1
|
Andersson J, Berglund K, Irmel R, Adermark L. Prospective Association Between Tobacco Use and at-Risk Alcohol Consumption Among Swedish Adolescents: Outlining the Influence of Tobacco Product, Frequency of Use and Gender in the LoRDIA Cohort. Tob Use Insights 2024; 17:1179173X241298524. [PMID: 39494130 PMCID: PMC11528605 DOI: 10.1177/1179173x241298524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction: Tobacco use is not only a major risk factor for morbidity and mortality but also associated with alcohol misuse. While personality traits may be driving this association, the psychoactive component of tobacco, nicotine, may also be a major risk factor. The aim with this study was to further assess the prospective association between tobacco use and alcohol consumption, with special emphasis on the role of the tobacco product used (cigarettes and Swedish snus), frequency of use, and gender. Methods: Data was extracted from the prospective cohort Longitudinal Research on Development In Adolescence (LoRDIA), following Swedish adolescents over four waves (∼13 to 17 years of age). Tobacco use was reported with respect to product used and frequency of use, while alcohol use was assessed using AUDIT-C, as well as frequency of use within the last year. Results: Use of tobacco, independent of product used and gender, was associated with increased alcohol consumption. High frequency of use and dual use strengthened to association. Individuals initiating tobacco use during the study period progressively increased their frequency of alcohol consumption compared to non-users during consecutive waves. Furthermore, tobacco use was associated with at-risk consumption of alcohol at follow up, even when adjusting for previous alcohol inebriation, socioeconomical factors, gender and novelty seeking. Conclusions: The data presented here suggests that nicotine use during adolescence, and especially dual use, is a major risk factor for future hazardous alcohol intake. This finding is especially important considering the escalated use of nicotine pouches, which in many ways resembles Swedish snus. From a public health perspective, preventive measures and policies designed to counteract all forms of nicotine use among youths is warranted.
Collapse
Affiliation(s)
- Johanna Andersson
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Berglund
- Institute of Psychology, The Faculty of Social Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Robin Irmel
- Institute of Psychology, The Faculty of Social Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Beane CR, Lewis DG, Bruns Vi N, Pikus KL, Durfee MH, Zegarelli RA, Perry TW, Sandoval O, Radke AK. Cholinergic mu-opioid receptor deletion alters reward preference and aversion-resistance. Neuropharmacology 2024; 255:110019. [PMID: 38810926 DOI: 10.1016/j.neuropharm.2024.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
The endogenous opioid system has been implicated in alcohol consumption and preference in both humans and animals. The mu opioid receptor (MOR) is expressed on multiple cells in the striatum, however little is known about the contributions of specific MOR populations to alcohol drinking behaviors. The current study used mice with a genetic deletion of MOR in cholinergic cells (ChAT-Cre/Oprm1fl/fl) to examine the role of MORs expressed in cholinergic interneurons (CINs) in home cage self-administration paradigms. Male and female ChAT-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and Cre- (control) mice were tested for alcohol consumption in two drinking paradigms: limited access "Drinking in the Dark" and intermittent access. Quinine was added to the drinking bottles in the DID experiment to test aversion-resistant, "compulsive" drinking. Nicotine and sucrose drinking were also assessed so comparisons could be made with other rewarding substances. Cholinergic MOR deletion did not influence consumption or preference for ethanol (EtOH) in either drinking task. Differences were observed in aversion-resistance in males with Cre + mice tolerating lower concentrations of quinine than Cre-. In contrast to EtOH, preference for nicotine was reduced following cholinergic MOR deletion while sucrose consumption and preference was increased in Cre+ (vs. Cre-) females. Locomotor activity was also greater in females following the deletion. These results suggest that cholinergic MORs participate in preference for rewarding substances. Further, while they are not required for consumption of alcohol alone, cholinergic MORs may influence the tendency to drink despite negative consequences.
Collapse
Affiliation(s)
- Cambria R Beane
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Delainey G Lewis
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Nicolaus Bruns Vi
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Kat L Pikus
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Mary H Durfee
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Roman A Zegarelli
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Thomas W Perry
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Oscar Sandoval
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Anna K Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA.
| |
Collapse
|
3
|
Beane CR, Lewis DG, Bruns NK, Pikus KL, Durfee MH, Zegarelli RA, Perry TW, Sandoval O, Radke AK. Cholinergic mu-opioid receptor deletion alters reward preference and aversion-resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566881. [PMID: 38014065 PMCID: PMC10680803 DOI: 10.1101/2023.11.13.566881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Heavy alcohol use and binge drinking are important contributors to alcohol use disorder (AUD). The endogenous opioid system has been implicated in alcohol consumption and preference in both humans and animals. The mu opioid receptor (MOR) is expressed on multiple cells in the striatum, however little is known about the contributions of specific MOR populations to alcohol drinking behaviors. The current study used mice with a genetic deletion of MOR in cholinergic cells (ChAT-Cre/Oprm1fl/fl) to examine the role of MORs expressed in cholinergic interneurons (CINs) in home cage self-administration paradigms. Male and female ChAT-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and Cre- (control) mice were tested for alcohol and nicotine consumption. In Experiment 1, binge-like and quinine-resistant drinking was tested using 15% ethanol (EtOH) in a two-bottle, limited-access Drinking in the Dark paradigm. Experiment 2 involved a six-week intermittent access paradigm in which mice received 20% EtOH, nicotine, and then a combination of the two drugs. Experiment 3 assessed locomotor activity, sucrose preference, and quinine sensitivity. Deleting MORs in cholinergic cells did not alter consumption of EtOH in Experiment 1 or 2. In Experiment 1, the MOR deletion resulted in greater consumption of quinine-adulterated EtOH in male Cre+ mice (vs. Cre-). In Experiment 2, Cre+ mice demonstrated a significantly lower preference for nicotine but did not differ from Cre- mice in nicotine or nicotine + EtOH consumption. Overall fluid consumption was also heightened in the Cre+ mice. In Experiment 3, Cre+ females were found to have greater locomotor activity and preference for sucrose vs. Cre- mice. These data suggest that cholinergic MORs are not required for EtOH, drinking behaviors but may contribute to aversion resistant EtOH drinking in a sex-dependent manner.
Collapse
|
4
|
Söderpalm B, Ericson M. Alcohol and the dopamine system. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 175:21-73. [PMID: 38555117 DOI: 10.1016/bs.irn.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The mesolimbic dopamine pathway plays a major role in drug reinforcement and is likely involved also in the development of drug addiction. Ethanol, like most addictive drugs, acutely activates the mesolimbic dopamine system and releases dopamine, and ethanol-associated stimuli also appear to trigger dopamine release. In addition, chronic exposure to ethanol reduces the baseline function of the mesolimbic dopamine system. The molecular mechanisms underlying ethanol´s interaction with this system remain, however, to be unveiled. Here research on the actions of ethanol in the mesolimbic dopamine system, focusing on the involvement of cystein-loop ligand-gated ion channels, opiate receptors, gastric peptides and acetaldehyde is briefly reviewed. In summary, a great complexity as regards ethanol´s mechanism(s) of action along the mesolimbic dopamine system has been revealed. Consequently, several new targets and possibilities for pharmacotherapies for alcohol use disorder have emerged.
Collapse
Affiliation(s)
- Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Addiction and Dependency, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Kinouani S, Macalli M, Arsandaux J, Montagni I, Texier N, Schück S, Tzourio C. Factors related to increased alcohol misuse by students compared to non-students during the first Covid-19 lockdown in France: the Confins study. BMC Public Health 2024; 24:646. [PMID: 38424644 PMCID: PMC10905779 DOI: 10.1186/s12889-024-18182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The closure of bars and lockdowns related to the Covid-19 pandemic changed alcohol use levels in France during the spring of 2020. We wondered whether this sudden cessation of social interactions impacted students more than non-students and what factors specific to students would explain the increase in alcohol misuse. The aims of this study were to compare self-reported changes in alcohol misuse (alcohol intake and binge-drinking frequency) during the first Covid-19 lockdown from March 17 to May 10, 2020, between French students and non-students and describe factors associated with this alcohol misuse in each subgroup. METHODS Data collected in the Confins study from April 8 to May 10, 2020, were used in cross-sectional analyses stratified by student status. Multiple logistic regression was performed to estimate the association between self-reported increase in alcohol intake or binge-drinking frequency (at least six drinks of alcohol on one occasion) and demographic, socioeconomic, and clinical factors, as well as conditions associated with the Covid-19 pandemic. The population-attributable fraction was then used to estimate the contribution of identified risk factors to increased alcohol misuse in students and non-students. RESULTS Among both students and non-students, a self-reported decrease or no change in alcohol intake or binge-drinking was more common than an increase. However, the risk factors explaining an increase in alcohol intake differed among students (≥ 25 years old, not working or studying in the health field, and having suicidal ideation during the last 7 days) and non-students (having a medical diagnosis of mental disorders). The risk factors explaining an increase in binge-drinking frequency were similar in the two subgroups (being a tobacco smoker before lockdown and not practicing any physical activity during the last 7 days), except suicidal thoughts, which was a risk factor for alcohol misuse specific to students. CONCLUSIONS These results highlight the vulnerability of certain French students to alcohol misuse and the necessity of combining both mental health and substance use-related screening in the student population.
Collapse
Affiliation(s)
- Shérazade Kinouani
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team HEALTHY, UMR1219, Bordeaux, 33000, France.
