1
|
Patel D, Vishwakarma PK, Patel R, Jain NS. Central histaminergic transmission modulates the expression of chronic nicotine withdrawal induced anxiety-like and somatic behavior in mice. Behav Brain Res 2020; 399:112997. [PMID: 33166570 DOI: 10.1016/j.bbr.2020.112997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/09/2020] [Accepted: 10/30/2020] [Indexed: 12/01/2022]
Abstract
The present study investigated the plausible modulatory role of central histaminergic transmission on the expression of nicotine withdrawal induced anxiety and somatic behavior in mice. Abrupt cessation of chronic nicotine (2 mg/kg, i.p. × 3/day) treatment for 12 days to mice, expressed increased anxiety in light & dark test and total abstinence (somatic) score at 24 h post nicotine withdrawal time. The somatic signs includes a composite score of all behaviors such as grooming, rearing, jumping, body shakes, forelimb tremors, head shakes, abdominal constrictions, scratching, empty mouth chewing or teeth chattering, genital licking, tail licking. Mice exhibited higher expression to nicotine withdrawal induced anxiety in light & dark test at 24 h post-nicotine withdrawal time on pre-treatment centrally (i.c.v) with histaminergic agents like histamine (0.1, 50 μg/mouse), histamine H3 receptor inverse agonist, thioperamide (2, 10 μg/mouse), histamine H1 receptor agonist, FMPH (2, 6.5 μg/mouse) or H2 receptor agonist amthamine (0.1, 0.5 μg/mouse) or intraperitoneally (i.p.) with histamine precursor, l-histidine (250, 500 mg/kg) as compared to control nicotine withdrawn animals. Furthermore, mice pre-treated with all these histaminergic agents except histamine H1 receptor agonist, FMPH shows exacerbated expression to post-nicotine withdrawal induced total abstinence (somatic) score in mice. On the other hand, central injection of selective histamine H1 receptor antagonist, cetirizine (0.1 μg/mouse, i.c.v.) or H2 receptor antagonist, ranitidine (50 μg/mouse, i.c.v) to mice 10 min before 24 h post-nicotine withdrawal time completely alleviated the expression of nicotine withdrawal induced anxiety and somatic behavior. Thus, it can be contemplated that the blockade of central histamine H1 or H2 receptor during the nicotine withdrawal phase could be a novel approach to mitigate the nicotine withdrawal associated anxiety-like manifestations. Contribution of endogenous histamine via H1 or H2 receptor stimulation in the nicotine withdrawal induced anxiety and somatic behavior is proposed.
Collapse
Affiliation(s)
- Deepak Patel
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas University (A Central University), Koni, Bilaspur, Chhattisgarh, 495009, India
| | - Prabhat Kumar Vishwakarma
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas University (A Central University), Koni, Bilaspur, Chhattisgarh, 495009, India
| | - Richa Patel
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas University (A Central University), Koni, Bilaspur, Chhattisgarh, 495009, India
| | - Nishant Sudhir Jain
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas University (A Central University), Koni, Bilaspur, Chhattisgarh, 495009, India.
| |
Collapse
|
2
|
Zarei M, Mohammadi S, Jabbari S, Shahidi S. Intracerebroventricular microinjection of kaempferol on memory retention of passive avoidance learning in rats: involvement of cholinergic mechanism(s). Int J Neurosci 2019; 129:1203-1212. [PMID: 31393204 DOI: 10.1080/00207454.2019.1653867] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Purpose of the study: Kaempferol (KM) is a flavonoid found in plant-derived foods and medicinal plants. Recently, it is well established that KM plays a protective role to develop Alzheimer's disease. The current study aimed at evaluating the effect of intracerebroventricular micro-injection of KM on memory retention of passive avoidance learning (MRPAM) and identifying the potentially related cholinergic mechanisms (ChMs) in rats. Materials and methods: In the current study, male Wistar rats randomly divided into control, vehicle and KM (10, 20 and 40 μg/rat) groups. Moreover, MRPAM was evaluated by shuttle box test. The role of ChM was studied using non-selective and selective acetylcholine antagonists (scopolamine [SCN], 4-DAMP and methoctramine [MN], respectively) as well as pirenzepine (PZ) in combination with KM. Results: The employment of KM (40 μg/rat) improved the SCN-induced memory impairment in MRPAM. Co-treatment with KM (40 μg/rat) plus 4-DAMP significantly increased the step-through latency (STL, P < 0.05; 167 ± 28 s) and decreased the total dark chamber (TDC, P < 0.05; 121 ± 31 s) compared with those of the 4-DAMP group (STL: 75 ± 13 s; TDC: 178 ± 46 s). Co-treatment with KM (40 μg/rat) plus PZ attenuated STL, and also increased TDC (P < 0.01; 220 ± 28 s) compared with those of the PZ group. Co-treatment with KM (10 and 20 μg/rat) and MN increased STL (P < 0.05), and deceased TDC compared with those of the MN group (P < 0.01). Conclusions: Totally, the results of the present study showed that cholinergic system may be involved in improving effect of KM on SCN-induced memory impairment.
Collapse
Affiliation(s)
- Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences , Hamadan , Iran
| | - Saeed Mohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Sajjad Jabbari
- Neurophysiology Research Center, Hamadan University of Medical Sciences , Hamadan , Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences , Hamadan , Iran
| |
Collapse
|
3
|
Hamidkhaniha S, Bashiri H, Omidi A, Hosseini‐Chegeni A, Tavangar SM, Sabouri S, Montazeri H, Sahebgharani M. Effect of pretreatment with intracerebroventricular injection of minocycline on morphine‐induced memory impairment in passive avoidance test: Role of P‐
CREB
and c‐Fos expression in the dorsal hippocampus and basolateral amygdala regions. Clin Exp Pharmacol Physiol 2019; 46:711-722. [DOI: 10.1111/1440-1681.13090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/24/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Shokouh Hamidkhaniha
- Department of Pharmacology School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology Afzalipour School of Medicine Kerman University of Medical Sciences Kerman Iran
| | - Ameneh Omidi
- Department of Anatomical Sciences Medical Sciences Faculty Tarbiat Modares University Tehran Iran
| | | | - Seyed Mohammad Tavangar
- Department of Pathology Dr. Shariati Hospital Tehran University of Medical Sciences Tehran Iran
| | - Salehe Sabouri
- Department of Pharmacognosy and Pharmaceutical Biotechnology Faculty of Pharmacy Kerman University of Medical Sciences Kerman Iran
| | - Hamed Montazeri
- School of Pharmacy‐ International Campus Iran University of Medical Sciences Tehran Iran
| | - Mousa Sahebgharani
- Department of Pharmacology School of Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
4
|
Zarrindast MR, Khakpai F. The modulatory role of nicotine on cognitive and non-cognitive functions. Brain Res 2019; 1710:92-101. [DOI: 10.1016/j.brainres.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/12/2023]
|
5
|
Reid SNS, Ryu JK, Kim Y, Jeon BH. GABA-enriched fermented Laminaria japonica improves cognitive impairment and neuroplasticity in scopolamine- and ethanol-induced dementia model mice. Nutr Res Pract 2018; 12:199-207. [PMID: 29854325 PMCID: PMC5974065 DOI: 10.4162/nrp.2018.12.3.199] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/14/2018] [Accepted: 02/28/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/OBJECTIVES Fermented Laminaria japonica (FL), a type sea tangle used as a functional food ingredient, has been reported to possess cognitive improving properties that may aid in the treatment of common neurodegenerative disorders, such as dementia. MATERIALS/METHODS We examined the effects of FL on scopolamine (Sco)- and ethanol (EtOH)-induced hippocampus-dependent memory impairment, using the Passive avoidance (PA) and Morris water maze (MWM) tests. To examine the underlying mechanisms associated with neuroprotective effects, we analyzed acetylcholine (ACh) and acetylcholinesterase (AChE) activity, brain tissue expression of muscarinic acetylcholine receptor (mAChR), cAMP response element binding protein (CREB) and extracellular signal-regulated kinases 1/2 (ERK1/2), and immunohistochemical analysis, in the hippocampus of mice, compared to current drug therapy intervention. Biochemical blood analysis was carried out to determine the effects of FL on alanine transaminase (ALT), aspartate transaminase (AST), and triglyceride (TG) and total cholesterol (TC) levels. 7 groups (n = 10) consisted of a control (CON), 3 Sco-induced dementia and 3 EtOH-induced dementia groups, with both dementia group types containing an untreated group (Sco and EtOH); a positive control, orally administered donepezil (Dpz) (4mg/kg) (Sco + Dpz and EtOH + Dpz); and an FL (50 mg/kg) treatment group (Sco + FL50 and EtOH + FL50), orally administered over the 4-week experimental period. RESULTS FL50 significantly reduced EtOH-induced increase in AST and ALT levels. FL50 treatment reduced EtOH-impaired step-through latency time in the PA test, and Sco- and EtOH-induced dementia escape latency times in the MWM test. Moreover, anticholinergic effects of Sco and EtOH on the brain were reversed by FL50, through the attenuation of AChE activity and elevation of ACh concentration. FL50 elevated ERK1/2 protein expression and increased p-CREB (ser133) in hippocampus brain tissue, according to Western blot and immunohistochemistry analysis, respectively. CONCLUSION Overall, these results suggest that FL may be considered an efficacious intervention for Sco- and EtOH-induced dementia, in terms of reversing cognitive impairment and neuroplastic dysfunction.
