobility, whereas the psychostimulant, amphetamine decreased immobility, and anxiolytic drugs (eg buspirone) had no effect. Investigation into the locomotor effects of all compounds tested was consistent with previous reports in other species, with the exception of paroxetine, which produced hyperactivity at therapeutically effective doses in gerbils. In addition to standard antidepressants, NK1 antagonists (L-733060, MK-869, and CP-122721) all reduced immobility in the gerbil FST without affecting locomotor activity. Overall, these results suggest that the gerbil is an ideal species for use in the FST, and that this paradigm may have predictive validity for identifying novel antidepressant compounds.
Collapse
Affiliation(s)
- Tanya L Wallace-Boone
- Neuroscience Drug Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT, USA.
| | | | | | | | | |
Collapse
|
19
|
MATSUDA Y, SAITO N, YAMAMOTO K, NIITSU T, KOGURE S. Effects of the Ih Blockers CsCl and ZD7288 on Inherited Epilepsy in Mongolian Gerbils. Exp Anim 2008; 57:377-84. [DOI: 10.1538/expanim.57.377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Yoshiki MATSUDA
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| | - Nobuko SAITO
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| | - Kiyofumi YAMAMOTO
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| | - Takashi NIITSU
- Department of Environmental Engineering for Symbiosis, Graduate School of Engineering, Soka University
| | - Shinichi KOGURE
- Department of Bioinformatics, Graduate School of Engineering, Soka University
| |
Collapse
|
20
|
Sundqvist M, Kristensson E, Adolfsson R, Leffler A, Ahlstedt I, Engberg S, Drmota T, Sigfridsson K, Jussila R, de Verdier J, Novén A, Johansson A, Påhlman I, von Mentzer B, Lindström E. Senktide-induced gerbil foot tapping behaviour is blocked by selective tachykinin NK1 and NK3 receptor antagonists. Eur J Pharmacol 2007; 577:78-86. [DOI: 10.1016/j.ejphar.2007.08.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/31/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
|
21
|
Weidenhofer J, Yip J, Zavitsanou K, Huang XF, Chahl LA, Tooney PA. Immunohistochemical localisation of the NK1 receptor in the human amygdala: preliminary investigation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:1313-21. [PMID: 16815618 DOI: 10.1016/j.pnpbp.2006.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 05/10/2006] [Accepted: 05/10/2006] [Indexed: 11/27/2022]
Abstract
The amygdala has a role in the modulation of moods and emotion, processes that are known to be affected in people with psychiatric disorders such as schizophrenia and depression. The tachykinin NK(1) receptor is known to be expressed in the amygdala. However to date, there is limited knowledge of the distribution of the NK(1) receptor in this region. This study used immunohistochemistry to analyse the distribution of the NK(1) receptor in fixed human amygdala tissue in control subjects with no history of psychiatric illness and matched subjects with a diagnosis of schizophrenia (n=4 pairs). The NK(1) receptor was observed sparsely distributed in cell bodies in all amygdaloid nuclei with the basolateral and lateral having a greater relative density of NK(1) receptor-immunoreactive cell bodies than the other nuclei. Double labelling with antibodies to microtubule associated protein and the NK(1) receptor revealed that the NK(1) receptor is expressed by large pyramidal, small stellate and large bipolar neurons. Interestingly, the basal nucleus of Meynert, which is just dorsal to the amygdala, was observed to have a significantly higher relative density of NK(1) receptor-immunoreactive cell bodies compared to any of the amygdaloid nuclei. Preliminary analysis of the density of NK(1) receptor-immunoreactive cell bodies in the major amygdaloid nuclei and the basal nucleus of Meynert revealed no significant differences between schizophrenia and control subjects. Real-time PCR showed that the mRNA for both the short and long isoforms of the NK(1) receptor was expressed at low levels in fresh frozen human amygdala tissue from control subjects and that this was not different in matched subjects with schizophrenia (n=11 pairs). In conclusion, this study has demonstrated that the NK(1) receptor is widely distributed in the amygdala, and has shown for the first time a high relative density of NK(1) receptor-immunoreactive cell bodies in the basal nucleus of Meynert.
Collapse
Affiliation(s)
- Judith Weidenhofer
- Neuroscience Institute of Schizophrenia and Allied Disorders, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Jasmin L, Narasaiah M, Tien D. Noradrenaline is necessary for the hedonic properties of addictive drugs. Vascul Pharmacol 2006; 45:243-50. [PMID: 16899413 DOI: 10.1016/j.vph.2005.08.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/01/2005] [Indexed: 11/18/2022]
Abstract
To determine whether noradrenaline (NA) is an essential neurotransmitter for addictive and appetitive behaviors, we measured drug and food seeking in transgenic mice lacking dopamine beta-hydroxylase (Dbh), the enzyme responsible for synthesizing NA. Using the conditioned place preference test (CPP), we show that Dbh -/- mice do not exhibit rewarding behavior to morphine, cocaine, or the mixed reuptake inhibitor bupropion. In spite of their lack of preference for drugs, Dbh -/- mice had an unaltered preference for food. Drug seeking was induced when NA was restored to the central nervous system of Dbh -/- mice by administration of l-threo-3,4-dihydroxyphenylserine (DOPS) and carbidopa. When a NK1 receptor antagonist was co-administered with morphine or cocaine, it produced aversive behavior in Dbh -/- mice while it abolished place preference in the controls. NK1 antagonists alone did not have any rewarding or aversive effect in the CPP suggesting that substance P opposes some of the unpleasant effects of morphine and cocaine. Our results show that NAergic transmission is necessary for motivated behaviors, the dysregulation of which is a co-morbid factor of many depressive states. The reversibility of this phenomenon, by restoring NA, indicates that even when this behavioral deficit is genetically determined it can be reversed.