- Department of General Practice, University of Bordeaux, 146 Rue Léo Saignat, Bordeaux, 33000, France.
| | - Mélissa Macalli
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team HEALTHY, UMR1219, Bordeaux, 33000, France
| | - Julie Arsandaux
- Nantes Université, Univ Angers, Laboratoire de Psychologie Des Pays de La Loire, LPPL, UR 4638, Nantes, F-44000, France
| | - Ilaria Montagni
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team HEALTHY, UMR1219, Bordeaux, 33000, France
| | - Nathalie Texier
- Kappa Santé, 4 Rue de Cléry, Paris, 75002, France
- Kap Code, 28 Rue d'Enghien, Paris, 75010, France
| | - Stéphane Schück
- Kappa Santé, 4 Rue de Cléry, Paris, 75002, France
- Kap Code, 28 Rue d'Enghien, Paris, 75010, France
| | - Christophe Tzourio
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team HEALTHY, UMR1219, Bordeaux, 33000, France
| |
Collapse
|
6
|
Palombo P, Maeda R, Riberti Zaniboni C, Antonagi Engi S, Yokoyama T, Bonetti Bertagna N, Anesio A, Cristina Bianchi P, Righi T, Emily Boaventura Tavares G, Souccar C, da Silva FBR, Cardoso Cruz F. Unlocking the role of dorsal hippocampal α4β2 nicotinic acetylcholine receptors in Ethanol-Induced conditioned place preference in mice. Neurosci Lett 2024; 824:137666. [PMID: 38331019 DOI: 10.1016/j.neulet.2024.137666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Alcohol Use Disorder (AUD) presents a significant and challenging public health concern, marked by a dearth of effective pharmacological treatments. Understanding the neurobiological underpinnings of AUD is of paramount importance for the development of efficacious interventions. The process of addiction entails the acquisition of associative behaviors, prominently engaging the dorsal region of the hippocampus for encoding these associative memories. Nicotinic receptor systems have been implicated in mediating the rewarding effects of ethanol, as well as memory and learning processes. In our current investigation, we delved into the role of α4β2 nicotinic acetylcholine receptors (nAChRs) within the dorsal hippocampus in the context of ethanol-induced conditioned place preference (CPP), a robust model for scrutinizing the rewarding properties and drug-associated behaviors. To establish CPP, ethanol (2 g/kg) was administered intraperitoneally during a 8-day conditioning phase. Fos immunohistochemistry was employed to assess the involvement of discrete subregions within the dorsal hippocampus in ethanol-induced CPP. Additionally, we probed the influence of α4β2 nAChRs on CPP via microinjections of a selective nAChR antagonist, dihydro-β-erythroidine (DHBE, at dosages of 6, 12, and 18 µg/0.5 µL per hemisphere) within the hippocampus. Our results unveiled that ethanol-induced CPP was associated with an increase Fos -positive cells in various subregions of the dorsal hippocampus, including CA1, CA2, CA3, and the dentate gyrus. Intrahippocampal administration of DHBE (at doses of 6 and 18 µg/0.50 µL per hemisphere) effectively blocked ethanol-induced CPP, while leaving locomotor activity unaffected. These findings underscore the critical involvement of the dorsal hippocampus and α4β2 nAChRs in the acquisition of ethanol-associated learning and reward.
Collapse
Affiliation(s)
- Paola Palombo
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Roberta Maeda
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Caroline Riberti Zaniboni
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sheila Antonagi Engi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thais Yokoyama
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Natalia Bonetti Bertagna
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Augusto Anesio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Cristina Bianchi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thamires Righi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Caden Souccar
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Fabio Cardoso Cruz
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Hauser SR, Waeiss RA, Deehan GA, Engleman EA, Bell RL, Rodd ZA. Adolescent alcohol and nicotine exposure alters the adult response to alcohol use. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11880. [PMID: 38389816 PMCID: PMC10880795 DOI: 10.3389/adar.2023.11880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 02/24/2024]
Abstract
Adolescence through young adulthood is a unique period of neuronal development and maturation. Numerous agents can alter this process, resulting in long-term neurological and biological consequences. In the clinical literature, it is frequently reported that adolescent alcohol consumption increases the propensity to develop addictions, including alcohol use disorder (AUD), during adulthood. A general limitation of both clinical and human pre-clinical adolescent alcohol research is the high rate of co-using/abusing more than one drug during adolescence, such as co-using/abusing alcohol with nicotine. A primary goal of basic research is elucidating neuroadaptations produced by adolescent alcohol exposure/consumption that promote alcohol and other drug self-administration in adulthood. The long-term goal is to develop pharmacotherapeutics for the prevention or amelioration of these neuroadaptations. This review will focus on studies that have examined the effects of adolescent alcohol and nicotine exposure on adult alcohol consumption, the hypersensitivity of the mesolimbic dopaminergic system, and enhanced responses not only to alcohol but also to nicotine during adulthood. Again, the long-term goal is to identify potential cholinergic agents to prevent or ameliorate the consequences of, peri-adolescent alcohol abuse.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert A Waeiss
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Gerald A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zachary A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Maher EE, White AM, Craig A, Khatri S, Kendrick PT, Matocha ME, Bondy EO, Pallem N, Breakfield G, Botkins M, Sweatt O, Griffin WC, Kaplan B, Weafer JJ, Beckmann JS, Gipson CD. Synthetic contraceptive hormones occlude the ability of nicotine to reduce ethanol consumption in ovary-intact female rats. Drug Alcohol Depend 2023; 252:110983. [PMID: 37778097 DOI: 10.1016/j.drugalcdep.2023.110983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Rates of tobacco and alcohol use in women are rising, and women are more vulnerable than men to escalating tobacco and alcohol use. Many women use hormonal birth control, with the oral contraceptive pill being the most prevalent. Oral contraceptives contain both a progestin (synthetic progesterone) and a synthetic estrogen (ethinyl estradiol; EE) and are contraindicated for women over 35 years who smoke. Despite this, no studies have examined how synthetic contraceptive hormones impact this pattern of polysubstance use in females. To address this critical gap in the field, we treated ovary-intact female rats with either sesame oil (vehicle), the progestin levonorgestrel (LEVO; contained in formulations such as Alesse®), or the combination of EE+LEVO in addition to either undergoing single (nicotine or saline) or polydrug (nicotine and ethanol; EtOH) self-administration (SA) in a sequential use model. Rats preferred EtOH over water following extended EtOH drinking experience as well as after nicotine or saline SA experience, and rats undergoing only nicotine SA (water controls) consumed more nicotine as compared to rats co-using EtOH and nicotine. Importantly, this effect was occluded in groups treated with contraceptive hormones. In the sequential use group, both LEVO alone and the EE+LEVO combination occluded the ability of nicotine to decrease EtOH consumption. Interestingly, demand experiments suggest an economic substitute effect between nicotine and EtOH. Together, we show that chronic synthetic hormone exposure impacts nicotine and EtOH sequential use, demonstrating the crucial need to understand how chronic use of different contraceptive formulations alter patterns of polydrug use in women.
Collapse
Affiliation(s)
- Erin E Maher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ashley M White
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ashley Craig
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Shailesh Khatri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Percell T Kendrick
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Mary E Matocha
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Emma O Bondy
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Nikhil Pallem
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Grace Breakfield
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Madison Botkins
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Olivia Sweatt
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - William C Griffin
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Brent Kaplan
- Department of Family and Community Medicine, University of Kentucky, Lexington, KY, USA
| | - Jessica J Weafer
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Joshua S Beckmann
- Department of Psychology, University of Kentucky, Lexington, KY, USA.
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
9
|
Quintanilla ME, Rivera-Meza M, Berríos-Cárcamo P, Cassels BK. Reduction of nicotine and ethanol intake in alcohol-preferring (UChB) female rats by the α4β2 nicotinic acetylcholine receptor partial agonists 5-bromocytisine and cytisine. Drug Alcohol Depend 2023; 250:110900. [PMID: 37515828 DOI: 10.1016/j.drugalcdep.2023.110900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023]
Abstract
RATIONALE Neuronal nicotinic acetylcholine receptors (nAChRs) are implicated in the reinforcing effects of nicotine and ethanol. Previous studies have shown that cytisine and its 5-bromo derivative are partial agonists at the α4β2 nAChRs and that the parent molecule cytisine is effective in reducing both nicotine- and ethanol-self-administration in rats. However, whether 5-bromocytisine affects nicotine or ethanol self-administration was unknown. OBJECTIVES The present study compared the effects of 5-bromocytisine and cytisine on nicotine self-administration and further assessed the effect of daily drug injection on voluntary ethanol consumption in alcohol-preferring female rats. Animals were administered a 1.5mg/kg i.p. dose of 5-bromocytisine or cytisine every day for 15-16 days. RESULTS The initial efficacy of 5-bromocytisine and cytisine in reducing nicotine intake was similar (-80%) while for voluntary ethanol intake 5-bromocytisine was a superior inhibitor over cytisine (-78% and -40% respectively). The efficacy of cytisine began to diminish after 10 days of daily administration, which was attributed to tolerance development to its inhibitory effects both on nicotine and ethanol self-administration. Tolerance did not develop for 5-bromocytisine. CONCLUSION 5-Bromocytisine, a weaker α4β2 nAChR partial agonist than cytisine, also produces a sustained inhibition of both nicotine and ethanol self-administration, and unlike cytisine, it does not develop tolerance.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Mario Rivera-Meza
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile.
| | - Pablo Berríos-Cárcamo
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7710162, Chile.
| | - Bruce K Cassels
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago 7800003, Chile.
| |
Collapse
|
10
|
Kong D, Sun JX, Yang JQ, Li YS, Bi K, Zhang ZY, Wang KH, Luo HY, Zhu M, Xu Y. Ketogenic diet: a potential adjunctive treatment for substance use disorders. Front Nutr 2023; 10:1191903. [PMID: 37575322 PMCID: PMC10414993 DOI: 10.3389/fnut.2023.1191903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Substance use disorders (SUD) can lead to serious health problems, and there is a great interest in developing new treatment methods to alleviate the impact of substance abuse. In recent years, the ketogenic diet (KD) has shown therapeutic benefits as a dietary therapy in a variety of neurological disorders. Recent studies suggest that KD can compensate for the glucose metabolism disorders caused by alcohol use disorder by increasing ketone metabolism, thereby reducing withdrawal symptoms and indicating the therapeutic potential of KD in SUD. Additionally, SUD often accompanies increased sugar intake, involving neural circuits and altered neuroplasticity similar to substance addiction, which may induce cross-sensitization and increased use of other abused substances. Reducing carbohydrate intake through KD may have a positive effect on this. Finally, SUD is often associated with mitochondrial damage, oxidative stress, inflammation, glia dysfunction, and gut microbial disorders, while KD may potentially reverse these abnormalities and serve a therapeutic role. Although there is much indirect evidence that KD has a positive effect on SUD, the small number of relevant studies and the fact that KD leads to side effects such as metabolic abnormalities, increased risk of malnutrition and gastrointestinal symptoms have led to the limitation of KD in the treatment of SUD. Here, we described the organismal disorders caused by SUD and the possible positive effects of KD, aiming to provide potential therapeutic directions for SUD.