Collapse
Affiliation(s)
- Storm N S Reid
- Department of Physical Education, School of Sports and Health, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan 48434, Korea
| | - Je-Kwang Ryu
- Institute for Cognitive Science, College of Humanities, Seoul National University, Seoul 08826, Korea
| | - Yunsook Kim
- Marine Bio-Industry Development Center, Marine Bioprocess Co., Ltd., Busan 46048, Korea
| | - Byeong Hwan Jeon
- Department of Physical Education, School of Sports and Health, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan 48434, Korea
| |
Collapse
|
6
|
Świąder MJ, Barczyński B, Tomaszewski M, Świąder K, Czuczwar SJ. The effects of cimetidine chronic treatment on conventional antiepileptic drugs in mice. Pharmacol Rep 2016; 68:283-8. [PMID: 26922528 DOI: 10.1016/j.pharep.2015.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/17/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE The aim of this study was to evaluate the effects of 1-day, 7-day and 14-day administrations of cimetidine on the anticonvulsant activity of conventional antiepileptic drugs (AEDs; valproate, carbamazepine, phenytoin and phenobarbital) against maximal electroshock (MES)-induced convulsions in mice. METHODS Electroconvulsions were evoked in Albino Swiss mice by a current delivered via ear-clip electrodes. In addition, the effects of cimetidine, AEDs alone and their combinations were studied on performance and long-term memory tests. Pharmacokinetic changes in plasma and brain concentrations of AEDs after cimetidine administration were evaluated with immunofluorescence. RESULTS Cimetidine (up to 100mg/kg) after 1-day administration did not affect the electroconvulsive threshold in animals. Moreover, in the 14-day treatment, cimetidine administered at a dose of 40mg/kg did not significantly change the electroconvulsive threshold in the MES-test, cimetidine administered 14-day (at 20mg/kg) significantly increased the anticonvulsant activity of carbamazepine, staying without effects after a 1-day and 7-day studies. In contrast, both the 7-day and 14-day administrations of cimetidine resulted in significant reductions of protective efficacy of the phenobarbital. Only valproate and phenytoin were not affected by cimetidine (20mg/kg) in all experimental period. Cimetidine administered 1-day, did not alter total brain concentrations and free plasma levels of all AEDs tested, whilst the 14-day study elevated carbamazepine plasma and brain concentration and reduced phenobarbital brain concentration. Cimetidine co-applied with AEDs did not impair performance of mice evaluated in the chimney test however, it worsened long-term memory in animals. CONCLUSIONS Based on this preclinical study, a special caution is advised when treating epileptic patients with combinations of phenobarbital or carbamazepine with cimetidine.
Collapse
Affiliation(s)
- Mariusz J Świąder
- Department of Experimental and Clinical Pharmacology, Medical University, Lublin, Poland.
| | - Bartłomiej Barczyński
- Department of Experimental and Clinical Pharmacology, Medical University, Lublin, Poland
| | - Michał Tomaszewski
- Department of Experimental and Clinical Pharmacology, Medical University, Lublin, Poland
| | - Katarzyna Świąder
- Department of Applied Pharmacy, The Medical University of Lublin, Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland; Department of Physiopathology, Institute of Agricultural Medicine, Lublin, Poland
| |
Collapse
|
7
|
Ahmed MAE, El-Awdan SA. Lipoic acid and pentoxifylline mitigate nandrolone decanoate-induced neurobehavioral perturbations in rats via re-balance of brain neurotransmitters, up-regulation of Nrf2/HO-1 pathway, and down-regulation of TNFR1 expression. Horm Behav 2015; 73:186-99. [PMID: 26187709 DOI: 10.1016/j.yhbeh.2015.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/29/2022]
Abstract
Behavioral perturbations associated with nandrolone decanoate abuse by athletes and adolescents may be attributed to oxidative stress and inflammation. However, the underlying mechanisms are not yet fully explored. On the other hand, the natural antioxidant lipoic acid can pass the blood brain barrier and enhance Nrf2/HO-1 (nuclear factor erythroid-2 related factor 2/heme oxygenase-1) pathway. In addition, the phosphodiesterase-IV inhibitor xanthine derivative pentoxifylline has a remarkable inhibitory effect on tumor necrosis factor-alpha (TNF-α). Therefore, this study aimed at investigation of the possible protective effects of lipoic acid and/or pentoxifylline against nandrolone-induced neurobehavioral alterations in rats. Accordingly, male albino rats were randomly distributed into seven groups and treated with either vehicle, nandrolone (15mg/kg, every third day, s.c.), lipoic acid (100mg/kg/day, p.o.), pentoxifylline (200mg/kg/day, i.p.), or nandrolone with lipoic acid and/or pentoxifylline. Rats were challenged in the open field, rewarded T-maze, Morris water maze, and resident-intruder aggression behavioral tests. The present findings showed that nandrolone induced hyperlocomotion, anxiety, memory impairment, and aggression in rats. These behavioral abnormalities were accompanied by several biochemical changes, including altered levels of brain monoamines, GABA, and acetylcholine, enhanced levels of malondialdehyde and TNF-α, elevated activity of acetylcholinesterase, and up-regulated expression of TNF-α receptor-1 (TNFR1). In addition, inhibited catalase activity, down-regulated Nrf2/HO-1 pathway, and suppressed acetylcholine receptor expression were observed. Lipoic acid and pentoxifylline combination significantly mitigated all the previously mentioned deleterious effects mainly via up-regulation of Nrf2/HO-1 pathway, inhibition of TNF-α and down-regulation of TNFR1 expression. In conclusion, the biochemical and histopathological findings of this study revealed the protective mechanisms of lipoic acid and pentoxifylline against nandrolone-induced behavioral changes and neurotoxicity in rats.
Collapse
Affiliation(s)
- Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt.
| | - Sally A El-Awdan
- Department of Pharmacology, National Research Center, Dokki, Giza, Egypt
| |
Collapse
|
8
|
Benetti F, da Silveira CKB, Rosa J, Izquierdo I. Histamine acting on the basolateral amygdala reverts the impairment of aversive memory of rats submitted to neonatal maternal deprivation. Behav Brain Res 2015; 278:83-9. [DOI: 10.1016/j.bbr.2014.09.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/09/2014] [Accepted: 09/13/2014] [Indexed: 12/22/2022]
|
9
|
Giovannini MG, Lana D, Pepeu G. The integrated role of ACh, ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory. Neurobiol Learn Mem 2015; 119:18-33. [PMID: 25595880 DOI: 10.1016/j.nlm.2014.12.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 11/28/2022]
Abstract
The purpose of this review is to summarize the present knowledge on the interplay among the cholinergic system, Extracellular signal-Regulated Kinase (ERK) and Mammalian Target of Rapamycin (mTOR) pathways in the development of short and long term memories during the acquisition and recall of the step-down inhibitory avoidance in the hippocampus. The step-down inhibitory avoidance is a form of associative learning that is acquired in a relatively simple one-trial test through several sensorial inputs. Inhibitory avoidance depends on the integrated activity of hippocampal CA1 and other brain areas. Recall can be performed at different times after acquisition, thus allowing for the study of both short and long term memory. Among the many neurotransmitter systems involved, the cholinergic neurons that originate in the basal forebrain and project to the hippocampus are of crucial importance in inhibitory avoidance processes. Acetylcholine released from cholinergic fibers during acquisition and/or recall of behavioural tasks activates muscarinic and nicotinic acetylcholine receptors and brings about a long-lasting potentiation of the postsynaptic membrane followed by downstream activation of intracellular pathway (ERK, among others) that create conditions favourable for neuronal plasticity. ERK appears to be salient not only in long term memory, but also in the molecular mechanisms underlying short term memory formation in the hippocampus. Since ERK can function as a biochemical coincidence detector in response to extracellular signals in neurons, the activation of ERK-dependent downstream effectors is determined, in part, by the duration of ERK phosphorylation itself. Long term memories require protein synthesis, that in the synapto-dendritic compartment represents a direct mechanism that can produce rapid changes in protein content in response to synaptic activity. mTOR in the brain regulates protein translation in response to neuronal activity, thereby modulating synaptic plasticity and long term memory formation. Some studies demonstrate a complex interplay among the cholinergic system, ERK and mTOR. It has been shown that co-activation of muscarinic acetylcholine receptors and β-adrenergic receptors facilitates the conversion of short term to long term synaptic plasticity through an ERK- and mTOR-dependent mechanism which requires translation initiation. It seems therefore that the complex interplay among the cholinergic system, ERK and mTOR is crucial in the development of new inhibitory avoidance memories in the hippocampus.