Collapse
Affiliation(s)
- Luc Jasmin
- Department of Neurological Surgery and W.M. Keck Foundation Center for Integrative Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
23
|
Ebner K, Singewald N. The role of substance P in stress and anxiety responses. Amino Acids 2006; 31:251-72. [PMID: 16820980 DOI: 10.1007/s00726-006-0335-9] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 02/21/2006] [Indexed: 12/18/2022]
Abstract
Substance P (SP) is one of the most abundant peptides in the central nervous system and has been implicated in a variety of physiological and pathophysiological processes including stress regulation, as well as affective and anxiety-related behaviour. Consistent with these functions, SP and its preferred neurokinin 1 (NK1) receptor has been found within brain areas known to be involved in the regulation of stress and anxiety responses. Aversive and stressful stimuli have been shown repeatedly to change SP brain tissue content, as well as NK1 receptor binding. More recently it has been demonstrated that emotional stressors increase SP efflux in specific limbic structures such as amygdala and septum and that the magnitude of this effect depends on the severity of the stressor. Depending on the brain area, an increase in intracerebral SP concentration (mimicked by SP microinjection) produces mainly anxiogenic-like responses in various behavioural tasks. Based on findings that SP transmission is stimulated under stressful or anxiety-provoking situations it was hypothesised that blockade of NK1 receptors may attenuate stress responses and exert anxiolytic-like effects. Preclinical and clinical studies have found evidence in favour of such an assumption. The status of this research is reviewed here.
Collapse
Affiliation(s)
- K Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
24
|
Woolley ML, Haman M, Higgins GA, Ballard TM. Investigating the effect of bilateral amygdala lesions on fear conditioning and social interaction in the male Mongolian gerbil. Brain Res 2006; 1078:151-8. [PMID: 16494851 DOI: 10.1016/j.brainres.2006.01.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 01/18/2006] [Accepted: 01/18/2006] [Indexed: 11/21/2022]
Abstract
Identification of the selective neurokinin NK(1) receptor antagonist, 2-(R)-(1-(R)-3,5-Bis(trifluromethyl)phenylethoxy)-3-(S)-(4-fluoro)phenyl-4-(3-oxo-1,2,4-triazol-5yl)methylmor-phine (MK-869), as a novel therapeutic approach for anxiety/depression has led to increased use of the Mongolian gerbil in behavioural studies since the gerbil NK(1) receptor pharmacology is similar to human, but not rat or mouse. Within this species, foot tapping and immobility elicited by aversive conditioning, as well as social interaction have been shown to be sensitive to clinically used anxiolytic and antidepressant agents and also NK(1) receptor antagonists. The high levels of NK(1) receptor binding in the amygdala as well as preclinical studies demonstrating increased release of substance P and corresponding internalisation of NK(1) receptors in the basolateral amygdala in response to stressful stimuli suggest that the BLA may represent a potential site of action for NK(1) receptor antagonists in anxiety and/or depression. Therefore, in the current study, we assessed the effect of bilateral BLA lesions in male Mongolian gerbils on footshock-induced foot tapping and immobility, social interaction, and NK(1)-agonist-induced foot tapping. Lesioned gerbils exhibited reduced immobility time during fear conditioning, a non-significant reduction in immobility time when re-exposed to the conditioned stimulus (CS) 24 h later, and increased social interaction in the gerbil social interaction task. In contrast, BLA lesions had no effect on NK(1)-agonist-induced foot tapping. These data provide further support that the gerbil BLA is a potential site for NK(1) receptor antagonists to attenuate anxiety-related behaviours.
Collapse
Affiliation(s)
- M L Woolley
- Pharma Research Neuroscience, F. Hoffmann-La Roche, CH-4070 Basel, Switzerland.
| | | | | | | |
Collapse
|
25
|
Rigby M, O'Donnell R, Rupniak NMJ. Species differences in tachykinin receptor distribution: further evidence that the substance P (NK1) receptor predominates in human brain. J Comp Neurol 2005; 490:335-53. [PMID: 16127708 DOI: 10.1002/cne.20664] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Marked species differences in the distribution of central tachykinin receptors are reported but uncertainty remains about the ability of available ligands to detect NK2 and NK3 receptors in human brain. We compared the distribution of NK1, NK2, and NK3 receptors in sections from rodent, primate, and human brain using the 125I-labeled ligands substance P (SP) for the NK1 receptor, neurokinin A (NKA) for the NK2 receptor, and neurokinin B (NKB) and eledoisin for NK3 receptors. Duration of exposure to autoradiographic film was from 7 days for [125I]SP up to 90 days for the other ligands. High levels of specific [125I]SP binding were seen throughout the brains of all species studied. Specific [125I]NKA binding was detected in brains from neonatal rat, and to a lesser level in adult rat, gerbil, and guinea pig; it was not detected in monkey or human brain, but was present in circular muscle of human duodenum, confirming that this ligand binds to human NK2 receptors under our experimental conditions. Specific [125I]NKB and [125I]eledoisin binding was widespread in brain sections from rats, gerbils, and guinea pigs, and very low levels were also detected in marmoset, squirrel monkey, and rhesus monkey brain after prolonged (up to 90 days) exposure. We failed to identify specific eledoisin binding in human brain, even after prolonged exposures. These findings demonstrate that the NK1 receptor is the predominant tachykinin receptor expressed in primate and human brain, but that low levels of NK3 receptor are present in nonhuman, primate brain.