Collapse
Affiliation(s)
- Deshenyue Kong
- General Hospital of Eastern Theater Command, Nanjing, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia-xue Sun
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ji-qun Yang
- Third People’s Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, China
| | - Yuan-sen Li
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ke Bi
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zun-yue Zhang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Kun-hua Wang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Hua-you Luo
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Zhu
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu Xu
- General Hospital of Eastern Theater Command, Nanjing, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Wadsworth HA, Anderson EQ, Williams BM, Ronström JW, Moen JK, Lee AM, McIntosh JM, Wu J, Yorgason JT, Steffensen SC. Role of α6-Nicotinic Receptors in Alcohol-Induced GABAergic Synaptic Transmission and Plasticity to Cholinergic Interneurons in the Nucleus Accumbens. Mol Neurobiol 2023; 60:3113-3129. [PMID: 36802012 PMCID: PMC10690621 DOI: 10.1007/s12035-023-03263-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
The prevailing view is that enhancement of dopamine (DA) transmission in the mesolimbic system, consisting of DA neurons in the ventral tegmental area (VTA) that project to the nucleus accumbens (NAc), underlies the reward properties of ethanol (EtOH) and nicotine (NIC). We have shown previously that EtOH and NIC modulation of DA release in the NAc is mediated by α6-containing nicotinic acetylcholine receptors (α6*-nAChRs), that α6*-nAChRs mediate low-dose EtOH effects on VTA GABA neurons and EtOH preference, and that α6*-nAChRs may be a molecular target for low-dose EtOH. However, the most sensitive target for reward-relevant EtOH modulation of mesolimbic DA transmission and the involvement of α6*-nAChRs in the mesolimbic DA reward system remains to be elucidated. The aim of this study was to evaluate EtOH effects on GABAergic modulation of VTA GABA neurons and VTA GABAergic input to cholinergic interneurons (CINs) in the NAc. Low-dose EtOH enhanced GABAergic input to VTA GABA neurons that was blocked by knockdown of α6*-nAChRs. Knockdown was achieved either by α6-miRNA injected into the VTA of VGAT-Cre/GAD67-GFP mice or by superfusion of the α-conotoxin MII[H9A;L15A] (MII). Superfusion of MII blocked EtOH inhibition of mIPSCs in NAc CINs. Concomitantly, EtOH enhanced CIN firing rate, which was blocked by knockdown of α6*-nAChRs with α6-miRNA injected into the VTA of VGAT-Cre/GAD67-GFP mice. The firing rate of CINs was not enhanced by EtOH in EtOH-dependent mice, and low-frequency stimulation (LFS; 1 Hz, 240 pulses) caused inhibitory long-term depression at this synapse (VTA-NAc CIN-iLTD) which was blocked by knockdown of α6*-nAChR and MII. Ethanol inhibition of CIN-mediated evoked DA release in the NAc was blocked by MII. Taken together, these findings suggest that α6*-nAChRs in the VTA-NAc pathway are sensitive to low-dose EtOH and play a role in plasticity associated with chronic EtOH.
Collapse
Affiliation(s)
- Hillary A Wadsworth
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Elizabeth Q Anderson
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Benjamin M Williams
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Joakim W Ronström
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Janna K Moen
- Department of Pharmacology, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anna M Lee
- Department of Pharmacology, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - J Michael McIntosh
- School of Biological Sciences and Department of Psychiatry, University of Utah, Salt Lake City, UT, 84108, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jordan T Yorgason
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Scott C Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA.
| |
Collapse
|
12
|
Gano A, Deak T, Pautassi RM. A review on the reciprocal interactions between neuroinflammatory processes and substance use and misuse, with a focus on alcohol misuse. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:269-282. [PMID: 37148274 PMCID: PMC10524510 DOI: 10.1080/00952990.2023.2201944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/08/2023]
Abstract
Background: The last decade has witnessed a surge of findings implicating neuroinflammatory processes as pivotal players in substance use disorders. The directionality of effects began with the expectation that the neuroinflammation associated with prolonged substance misuse contributes to long-term neuropathological consequences. As the literature grew, however, it became evident that the interactions between neuroinflammatory processes and alcohol and drug intake were reciprocal and part of a pernicious cycle in which disease-relevant signaling pathways contributed to an escalation of drug intake, provoking further inflammation-signaling and thereby exacerbating the neuropathological effects of drug misuse.Objectives: The goal of this review and its associated special issue is to provide an overview of the emergent findings relevant to understanding these reciprocal interactions. The review highlights the importance of preclinical and clinical studies in testing and validation of immunotherapeutics as viable targets for curtailing substance use and misuse, with a focus on alcohol misuse.Methods: A narrative review of the literature on drug and neuroinflammation was conducted, as well as articles published in this Special Issue on Alcohol- and Drug-induced Neuroinflammation: Insights from Pre-clinical Models and Clinical Research.Results: We argue that (a) demographic variables and genetic background contribute unique sensitivity to drug-related neuroinflammation; (b) co-morbidities between substance use disorders and affect dysfunction may share common inflammation-related signatures that predict the efficacy of immunotherapeutic drugs; and (c) examination of polydrug interactions with neuroinflammation is a critical area where greater research emphasis is needed.Conclusions: This review provides an accessible and example-driven review of the relationship between drug misuse, neuroinflammatory processes, and their resultant neuropathological outcomes.
Collapse
Affiliation(s)
- Anny Gano
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, United States of America
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000, United States of America
| | - Ricardo Marcos Pautassi
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC – CONICET-Universidad Nacional de Córdoba), Córdoba, 5000, Argentina
| |
Collapse
|
13
|
Gheidi A, Fitzpatrick CJ, Gregory JD, Morrow JD. Nicotinic and muscarinic acetylcholine receptor antagonism dose-dependently decreases sign- but not goal-tracking behavior in male rats. Psychopharmacology (Berl) 2023; 240:871-880. [PMID: 36795109 PMCID: PMC10599605 DOI: 10.1007/s00213-023-06328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023]
Abstract
RATIONALE Acetylcholinergic antagonists have shown some promise in reducing addiction-related behaviors in both preclinical and clinical studies. However, the psychological mechanisms by which these drugs are able to affect addictive behavior remain unclear. A particular key process for the development of addiction is the attribution of incentive salience to reward-related cues, which can be specifically measured in animals using a Pavlovian conditioned approach procedure. When confronted with a lever that predicts food delivery, some rats engage with the lever directly (i.e., they sign track), indicating attribution of incentive-motivational properties to the lever itself. In contrast, others treat the lever as a predictive cue and approach the location of impending food delivery (i.e., they goal track), without treating the lever itself as a reward. OBJECTIVES We tested whether systemic antagonism of the either nicotinic or muscarinic acetylcholine receptors would selectively affect sign- or goal-tracking behavior, indicating a selective effect on incentive salience attribution. METHODS A total of 98 male Sprague Dawley rats were either given the muscarinic antagonist scopolamine (100, 50, or 10 µg/kg i.p.) or the nicotinic antagonist mecamylamine (0.3, 1.0, or 3 mg/kg i.p.) before being trained on a Pavlovian conditioned approach procedure. RESULTS Scopolamine dose-dependently decreased sign tracking behavior and increased goal-tracking behavior. Mecamylamine reduced sign-tracking but did not affect goal-tracking behavior. CONCLUSIONS Antagonism of either muscarinic or nicotinic acetylcholine receptors can reduce incentive sign-tracking behavior in male rats. This effect appears to be specifically due to a reduction in incentive salience attribution since goal-tracking either increased or was not affected by these manipulations.
Collapse
Affiliation(s)
- Ali Gheidi
- Department of Biomedical Sciences, Mercer University, Macon, USA
| | | | - Jordan D Gregory
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Jonathan D Morrow
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, USA.
- Department of Psychiatry, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
14
|
Kamens HM, Flarend G, Horton WJ. The role of nicotinic receptors in alcohol consumption. Pharmacol Res 2023; 190:106705. [PMID: 36813094 PMCID: PMC10083870 DOI: 10.1016/j.phrs.2023.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023]
Abstract
The use of alcohol causes significant morbidity and mortality across the globe. Alcohol use disorder (AUD) is defined by the excessive use of this drug despite a negative impact on the individual's life. While there are currently medications available to treat AUD, they have limited efficacy and several side effects. As such, it is essential to continue to look for novel therapeutics. One target for novel therapeutics is nicotinic acetylcholine receptors (nAChRs). Here we systematically review the literature on the involvement of nAChRs in alcohol consumption. Data from both genetic and pharmacology studies provide evidence that nAChRs modulate alcohol intake. Interestingly, pharmacological modulation of all nAChR subtypes examined can decrease alcohol consumption. The reviewed literature demonstrates that nAChRs should continue to be investigated as novel therapeutics for AUD.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, United States.
| | - Geneva Flarend
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, United States
| | - William J Horton
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
15
|
Sved AF, Caggiula AR, Donny EC. Elucidating the reinforcing effects of nicotine: a tribute to Nadia Chaudhri. Psychopharmacology (Berl) 2023; 240:417-430. [PMID: 36329195 PMCID: PMC11188050 DOI: 10.1007/s00213-022-06266-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Nadia Chaudhri worked with us as a graduate student in the Center for Neuroscience at the University of Pittsburgh from 1999 until she earned her PhD in 2005, a time that coincided with the discovery in our lab of the dual reinforcing actions of nicotine, a concept that she played an important role in shaping. The research that was described in her doctoral thesis is among the foundational pillars of the now well-accepted notion that nicotine acts as both a primary reinforcer and an amplifier of other reinforcer stimuli. This reinforcement-enhancing action of nicotine is robust and likely to be a powerful driver of nicotine use. Below, we discuss the evidence that these two actions of nicotine - primary reinforcement and reinforcement enhancement - are distinct and dissociable, a finding that Nadia was closely associated with. We go on to address two other topics that greatly interested Nadia during that time, the generalizability of the reinforcement-enhancing action of nicotine to multiple classes of reinforcing stimuli and potential sex differences in the dual reinforcing actions of nicotine. The research has greatly expanded since Nadia's involvement, but the core ideas that she helped to develop remain central to the concept of the dual reinforcing actions of nicotine and its importance for understanding the drivers of nicotine use.