Collapse
Affiliation(s)
- Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Giancarlo Pepeu
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
10
|
Taati M, Moghaddasi M, Esmaeili M, Pourkhodadad S, Nayebzadeh H. The role of the central histaminergic receptors in the exercise-induced improvements of the spatial learning and memory in rats. Brain Res 2014; 1587:112-8. [DOI: 10.1016/j.brainres.2014.08.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/02/2014] [Accepted: 08/23/2014] [Indexed: 01/09/2023]
|
11
|
Kraus MM, Prast H, Philippu A. Facilitation of short-term memory by histaminergic neurons in the nucleus accumbens is independent of cholinergic and glutamatergic transmission. Br J Pharmacol 2014; 170:214-21. [PMID: 23750549 DOI: 10.1111/bph.12271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/23/2013] [Accepted: 06/02/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Here, we have investigated whether learning and/or short-term memory was associated with release of ACh and glutamate in the rat nucleus accumbens (NAc). Additionally, neurotransmitter release in the NAc was assessed during facilitation of cognitive processes by antagonists of inhibitory histamine autoreceptors. EXPERIMENTAL APPROACH The olfactory, social memory test was used in combination with push-pull superfusion of the NAc. A male, juvenile rat was exposed twice to an adult male rat at intervals of 60 or 90 min, and release of ACh and glutamate was determined in the NAc of the conscious adult rat. Histamine receptor antagonists were applied i.c.v. KEY RESULTS First exposure of a juvenile rat to an adult rat increased ACh and glutamate release in the NAc of the adult rat. Repetition of exposure after 60 min did not change release of ACh and glutamate, while contact time to recognition (CTR) was shortened. Repetition of exposure after an interval of 90 min prolonged CTR and enhanced accumbal ACh and glutamate release rates. Injection (i.c.v.) of thioperamide (histamine H3 receptor antagonist) together with famotidine (H₂ receptor antagonist), 80 min prior to second exposure, diminished CTR and abolished ACh and glutamate release when second exposure was carried out 90 min after the first one. CONCLUSIONS AND IMPLICATIONS Histaminergic neurons per se facilitated short-term memory, without activation of cholinergic and/or glutamatergic neurons in the NAc of rats. Cholinergic and glutamatergic neurons within the NAc contributed to learning but not to recall of memory.
Collapse
Affiliation(s)
- M M Kraus
- Department of Pharmacology and Toxicology, University of Innsbruck, Austria
| | | | | |
Collapse
|
12
|
Nasehi M, Piri M, Abdollahian M, Zarrindast MR. Involvement of nitrergic system of CA1in harmane induced learning and memory deficits. Physiol Behav 2013; 109:23-32. [DOI: 10.1016/j.physbeh.2012.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/18/2012] [Accepted: 10/19/2012] [Indexed: 01/09/2023]
|
13
|
Kruk M, Miszkiel J, McCreary AC, Przegaliński E, Filip M, Biała G. Effects of the histamine H3 receptor antagonist ABT-239 on cognition and nicotine-induced memory enhancement in mice. Pharmacol Rep 2012; 64:1316-25. [DOI: 10.1016/s1734-1140(12)70929-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/03/2012] [Indexed: 11/16/2022]
|
14
|
Nasehi M, Sharifi S, Zarrindast MR. Involvement of the cholinergic system of CA1 on harmane-induced amnesia in the step-down passive avoidance test. J Psychopharmacol 2012; 26:1151-61. [PMID: 21965190 DOI: 10.1177/0269881111421972] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
β-carboline alkaloids such as harmane (HA) are naturally present in the human food chain. They are derived from the plant Peganum harmala and have many cognitive effects. In the present study, effects of the nicotinic system of the dorsal hippocampus (CA1) on HA-induced amnesia and exploratory behaviors were examined. One-trial step-down and hole-board paradigms were used to assess memory retention and exploratory behaviors in adult male mice. Pre-training (15 mg/kg) but not pre-testing intraperitoneal (i.p.) administration of HA decreased memory formation but did not alter exploratory behaviors. Moreover, pre-testing administration of nicotine (0.5 µg/mouse, intra-CA1) decreased memory retrieval, but induced anxiogenic-like behaviors. On the other hand, pre-test intra-CA1 injection of ineffective doses of nicotine (0.1 and 0.25 µg/mouse) fully reversed HA-induced impairment of memory after pre-training injection of HA (15 mg/kg, i.p.) which did not alter exploratory behaviors. Furthermore, pre-testing administration of mecamylamine (0.5, 1 and 2 µg/mouse, intra-CA1) did not alter memory retrieval but fully reversed HA-induced impairment of memory after pre-training injection of HA (15 mg/kg, i.p.) which had no effect on exploratory behaviors. In conclusion, the present findings suggest the involvement of the nicotinic cholinergic system in the HA-induced impairment of memory formation.
Collapse
Affiliation(s)
- Mohammad Nasehi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Semnan, Iran
| | | | | |
Collapse
|
15
|
Zarrindast MR, Hoseindoost S, Nasehi M. Possible interaction between opioidergic and cholinergic systems of CA1 in cholestasis-induced amnesia in mice. Behav Brain Res 2012; 228:116-24. [DOI: 10.1016/j.bbr.2011.11.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 11/28/2011] [Indexed: 01/26/2023]
|
16
|
Voigt RM, Napier TC. Context-dependent effects of a single administration of mirtazapine on the expression of methamphetamine-induced conditioned place preference. Front Behav Neurosci 2012; 5:92. [PMID: 22347852 PMCID: PMC3276317 DOI: 10.3389/fnbeh.2011.00092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 12/27/2011] [Indexed: 01/13/2023] Open
Abstract
Re-exposure to cues repeatedly associated with methamphetamine (Meth) can trigger Meth-seeking and relapse in the abstinent abuser. Weakening the conditioned Meth-associated memory during cue re-exposure may provide a means for relapse-reduction pharmacotherapy. Accordingly, we sought to determine if the atypical antidepressant mirtazapine disrupted the persistence of Meth-induced conditioned place preference (CPP) when administered in conjunction with re-exposure to contextual conditioning cues, and if this effect was altered by Meth being present during cue re-exposure. First, we evaluated the effect of mirtazapine on the maintenance of Meth-induced CPP during re-exposure to either the saline- or Meth-paired chamber 12 days after conditioning. Meth-conditioned rats subsequently administered mirtazapine expressed CPP independent of re-exposure to the saline- or Meth-paired chamber; but the magnitude of CPP was significantly less for mirtazapine-treated rats re-exposed to the Meth-paired chamber. Next, we evaluated the effect of mirtazapine on a "reinforced re-exposure" to the Meth-paired context. Administration of mirtazapine vehicle and Meth, prior to re-exposure to the Meth-paired chamber did not disrupt the ability of rats to demonstrate CPP 15 days after conditioning; however, CPP was disrupted when rats were administered mirtazapine and Meth prior to re-exposure to the Meth-paired chamber. These results indicate that the capacity of mirtazapine to diminish Meth-induced CPP is promoted if mirtazapine treatment is coupled with Meth administration in the Meth-associated context and thus appears to be the consequence of disrupting processes necessary to reconsolidate CPP following activation of drug-associated memories.
Collapse
Affiliation(s)
- Robin M Voigt
- Department of Pharmacology, Center for Compulsive Behavior and Addiction, Rush University Medical Center Chicago, IL, USA
| | | |
Collapse
|
17
|
Abstract
Non-reinforced retrieval induces memory extinction, a phenomenon characterized by a decrease in the intensity of the learned response. This attribute has been used to develop extinction-based therapies to treat anxiety and post-traumatic stress disorders. Histamine modulates memory and anxiety but its role on fear extinction has not yet been evaluated. Therefore, using male Wistar rats, we determined the effect of the intra-hippocampal administration of different histaminergic agents on the extinction of step-down inhibitory avoidance (IA), a form of aversive learning. We found that intra-CA1 infusion of histamine immediately after non-reinforced retrieval facilitated consolidation of IA extinction in a dose-dependent manner. This facilitation was mimicked by the histamine N-methyltransferase inhibitor SKF91488 and the H2 receptor agonist dimaprit, reversed by the H2 receptor antagonist ranitidine, and unaffected by the H1 antagonist pyrilamine, the H3 antagonist thioperamide and the antagonist at the NMDA receptor (NMDAR) polyamine-binding site ifenprodil. Neither the H1 agonist 2-2-pyridylethylamine nor the NMDAR polyamine-binding site agonist spermidine affected the consolidation of extinction while the H3 receptor agonist imetit hampered it. Extinction induced the phosphorylation of ERK1 in dorsal CA1 while intra-CA1 infusion of the MEK inhibitor U0126 blocked extinction of the avoidance response. The extinction-induced phosphorylation of ERK1 was enhanced by histamine and dimaprit and blocked by ranitidine administered to dorsal CA1 after non-reinforced retrieval. Taken together, our data indicate that the hippocampal histaminergic system modulates the consolidation of fear extinction through a mechanism involving the H2-dependent activation of ERK signalling.
Collapse
|
18
|
Histamine reverses a memory deficit induced in rats by early postnatal maternal deprivation. Neurobiol Learn Mem 2011; 97:54-8. [PMID: 21979429 DOI: 10.1016/j.nlm.2011.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/07/2011] [Accepted: 09/13/2011] [Indexed: 11/23/2022]
Abstract
Early partial maternal deprivation causes long-lasting neurochemical, behavioral and brain structural effects. In rats, it causes a deficit in memory consolidation visible in adult life. Some of these deficits can be reversed by donepezil and galantamine, which suggests that they may result from an impairment of brain cholinergic transmission. One such deficit, representative of all others, is an impairment of memory consolidation, clearly observable in a one-trial inhibitory avoidance task. Recent data suggest a role of brain histaminergic systems in the regulation of behavior, particularly inhibitory avoidance learning. Here we investigate whether histamine itself, its analog SKF-91844, or various receptor-selective histamine agonists and antagonists given into the CA1 region of the hippocampus immediately post-training can affect retention of one-trial inhibitory avoidance in rats submitted to early postnatal maternal deprivation. We found that histamine, SKF-91844 and the H2 receptor agonist, dimaprit enhance consolidation on their own and reverse the consolidation deficit induced by maternal deprivation. The enhancing effect of histamine was blocked by the H2 receptor antagonist, ranitidine, but not by the H1 receptor antagonist pyrilamine or by the H3 antagonist thioperamide given into CA1 at doses known to have other behavioral actions, without altering locomotor and exploratory activity or the anxiety state of the animals. The present results suggest that the memory deficit induced by early postnatal maternal deprivation in rats may in part be due to an impairment of histamine mediated mechanisms in the CA1 region of the rat hippocampus.