Collapse
Affiliation(s)
- Michael Rigby
- In Vivo Neuroscience, Merck Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom.
| | | | | |
Collapse
|
26
|
van der Hart MGC, de Biurrun G, Czéh B, Rupniak NMJ, den Boer JA, Fuchs E. Chronic psychosocial stress in tree shrews: effect of the substance P (NK1 receptor) antagonist L-760735 and clomipramine on endocrine and behavioral parameters. Psychopharmacology (Berl) 2005; 181:207-16. [PMID: 15875166 DOI: 10.1007/s00213-005-2260-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 02/27/2005] [Indexed: 11/28/2022]
Abstract
RATIONALE Substance P and its preferred receptor, the neurokinin 1 receptor (NK(1)R), have been proposed as possible targets for new antidepressant therapies, although results of a recently completed phase III trial failed to demonstrate that the NK(1)R antagonist MK-869 is more effective than placebo in the treatment of depression. METHODS In the present study, we compared the effects of the NK(1)R antagonist L-760735 with the tricyclic antidepressant clomipramine on endocrine and behavioral parameters in chronically stressed tree shrews. Animals were subjected to a 7-day period of psychosocial stress before receiving daily oral administration of L-760735 (10 mg/kg/day) or clomipramine (50 mg/kg/day). The psychosocial stress continued throughout the treatment period of 21 days. Daily morning urine was collected to measure cortisol and norepinephrine levels. All animals were videotaped daily and three types of behavior were analyzed. RESULTS Chronic psychosocial stress resulted in a significant increase of urinary cortisol and norepinephrine concentrations. Moreover, stressed animals displayed decreased marking behavior and locomotor activity, while grooming remained unaffected. Neither treatment with clomipramine nor L-760735 was able to normalize the stress-induced elevation of cortisol or norepinephrine. On the behavioral parameters, L-760735 had a time-dependent restorative influence on marking behavior close to normal levels, without affecting locomotor activity. Grooming behavior was significantly increased by the 3 weeks of drug treatment. CONCLUSIONS These results suggest that L-760735 was able to counteract certain stress-induced behavioral alterations in an animal model of depression.
Collapse
|
27
|
Abstract
Increasing evidence suggests that substance P (SP) and its receptor (neurokinin [NK]-1 receptor [NK1R]) might play an important role in the modulation of stress-related, affective and/or anxious behaviour. First, SP and NK1R are expressed in brain regions that are involved in stress, fear and affective response (e.g. amygdala, hippocampus, hypothalamus and frontal cortex). Second, the SP content in these areas changes upon application of stressful stimuli. Third, the central administration of SP produces a range of fear-related behaviours. In addition, the SP/NK1R system shows significant spatial overlap with neurotransmitters such as serotonin and noradrenaline (norepinephrine), which are known to be involved in the regulation of stress, mood and anxiety. Therefore, it was hypothesised that blockade of the NK1R might have anxiolytic as well as antidepressant effects. Preclinical studies investigating the effects of genetic or pharmacological NK1R inactivation on animal behaviour in assays relevant to depression and anxiety revealed that the behavioural changes resemble those seen with reference antidepressant or anxiolytic drugs. Furthermore, antagonism or genetic inactivation of the NK1R causes alterations in serotonin and norepinephrine neuronal transmission that are likely to contribute to the antidepressant/anxiolytic activity of NK1R antagonists but that are--at least partially--distinct from those produced by established antidepressant drugs. This underlines the conceivable unique mechanism of action of this new class of compounds. In three independent clinical trials with three different compounds (aprepitant [MK-869], L-759274 and CP-122721), an antidepressant effect of NK1R antagonists could be demonstrated. These results, however, have been challenged by recent failed studies with aprepitant. There are numerous indications from preclinical studies that, in addition to SP and NK1R, other neurokinins and/or neurokinin receptors might also be involved in the modulation of stress-related behaviour and that exclusive blockade of the NK1R might not be sufficient to produce consistent anxiolytic and antidepressant effects. One such candidate is the neurokinin-2 receptor (NK2R), and clinical trials to assess the antidepressant effects of NK2R antagonists are currently underway. Of special interest might also be substances that block more than one receptor type such as NK1/2R antagonists or NK1/2/3R antagonists. These compounds may be more efficacious in antagonising the effects of SP than compounds that only block the NK1R.
Collapse
Affiliation(s)
- Inga Herpfer
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Freiburg, Germany
| | | |
Collapse
|
28
|
Huskey SEW, Dean BJ, Doss GA, Wang Z, Hop CECA, Anari R, Finke PE, Robichaud AJ, Zhang M, Wang B, Strauss JR, Cunningham PK, Feeney WP, Franklin RB, Baillie TA, Chiu SHL. THE METABOLIC DISPOSITION OF APREPITANT, A SUBSTANCE P RECEPTOR ANTAGONIST, IN RATS AND DOGS. Drug Metab Dispos 2004; 32:246-58. [PMID: 14744948 DOI: 10.1124/dmd.32.2.246] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The absorption, metabolism, and excretion of [14C]aprepitant, a potent and selective human substance P receptor antagonist for the treatment of chemotherapy-induced nausea and vomiting, was evaluated in rats and dogs. Aprepitant was metabolized extensively and no parent drug was detected in the urine of either species. The elimination of drug-related radioactivity, after i.v. or p.o. administration of [14C]aprepitant, was mainly via biliary excretion in rats and by way of both biliary and urinary excretion in dogs. Aprepitant was the major component in the plasma at the early time points (up to 8 h), and plasma metabolite profiles of aprepitant were qualitatively similar in rats and dogs. Several oxidative metabolites of aprepitant, derived from N-dealkylation, oxidation, and opening of the morpholine ring, were detected in the plasma. Glucuronidation represented an important pathway in the metabolism and excretion of aprepitant in rats and dogs. An acid-labile glucuronide of [14C]aprepitant accounted for approximately 18% of the oral dose in rat bile. The instability of this glucuronide, coupled with its presence in bile but absence in feces, suggested the potential for enterohepatic circulation of aprepitant via this conjugate. In dogs, the glucuronide of [14C]aprepitant, together with four glucuronides derived from phase I metabolites, were present as major metabolites in the bile, accounting collectively for approximately 14% of the radioactive dose over a 4- to 24-h period after i.v. dosing. Two very polar carboxylic acids, namely, 4-fluoro-alpha-hydroxybenzeneacetic acid and 4-fluoro-alpha-oxobenzeneacetic acid, were the predominant drug-related entities in rat and dog urine.