Collapse
Affiliation(s)
- Alan F Sved
- Departments of Neuroscience, Psychiatry and Psychology and the Center for Neuroscience, University of Pittsburgh, 210 Langley Hall, Pittsburgh, PA, 15260, USA.
| | - Anthony R Caggiula
- Departments of Psychology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Eric C Donny
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| |
Collapse
|
16
|
Decker S, Davis G, Vahora I, Vukovic A, Patel P, Suryanarayanan A. Desformylflustrabromine (dFBr), a positive allosteric modulator of α4β2 nicotinic acetylcholine receptors decreases voluntary ethanol consumption and preference in male and female Sprague-Dawley rats. PLoS One 2022; 17:e0273715. [PMID: 36084045 PMCID: PMC9462806 DOI: 10.1371/journal.pone.0273715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Alcohol use disorder is a medical condition that impacts millions of individuals worldwide. Although there are a few pharmacotherapeutic options for alcohol-dependent individuals; there is a need for the development of novel and more effective therapeutic approaches. Alcohol and nicotine are commonly co-abused, and there is evidence that neuronal nicotinic acetylcholine receptors (nAChRs) play a role in both alcohol and nicotine dependence. Desformylflustrabromine (dFBr), a positive allosteric modulator of the α4β2 nAChRs has been shown to reduce nicotine intake, compulsive-like behavior and neuropathic pain in animal models. dFBr has also been previously shown to cross the blood-brain-barrier. We have recently shown that dFBr can attenuate the response to an acute, hypnotic dose of ethanol, via β2 nAchR. Here, we have investigated the effect of dFBr in modulating ethanol consumption using the intermittent access two-bottle choice (IA2BC) model of voluntary ethanol consumption in male and female Sprague Dawley rats. We show that dFBr selectively reduced ethanol but not sucrose consumption in the IA2BC model. Furthermore, dFBr decreased preference for ethanol in both male and female rats. No rebound increase in ethanol intake was observed after the washout period after dFBr treatment. The ability of dFBr to decrease ethanol consumption, along with its previously demonstrated ability to decrease nicotine self-administration in rodents, suggest that dFBr is an attractive therapeutic candidate to target both nicotine and alcohol abuse.
Collapse
Affiliation(s)
- Steven Decker
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
| | - Gregory Davis
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
| | - Imran Vahora
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
| | - Alen Vukovic
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
| | - Parth Patel
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
| | - Asha Suryanarayanan
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Modlinska K, Chrzanowska A, Goncikowska K, Pisula W. Influence of excessive sucrose consumption on exploratory behaviour in rats - possible implications for the brain reward system. Behav Brain Res 2022; 436:114085. [DOI: 10.1016/j.bbr.2022.114085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/01/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
|
18
|
King CP, Meyer PJ. The incentive amplifying effects of nicotine: Roles in alcohol seeking and consumption. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:171-218. [PMID: 35341566 DOI: 10.1016/bs.apha.2021.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nicotine has a unique profile among drugs of abuse. To the noninitiated user, nicotine has powerful aversive effects and its relatively weak euphorigenic effects undergo rapid tolerance. Despite this, nicotine is commonly abused despite negative heath consequences, and nicotine users have enormous difficulty quitting. Further, nicotine is one of the most commonly co-abused substances, in that it is often taken in combination with other drugs. One explanation of this polydrug use is that nicotine has multiple appetitive and consummatory conditioning effects. For example, nicotine is a reinforcement enhancer in that it can potently increase the incentive value of other stimuli, including those surrounding drugs of abuse such as alcohol. In addition, nicotine also has a unique profile of neurobiological effects that alter regulation of alcohol intake and interoception. This review discusses the psychological and biological mechanisms surrounding nicotine's appetitive conditioning and consummatory effects, particularly its interactions with alcohol.
Collapse
Affiliation(s)
- Christopher P King
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, United States; Clinical and Research Institute on Addictions, State University of New York at Buffalo, Buffalo, NY, United States
| | - Paul J Meyer
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
19
|
Hauser SR, Rodd ZA, Deehan GA, Liang T, Rahman S, Bell RL. Effects of adolescent substance use disorders on central cholinergic function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:175-221. [PMID: 34696873 DOI: 10.1016/bs.irn.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adolescence is a transitional period between childhood and adulthood, in which the individual undergoes significant cognitive, behavioral, physical, emotional, and social developmental changes. During this period, adolescents engage in experimentation and risky behaviors such as licit and illicit drug use. Adolescents' high vulnerability to abuse drugs and natural reinforcers leads to greater risk for developing substance use disorders (SUDs) during adulthood. Accumulating evidence indicates that the use and abuse of licit and illicit drugs during adolescence and emerging adulthood can disrupt the cholinergic system and its processes. This review will focus on the effects of peri-adolescent nicotine and/or alcohol use, or exposure, on the cholinergic system during adulthood from preclinical and clinical studies. This review further explores potential cholinergic agents and pharmacological manipulations to counteract peri-adolescent nicotine and/or alcohol abuse.
Collapse
Affiliation(s)
- S R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Z A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - G A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - T Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
20
|
Touchette JC, Moen JK, Robinson JM, Lee AM. Enhancement of alcohol aversion by the nicotinic acetylcholine receptor drug sazetidine-A. Addict Biol 2021; 26:e12908. [PMID: 32329567 DOI: 10.1111/adb.12908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022]
Abstract
The prevalence of alcohol use disorders (AUDs) has steadily increased in the United States over the last 30 years. Alcohol acts on multiple receptor systems including the nicotinic acetylcholine receptors (nAChRs), which are known to mediate alcohol consumption and reward. We previously reported that the preclinical drug sazetidine-A, a nAChR agonist and desensitizer, reduces alcohol consumption without affecting nicotine consumption in C57BL/6J mice. Here, we found that sazetidine-A enhances the expression of alcohol aversion without affecting the expression or acquisition of conditioned alcohol reward in C57BL/6J mice. Microinjection of sazetidine-A into the ventral midbrain targeting the ventral tegmental area (VTA) reduced binge alcohol consumption, implicating this region in mediating the effects of sazetidine-A. Furthermore, the sazetidine-A-induced reduction in alcohol consumption was mediated by non-α4 containing nAChRs, as sazetidine-A reduced binge alcohol consumption in both α4 knock-out and wild-type mice. Finally, we found that in mice pretreated with sazetidine-A, alcohol induced Fos transcript in Th-, but not Gad2-expressing neurons in the VTA as measured by increased Fos transcript expression. In summary, we find that sazetidine-A enhances the expression of alcohol aversion, which may underlie the reduction in alcohol consumption induced by sazetidine-A. Elucidating the identity of non-α4 nAChRs in alcohol aversion mechanisms will provide a better understanding the complex role of nAChRs in alcohol addiction and potentially reveal novel drug targets to treat AUDs.
Collapse
Affiliation(s)
| | - Janna K. Moen
- Graduate Program in Neuroscience University of Minnesota Minneapolis Minnesota USA
| | - Jenna M. Robinson
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
| | - Anna M. Lee
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
- Graduate Program in Neuroscience University of Minnesota Minneapolis Minnesota USA
| |
Collapse
|
21
|
Domi A, Barbier E, Adermark L, Domi E. Targeting the Opioid Receptors: A Promising Therapeutic Avenue for Treatment in “Heavy Drinking Smokers”. Alcohol Alcohol 2021; 56:127-138. [DOI: 10.1093/alcalc/agaa139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023] Open
Abstract
Abstract
Aims
Despite a general decline in tobacco use in the last decades, the prevalence of tobacco smoking in individuals with alcohol use disorder (AUD) remains substantial (45–50%). Importantly, the co-use of both substances potentiates the adverse effects, making it a significant public health problem. Substantial evidence suggests that AUD and Tobacco use disorder (TUD) may share common mechanisms. Targeting these mechanisms may therefore provide more effective therapy. Numerous studies describe a potential role of the endogenous opioid system in both AUD and TUD. Reviewing this literature, we aim to evaluate the efficacy of molecules that target the opioid system as promising therapeutic interventions for treating alcohol and tobacco co-use disorders.
Methods
We provide a synthesis of the current epidemiological knowledge of alcohol and tobacco co-use disorders. We evaluate clinical and preclinical research that focuses on the regulation of the endogenous opioid system in alcohol, nicotine, and their interactions.
Results
The epidemiological data confirm that smoking stimulates heavy drinking and facilitates alcohol craving. Pharmacological findings suggest that treatments that are efficacious in the dual addiction provide a beneficial treatment outcome in comorbid AUD and TUD. In this regard, MOP, DOP and NOP-receptor antagonists show promising results, while the findings prompt caution when considering KOP-receptor antagonists as a treatment option in alcohol and tobacco co-use disorders.
Conclusions
Existing literature suggests a role of the opioid system in sustaining the high comorbidity rates of AUD and TUD. Molecules targeting opioid receptors may therefore represent promising therapeutic interventions in ‘heavy drinking smokers.’