Collapse
|
19
|
Histaminergic mechanisms for modulation of memory systems. Neural Plast 2011; 2011:328602. [PMID: 21876818 PMCID: PMC3160014 DOI: 10.1155/2011/328602] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/29/2011] [Indexed: 12/31/2022] Open
Abstract
Encoding for several memory types requires neural changes and the activity of distinct regions across the brain. These areas receive broad projections originating in nuclei located in the brainstem which are capable of modulating the activity of a particular area. The histaminergic system is one of the major modulatory systems, and it regulates basic homeostatic and higher functions including arousal, circadian, and feeding rhythms, and cognition. There is now evidence that histamine can modulate learning in different types of behavioral tasks, but the exact course of modulation and its mechanisms are controversial. In the present paper we review the involvement of the histaminergic system and the effects histaminergic receptor agonists/antagonists have on the performance of tasks associated with the main memory types as well as evidence provided by studies with knockout models. Thus, we aim to summarize the possible effects histamine has on modulation of circuits involved in memory formation.
Collapse
|
20
|
Robinson L, Platt B, Riedel G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res 2011; 221:443-65. [PMID: 21315109 DOI: 10.1016/j.bbr.2011.01.055] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 01/07/2023]
Abstract
The cholinergic systems play a pivotal role in learning and memory, and have been the centre of attention when it comes to diseases containing cognitive deficits. It is therefore not surprising, that the cholinergic transmitter system has experienced detailed examination of its role in numerous behavioural situations not least with the perspective that cognition may be rescued with appropriate cholinergic 'boosters'. Here we reviewed the literature on (i) cholinergic lesions, (ii) pharmacological intervention of muscarinic or nicotinic system, or (iii) genetic deletion of selective receptor subtypes with respect to sensory discrimination and conditioning procedures. We consider visual, auditory, olfactory and somatosensory processing first before discussing more complex tasks such as startle responses, latent inhibition, negative patterning, eye blink and fear conditioning, and passive avoidance paradigms. An overarching reoccurring theme is that lesions of the cholinergic projection neurones of the basal forebrain impact negatively on acquisition learning in these paradigms and blockade of muscarinic (and to a lesser extent nicotinic) receptors in the target structures produce similar behavioural deficits. While these pertain mainly to impairments in acquisition learning, some rare cases extend to memory consolidation. Such single case observations warranted replication and more in-depth studies. Intriguingly, receptor blockade or receptor gene knockout repeatedly produced contradictory results (for example in fear conditioning) and combined studies, in which genetically altered mice are pharmacological manipulated, are so far missing. However, they are desperately needed to clarify underlying reasons for these contradictions. Consistently, stimulation of either muscarinic (mainly M(1)) or nicotinic (predominantly α7) receptors was beneficial for learning and memory formation across all paradigms supporting the notion that research into the development and mechanisms of novel and better cholinomimetics may prove useful in the treatment of neurodegenerative or psychiatric disorders with cognitive endophenotypes.
Collapse
Affiliation(s)
- Lianne Robinson
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | |
Collapse
|
21
|
Zarrindast MR, Khodarahmi P, Rezayof A, Oryan S. Withdrawal from repeated administration of morphine alters histamine-induced anxiogenic effects produced by intra-ventral hippocampal microinjection. J Psychopharmacol 2010; 24:881-9. [PMID: 20093321 DOI: 10.1177/0269881109106956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, the influence of withdrawal from repeated administration of morphine on intra-ventral hippocampal microinjection of histamine-induced anxiety-like behavior was investigated in male Wistar rats. Three days subcutaneous administration of morphine (5-10 mg/kg) followed by five days free of the drug decreased the percentage open arm time and the percentage open arm entries. Intra-ventral hippocampal administration of histamine (2.5-7.5 microg/rat) decreased percentage open arm time and percentage open arm entries. Intra-ventral hippocampal histamine-induced anxiogenic effect was reversed in animals that had previously received the three days morphine (7.5 mg/kg) followed by five days free of the drug. Intra-ventral hippocampal administration of pyrilamine (5-20 microg/rat) or ranitidine (10-40 microg/rat) decreased percentage open arm time and percentage open arm entries. Pyrilamine- or ranitidine-induced anxiogenic effect was not changed in animals that had previously received the three days morphine (7.5 mg/kg) followed by five days free of the drug. Intra-ventral hippocampal injections of clobenpropit increased percentage open arm time. The percentage open arm time and percentage open arm entries were decreased in the morphine-treated animals compared with non-morphine-treated controls. Percentage open arm entries and locomotor activity was reduced with some doses of clobenpropit. It can be concluded that the histamine system is involved in anxiety-like behavior, and repeated injections of morphine followed by five days free of the drugs interact with histamine receptor mechanism.
Collapse
Affiliation(s)
- Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine and Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | |
Collapse
|
22
|
Moon MK, Ahn JY, Kim S, Ryu SY, Kim YS, Ha TY. Ethanol Extract and Saponin of Platycodon grandiflorum Ameliorate Scopolamine-Induced Amnesia in Mice. J Med Food 2010; 13:584-8. [DOI: 10.1089/jmf.2009.1310] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mi-Kyeong Moon
- Functional Food Technology Research Group, Korea Food Research Institute, Sungnam-Si, Republic of Korea
| | - Ji-Yun Ahn
- Functional Food Technology Research Group, Korea Food Research Institute, Sungnam-Si, Republic of Korea
| | - Suna Kim
- Functional Food Technology Research Group, Korea Food Research Institute, Sungnam-Si, Republic of Korea
| | - Shi-Yong Ryu
- Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Young-Sub Kim
- Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Tae-Youl Ha
- Functional Food Technology Research Group, Korea Food Research Institute, Sungnam-Si, Republic of Korea
| |
Collapse
|
23
|
Kim YH, Lee Y, Kim D, Jung MW, Lee CJ. Scopolamine-induced learning impairment reversed by physostigmine in zebrafish. Neurosci Res 2010; 67:156-61. [PMID: 20298728 DOI: 10.1016/j.neures.2010.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 03/04/2010] [Accepted: 03/08/2010] [Indexed: 01/08/2023]
Abstract
In this study, the effects of scopolamine, an acetylcholine muscarinic receptor antagonist, and physostigmine, an acetylcholinesterase inhibitor, on the learning ability and memory of zebrafish were evaluated using a passive avoidance response test. The zebrafish were trained to stay in a dark compartment to avoid a weight dropping into an acryl shuttle chamber with a central sliding door. The crossing time was increased significantly, from 30.7+/-40.8s to 179.3+/-27.3s in the training session and 179.9+/-28.0s in the test session carried out 2h later in the controls. When treatment with 200 microM scopolamine was administered for 1h prior to the training session, the crossing time did not increase. The scopolamine-induced learning deficit was ameliorated by pretreatment with 20 microM physostigmine for 1h prior to scopolamine treatment; the crossing time was similarly increased, as shown with the controls (60.9+/-11.5s, 130.9+/-27.5s, and 183.4+/-26.6s in the training session and 108.1+/-23.9s in the test session). When scopolamine treatment was administered after the training session, the crossing time in the test session was reduced significantly as compared to that noted in the third trial of the training session, which was also ameliorated by physostigmine pretreatment. These results show that scopolamine impairs both the acquisition of passive avoidance response and retention of the learned response, and that physostigmine rescues the amnesic effects of scopolamine in zebrafish.
Collapse
Affiliation(s)
- Yeon-Hwa Kim
- Department of Biological Sciences, Institute of Molecular and Cellular Biology, Inha University, 253 Yong-Hyun Dong, Nam-Gu, Incheon 402-751, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Katzoff A, Miller N, Susswein AJ. Nitric oxide and histamine signal attempts to swallow: A component of learning that food is inedible in Aplysia. Learn Mem 2009; 17:50-62. [PMID: 20042482 DOI: 10.1101/lm.1624610] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Memory that food is inedible in Aplysia arises from training requiring three contingent events. Nitric oxide (NO) and histamine are released by a neuron responding to one of these events, attempts to swallow food. Since NO release during training is necessary for subsequent memory and NO substitutes for attempts to swallow, it was suggested that NO functions during training as a signal of attempts to swallow. However, it has been shown that NO may also be released in other contexts affecting feeding, raising the possibility that its role in learning is unrelated to signaling attempts to swallow. We confirmed that NO during learning signals attempts to swallow, by showing that a variety of behavioral effects on feeding of blocking or adding NO do not affect learning and memory that a food is inedible. In addition, histamine had effects similar to NO on learning that food is inedible, as expected if the transmitters are released together when animals attempt to swallow. Blocking histamine during training blocked long-term memory, and exogenous histamine substituted for attempts to swallow. NO also substituted for histamine during training. Histamine at concentrations relevant to learning activates neuron metacerebral cell (MCC). However, MCC activity is not a good monitor of attempts to swallow during training, since the neuron responds equally well to other stimuli. These findings support and extend the hypothesis that NO and histamine signal efforts to swallow during learning, acting on targets other than the MCC that specifically respond to attempts to swallow.