Collapse
Affiliation(s)
- Su-Er W Huskey
- Dept of Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Morcuende S, Gadd CA, Peters M, Moss A, Harris EA, Sheasby A, Fisher AS, De Felipe C, Mantyh PW, Rupniak NMJ, Giese KP, Hunt SP. Increased neurogenesis and brain-derived neurotrophic factor in neurokinin-1 receptor gene knockout mice. Eur J Neurosci 2003; 18:1828-36. [PMID: 14622216 DOI: 10.1046/j.1460-9568.2003.02911.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has previously been shown that chronic treatment with antidepressant drugs increases neurogenesis and levels of brain-derived neurotrophic factor in the hippocampus. These changes have been correlated with changes in learning and long-term potentiation and may contribute to the therapeutic efficacy of antidepressant drug treatment. Recently, antagonists at the neurokinin-1 receptor, the preferred receptor for the neuropeptide substance P, have been shown to have antidepressant activity. Mice with disruption of the neurokinin-1 receptor gene are remarkably similar both behaviourally and neurochemically to mice maintained chronically on antidepressant drugs. We demonstrate here that there is a significant elevation of neurogenesis but not cell survival in the hippocampus of neurokinin-1 receptor knockout mice. Neurogenesis can be increased in wild-type but not neurokinin-1 receptor knockout mice by chronic treatment with antidepressant drugs which preferentially target noradrenergic and serotonergic pathways. Hippocampal levels of brain-derived neurotrophic factor are also two-fold higher in neurokinin-1 receptor knockout mice, whereas cortical levels are similar. Finally, we examined hippocampus-dependent learning and memory but found no clear enhancement in neurokinin-1 receptor knockout mice. These data argue against a simple correlation between increased levels of neurogenesis or brain-derived neurotrophic factor and mnemonic processes in the absence of increased cell survival. They support the hypothesis that increased neurogenesis, perhaps accompanied by higher levels of brain-derived neurotrophic factor, may contribute to the efficacy of antidepressant drug therapy.
Collapse
Affiliation(s)
- Sara Morcuende
- Department of Anatomy and Developmental Biology, Medawar Building, UCL, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Each month, subscribers to The Formulary Monograph Service receive five to six well-documented monographs on drugs that are newly released or are in late Phase III trials. The monographs are targeted to your Pharmacy and Therapeutics Committee. Subscribers also receive monthly one-page summary monographs on the agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation (DUE) is also provided each month. The monographs are published in printed form and on diskettes that allow customization. Subscribers to the The Formulary Monograph Service also receive access to a pharmacy bulletin board, The Formulary Information Exchange (The F.I.X.). All topics pertinent to clinical and hospital pharmacy are discussed on The F.I.X. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. If you would like information about The Formulary Monograph Service or The F.I.X., call The Formulary at 800–322–4349. The June 2003 monograph topics are aprepitant, gemifloxacin, desirudin for injection, gatifloxacin ophthalmic solution, and pegvisomant. The DUE is on aprepitant.
Collapse
Affiliation(s)
- Dennis J. Cada
- Drug Information Pharmacist, Drug Information Center, Washington State University Spokane, 310 North Riverpoint Boulevard, PO Box 1495, Spokane, WA 99210-1495
| | - Terri Levien
- Drug Information Pharmacist, Drug Information Center, Washington State University Spokane, 310 North Riverpoint Boulevard, PO Box 1495, Spokane, WA 99210-1495
| | - Danial E. Baker
- Drug Information Center and College of Pharmacy, Washington State University Spokane, 310 North Riverpoint Boulevard, PO Box 1495, Spokane, WA 99210-1495
| |
Collapse
|
31
|
Rupniak NMJ, Carlson EJ, Shepheard S, Bentley G, Williams AR, Hill A, Swain C, Mills SG, Di Salvo J, Kilburn R, Cascieri MA, Kurtz MM, Tsao KL, Gould SL, Chicchi GG. Comparison of the functional blockade of rat substance P (NK1) receptors by GR205171, RP67580, SR140333 and NKP-608. Neuropharmacology 2003; 45:231-41. [PMID: 12842129 DOI: 10.1016/s0028-3908(03)00157-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extensive screening of compound libraries was undertaken to identify compounds with high affinity for the rat NK(1) receptor based on inhibition of [(125)I]-substance P binding. RP67580, SR140333, NKP-608 and GR205171 were selected as compounds of interest, with cloned rat NK(1) receptor binding K(i) values of 0.15-1.9 nM. Despite their high binding affinity, NKP-608 and GR205171 exhibited only a moderate functional antagonism of substance P-induced inositol-1-phosphate accumulation and acidification rate at 1 microM using cloned or native rat NK(1) receptors in vitro. The ability of the compounds to penetrate the CNS was determined by inhibition of NK(1) agonist-induced behaviours in gerbils and rats. GR205171 and NKP-608 potently inhibited GR73632-induced foot drumming in gerbils (ID(50) 0.04 and 0.2 mg/kg i.v., respectively). In contrast, RP67580 and SR140333 were poorly brain penetrant in gerbils (no inhibition at 10 mg/kg i.v.) and were not examined further in vivo. In rats, only high doses of GR205171 (10 or 30 mg/kg s.c.) inhibited NK(1) agonist-induced sniffing and hypertension, whilst NKP-608 (1 or 10 mg/kg i.p.) was without effect. GR205171 (3-30 mg/kg s.c.) caused only partial inhibition of separation-induced vocalisations in rat pups, a response that is known to be NK(1) receptor mediated in other species. These observations demonstrate the shortcomings of currently available NK(1) receptor antagonists for rat psychopharmacology assays.