Collapse
Affiliation(s)
- Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy University of Gothenburg, Box 410, Gothenburg 405 30, Sweden
| | - Estelle Barbier
- Center for Social and Affective Neuroscience, Linköping University, Campus US, Entrance 65, Linköping 581 85, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy University of Gothenburg, Box 410, Gothenburg 405 30, Sweden
| | - Esi Domi
- Center for Social and Affective Neuroscience, Linköping University, Campus US, Entrance 65, Linköping 581 85, Sweden
| |
Collapse
|
22
|
Montanari C, Secci ME, Driskell A, McDonald KO, Schratz CL, Gilpin NW. Chronic nicotine increases alcohol self-administration in adult male Wistar rats. Psychopharmacology (Berl) 2021; 238:201-213. [PMID: 33000333 PMCID: PMC7796964 DOI: 10.1007/s00213-020-05669-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
RATIONALE Alcohol and nicotine co-dependence is common in humans, and nicotine increases alcohol drinking in humans without alcohol use disorder (AUD). Nevertheless, there is little basic research on the interactions between the reinforcing effects of these two drugs. OBJECTIVES The aim of this study was to investigate the effects of chronic nicotine injections on oral alcohol self-administration in alcohol non-dependent rats. METHODS After stable alcohol self-administration was reached (baseline) and a period without alcohol access, adult male rats were treated with chronic nicotine or saline injections for 105 days during which time they were tested intermittently for alcohol self-administration. There were 3 experimental groups: (1) saline, rats treated with saline for 105 days; (2) early nicotine, rats treated with nicotine for 70 days, and then with saline for 35 days; and (3) late nicotine: rats treated with saline for 35 days, and then with nicotine for 70 days. RESULTS Our results indicate that (1) chronic nicotine increases alcohol consumption regardless of whether exposure to alcohol was interrupted (early nicotine) or not (late nicotine) before the start of nicotine treatment, (2) the number of alcohol reinforcements correlates to blood-alcohol levels, and (3) alcohol self-administration rapidly decreases when nicotine is no longer available (early nicotine). CONCLUSIONS These discoveries may have clinical implications in social drinkers that use nicotine products, in that chronic nicotine can escalate alcohol drinking and cessation of nicotine exposure may decrease alcohol use.
Collapse
Affiliation(s)
- Christian Montanari
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Maria E Secci
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ashlyn Driskell
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Katherine O McDonald
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Connor L Schratz
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Nicholas W Gilpin
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.,Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.,Alcohol & Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.,Southeast Louisiana VA Healthcare System (SLVHCS), New Orleans, LA, 70119, USA
| |
Collapse
|
23
|
Ho D, Towns B, Grodin EN, Ray LA. A novel human laboratory model for screening medications for alcohol use disorder. Trials 2020; 21:947. [PMID: 33225963 PMCID: PMC7681966 DOI: 10.1186/s13063-020-04842-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background Alcohol use disorder (AUD) is a highly prevalent, chronic relapsing disorder with a high disease burden in the USA. Pharmacotherapy is a promising treatment method for AUD; however, the few FDA-approved medications are only modestly effective. Medications development for AUD is a high priority research area, but the cumbersome drug development process hinders many potential compounds from reaching approval. One area with major opportunities for improvement is the process of screening novel compounds for initial efficacy, also known as early phase 2 trials. Early phase 2 trials incorporate human laboratory paradigms to assess relevant clinical constructs, such as craving and subjective responses to alcohol. However, these controlled paradigms often lack the ecological validity of clinical trials. Therefore, early phase 2 trials can be more efficient and clinically meaningful if they combine the internal validity of experimental laboratory testing with the external validity of clinical trials. To that end, the current study aims to develop and validate a novel early efficacy paradigm, informed by smoking cessation literature, to screen novel medications for AUD. As an established AUD medication, naltrexone will serve as an active control to test both the practice quit attempt model and the efficacy of a promising AUD pharmacotherapy, varenicline. Methods Individuals with current AUD reporting intrinsic motivation to change their drinking will complete a week-long “practice quit attempt” while on study medication. Participants are randomized and blinded to either naltrexone, varenicline, or placebo. During the practice quit attempt, participants will complete daily visits over the phone and fill out online questionnaires regarding their drinking, alcohol craving, and mood. Additionally, participants will undergo two alcohol cue-reactivity sessions. Discussion The successful completion of this study will advance medications development by proposing and validating a novel early efficacy model for screening AUD pharmacotherapies, which in turn can serve as an efficient strategy for making go/no-go decisions as to whether to proceed with clinical trials. Trial registration ClinicalTrials.gov NCT04249882. Registered on 31 January 2020.
Collapse
Affiliation(s)
- Diana Ho
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA, 90095-1563, USA
| | - Brandon Towns
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA, 90095-1563, USA
| | - Erica N Grodin
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA, 90095-1563, USA
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA, 90095-1563, USA. .,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Söderpalm B, Danielsson K, Bejczy A, Adermark L, Ericson M. Combined administration of varenicline and bupropion produces additive effects on accumbal dopamine and abolishes the alcohol deprivation effect in rats. Addict Biol 2020; 25:e12807. [PMID: 31293045 DOI: 10.1111/adb.12807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023]
Abstract
Alcohol use disorder (AUD) is detrimental to health and causes preterm death. Unfortunately, available pharmacological and nonpharmacological treatments have small effect sizes, and improved treatments are needed. Smoking and AUD share heritability and are pharmacologically associated, since drug-induced dopamine (DA) output in nucleus accumbens (nAc) involves nicotinic acetylcholine receptors (nAChRs) in both cases. Smoking therapy agents, such as the partial nAChR agonist varenicline or the DA/noradrenaline transporter inhibitor bupropion, could potentially also be used for AUD. To investigate this hypothesis, the effects of varenicline, bupropion, or a combination of the two on nAc DA levels, ethanol intake, and the alcohol deprivation effect (ADE) were examined. In vivo microdialysis showed that varenicline (1.5 mg/kg) and bupropion (2.5, 5, or 10 mg/kg) elevated nAc DA levels and that the combination produced additive effects. Five days treatment with varenicline, bupropion, or the combination did not suppress ethanol consumption, as compared with vehicle-treated control. However, combined administration of varenicline and bupropion completely blocked the ADE when readministering ethanol following 14 days of abstinence. Since ADE is considered highly predictive for the clinical outcome in man, our data suggest that the combination of varenicline and bupropion could be a promising treatment for AUD.
Collapse
Affiliation(s)
- Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of Gothenburg Gothenburg Sweden
- BeroendeklinikenSahlgrenska University Hospital Gothenburg Sweden
| | - Klara Danielsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of Gothenburg Gothenburg Sweden
| | - Andrea Bejczy
- BeroendeklinikenSahlgrenska University Hospital Gothenburg Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of Gothenburg Gothenburg Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of Gothenburg Gothenburg Sweden
| |
Collapse
|
25
|
Crummy EA, O'Neal TJ, Baskin BM, Ferguson SM. One Is Not Enough: Understanding and Modeling Polysubstance Use. Front Neurosci 2020; 14:569. [PMID: 32612502 PMCID: PMC7309369 DOI: 10.3389/fnins.2020.00569] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Substance use disorder (SUD) is a chronic, relapsing disease with a highly multifaceted pathology that includes (but is not limited to) sensitivity to drug-associated cues, negative affect, and motivation to maintain drug consumption. SUDs are highly prevalent, with 35 million people meeting criteria for SUD. While drug use and addiction are highly studied, most investigations of SUDs examine drug use in isolation, rather than in the more prevalent context of comorbid substance histories. Indeed, 11.3% of individuals diagnosed with a SUD have concurrent alcohol and illicit drug use disorders. Furthermore, having a SUD with one substance increases susceptibility to developing dependence on additional substances. For example, the increased risk of developing heroin dependence is twofold for alcohol misusers, threefold for cannabis users, 15-fold for cocaine users, and 40-fold for prescription misusers. Given the prevalence and risk associated with polysubstance use and current public health crises, examining these disorders through the lens of co-use is essential for translatability and improved treatment efficacy. The escalating economic and social costs and continued rise in drug use has spurred interest in developing preclinical models that effectively model this phenomenon. Here, we review the current state of the field in understanding the behavioral and neural circuitry in the context of co-use with common pairings of alcohol, nicotine, cannabis, and other addictive substances. Moreover, we outline key considerations when developing polysubstance models, including challenges to developing preclinical models to provide insights and improve treatment outcomes.
Collapse
Affiliation(s)
- Elizabeth A Crummy
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Timothy J O'Neal
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Britahny M Baskin
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Susan M Ferguson
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Alcohol and Drug Abuse Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
26
|
Unequal interactions between alcohol and nicotine co-consumption: suppression and enhancement of concurrent drug intake. Psychopharmacology (Berl) 2020; 237:967-978. [PMID: 31858160 PMCID: PMC7124972 DOI: 10.1007/s00213-019-05426-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022]
Abstract
RATIONALE Alcohol and nicotine addiction are prevalent conditions that co-occur. Despite the prevalence of co-use, factors that influence the suppression and enhancement of concurrent alcohol and nicotine intake are largely unknown. OBJECTIVES Our goals were to assess how nicotine abstinence and availability influenced concurrent alcohol consumption and to determine the impact of quinine adulteration of alcohol on aversion-resistant alcohol consumption and concurrent nicotine consumption. METHODS Male and female C57BL/6J mice voluntarily consumed unsweetened alcohol, nicotine, and water in a chronic 3-bottle choice procedure. In experiment 1, nicotine access was removed for 1 week and re-introduced the following week, while the alcohol and water bottles remained available at all times. In experiment 2, quinine (100-1000 μM) was added to the 20% alcohol bottle, while the nicotine and water bottles remained unaltered. RESULTS In experiment 1, we found that alcohol consumption and preference were unaffected by the presence or absence of nicotine access in both male and female mice. In experiment 2a, we found that quinine temporarily suppressed alcohol intake and enhanced concurrent nicotine, but not water, preference in both male and female mice. In experiment 2b, chronic quinine suppression of alcohol intake increased nicotine consumption and preference in female mice without affecting water preference, whereas it increased water and nicotine preference in male mice. CONCLUSIONS Quinine suppression of alcohol consumption enhanced the preference for concurrent nicotine preference in male and female mice, suggesting that mice compensate for the quinine adulteration of alcohol by increasing their nicotine preference.
Collapse
|
27
|
Singh L, Joshi T, Tewari D, Echeverría J, Mocan A, Sah AN, Parvanov E, Tzvetkov NT, Ma ZF, Lee YY, Poznański P, Huminiecki L, Sacharczuk M, Jóźwik A, Horbańczuk JO, Feder-Kubis J, Atanasov AG. Ethnopharmacological Applications Targeting Alcohol Abuse: Overview and Outlook. Front Pharmacol 2020; 10:1593. [PMID: 32116660 PMCID: PMC7034411 DOI: 10.3389/fphar.2019.01593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption is the cause of several diseases and thus is of a major concern for society. Worldwide alcohol consumption has increased by many folds over the past decades. This urgently calls for intervention and relapse counteract measures. Modern pharmacological solutions induce complete alcohol self-restraint and prevent relapse, but they have many side effects. Natural products are most promising as they cause fewer adverse effects. Here we discuss in detail the medicinal plants used in various traditional/folklore medicine systems for targeting alcohol abuse. We also comprehensively describe preclinical and clinical studies done on some of these plants along with the possible mechanisms of action.