Collapse
Affiliation(s)
- Ayelet Katzoff
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | | | | |
Collapse
|
25
|
Bell J, Livesey P, Meyer J. Environmental enrichment influences survival rate and enhances exploration and learning but produces variable responses to the radial maze in old rats. Dev Psychobiol 2009; 51:564-78. [DOI: 10.1002/dev.20394] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Jin CY, Anichtchik O, Panula P. Altered histamine H3 receptor radioligand binding in post-mortem brain samples from subjects with psychiatric diseases. Br J Pharmacol 2009; 157:118-29. [PMID: 19413576 DOI: 10.1111/j.1476-5381.2009.00149.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Histamine is a modulatory neurotransmitter in the brain. Auto- and hetero-histamine H3 receptors are present in human brain and are potential targets of antipsychotics. These receptors may also display disease-related abnormalities in psychiatric disorders. Here we have assessed how histamine H3 receptors in human brain may be affected in schizophrenia, bipolar disorder, major depression. EXPERIMENTAL APPROACH Histamine H3 receptor radioligand binding assays were applied to frozen post-mortem prefrontal and temporal cortical sections and anterior hippocampal sections from subjects with schizophrenia, bipolar disorder, major depression and matched controls. KEY RESULTS Compared with the controls, increased H3 receptor radioligand binding was found in dorsolateral prefrontal cortex of schizophrenic subjects (especially the ones who were treated with atypical antipsychotics), and bipolar subjects with psychotic symptoms. No differences in H3 receptor radioligand binding were found in the temporal cortex. In hippocampal formation of control subjects, H3 receptor radioligand binding was prominent in dentate gyrus, subiculum, entorhinal cortex and parasubiculum. Decreased H3 binding was found in the CA4 area of bipolar subjects. Decreased H3 binding in CA2 and presubiculum of medication-free bipolar subjects was also seen. CONCLUSIONS AND IMPLICATIONS The results suggest that histamine H3 receptors in the prefrontal cortex take part in the modulation of cognition, which is impaired in schizophrenic subjects and bipolar subjects with psychotic symptoms. Histamine H3 receptors probably regulate connections between hippocampus and various cortical and subcortical regions and could also be involved in the neuropathology of schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- C Y Jin
- Department of Biology, Abo Akademi University, Biocity, Turku, Finland
| | | | | |
Collapse
|
27
|
MK801- and scopolamine-induced amnesias are reversed by an Amazonian herbal locally used as a "brain tonic". Psychopharmacology (Berl) 2009; 202:165-72. [PMID: 18695930 DOI: 10.1007/s00213-008-1272-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 07/21/2008] [Indexed: 12/27/2022]
Abstract
RATIONALE Traditional remedies prepared from Ptychopetalum olacoides (PO) are used throughout the Amazon to alleviate age-related conditions. These formulas are mainly used by elders, and alleged effects may be related to the anticholinesterase properties identified in a standardized ethanol extract of this species [P. olacoides standardized ethanol extract (POEE)]. OBJECTIVES To further characterize the potential of this extract for developing drugs useful to treat cognitive deficits, the effects of POEE on scopolamine (scop)- and MK801-induced amnesias (acquisition, consolidation, and retrieval) in mice were investigated. RESULTS Scop (3.0 mg/kg, ip) significantly impaired memory (all three phases) in the step-down inhibitory avoidance protocol. As expected, MK801 (0.1 mg/kg, ip) was amnesic regarding acquisition and consolidation, but not retrieval. POEE (100 mg/kg, ip) reversed the scop-induced impairment in all three phases of long-term and short memories, whereas only the memory consolidation deficit was reversed with MK801-induced amnesia. CONCLUSIONS This study complements previously reported promnesic properties of this plant extract and suggests that POEE may be further developed for treating conditions associated with cognitive deficits, especially those linked with cholinergic malfunction.
Collapse
|
28
|
Choi WH, Ahn JY, Kim SN, Ha TY. Cherry Tomatoes Ameliorate Scopolamine-induced Amnesia in Mice. Prev Nutr Food Sci 2008. [DOI: 10.3746/jfn.2008.13.4.281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
29
|
Alvarez EO. The role of histamine on cognition. Behav Brain Res 2008; 199:183-9. [PMID: 19126417 DOI: 10.1016/j.bbr.2008.12.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 12/07/2008] [Indexed: 12/01/2022]
Abstract
Histamine was intensively studied at the beginning of the 20th century because of its important role in allergic and inflammation processes. In those days it was very difficult that researchers could envisage another impacting function for the imidazolamine in the living systems. Once the imidazolamine was found located in neuron compartment in the brain, increasing evidence supported many regulatory functions including its possible role in memory and learning. The specific participation of histamine in cognitive functions followed a slow and unclear pathway because the many different experimental learning models, pharmacologic approaches, systemic and localized applications of the histamine active compounds into the brain used by researchers showed facilitating or inhibitory effects on learning, generating an active issue that has extended up to present time. In this review, all these aspects are analyzed and discussed considering the many intracellular different mechanisms discovered for histamine, the specific histamine receptors and the compartmentalizing proprieties of the brain that might explain the apparent inconsistent effects of the imidazolamine in learning. In addition, a hypothetical physiologic role for histamine in memory is proposed under the standard theories of learning in experimental animals and humans.
Collapse
Affiliation(s)
- Edgardo O Alvarez
- Area de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Laboratorio de Neuropsicofarmacología Experimental, IMBECU-CONICET, 5500 Mendoza, Argentina.
| |
Collapse
|
30
|
Mojtahedin A, Tamaddonfard E, Zanbouri A. Effects of mepyramine and famotidine on the physostigmine-induced antinociception in the formalin test in rats. Pak J Biol Sci 2008; 11:2573-8. [PMID: 19260335 DOI: 10.3923/pjbs.2008.2573.2578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, the effects of mepyramine (H1-receptor antagonist), famotidine (H2-receptor antagonist), physostigmine (a cholinesterase inhibitor) and atropine (muscarinic-receptor antagonist) have investigated on the formalin-induced nociception in rats. The effects of mepyramine and famotidine have also examined on nociceptive changes induced by physostigmine and atropine. Nociception was induced by intraplantar injection of formalin (50 microL, 1%) into the right hind paw and the time spent licking and biting of the injected paw, was taken as a measure of pain. Formalin induced a marked biphasic (first phase: 0-5 min and second phase: 15-45 min) pain response. The used drugs did not change the first phase of formalin-induced pain. Subcutaneous injection of physostigmine significantly (p<0.05) suppressed pain. Subcutaneous injection of atropine alone did not change the intensity of pain, but pretreatment with atropine significantly (p<0.05) prevented physostigmine-induced antinociception. Intraperitoneal injections of mepyramine and famotidine significantly (p<0.05) decreased pain response. Mepyramine did not significantly change, but famotidine significantly (p<0.05) prevented analgesic effect of physostigmine on pain. Atropine did not inhibit the antinociceptive effects of both mepyramine and famotidine on formalin-induced nociception. These results indicate that physostigmine through muscarinic cholinergic receptors suppresses the pain induced by formalin. Both H1 and H2 receptor antagonists produce antinociception. Histamine H2, but no H1 antagonists may be involved in physostigmine-induced antinociception.
Collapse
Affiliation(s)
- A Mojtahedin
- Physiology Division, Department of Basic Sciences, Faculty of Veterinary Medicine, P.O. Box 1177, Urmia University, Urmia 57135, Urmia, Iran
| | | | | |
Collapse
|
31
|
Méndez M, Méndez-López M, López L, Aller MA, Arias J, Arias JL. Associative learning deficit in two experimental models of hepatic encephalopathy. Behav Brain Res 2008; 198:346-51. [PMID: 19056427 DOI: 10.1016/j.bbr.2008.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 11/04/2008] [Accepted: 11/09/2008] [Indexed: 01/26/2023]
Abstract
People with hepatic insufficiency can develop hepatic encephalopathy (HE), a complex neuropsychological syndrome covering a wide range of neurological and cognitive and motor alterations. The cognitive deficits include disturbances in intellectual functions such as memory and learning. In spite of its high prevalence in western societies, the causes of HE have not yet been clearly established. For this reason, experimental models of HE are used to study this condition. In this work, two experimental models were used, one Type B HE (portacaval shunt) and the other Type C HE (cirrhosis by intoxication with thioacetamide), to evaluate its effect on two tasks of associative learning: two-way active avoidance and step-through passive avoidance. The results show an impediment both in acquisition and retention of active avoidance in both models of HE. However, in passive avoidance, only the rats with portacaval shunt presented a memory deficit for the aversive event. In our opinion, these results can be explained by alterations in the neurotransmission system presented by animals with hepatic insufficiency, which are mainly caused by a rise in cerebral histamine and a dysfunction of the glutamatergic system.