Collapse
Affiliation(s)
- Nadia M J Rupniak
- Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Duffy RA, Hedrick JA, Randolph G, Morgan CA, Cohen-Williams ME, Vassileva G, Lachowicz JE, Laverty M, Maguire M, Shan LS, Gustafson E, Varty GB. Centrally administered hemokinin-1 (HK-1), a neurokinin NK1 receptor agonist, produces substance P-like behavioral effects in mice and gerbils. Neuropharmacology 2003; 45:242-50. [PMID: 12842130 DOI: 10.1016/s0028-3908(03)00150-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hemokinin-1 (HK-1) is a recently described mouse tachykinin peptide whose biological functions are not fully understood. To date, a unique receptor for HK-1 has not been identified. Recent studies suggest HK-1 may have a role in immunological functions, but there has been little characterization of HK-1's effects in the central nervous system (CNS). In the present studies, we confirm that HK-1 is an endogenous agonist at all of the known tachykinin receptors, and is selective for the NK1 receptor over the NK2 and NK3 subtypes. CHO cells transfected with the human NK1 receptor released intracellular calcium in response to HK-1. In addition, HK-1 competed with substance P (SP) for binding to mouse NK1 and human NK1 receptors. In vivo central administration of HK-1 to gerbils and mice induced foot-tapping and scratching behaviors, respectively, similar to those observed following central administration of SP or the NK1 receptor agonist, GR-73632. Furthermore, these behavioral effects were blocked by the selective NK1 receptor antagonist, MK-869. Finally, a comprehensive expression analysis of HK-1 demonstrated that HK-1 mRNA is much more broadly expressed than previously reported with expression observed in many brain regions. Together these data demonstrate that HK-1 is a functional agonist at NK1 receptors and suggest that HK-1 may function both centrally and peripherally.
Collapse
Affiliation(s)
- R A Duffy
- Schering-Plough Research Institute, Department of CNS Biological Research, 2051 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Simple tests for antidepressant-like activity, such as 5-HTP-induced syndrome or reserpine-induced hypomotility, are often mechanism-based tests, pharmacologically specific for certain known classes of therapeutically successful antidepressant agents. Many of these behavioural assays have been superseded by neurochemical techniques such as in vivo microdialysis. In contrast to these mechanistic-based models, investigators have also endeavoured to reproduce in the laboratory, factors that are believed to precipitate depression in people. It is a strong assumption in this approach that depression is a response to stress. This strategy profiles the consequences of chronic stress particularly psychosocial stress or early life events, in order to reproduce in animals the behavioural signs and pathologies associated with depression. The advances in the social psychological, clinical pathological and new areas such as neuroimaging research offer the possibility of establishing more sophisticated models for depression in animals with a broader range of biomarkers from the immunological and endocrinological to neurochemical and behavioural. Combining these novel insights with more traditional tests of depression may not only increase our understanding of the neurobiology of depression but also afford more precise and predictive preclinical models of depression. The responsiveness of different strains or genetically modified animals to stress is likely to be a key area of study. Furthermore we must look to individual differences in subjects, even within the same strain, to more fully understand why some individuals show pathological responses to stress whereas others appear unaffected. Conversely in validating our models using currently available treatments we must include the concept of non-responders so as not to disregard models that may extend therapeutic possibilities in these patients.
Collapse
Affiliation(s)
- Michael F O'Neil
- Lilly Research Laboratories, Eli Lilly and Company, Erl Wood Manor, Sunninghill Rd, Windlesham, Surrey GU20 6PH, UK.
| | | |
Collapse
|
34
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|
35
|
Varty GB, Cohen-Williams ME, Hunter JC. The antidepressant-like effects of neurokinin NK1 receptor antagonists in a gerbil tail suspension test. Behav Pharmacol 2003; 14:87-95. [PMID: 12576885 DOI: 10.1097/00008877-200302000-00009] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent clinical evidence supports the potential of neurokinin NK1 receptor antagonists as novel antidepressant drugs. A number of NK1 antagonists have reduced affinity for rat and mouse NK1 receptors compared to human, making it difficult to test for efficacy in traditional animal models. NK1 antagonists, in general, have similar affinity at gerbil and human NK1 receptors. The aims of these studies were first, to validate the gerbil tail suspension test, a test used frequently to demonstrate antidepressant drug efficacy in mice, and second, to determine whether the test could be used to demonstrate the antidepressant potential of NK1 antagonists. Immobility time was reduced by oral administration of the antidepressants imipramine (3-30 mg/kg), desipramine (1-30 mg/kg), amitriptyline (30 mg/kg), fluoxetine (1-30 mg/kg), paroxetine (3-10 mg/kg), citalopram (0.1-3 mg/kg), sertraline (1-30 mg/kg), venlafaxine (1-30 mg/kg) and nefazodone (100 mg/kg). Furthermore, oral administration of the NK1 antagonists MK-869 (10 mg/kg), L-742694 (10 mg/kg), L-733060 (10 mg/kg), CP-99994 (30 mg/kg), and CP-122721 (3-30 mg/kg) reduced immobility time. Diazepam (1-10 mg/kg), chlordiazepoxide (1-10 mg/kg), buspirone (3-30 mg/kg), FG-7142 (1-30 mg/kg), and haloperidol (1-10 mg/kg) did not reduce immobility. Amphetamine (0.3-10 mg/kg) and atropine (0.3-10 mg/kg) reduced immobility, suggesting susceptibility to false positives, e.g. compounds that affect locomotion. Compounds were therefore tested in a gerbil locomotor activity (LMA) test to ensure that the antidepressant-like effects were not secondary to effects on activity. Antidepressant drugs and NK1 antagonists had no effect on LMA at doses that reduced immobility, whereas amphetamine and atropine induced marked hyperactivity. These studies support both the utility of gerbils in behavioral pharmacology and the antidepressant potential of selective NK1 antagonists.