Collapse
Affiliation(s)
- Laxman Singh
- Centre for Biodiversity Conservation & Management, G.B. Pant National Institute of Himalayan Environment & Sustainable Development, Almora, India
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University Bhimtal Campus, Nainital, India
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Javier Echeverría
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University Bhimtal Campus, Nainital, India
| | - Emil Parvanov
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Division BIOCEV, Prague, Czechia
| | - Nikolay T. Tzvetkov
- Institute of Molecular Biology “Roumen Tsanev”, Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department Global R&D, NTZ Lab Ltd., Sofia, Bulgaria
| | - Zheng Feei Ma
- Department of Public Health, Xi’an Jiaotong-Liverpool University, Suzhou, China
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Piotr Poznański
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Lukasz Huminiecki
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Mariusz Sacharczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Artur Jóźwik
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Jarosław O. Horbańczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Joanna Feder-Kubis
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego, Wrocław, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Quiroz G, Sotomayor-Zárate R, González-Gutierrez JP, Vizcarra F, Moraga F, Bermudez I, Reyes-Parada M, Quintanilla ME, Lagos D, Rivera-Meza M, Iturriaga-Vásquez P. UFR2709, a Nicotinic Acetylcholine Receptor Antagonist, Decreases Ethanol Intake in Alcohol-Preferring Rats. Front Pharmacol 2019; 10:1429. [PMID: 31849674 PMCID: PMC6901503 DOI: 10.3389/fphar.2019.01429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric acetylcholine-gated cation channels, have been suggested as molecular targets for the treatment of alcohol abuse and dependence. Here, we examined the effect of the competitive nAChR antagonist UFR2709 on the alcohol consumption of high-alcohol-drinking UChB rats. UChB rats were given free access to ethanol for 24-h periods in a two-bottle free choice paradigm and their ethanol and water intake were measured. The animals were i.p. injected daily for 17 days with a 10, 5, 2.5, or 1 mg/kg dose of UFR2709. Potential confounding motor effects of UFR2709 were assessed by examining the locomotor activity of animals administered the highest dose of UR2709 tested (10 mg/kg i.p.). UFR2709 reduced ethanol consumption and ethanol preference and increased water consumption in a dose-dependent manner. The most effective dose of UFR2709 was 2.5 mg/kg, which induced a 56% reduction in alcohol consumption. Administration of UFR2709 did not affect the weight or locomotor activity of the rats, suggesting that its effects on alcohol consumption and preference were mediated by specific nAChRs.
Collapse
Affiliation(s)
- Gabriel Quiroz
- Programa de Doctorado en Farmacología, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | - Franco Vizcarra
- Laboratorio de Síntesis Orgánica y Farmacología Molecular, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco, Chile
| | - Felipe Moraga
- Laboratorio de Síntesis Orgánica y Farmacología Molecular, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco, Chile
| | - Isabel Bermudez
- Deptartment of Biological & Medical Sciences, Faculty of Health & Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - María Elena Quintanilla
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego Lagos
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mario Rivera-Meza
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Patricio Iturriaga-Vásquez
- Laboratorio de Síntesis Orgánica y Farmacología Molecular, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco, Chile.,Center of Excellence in Biotechnology Research Applied to the Environment, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
29
|
Weera MM, Agim ZS, Cannon JR, Chester JA. Genetic correlations between nicotine reinforcement-related behaviors and propensity toward high or low alcohol preference in two replicate mouse lines. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12515. [PMID: 30129253 PMCID: PMC6384161 DOI: 10.1111/gbb.12515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 11/26/2022]
Abstract
Common genetic factors may contribute to the high comorbidity between tobacco smoking and alcohol use disorder. Here, we assessed behavioral and biological effects of nicotine in replicate mouse lines selectively bred for high (HAP2/3) or low alcohol preference (LAP2/3). In Experiment 1, free-choice (FC) oral nicotine and quinine intake were assessed in HAP2/3 and LAP2/3 mice. Effects of nicotinic acetylcholine receptor blockade by mecamylamine on nicotine intake in HAP2 mice were also examined. In Experiment 2, HAP2/3 and LAP2/3 mice were tested for differences in sensitivity to nicotine-induced taste conditioning. In Experiment 3, the effects of a single nicotine injection on nucleus accumbens (NAc) and dorsal striatum monoamine levels in HAP2/3 and LAP2/3 mice were tested. In Experiment 1, HAP2/3 mice showed greater nicotine intake and intake ratio than LAP2/3 mice. There were no line differences in quinine intake. Mecamylamine reduced nicotine intake and intake ratio in HAP2 mice. In Experiment 2, HAP2/3 mice showed weaker nicotine-induced conditioned taste aversion (CTA) compared with LAP2/3 mice. In Experiment 3, nicotine treatment increased NAc dopamine turnover across both HAP2/3 and LAP2/3 mouse lines. These results show that there is a positive genetic correlation between oral alcohol intake (high alcohol intake/preference selection phenotype) and oral nicotine intake and a negative genetic correlation between oral alcohol intake and sensitivity to nicotine-induced CTA.
Collapse
Affiliation(s)
- Marcus M. Weera
- Department of Psychology, Purdue University, West Lafayette, IN 47907
| | - Zeynep S. Agim
- School of Health Sciences, Purdue University, West Lafayette, IN 47907
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907
| | - Julia A. Chester
- Department of Psychology, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
30
|
Quiroz G, Guerra-Díaz N, Iturriaga-Vásquez P, Rivera-Meza M, Quintanilla ME, Sotomayor-Zárate R. Erysodine, a competitive antagonist at neuronal nicotinic acetylcholine receptors, decreases ethanol consumption in alcohol-preferring UChB rats. Behav Brain Res 2018; 349:169-176. [PMID: 29704599 DOI: 10.1016/j.bbr.2018.04.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
Alcohol abuse is a worldwide health problem with high economic costs to health systems. Emerging evidence suggests that modulation of brain nicotinic acetylcholine receptors (nAChRs) may be a therapeutic target for alcohol dependence. In this work, we assess the effectiveness of four doses of erysodine (1.5, 2.0, 4.0 or 8.0 mg/kg/day, i.p.), a competitive antagonist of nAChRs, on voluntary ethanol consumption behavior in alcohol-preferring UChB rats, administered during three consecutive days. Results show that erysodine administration produces a dose-dependent reduction in ethanol consumption respect to saline injection (control group). The highest doses of erysodine (4 and 8 mg/kg) reduce (45 and 66%, respectively) the ethanol intake during treatment period and first day of post-treatment compared to control group. While, the lowest doses of erysodine (1.5 and 2 mg/kg) only reduce ethanol intake during one day of treatment period. These effective reductions in ethanol intake were 23 and 29% for 1.5 and 2 mg/kg erysodine, respectively. Locomotor activity induced by a high dose of erysodine (10 mg/kg) was similar to those observed with saline injection in control rats, showing that the reduction in ethanol intake was not produced by hypolocomotor effect induced by erysodine. This is the first report showing that erysodine reduces ethanol intake in UChB rats in a dose-dependent manner. Our results highlight the role of nAChRs in the reward effects of ethanol and its modulation as a potentially effective pharmacological alternative for alcohol dependence treatment.
Collapse
Affiliation(s)
- Gabriel Quiroz
- Programa de Doctorado en Farmacología, Universidad de Chile, Santiago, Chile
| | - Nicolás Guerra-Díaz
- Programa de Doctorado en Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Patricio Iturriaga-Vásquez
- Laboratorio de Farmacoquímica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco, Chile
| | - Mario Rivera-Meza
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - María Elena Quintanilla
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, CENFI, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
31
|
Silva CP, Horton WJ, Caruso MJ, Sebastian A, Klein LC, Albert I, Kamens HM. The influence of adolescent nicotine exposure on ethanol intake and brain gene expression. PLoS One 2018; 13:e0198935. [PMID: 29912970 PMCID: PMC6005571 DOI: 10.1371/journal.pone.0198935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023] Open
Abstract
Nicotine and alcohol are often co-abused. Adolescence is a vulnerable period for the initiation of both nicotine and alcohol use, which can lead to subsequent neurodevelopmental and behavioral alterations. It is possible that during this vulnerable period, use of one drug leads to neurobiological alterations that affect subsequent consumption of the other drug. The aim of the present study was to determine the effect of nicotine exposure during adolescence on ethanol intake, and the effect of these substances on brain gene expression. Forty-three adolescent female C57BL/6J mice were assigned to four groups. In the first phase of the experiment, adolescent mice (PND 36-41 days) were exposed to three bottles filled with water or nicotine (200 μg/ml) for 22 h a day and a single bottle of water 2 h a day for six days. In the second phase (PND 42-45 days), the 4-day Drinking-in-the-Dark paradigm consisting of access to 20% v/v ethanol or water for 2h or 4h (the last day) was overlaid during the time when the mice did not have nicotine available. Ethanol consumption (g/kg) and blood ethanol concentrations (BEC, mg %) were measured on the final day and whole brains including the cerebellum, were dissected for RNA sequencing. Differentially expressed genes (DEG) were detected with CuffDiff and gene networks were built using WGCNA. Prior nicotine exposure increased ethanol consumption and resulting BEC. Significant DEG and biological pathways found in the group exposed to both nicotine and ethanol included genes important in stress-related neuropeptide signaling, hypothalamic-pituitary-adrenal (HPA) axis activity, glutamate release, GABA signaling, and dopamine release. These results replicate our earlier findings that nicotine exposure during adolescence increases ethanol consumption and extends this work by examining gene expression differences which could mediate these behavioral effects.