Collapse
Affiliation(s)
- Marta Méndez
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Faganello F, Mattioli R. Chlorpheniramine facilitates inhibitory avoidance in teleosts submitted to telencephalic ablation. Braz J Med Biol Res 2008; 41:398-402. [DOI: 10.1590/s0100-879x2008005000015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 04/17/2008] [Indexed: 11/21/2022] Open
|
33
|
Kholdebarin E, Caldwell DP, Blackwelder WP, Kao M, Christopher NC, Levin ED. Interaction of nicotinic and histamine H(3) systems in the radial-arm maze repeated acquisition task. Eur J Pharmacol 2007; 569:64-9. [PMID: 17544392 PMCID: PMC1994942 DOI: 10.1016/j.ejphar.2007.04.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 04/19/2007] [Accepted: 04/25/2007] [Indexed: 11/22/2022]
Abstract
Nicotinic systems have been found in a variety of studies to play important roles in cognitive function. Nicotinic involvement in different aspects of cognitive function such as learning vs. memory may differ. We have found in rats that the spatial repeated acquisition task in the radial-arm maze is significantly improved by low doses of the nicotinic receptor antagonist mecamylamine, the atypical nicotinic receptor ligand lobeline, as well as the alpha7 nicotinic receptor agonist ARR-17779. Interestingly, nicotine in the same dose range that improves working memory in the win-shift radial maze task was not effective in improving repeated acquisition performance. Nicotinic systems interact with a variety of other neural systems. Differential involvement of these extended effects with learning vs. memory may help explain differential effects of nicotinic drugs with these cognitive functions. Histamine H(3) receptor antagonists have been shown by some studies to improve cognitive function, but others have not found this effect and some have found impairment. Nicotine stimulates the release of histamine. This effect may counter other cascading effects of nicotine in the performance of learning and memory tasks. A specific test of this hypothesis involves our study of nicotine (0.1-0.4 mg/kg) interactions with the histamine H(3) receptor antagonist thioperamide (2.5-10 mg/kg) on learning memory in the repeated acquisition test in the radial-arm maze. The highest dose of thioperamide tested caused a significant choice accuracy impairment, which was most evident during the later portions of the learning curve. The highest dose of nicotine did not change overall errors but did cause a significant impairment in learning over trials. The choice accuracy impairment induced by thioperamide was significantly attenuated by nicotine (0.4 mg/kg). The learning impairment caused by the highest dose of nicotine was significantly attenuated by thioperamide. Thioperamide also caused a slowing of response, an effect, which was attenuated by nicotine co-administration. The repeated acquisition test can help differentiate acute drug effects on learning. Nicotine and thioperamide effectively reversed each other's choice accuracy impairment even though each by itself impaired accuracy.
Collapse
Affiliation(s)
- Ehsan Kholdebarin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
34
|
Shin EJ, Chae JS, Jung ME, Bing G, Ko KH, Kim WK, Wie MB, Cheon MA, Nah SY, Kim HC. Repeated intracerebroventricular infusion of nicotine prevents kainate-induced neurotoxicity by activating the α7 nicotinic acetylcholine receptor. Epilepsy Res 2007; 73:292-8. [PMID: 17174071 DOI: 10.1016/j.eplepsyres.2006.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 11/10/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
We examined whether (-)-nicotine infusion can affect kainic acid (KA)-induced neurotoxicity in rats. Although treatment with a single nicotine infusion (0.5 or 1.0 microg/side, i.c.v.) failed to attenuate KA-induced neurotoxicity, repeated nicotine infusions (1.0 microg/side/day for 10 days) attenuated the seizures, the severe loss of cells in hippocampal regions CA1 and CA3, the increase in activator protein (AP)-1 DNA binding activity, and mortality after KA administration. alpha-Bungarotoxin and mecamylamine blocked the neuroprotective effects of nicotine. These results suggest that repeated nicotine treatment provides alpha7 nicotinic acetylcholine receptor-mediated neuroprotection against KA toxicity.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Roegge CS, Perraut C, Hao X, Levin ED. Histamine H1 receptor involvement in prepulse inhibition and memory function: relevance for the antipsychotic actions of clozapine. Pharmacol Biochem Behav 2007; 86:686-92. [PMID: 17382376 PMCID: PMC2699266 DOI: 10.1016/j.pbb.2007.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 11/26/2022]
Abstract
Histamine H(1) blockade is one of the more prominent actions of the multi-receptor acting antipsychotic clozapine. It is currently not known how much this H(1) antagonism of clozapine contributes to the therapeutic or adverse side effects of clozapine. The current studies with Sprague-Dawley rats were conducted to determine the participation of histaminergic H(1) receptor subtype in sensorimotor plasticity and memory function affected by clozapine using tests of prepulse inhibition (PPI) and radial-arm maze choice accuracy. The PPI impairment caused by the glutamate antagonist dizocilpine (MK-801) was significantly attenuated by clozapine. In the current project, we found that the selective H(1) antagonist pyrilamine also reversed the dizocilpine-induced impairment in PPI of tactile startle with an auditory prepulse. In the radial-arm maze (RAM), pyrilamine, like clozapine, impaired working memory and caused a significant dose-related slowing of response. Pyrilamine, however, decreased the number of reference memory errors. We have previously shown that nicotine effectively attenuates the clozapine-induced working memory impairment, but in the current study, nicotine did not significantly alter the effects of pyrilamine on the RAM. In summary, the therapeutic effect of clozapine in reversing PPI impairment was mimicked by the H(1) antagonist pyrilamine, while pyrilamine had a mixed effect on cognition. Pyrilamine impaired working memory but improved reference memory in rats. Thus, H(1) antagonism seems to play a role in part of the beneficial actions of antipsychotics, such as clozapine.
Collapse
Affiliation(s)
- Cindy S Roegge
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
36
|
Zarrindast MR, Moghimi M, Rostami P, Rezayof A. Histaminergic receptors of medial septum and conditioned place preference: D1 dopamine receptor mechanism. Brain Res 2006; 1109:108-16. [PMID: 16828718 DOI: 10.1016/j.brainres.2006.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 06/06/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
In the present study, the effects of intra-medial septum injections of histamine and/or the histamine H1 or H2 receptor antagonists on the acquisition of conditioned place preference (CPP) in male Wistar rats have been investigated. Our data showed that the conditioning treatments with intra-medial septum injection of different doses of histamine (0.5-15 microg/rat) induced a significant CPP for the drug-associated place. Using a 3-day schedule of conditioning, it was found that the histamine H1 receptor antagonist, pyrilamine (10 and 15 microg/rat, intra-medial septum) also induced a significant place preference. In addition, pyrilamine inhibited the histamine (7.5 microg/rat)-induced place preference. Intra-medial septum administration of the histamine H2 receptor antagonist, ranitidine (5-15 microg/rat) alone or in combination with histamine did not produce a significant place preference or place aversion. On the other hand, intra-medial septum administration of the dopamine D1 receptor antagonist, SCH 233390 (0.5, 0.75 and 1 microg/rat) inhibited the histamine (7.5 microg/rat) or pyrilamine (15 microg/rat)-induced place preference in a dose-dependent manner, but no effect was observed for the dopamine D2 receptor antagonist, sulpiride on the histamine or pyrilamine response. The administration of histamine (2.5-15 microg/rat) or pyrilamine (10 and 15 microg/rat) during acquisition increased locomotor activity of the animals on the testing days. The results suggest that histaminergic receptors of the medial septum may be involved in CPP and thus it is postulated that dopamine D1 receptors may play an important role in this effect.
Collapse
Affiliation(s)
- Mohammad-Reza Zarrindast
- Department of Pharmacology and Iranian National Center for Addiction Studies, School of Medicine, Tehran University of Medical Sciences, PO Box 13145-784, Tehran, Iran.
| | | | | | | |
Collapse
|
37
|
Eidi M, Eidi A, Bahar M. Effects of Salvia officinalis L. (sage) leaves on memory retention and its interaction with the cholinergic system in rats. Nutrition 2006; 22:321-6. [PMID: 16500558 DOI: 10.1016/j.nut.2005.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/02/2005] [Accepted: 06/27/2005] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The leaves of sage (Salvia officinalis L., Lamiaceae) are reported to have a wide range of biological activities, such as anti-bacterial, fungistatic, virustatic, astringent, eupeptic and anti-hydrotic effects. To determine the mnemogenic effect of sage leaves, we investigated the effects of ethanolic extract of sage leaves and its interaction with cholinergic system on memory retention of passive avoidance learning in rats. METHODS Post-training intracerebroventricular (i.c.v.) injections were carried out in all the experiments except ethanolic extract (i.p. intraperitoneally). RESULTS Administration of ethanolic extract (50 mg/kg), pilocarpine (0.5 and 1 mg/rat), the muscarinic cholinoceptor agonist, and nicotine (0.1 and 1 microg/rat) increased, while mecamylamine (1, 5 microg/rat), the muscarinic cholinoceptor antagonist, and mecamylamine (0.01 and 0.1 microg/rat), the nicotine cholinoceptor antagonist decreased memory retention in rats. Activation of muscarinic cholinoceptors by pilocarpine potentiated the response of ethanolic extract. Also, pharmacological blockade of scopolamine attenuated potentiating effect of ethanolic extract. Activation of nicotinic cholinoceptor by nicotine potentiated the response of ethanolic extract. Blockade of nicotinic cholinoceptor by mecamylamine attenuated the response of ethanolic extract. CONCLUSION It is concluded that the ethanolic extract of salvia officinalis potentiated memory retention and also it has an interaction with muscarinic and nicotinic cholinergic systems that is involved in the memory retention process.