Collapse
Affiliation(s)
- G B Varty
- CNS Biological Research, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | |
Collapse
|
36
|
Steinberg R, Alonso R, Rouquier L, Desvignes C, Michaud JC, Cudennec A, Jung M, Simiand J, Griebel G, Emonds-Alt X, Le Fur G, Soubrié P. SSR240600 [(R)-2-(1-[2-[4-[2-[3,5-bis(trifluoromethyl)phenyl]acetyl]-2-(3,4-dichlorophenyl)-2-morpholinyl]ethyl]-4-piperidinyl)-2-methylpropanamide], a centrally active nonpeptide antagonist of the tachykinin neurokinin 1 receptor: II. Neurochemical and behavioral characterization. J Pharmacol Exp Ther 2002; 303:1180-8. [PMID: 12438542 DOI: 10.1124/jpet.102.040279] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
SSR240600 [(R)-2-(1-[2-[4-[2-[3,5-bis(trifluoromethyl)phenyl]acetyl]-2-(3,4-dichlorophenyl)-2-morpholinyl]ethyl]-4-piperidinyl)-2-methylpropanamide], a new nonpeptide tachykinin neurokinin 1 (NK1) receptor antagonist, was evaluated against the neurochemical, electrophysiological, and behavioral effects provoked by direct activation of brain tachykinin NK1 receptors or by stress in guinea pigs. SSR240600 (0.1-10 mg/kg i.p. or p.o.) antagonized the excitatory effect of i.c.v. infusion of [Sar(9),Met(O2)(11)]substance P (SP) on the release of acetylcholine in the striatum of anesthetized and awake guinea pigs. This antagonistic action was still observed after repeated administration of SSR240600 (5 days, 10 mg/kg p.o., once a day). SSR240600 (10 mg/kg i.p.) inhibited the phosphorylation of the cAMP response element-binding protein in various brain regions induced by i.c.v. administration of [Sar9,Met(O2)(11)]SP. In slice preparations, neuronal firing of the locus coeruleus (LC) neurons elicited by the application of [Sar9,Met(O2)(11)]SP was suppressed by SSR240600 at 100 nM. Norepinephrine release in the prefrontal cortex, elicited either by an intra-LC application of [Sar9,Met(O2)(11)]SP or by an i.c.v administration of corticotropin-releasing factor, was reduced by SSR240600 (0.3-1 mg/kg and 1-10 mg/kg i.p., respectively). SSR240600 (1-10 mg/kg i.p.) inhibited vocalizations induced in adult guinea pigs by an i.c.v. administration of the NK1 receptor agonist, GR73632 [D-Ala-[L-Pro9,Me-Leu8]substance P(7-11)]. Furthermore, SSR240600 (1-10 mg/kg i.p.) inhibited distress vocalizations produced in guinea pig pups by maternal separation. SSR240600 also reduced maternal separation-induced increase in the number of neurons displaying NK1 receptor internalization in the amygdala. Finally, SSR240600 counteracted the increase in body temperature induced by isolation stress. In conclusion, SSR240600 is able to antagonize various NK1 receptor-mediated as well as stress-mediated effects in the guinea pig.
Collapse
Affiliation(s)
- Régis Steinberg
- C.N.S. Research Department, Sanofi-Synthélabo Recherche, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Megens AAHP, Ashton D, Vermeire JCA, Vermote PCM, Hens KA, Hillen LC, Fransen JF, Mahieu M, Heylen L, Leysen JE, Jurzak MR, Janssens F. Pharmacological profile of (2R-trans)-4-[1-[3,5-bis(trifluoromethyl)benzoyl]-2-(phenylmethyl)-4-piperidinyl]-N-(2,6-dimethylphenyl)-1-acetamide (S)-Hydroxybutanedioate (R116301), an orally and centrally active neurokinin-1 receptor antagonist. J Pharmacol Exp Ther 2002; 302:696-709. [PMID: 12130734 DOI: 10.1124/jpet.102.034348] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In comparison with a series of reference compounds, (2R-trans)-4-[1-[3,5-bis(trifluoromethyl)benzoyl]-2-(phenylmethyl)-4-piperidinyl]-N-(2,6-dimethylphenyl)-1-acetamide (S)-Hydroxybutanedioate (R116301) was characterized as a specific, orally, and centrally active neurokinin-1 (NK(1)) receptor antagonist with subnanomolar affinity for the human NK(1) receptor (K(i): 0.45 nM) and over 200-fold selectivity toward NK(2) and NK(3) receptors. R116301 inhibited substance P (SP)-induced peripheral effects (skin reactions and plasma extravasation in guinea pigs) and a central effect (thumping in gerbils) at low doses (0.08-0.16 mg/kg, s.c. or i.p.), reflecting its high potency as an NK(1) receptor antagonist and excellent brain disposition. Higher doses blocked various emetic stimuli in ferrets, cats, and dogs (ED(50) values: 3.2 mg/kg, s.c.; 0.72-2.5 mg/kg, p.o.). Even higher doses (11-25 mg/kg, s.c.) were required in mice (capsaicin-induced ear edema) and rats (SP-induced extravasation and salivation), consistent with lower affinity for the rodent NK(1) receptor and known species differences in NK(1) receptor interactions. R116301 inhibited the ocular discharge (0.034 mg/kg) but not the dyspnoea, lethality, or cough (>40 mg/kg, s.c.) induced by [betaALA(8)]-neurokinin A (NKA) (4-10) in guinea pigs, attesting to NK(1) over NK(2) selectivity. R116301 did not affect senktide-induced miosis (>5 mg/kg, s.c.) in rabbits, confirming the absence of an interaction with the NK(3) receptor. R116301 was inactive in guinea pigs against skin reactions induced by histamine, platelet-aggregating factor, bradykinin, or Ascaris allergens (>10 mg/kg, s.c.). In all species, R116301 showed excellent oral over parenteral activity (ratio, 0.22-2.7) and a relatively long duration (6.5-16 h, p.o.). The data attest to the specificity and sensitivity of the animal models and support a role of NK(1) receptors in various diseases.