Collapse
Affiliation(s)
- Constanza P. Silva
- Biobehavioral Health Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - William J. Horton
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael J. Caruso
- Biobehavioral Health Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Aswathy Sebastian
- Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Laura C. Klein
- Biobehavioral Health Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Istvan Albert
- Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Helen M. Kamens
- Biobehavioral Health Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
32
|
Touchette JC, Maertens JJ, Mason MM, O'Rourke KY, Lee AM. The nicotinic receptor drug sazetidine-A reduces alcohol consumption in mice without affecting concurrent nicotine consumption. Neuropharmacology 2018; 133:63-74. [PMID: 29355641 PMCID: PMC5858984 DOI: 10.1016/j.neuropharm.2018.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 01/01/2023]
Abstract
Alcohol and nicotine addiction are frequently co-morbid. The nicotinic acetylcholine receptors (nAChRs) are critical for both alcohol and nicotine addiction mechanisms, since nAChR drugs that reduce nicotine consumption have been shown to also reduce alcohol consumption. Sazetidine-A, a pre-clinical nAChR drug with agonist and desensitizing effects at α4β2 and α7 nAChRs, has been reported to reduce alcohol consumption and nicotine self-administration in rats when administered at high doses. However, this effect has not been replicated in mice. In this study, we examined the effect of sazetidine-A on alcohol and nicotine consumption in male and female mice utilizing voluntary oral consumption procedures previously developed in our lab. We found that sazetidine-A (1 mg/kg, i.p) reduced overnight alcohol consumption, but did not affect nicotine consumption when presented either alone or concurrently with alcohol. Sazetidine-A did not reduce water or saccharin consumption at any dose tested. In a chronic co-consumption experiment in which either alcohol or nicotine was re-introduced after one week of forced abstinence, sazetidine-A attenuated post-abstinence consumption of alcohol but not nicotine. Sazetidine-A also significantly reduced alcohol consumption in an acute, binge drinking-in-the-dark procedure. Finally, we tested the effect of sazetidine-A on alcohol withdrawal, and found that sazetidine-A significantly reduced handling-induced convulsions during alcohol withdrawal. Collectively, these data suggest a novel role for the nAChR targets of sazetidine-A in specifically mediating alcohol consumption, separate from the involvement of nAChRs in mediating nicotine consumption. Delineation of this pathway may provide insight into novel therapies for the treatment of alcohol use disorders.
Collapse
Affiliation(s)
| | - Jamie J Maertens
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Margaret M Mason
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kyu Y O'Rourke
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anna M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
33
|
Qian J, Mummalaneni S, Larsen J, Grider JR, Spielman AI, Özdener MH, Lyall V. Nicotinic acetylcholine receptor (CHRN) expression and function in cultured human adult fungiform (HBO) taste cells. PLoS One 2018. [PMID: 29513745 PMCID: PMC5841828 DOI: 10.1371/journal.pone.0194089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In rodents, CHRNs are involved in bitter taste transduction of nicotine and ethanol. Currently, it is not clear if CHRNs are expressed in human taste cells and if they play a role in transducing the bitter taste of nicotine and ethanol or in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of CHRNs in HBO cells. Using molecular techniques, we demonstrate that a subset of HBO cells express CHRNs that also co-express TRPM5, T1R3 or T2R38. Exposing HBO cells to nicotine or ethanol acutely or to nicotine chronically induced a differential increase in the expression of CHRN mRNA and protein in a dose- and time-dependent manner. Acutely exposing HBO cells to a mixture containing nicotine plus ethanol induced a smaller increase in CHRN mRNAs relative to nicotine or ethanol treatment alone. A subset of HBO cells responded to nicotine, acetylcholine and ATP with a transient increase in [Ca2+]i. Nicotine effects on [Ca2+]i were mecamylamine sensitive. Brain-derived neurotrophic factor (BDNF) protein was detected in HBO cells using ELISA. Acute nicotine exposure decreased BDNF in HBO cells and increased BDNF release in the medium. CHRNs were also detected in HEK293 cells by RT-PCR. Unlike HBO cells, CHRNs were localized in most of HEK293 cells and majority of HEK293 cells responded to nicotine and ethanol stimulation with a transient increase in [Ca2+]i. BDNF levels in HEK293 cells were significantly higher than in HBO cells but the nicotine induced release of BDNF in the media was a fraction of the BDNF cellular content. We conclude that CHRNs are expressed in TRPM5 positive HBO cells. CHRN mRNA expression is modulated by exposure to nicotine and ethanol in a dose- and time-dependent manner. Nicotine induces the synthesis and release of BDNF in HBO cells.
Collapse
Affiliation(s)
- Jie Qian
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Shobha Mummalaneni
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - James Larsen
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - John R. Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
| | | | | | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
- * E-mail:
| |
Collapse
|
34
|
Barajaz AM, Kliethermes CL. An assessment of the utilization of the preclinical rodent model literature in clinical trials of putative therapeutics for the treatment of alcohol use disorders. Drug Alcohol Depend 2017; 181:77-84. [PMID: 29035708 DOI: 10.1016/j.drugalcdep.2017.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Rodent models of Alcohol Use Disorders (AUD) are used extensively by preclinical researchers to develop new therapeutics for the treatment of AUD. Although these models play an important role in the development of novel, targeted therapeutics, their role in bringing therapeutics to clinical trials is unclear, as off-label use of existing medications not approved for the treatment of AUD is commonly seen in the clinic and clinical trials. METHOD In the current study, we used the Clinicaltrials.gov database to obtain a list of drugs that have been tested for efficacy in a clinical trial between 1997 and 2017. We then conducted a set of literature searches to determine which of the 98 unique drugs we identified had shown efficacy in a rodent model of an AUD prior to being tested in a clinical trial. RESULTS We found that slightly less than half of the drugs tested in clinical trials (48%) had shown prior efficacy in any rodent model of an AUD, while the remaining 52% of drugs were used off-label, or in some cases, following non-published studies. CONCLUSION This study raises the question of how clinical researchers incorporate results from preclinical studies in the decision to bring a drug to a clinical trial. Our results underscore the need for ongoing communication among preclinical and clinical researchers.
Collapse
Affiliation(s)
- Ashley M Barajaz
- Drake University, Department of Psychology and Neuroscience, 1344 27th Street, Des Moines, IA 50311, United States
| | - Christopher L Kliethermes
- Drake University, Department of Psychology and Neuroscience, 1344 27th Street, Des Moines, IA 50311, United States.
| |
Collapse
|
35
|
Weera MM, Fields MA, Tapp DN, Grahame NJ, Chester JA. Effects of Nicotine on Alcohol Drinking in Female Mice Selectively Bred for High or Low Alcohol Preference. Alcohol Clin Exp Res 2017; 42:432-443. [PMID: 29144544 DOI: 10.1111/acer.13555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/08/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Studies show that repeated nicotine use associates with high alcohol consumption in humans and that nicotine exposure sometimes increases alcohol consumption in animal models. However, the relative roles of genetic predisposition to high alcohol consumption, the alcohol drinking patterns, and the timing of nicotine exposure both with respect to alcohol drinking and developmental stage remain unclear. The studies here manipulated all these variables, using mice selectively bred for differences in free-choice (FC) alcohol consumption to elucidate the role of genetics and nicotine exposure in alcohol consumption behaviors. METHODS In Experiments 1 and 2, we assessed the effects of repeated nicotine (0, 0.5, or 1.5 mg/kg) injections immediately before binge-like (drinking-in-the-dark; Experiment 1) or during FC alcohol access (Experiment 2) on these alcohol drinking behaviors (immediately after injections and during re-exposure to alcohol access 14 days later) in adult high- (HAP2) and low-alcohol-preferring (LAP2) female mice (co-exposure model). In Experiments 3 and 4, we assessed the effects of repeated nicotine (0, 0.5, or 1.5 mg/kg) injections 14 days prior to binge-like and FC alcohol access on these alcohol drinking behaviors in adolescent HAP2 and LAP2 female mice (Experiment 3) or adult HAP2 female mice (Experiment 4). RESULTS In Experiment 1, we found that repeated nicotine (0.5 and 1.5 mg/kg) and alcohol co-exposure significantly increased binge-like drinking behavior in HAP2 but not LAP2 mice during the re-exposure phase after a 14-day abstinence period. In Experiment 2, 1.5 mg/kg nicotine injections significantly reduced FC alcohol intake and preference in the third hour postinjection in HAP2 but not LAP2 mice. No significant effects of nicotine treatment on binge-like or FC alcohol drinking were observed in Experiments 3 and 4. CONCLUSIONS These results show that the temporal parameters of nicotine and alcohol exposure, pattern of alcohol access, and genetic predisposition for alcohol preference influence nicotine's effects on alcohol consumption. These findings in selectively bred mice suggest that humans with a genetic history of alcohol use disorders may be more vulnerable to develop nicotine and alcohol co-use disorders.
Collapse
Affiliation(s)
- Marcus M Weera
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Molly A Fields
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Danielle N Tapp
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Nicholas J Grahame
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Julia A Chester
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
36
|
Abreu-Villaça Y, Manhães AC, Krahe TE, Filgueiras CC, Ribeiro-Carvalho A. Tobacco and alcohol use during adolescence: Interactive mechanisms in animal models. Biochem Pharmacol 2017; 144:1-17. [DOI: 10.1016/j.bcp.2017.06.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022]
|
37
|
Söderpalm B, Lidö HH, Ericson M. The Glycine Receptor-A Functionally Important Primary Brain Target of Ethanol. Alcohol Clin Exp Res 2017; 41:1816-1830. [PMID: 28833225 DOI: 10.1111/acer.13483] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022]
Abstract
Identification of ethanol's (EtOH) primary molecular brain targets and determination of their functional role is an ongoing, important quest. Pentameric ligand-gated ion channels, that is, the nicotinic acetylcholine receptor, the γ-aminobutyric acid type A receptor, the 5-hydroxytryptamine3 , and the glycine receptor (GlyR), are such targets. Here, aspects of the structure and function of these receptors and EtOH's interaction with them are briefly reviewed, with special emphasis on the GlyR and the importance of this receptor and its ligands for EtOH pharmacology. It is suggested that GlyRs are involved in (i) the dopamine-activating effect of EtOH, (ii) regulating EtOH intake, and (iii) the relapse preventing effect of acamprosate. Exploration of the GlyR subtypes involved and efforts to develop subtype specific agonists or antagonists may offer new pharmacotherapies for alcohol use disorders.