Collapse
Affiliation(s)
- Maryam Eidi
- Department of Biology, Varamin Institute, Islamic Azad University, Tehran, Iran.
| | | | | |
Collapse
|
38
|
da Silva WC, Bonini JS, Bevilaqua LRM, Izquierdo I, Cammarota M. Histamine enhances inhibitory avoidance memory consolidation through a H2 receptor-dependent mechanism. Neurobiol Learn Mem 2006; 86:100-6. [PMID: 16488163 DOI: 10.1016/j.nlm.2006.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 12/20/2005] [Accepted: 01/04/2006] [Indexed: 11/16/2022]
Abstract
Several evidences suggest that brain histamine is involved in memory consolidation but the actual contribution of the hippocampal histaminergic system to this process remains controversial. Here, we show that when infused into the CA1 region of the dorsal hippocampus immediately after training in an inhibitory avoidance task, but not later, histamine induced a dose-dependent promnesic effect without altering locomotor activity, exploratory behavior, anxiety state or retrieval of the avoidance response. The facilitatory effect of intra-CA1 histamine was mimicked by the histamine N-methyltransferase inhibitor SKF-91844 as well as by the H2 receptor agonist dimaprit and it was blocked completely by the H2 receptor antagonist ranitidine. Conversely, the promnesic action of histamine was unaffected by the H1 receptor antagonist pyrilamine, the H3 receptor antagonist, thioperamide, and the NMDAr polyamine-binding site antagonist ifenprodil. By themselves, ranitidine, pyrilamine, thioperamide, and ifenprodil did not affect IA memory consolidation. Our data indicate that, when given into CA1, histamine enhances memory consolidation through a mechanism that involves activation of H2 receptors; however, endogenous CA1 histamine does not seem to participate in the consolidation of IA memory at least at the post-training times analyzed.
Collapse
Affiliation(s)
- Weber C da Silva
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | |
Collapse
|
39
|
Yu C, Shen Y, Xu L, Zhu Y, Zhuge Z, Huang Y, Henk T, Rob L, Wei E, Chen Z. Effect of endogenous histamine in the ventral hippocampus on fear memory deficits induced by scopolamine as evaluated by step-through avoidance response in rats. Physiol Behav 2006; 87:687-93. [PMID: 16488453 DOI: 10.1016/j.physbeh.2006.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 12/08/2005] [Accepted: 01/03/2006] [Indexed: 11/23/2022]
Abstract
In the present study, the effects of endogenous histamine in the ventral hippocampus on fear memory deficits induced by scopolamine were investigated as evaluated by step-through avoidance response in adult male rats. Bilateral ventral hippocampal injection of scopolamine (i.h., 2, 5 microg/site) significantly produced depressant effects on the active avoidance response in a dose-dependent manner. Histamine H(3)-antagonist clobenpropit (5, 10 microg/site) significantly ameliorated the fear memory deficits induced by scopolamine in a dose-dependent manner. Its procognitive effect was completely antagonized by immepip (10 microg/site), a selective histamine H(3)-agonist. Both histamine H(1)-antagonist pyrilamine and H(2)-antagonist cimetidine, also inhibited the procognitive effects of clobenpropit. Additionally, the procognitive effects of clobenpropit on the fear memory deficits induced by scopolamine were significantly potentiated by intraperitoneal (i.p.) injection of histidine, a precursor of histamine, but markedly reversed by i.h. injection of alpha-fluoromethylhistidine (FMH, 10 microg/site), a selective and potent histidine decarboxylase inhibitor. It is concluded that the increased endogenous histamine release in the ventral hippocampus ameliorates the scopolamine-induced fear memory deficits, and its action is mainly mediated by histamine presynaptic H(3)-receptors and postsynaptic H(1)- and H(2)-receptors.
Collapse
Affiliation(s)
- Chaoyang Yu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China 310031
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jafari-Sabet M. NMDA receptor blockers prevents the facilitatory effects of post-training intra-dorsal hippocampal NMDA and physostigmine on memory retention of passive avoidance learning in rats. Behav Brain Res 2006; 169:120-7. [PMID: 16443290 DOI: 10.1016/j.bbr.2005.12.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Revised: 12/17/2005] [Accepted: 12/23/2005] [Indexed: 12/28/2022]
Abstract
In the present study, the effects of post-training intra-dorsal hippocampal (intra-CA1) injection of an N-methyl-D-aspartate (NMDA) receptor agonist and competitive or noncompetitive antagonists, on memory retention of passive avoidance learning was measured in the presence and absence of physostigmine in rats. Intra-CA1 administration of lower doses of the NMDA receptor agonist NMDA (10(-5) and 10(-4) microg/rat) did not affect memory retention, although the higher doses of the drug (10(-3), 10(-2) and 10(-1) microg/rat) increased memory retention. The greatest response was obtained with 10(-1) microg/rat of the drug. The different doses of the competitive NMDA receptor antagonist DL-AP5 (1, 3.2 and 10 microg/rat) and noncompetitive NMDA receptor antagonist MK-801 (0.5, 1 and 2 microg/rat) decreased memory retention in rats dose dependently. Both competitive and noncompetitive NMDA receptor antagonists reduced the effect of NMDA (10(-2) microg/rat). In another series of experiments, intra-CA1 injection of physostigmine (2, 3 and 4 microg/rat) improved memory retention. Post-training co-administration of lower doses of NMDA (10(-5) and 10(-4) microg/rat) and physostigmine (1 microg/rat), doses which were ineffective when given alone, significantly improved the retention latency. The competitive and noncompetitive NMDA receptor antagonists, DL-AP5 and MK-801, decreased the effect of physostigmine (2 microg/rat). Atropine decreased memory retention by itself and potentiated the response to DL-AP5 and MK-801. In conclusion, it seems that both NMDA and cholinergic systems not only play a part in the modulation of memory in the dorsal hippocampus of rats but also have demonstrated a complex interaction as well.
Collapse
Affiliation(s)
- Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
41
|
Levin ED, McClernon FJ, Rezvani AH. Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl) 2006; 184:523-39. [PMID: 16220335 DOI: 10.1007/s00213-005-0164-7] [Citation(s) in RCA: 590] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 08/06/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Nicotine has been shown in a variety of studies in humans and experimental animals to improve cognitive function. Nicotinic treatments are being developed as therapeutic treatments for cognitive dysfunction. OBJECTIVES Critical for the development of nicotinic therapeutics is an understanding of the neurobehavioral bases for nicotinic involvement in cognitive function. METHODS Specific and diverse cognitive functions affected by nicotinic treatments are reviewed, including attention, learning, and memory. The neural substrates for these behavioral actions involve the identification of the critical pharmacologic receptor targets, in particular brain locations, and how those incipient targets integrate with broader neural systems involved with cognitive function. RESULTS Nicotine and nicotinic agonists can improve working memory function, learning, and attention. Both alpha4beta2 and alpha7 nicotinic receptors appear to be critical for memory function. The hippocampus and the amygdala in particular have been found to be important for memory, with decreased nicotinic activity in these areas impairing memory. Nicotine and nicotinic analogs have shown promise for inducing cognitive improvement. Positive therapeutic effects have been seen in initial studies with a variety of cognitive dysfunctions, including Alzheimer's disease, age-associated memory impairment, schizophrenia, and attention deficit hyperactivity disorder. CONCLUSIONS Discovery of the behavioral, pharmacological, and anatomic specificity of nicotinic effects on learning, memory, and attention not only aids the understanding of nicotinic involvement in the basis of cognitive function, but also helps in the development of novel nicotinic treatments for cognitive dysfunction. Nicotinic treatments directed at specific receptor subtypes and nicotinic cotreatments with drugs affecting interacting transmitter systems may provide cognitive benefits most relevant to different syndromes of cognitive impairment such as Alzheimer's disease, schizophrenia, and attention deficit hyperactivity disorder. Further research is necessary in order to determine the efficacy and safety of nicotinic treatments of these cognitive disorders.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box #3412, Durham, NC 27710, USA.
| | | | | |
Collapse
|
42
|
Eidi A, Eidi M, Mahmoodi G, Oryan S. Effect of vitamin E on memory retention in rats: possible involvement of cholinergic system. Eur Neuropsychopharmacol 2006; 16:101-6. [PMID: 16112558 DOI: 10.1016/j.euroneuro.2005.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Accepted: 06/30/2005] [Indexed: 11/25/2022]
Abstract
This study concerned effects of vitamin E and the cholinergic system on memory retention of passive avoidance learning in rats. Post-training intracerebroventricular (i.c.v.) injections were carried out in all experiments. Administrations of vitamin E (10, 25 and 50 microg/rat), nicotine (0.1 microg/rat) and pilocarpine (0.5 microg/rat), the muscarinic receptor agonist increased memory retention, while mecamylamine (0.01, 0.1 and 0.5 microg/rat), the nicotinic receptor antagonist and scopolamine (0.1, 1 and 5 microg/rat), the muscarinic receptor antagonist decreased memory retention. The combination of vitamin E with nicotine or pilocarpine showed potentiation. Effects of mecamylamine or scopolamine were attenuated by vitamin E. It is concluded that vitamin E has a close interaction with cholinergic system in memory retention process.