Collapse
Affiliation(s)
- A A H P Megens
- Department of Discovery Research, Johnson & Johnson Pharmaceutical Research and Development, B-2340 Beerse, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Duffy RA, Varty GB, Morgan CA, Lachowicz JE. Correlation of neurokinin (NK) 1 receptor occupancy in gerbil striatum with behavioral effects of NK1 antagonists. J Pharmacol Exp Ther 2002; 301:536-42. [PMID: 11961054 DOI: 10.1124/jpet.301.2.536] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interest in central neurokinin (NK) 1 receptors has increased based on reports of the therapeutic potential for NK1 antagonists in anxiety and depression. In these studies, an ex vivo binding procedure was used to correlate NK1 receptor occupancy in striatum by NK1 antagonists with their potency to inhibit NK1 agonist-induced foot tapping in gerbils (GFT). The following compounds were administered orally: CP-99,994 [(+)-cis-n-[(2-methoxyphenyl)methyl]-2-phenyl-3-piperidinamine), L-742,694 [5-[[2(S)-[[3,5-bis(trifluoromethyl)phenyl]methoxy]-3(S)-phenyl-4-morpholinyl]methyl]-2,4-dihydro-3H-1,2,4-triazol-3-one]), MK-869 [5-[[2(R)-[1(R)-[3,5-bis(trifluoromethyl)phenyl]ethoxy]-3(S)-(4-fluorophenyl)-4-morpholinyl]methyl]-2,4-dihydro-3H-1,2,4-triazol-3-one], CP-122,721 [cis-n-[[2-methoxy-5-(trifluoromethoxy)phenyl]methyl]-2-phenyl-3-piperidinamine], L-760,735-F [4-[[2(R)-[1(R)-[3,5-bis(trifluoromethyl)phenyl]ethoxy]-3(S)-(4-fluorophenyl)-4-morpholinyl]methyl]-N,N-dimethyl-1H-1,2,3-triazole-5- methanamine], GR205171 [N-[[2-methoxy-5-[5-(trifluoromethyl)-1H-tetrazol-1-yl]phenyl]methy]-2(S)-phenyl-3(S)-piperidinamine], L-733,060 [(2S,3S)3-([3,5-bis(trifluoro methyl)phenyl]methoxy)-2-phenylpiperidine], and L-733,061 [(2R,3R)-3-([3,5-bis(trifluoromethyl)phenyl]methoxy)-2-phenylpiperidine]. Two hours later, gerbils received the NK1 agonist GR73632 [H(2)N-(CH(2))(4)-CO-Phe-Pro-NMe-Leu-Met-NH(2)] i.c.v. and foot tapping was measured for 5 min. The same procedure was used for ex vivo binding studies except that saline, rather than agonist, was administered i.c.v. before dissection of the striatum. The tissue homogenate was then used in an equilibrium radioligand binding assay. When IC(50) values for inhibition of ex vivo (125)I-substance P binding by NK1 antagonists were compared with the corresponding EC(50) values for inhibition of GFT, a significant positive correlation was observed (r(2) = 0.97, p < 0.001). This result indicates that increased NK1 receptor occupancy in striatum by NK1 antagonists parallels the inhibition of agonist-mediated GFT. For all compounds, the dose that produced the maximum inhibition of GFT resulted in less than 100% ex vivo receptor occupancy in striatum. When gerbils did not receive the i.c.v. saline injection before ex vivo binding, thereby leaving the blood-brain barrier (BBB) intact, the IC(50) values for antagonists were unchanged, suggesting that potential damage to the BBB caused by the i.c.v. injection did not affect determinations of antagonist potency in the GFT model.
Collapse
Affiliation(s)
- Ruth A Duffy
- Central Nervous System/Cardiovascular Pharmacology, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | | | |
Collapse
|
39
|
Rupniak NMJ. New insights into the antidepressant actions of substance P (NK1 receptor) antagonists. Can J Physiol Pharmacol 2002; 80:489-94. [PMID: 12056558 DOI: 10.1139/y02-048] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Considerable progress has been made in understanding the neural circuits involved the antidepressant and anxiolytic efficacy of substance P (NK, receptor) antagonists (SPAs). Progress has been hampered by species differences in the pharmacology of the NK1 receptor, and the availability of NK1R-/- mice has been a particularly useful resource in overcoming this difficulty. Using neuroanatomical, behavioural, and electrophysiological techniques, studies have now established that pharmacological blockade or deletion of the NK1 receptor produces an antidepressant and anxiolytic-like profile in a range of behavioural assays that is distinct from that of established drugs. There is evidence from focal injection studies that some of these effects may be mediated directly by blockade of NK, receptors in the amygdala and its projections to the hypothalamus, periaqueductal gray, and reticulopontine nucleus. Substance P and NK1 receptors are also intimately associated with ascending 5-HT and norepinephrine projections to the forebrain, and alterations in the function of these systems are also likely to be related to the antidepressant efficacy of SPAs. Unlike some established drugs, SPAs are generally well tolerated and do not induce sedation or motor impairment in preclinical species. These findings are consistent with a novel antidepressant mechanism of action of SPAs.
Collapse
Affiliation(s)
- Nadia M J Rupniak
- Department of Pharmacology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Harlow, Essex, UK.
| |
Collapse
|
40
|
Millan MJ, Girardon S, Mullot J, Brocco M, Dekeyne A. Stereospecific blockade of marble-burying behaviour in mice by selective, non-peptidergic neurokinin1 (NK1) receptor antagonists. Neuropharmacology 2002; 42:677-84. [PMID: 11985826 DOI: 10.1016/s0028-3908(02)00021-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By analogy with the selective serotonin reuptake inhibitor, fluvoxamine, and the tricyclic agent, clomipramine, the novel, selective, non-peptidergic NK(1) receptor antagonist, GR205,171, dose-dependently and completely blocked marble-burying behaviour in mice: Inhibitory Dose(50)s (ID(50)s), 4.5, 4.8 and 7.6 mg/kg, respectively. In contrast to GR205,171, its isomer, GR226,206, which displays substantially lower affinity for NK(1) receptors, was inactive (> 40.0 mg/kg). By analogy with GR205,171, a further, selective NK(1) antagonist, RP67,580, abolished marble-burying behaviour with an ID(50) of 11.9 mg/kg. At doses significantly reducing marble-burying behaviour, GR205,171 and RP67,580 little influenced motor behaviour. In conclusion, like fluvoxamine and clomipramine, selective, non-peptidergic NK(1) receptor antagonists block marble-burying in mice. Although the biological bases of this behaviour remain unclear, these observations underpin the contention that NK(1) receptors may be implicated in affective disorders.
Collapse
Affiliation(s)
- M J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 chemin de Ronde, 78290 - Croissy/Sein, Paris, France.
| | | | | | | | | |
Collapse
|
41
|
Rupniak NM, Carlson EJ, Webb JK, Harrison T, Porsolt RD, Roux S, de Felipe C, Hunt SP, Oates B, Wheeldon A. Comparison of the phenotype of NK1R-/- mice with pharmacological blockade of the substance P (NK1 ) receptor in assays for antidepressant and anxiolytic drugs. Behav Pharmacol 2001; 12:497-508. [PMID: 11742144 DOI: 10.1097/00008877-200111000-00011] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The phenotype of NK1R-/- mice was compared with that of acute pharmacological blockade of the tachykinin NK1 receptor on sensorimotor function and in assays relevant to depressive illness and anxiety. The dose range for L-760735 and GR205171 that was associated with functional blockade of central NK1 receptors in the target species was established by antagonism of the behavioural effects of intracerebroventricular NK1 agonist challenge in gerbils, mice and rats. The caudal grooming and scratching response to GR73632 was absent in NK1R-/- mice, confirming that the receptor had been genetically ablated. There was no evidence of sedation or motor impairment in NK1R-/- mice or following administration of L-760735 to gerbils, even at doses in excess of those required for central NK1 receptor occupancy. In the resident-intruder and forced swim test, the behaviour of NK1R-/- mice, or animals treated acutely with L-760735 or GR205171, resembled that seen with the clinically used antidepressant drug fluoxetine. However, the effects of GR205171 were not clearly enantioselective in mice. In contrast, although NK1R-/- mice also exhibited an increase in the duration of struggle behaviour in the tail suspension test, this was not observed following pharmacological blockade with L-760735 in gerbils or GR205171 in mice, suggesting that this may reflect a developmental alteration in the knockout mouse. There was no effect of NK1 receptor blockade with L-760735 in guinea-pigs or GR205171 in rats, or deletion of the NK1 receptor in mice, on behaviour in the elevated plus-maze test for anxiolytic activity. These findings extend previous observations on the phenotype of the NK1R-/- mouse and establish a broadly similar profile following acute pharmacological blockade of the receptor. These studies also serve to underscore the limitations of currently available antagonists that are suitable for use in rat and mouse behavioural assays.
Collapse
Affiliation(s)
- N M Rupniak
- Merck Sharp and Dohme Neuroscience Research Centre, Harlow, Essex, CM20 2QR, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cheeta S, Tucci S, Sandhu J, Williams AR, Rupniak NM, File SE. Anxiolytic actions of the substance P (NK1) receptor antagonist L-760735 and the 5-HT1A agonist 8-OH-DPAT in the social interaction test in gerbils. Brain Res 2001; 915:170-5. [PMID: 11595206 DOI: 10.1016/s0006-8993(01)02846-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gerbil social interaction test has previously detected anxiolytic effects of nicotine and diazepam. In the present study, the high affinity substance P (NK(1)) receptor antagonist L-760735 (3 mg/kg) significantly increased the time spent in social interaction, whereas its low affinity analogue L-781773 (3 mg/kg) was without effect. Diazepam (0.1 mg/kg) and the 5-HT(1A) receptor agonist 8-OH-DPAT (0.003 and 0.01 mg/kg) also increased social interaction, whereas an acute dose of the selective serotonin re-uptake inhibitor fluoxetine (10 mg/kg) decreased the time spent in social interaction. Diazepam (0.1 mg/kg) significantly increased locomotor activity, but this effect was independent of the increase in social interaction. The other drugs tested were without effect on locomotor activity. The present findings suggest that the gerbil social interaction may well provide a useful assay for detecting both anxiolytic and anxiogenic compounds, and suggests that the high affinity NK(1) receptor antagonist L-760735 may prove to be useful as an anxiolytic therapy.
Collapse
Affiliation(s)
- S Cheeta
- Psychopharmacology Research Unit, Centre for Neuroscience, King's College London, SE1 1UL, London, UK
| | | | | | | | | | | |
Collapse
|