Collapse
Affiliation(s)
- Akram Eidi
- Department of Biology, Science and Research Institute, Islamic Azad University, Tehran, Iran.
| | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Mohammad R Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Jafari-Sabet M. NMDA receptor antagonists antagonize the facilitatory effects of post-training intra-basolateral amygdala NMDA and physostigmine on passive avoidance learning. Eur J Pharmacol 2006; 529:122-8. [PMID: 16337625 DOI: 10.1016/j.ejphar.2005.10.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 10/18/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
In the present study, the effects of post-training intra-basolateral amygdala (BLA) injection of an N-methyl-d-aspartate (NMDA) receptor agonist and competitive or noncompetitive antagonists, on memory retention of passive avoidance learning was measured in the presence and absence of physostigmine in rats. Intra-BLA administration of lower doses of NMDA (10(-5) and 10(-4) microg/rat) did not affect memory retention, although higher doses of the drug (10(-3), 10(-2) and 10(-1) microg/rat) increased memory retention. The greatest response was obtained with 10(-1) microg/rat of the drug. The different doses of the competitive NMDA receptor antagonist DL-AP5 (1, 3.2 and 10 microg/rat) and noncompetitive NMDA receptor antagonist MK-801 (0.5, 1 and 2 microg/rat) decreased memory retention in rats dose dependently. Both competitive and noncompetitive NMDA receptor antagonists reduced the effect of NMDA (10(-2) microg/rat). In another series of experiments, intra-BLA injection of physostigmine (2, 3 and 4 microg/rat) improved memory retention. Post-training co-administration of lower doses of NMDA (10(-5) and 10(-4) microg/rat) and physostigmine (1 microg/rat), doses which were ineffective when given alone, significantly improved the retention latency. The competitive and noncompetitive NMDA receptor antagonists, DL-AP5 and MK-801, decreased the effect of physostigmine (2 microg/rat). Atropine decreased memory retention by itself and potentiated the response to DL-AP5 and MK-801. It may be concluded that amygdalar NMDA receptor mechanisms interact with cholinergic systems in the modulation of memory.
Collapse
Affiliation(s)
- Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
45
|
Fujishiro H, Umegaki H, Suzuki Y, Oohara-Kurotani S, Yamaguchi Y, Iguchi A. Dopamine D2 receptor plays a role in memory function: implications of dopamine-acetylcholine interaction in the ventral hippocampus. Psychopharmacology (Berl) 2005; 182:253-61. [PMID: 16025318 DOI: 10.1007/s00213-005-0072-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2005] [Accepted: 05/09/2005] [Indexed: 12/27/2022]
Abstract
RATIONALE The role of the hippocampal dopaminergic system in mnemonic function has not been clarified yet. OBJECTIVE We previously reported that the dopamine D2 receptor (D2R) is involved in the regulation of acethylcholin (ACh) release in the hippocampus. In this study, we further investigated ACh-dopamine (DA) interaction in the hippocampus and its involvement in mnemonic function. METHODS For experiment 1, rats fed with Cholin (Ch)-deficient chow were used. We examined the effects of D2R antagonist, raclopride, on cognitive performance using a passive avoidance task. We further carried out in vivo microdialysis to assess the effect of infusion of D2R agonist, quinpirole, into the ventral hippocampus on its capacity to release ACh. For experiment 2, rats fed with normal chow were used. The performance of a radial arm maze task was assessed to examine the effects of hippocampal injection of D2R agonist, quinpirole, on memory impairment induced by scopolamine, a muscarinic ACh antagonist. RESULTS In experiment 1, rats fed with Ch-deficient chow showed impaired performances indicated by prolonged latency on retention trials of a passive avoidance task following the hippocampal injection of D2R antagonist, and showed reduced capacity to release ACh following the injection of D2R agonist compared with rats fed with normal chow. In experiment 2, memory impairment induced by the intraperitoneal injection of scopolamine was ameliorated by the injection of D2R agonist into the ventral hippocampus. CONCLUSION These results indicate the possible involvement of hippocampal ACh-DA interaction in mnemonic processing.
Collapse
Affiliation(s)
- Hiroshige Fujishiro
- Department of Geriatrics, Medicine in Growth and Aging, Program in Health and Community Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya, Aichi, 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Komater VA, Buckley MJ, Browman KE, Pan JB, Hancock AA, Decker MW, Fox GB. Effects of histamine H3 receptor antagonists in two models of spatial learning. Behav Brain Res 2005; 159:295-300. [PMID: 15817192 DOI: 10.1016/j.bbr.2004.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 11/05/2004] [Accepted: 11/08/2004] [Indexed: 10/26/2022]
Abstract
Despite the well-described attention and short-term memory enhancing effects of H3 receptor antagonists, and evidence to suggest a close relationship between central histaminergic and cholinergic systems, there is a paucity of evidence for a role for H3 receptor blockade in spatial learning. To address this, we investigated two H3 receptor antagonists in a visual discrimination water maze in rats, and in a Barnes circular maze in mice. Thioperamide and ciproxifan significantly attenuated a scopolamine-induced deficit in the water maze task, while only ciproxifan showed a modest attenuation in the Barnes maze. Taken together, these data suggest a role for H3 receptors in spatial learning that appears to be task-dependent.
Collapse
Affiliation(s)
- Victoria A Komater
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, AP9A, D4N5, Abbott Park, IL 60064, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Feiro O, Gould TJ. The interactive effects of nicotinic and muscarinic cholinergic receptor inhibition on fear conditioning in young and aged C57BL/6 mice. Pharmacol Biochem Behav 2004; 80:251-62. [PMID: 15680178 DOI: 10.1016/j.pbb.2004.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 11/05/2004] [Accepted: 11/16/2004] [Indexed: 10/26/2022]
Abstract
Both normal aging and age-related disease, such as Alzheimer's disease, have diverse effects on forebrain-dependent cognitive tasks as well as the underlying neurobiological substrates. The purpose of the current study was to investigate if age-related alterations in the function of the cholinergic system are associated with memory impairments in auditory-cued and contextual fear conditioning. Young (2-3 months) and aged (19-20 months) C57BL/6 mice were administered scopolamine (0.1, 0.3, 0.5, or 1.0 mg/kg), a muscarinic cholinergic receptor antagonist, mecamylamine (1.0 and 2.0 mg/kg), a nicotinic cholinergic receptor antagonist, both scopolamine and mecamylamine (0.1 and 1.0 mg/kg, respectively), or saline prior to training. Training consisted of two white-noise CS (85 dB, 30 s)-footshock US (0.57 mA, 2 s) presentations. Testing occurred 48 h post-training. Scopolamine administration impaired contextual and cued fear conditioning in young and aged mice, although the aged mice were less sensitive to disruption by scopolamine. Mecamylamine did not disrupt conditioned fear in the young or aged mice. Scopolamine and mecamylamine co-administration, at doses sub-threshold for disrupting fear conditioning with separate administration, disrupted contextual and auditory-cued fear conditioning in the young mice, indicating that in the young mice the muscarinic and nicotinic cholinergic processes interact in the formation and maintenance of long-term memories for conditioned fear. Co-administration of both antagonists did not disrupt fear conditioning in the aged mice, indicating that age-related alterations in the cholinergic receptor subtypes may occur.
Collapse
Affiliation(s)
- Olivia Feiro
- Department of Psychology, Neuroscience Program, Weiss Hall, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
48
|
Bernaerts P, Lamberty Y, Tirelli E. Histamine H3 antagonist thioperamide dose-dependently enhances memory consolidation and reverses amnesia induced by dizocilpine or scopolamine in a one-trial inhibitory avoidance task in mice. Behav Brain Res 2004; 154:211-9. [PMID: 15302127 DOI: 10.1016/j.bbr.2004.02.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 02/12/2004] [Accepted: 02/12/2004] [Indexed: 11/25/2022]
Abstract
In the literature, there is some evidence indicating that H3 histamine receptor antagonists, in particular thioperamide, can facilitate learning and memory retrieval in laboratory rodents. The present study aimed at verifying whether this also holds for memory consolidation, a phase of memory for which there is scarcity of convincing data on the effects of H3 receptor antagonists given systemically. To that end, memory consolidation was assessed in C57BL/6J mice using the one-trial step-through inhibitory avoidance task, the compounds being injected immediately after training (foot-shock) and performance measured 24 h later. More specifically, the following effects of thioperamide (1.25-20 mg/kg) were dose-dependently analysed: (1) its potential direct effects on memory consolidation; (2) its potential reversing effects on retrograde amnesia induced by the NMDA antagonist dizocilpine (MK-801, 0.5 mg/kg) and (3) its potential reversing effects on the well-known amnesia induced by the muscarinic antagonist scopolamine (0.25 mg/kg). We found that thioperamide exerted a dose-dependent facilitative effect on memory consolidation. Furthermore, the H3 receptor antagonist reversed scopolamine- and especially dizocilpine-induced amnesia. The results strongly support the view that the brain mechanisms of memory consolidation involve a functional interaction between the NMDA and the H3 sites.
Collapse
Affiliation(s)
- Pascale Bernaerts
- Laboratoire de Neurosciences Comportementales & Psychopharmacologie Expérimentale, Université de Liège, Boulevard du Rectorat 5/Building 32, B-4000 Liège, Belgium
| | | | | |
Collapse
|
49
|
Tinsley MR, Quinn JJ, Fanselow MS. The Role of Muscarinic and Nicotinic Cholinergic Neurotransmission in Aversive Conditioning: Comparing Pavlovian Fear Conditioning and Inhibitory Avoidance. Learn Mem 2004; 11:35-42. [PMID: 14747515 DOI: 10.1101/lm.70204] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Matthew R Tinsley
- Department of Psychology, University of California, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|