Collapse
Affiliation(s)
- Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Helga H Lidö
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
38
|
Ostroumov A, Dani JA. Convergent Neuronal Plasticity and Metaplasticity Mechanisms of Stress, Nicotine, and Alcohol. Annu Rev Pharmacol Toxicol 2017; 58:547-566. [PMID: 28977763 DOI: 10.1146/annurev-pharmtox-010617-052735] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stress and tobacco smoking are risk factors for alcoholism, but the underlying neural mechanisms are not well understood. Although stress, nicotine, and alcohol have broad, individual effects in the brain, some of their actions converge onto the same mechanisms and circuits. Stress and nicotine augment alcohol-related behaviors, in part via modulation of alcohol-evoked neuronal plasticity and metaplasticity mechanisms. Stress modulates alcohol-evoked plasticity via the release of signaling molecules that influence synaptic transmission. Nicotine also activates some of the same signaling molecules, cells, and circuits, producing a convergence of both stress and nicotine onto common plasticity mechanisms that influence alcohol self-administration. We describe several forms of alcohol-induced plasticity, including classic Hebbian plasticity at glutamatergic synapses, and we highlight less appreciated forms, such as non-Hebbian and GABAergic synaptic plasticity. Risk factors such as stress and nicotine initiate lasting neural changes that modify subsequent alcohol-induced synaptic plasticity and increase the vulnerability to alcohol addiction.
Collapse
Affiliation(s)
- Alexey Ostroumov
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, Pennsylvania 19104, USA; ,
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, Pennsylvania 19104, USA; ,
| |
Collapse
|
39
|
Zipori D, Sadot-Sogrin Y, Goltseker K, Even-Chen O, Rahamim N, Shaham O, Barak S. Re-exposure to nicotine-associated context from adolescence enhances alcohol intake in adulthood. Sci Rep 2017; 7:2479. [PMID: 28559549 PMCID: PMC5449395 DOI: 10.1038/s41598-017-02177-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/04/2017] [Indexed: 11/17/2022] Open
Abstract
Alcohol and nicotine are the two most commonly-abused substances and are often used together. Nicotine enhances alcohol-drinking behaviors in humans and in animals, and was suggested to enhance the reinforcing properties of other reinforcers. Here, we show that nicotine-associated environment, rather than nicotine itself, enhances alcohol intake in rats. Adolescent rats received repeated intermittent injections of nicotine (0.4 mg/kg, i.p., 5 injections, every 3rd day) or saline. The injection was paired with their home cage, or with the subsequent alcohol self-administration context. Rats were then trained to self-administer 20% alcohol. Nicotine given in the home cage did not alter subsequent alcohol intake. However, pairing nicotine with the operant chamber during adolescence led to a long-lasting increased alcohol self-administration in adulthood, compared to nicotine pre-treatment in other contexts. This effect persisted 3 months after nicotine cessation, in a relapse test after abstinence. Furthermore, re-exposure to the nicotine-associated context in adult rats led to a decrease in glial cell line-derived neurotrophic factor (Gdnf) mRNA expression in the ventral tegmental area, an effect that leads to increased alcohol consumption, as we have previously reported. Our findings suggest that retrieval of nicotine-associated contextual memories from adolescence may gate alcohol intake in adulthood, with a possible involvement of GDNF.
Collapse
Affiliation(s)
- Dor Zipori
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Koral Goltseker
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oren Even-Chen
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nofar Rahamim
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Shaham
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
40
|
Yardley MM, Ray LA. Medications development for the treatment of alcohol use disorder: insights into the predictive value of animal and human laboratory models. Addict Biol 2017; 22:581-615. [PMID: 26833803 DOI: 10.1111/adb.12349] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/20/2022]
Abstract
Development of effective treatments for alcohol use disorder (AUD) represents an important public health goal. This review provides a summary of completed preclinical and clinical studies testing pharmacotherapies for the treatment of AUD. We discuss opportunities for improving the translation from preclinical findings to clinical trial outcomes, focusing on the validity and predictive value of animal and human laboratory models of AUD. Specifically, while preclinical studies of medications development have offered important insights into the neurobiology of the disorder and alcohol's molecular targets, limitations include the lack of standardized methods and streamlined processes whereby animal studies can readily inform human studies. Behavioral pharmacology studies provide a less expensive and valuable opportunity to assess the feasibility of a pharmacotherapy prior to initiating larger scale clinical trials by providing insights into the mechanism of the drug, which can then inform recruitment, analyses, and assessments. Summary tables are provided to illustrate the wide range of preclinical, human laboratory, and clinical studies of medications development for alcoholism. Taken together, this review highlights the challenges associated with animal paradigms, human laboratory studies, and clinical trials with the overarching goal of advancing treatment development and highlighting opportunities to bridge the gap between preclinical and clinical research.
Collapse
Affiliation(s)
- Megan M. Yardley
- Department of Psychology; University of California, Los Angeles; Los Angeles CA USA
| | - Lara A. Ray
- Department of Psychology; University of California, Los Angeles; Los Angeles CA USA
- Department of Psychiatry and Biobehavioral Sciences; University of California, Los Angeles; Los Angeles CA USA
| |
Collapse
|
41
|
Tolu S, Marti F, Morel C, Perrier C, Torquet N, Pons S, de Beaurepaire R, Faure P. Nicotine enhances alcohol intake and dopaminergic responses through β2* and β4* nicotinic acetylcholine receptors. Sci Rep 2017; 7:45116. [PMID: 28332590 PMCID: PMC5362818 DOI: 10.1038/srep45116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/17/2017] [Indexed: 12/25/2022] Open
Abstract
Alcohol and nicotine are the most widely co-abused drugs. Both modify the activity of dopaminergic (DA) neurons of the Ventral Tegmental Area (VTA) and lead to an increase in DA release in the Nucleus Accumbens, thereby affecting the reward system. Evidences support the hypothesis that distinct nicotinic acetylcholine receptors (nAChRs), the molecular target of acetylcholine (ACh) and exogenous nicotine, are also in addition implicated in the response to alcohol. The precise molecular and neuronal substrates of this interaction are however not well understood. Here we used in vivo electrophysiology in the VTA to characterise acute and chronic interactions between nicotine and alcohol. Simultaneous injections of the two drugs enhanced their responses on VTA DA neuron firing and chronic exposure to nicotine increased alcohol-induced DA responses and alcohol intake. Then, we assessed the role of β4 * nAChRs, but not β2 * nAChRs, in mediating acute responses to alcohol using nAChR subtypes knockout mice (β2-/- and β4-/- mice). Finally, we showed that nicotine-induced modifications of alcohol responses were absent in β2-/- and β4-/- mice, suggesting that nicotine triggers β2* and β4 * nAChR-dependent neuroadaptations that subsequently modify the responses to alcohol and thus indicating these receptors as key mediators in the complex interactions between these two drugs.
Collapse
Affiliation(s)
- Stefania Tolu
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Fabio Marti
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Carole Morel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Carole Perrier
- Groupe Hospitalier Paul Guiraud, BP 20065, F-94806, Villejuif, France
| | - Nicolas Torquet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Stephanie Pons
- Institut Pasteur, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, F-75724, Paris, France.,CNRS, UMR 3571, F-75724, Paris, France
| | | | - Philippe Faure
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| |
Collapse
|
42
|
Abstract
Purpose of the Review Comorbidity of alcohol and tobacco use is highly prevalent and may exacerbate the health effects of either substance alone. However, the mechanisms underlying this comorbidity are not well understood. This review will examine the evidence for shared neurobiological mechanisms of alcohol and nicotine comorbidity and experimental studies of the behavioural consequences of these interactions. Recent Findings Studies examining the shared neurobiology of alcohol and nicotine have identified two main mechanisms of comorbidity: (1) cross-reinforcement via the mesolimbic dopamine pathway and (2) cross-tolerance via shared genetic and nAChR interaction. Animal and human psychopharmacological studies demonstrate support for these two mechanisms of comorbidity. Summary Human behavioural studies indicate that (1) alcohol and tobacco potentiate each other’s rewarding effects and (2) nicotine reduces the sedative and intoxication effects of alcohol. Together, these findings provide a strong evidence base to support the role of the cross-reinforcement and cross-tolerance as mechanisms underlying the comorbidity of alcohol and tobacco use. Methodological concerns in the literature and recommendations for future studies are discussed alongside implications for treatment of comorbid alcohol and tobacco use.
Collapse
Affiliation(s)
- Sally Adams
- Department of Psychology, University of Bath, 10 West, Bath, BA2 7AY UK.,UK Centre for Tobacco and Alcohol Studies, Bath, UK
| |
Collapse
|
43
|
Nicotine-induced enhancement of Pavlovian alcohol-seeking behavior in rats. Psychopharmacology (Berl) 2017; 234:727-738. [PMID: 28011981 DOI: 10.1007/s00213-016-4508-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/09/2016] [Indexed: 01/02/2023]
Abstract
RATIONALE Nicotine enhances responding elicited by Pavlovian cues that predict positive outcomes. OBJECTIVES We tested the hypothesis that nicotine acting at nicotinic acetylcholine receptors (nAChRs) would augment Pavlovian alcohol-seeking. METHODS Male, Long-Evans rats with unrestricted access to food and water were acclimated to drinking 15% ethanol in their home cages and then given Pavlovian conditioning sessions in which each trial of a 15-s conditioned stimulus (CS, 12 trials/session) was paired with 0.2 ml of ethanol (unconditioned stimulus, US, 2.4 ml/session). Entries into a port where ethanol was delivered were used to assess conditioning. Control groups received explicitly unpaired trials of the CS and US. In experiment 1, systemic injections of saline (1 ml/kg) or nicotine (0.4 mg/kg, freebase) were administered before each session. In experiments 2 and 3, an identical regimen of saline or nicotine injections was administered before the start of Pavlovian conditioning sessions. RESULTS All paired groups acquired conditioned port-entry responding to the CS, indicative of Pavlovian alcohol-seeking, whereas unpaired control group did not. Pre-session nicotine injections increased CS port-entries relative to saline, only in the paired group. This nicotine-induced enhancement of Pavlovian alcohol-seeking was blocked by pre-treatment with the nAChR antagonist mecamylamine. Prior exposure to nicotine did not influence the subsequent acquisition of Pavlovian alcohol-seeking. CONCLUSIONS These findings highlight for the first time that nicotine acting at nAChRs augments Pavlovian alcohol-seeking, specifically in non-restricted rats. Individuals who smoke and drink may thus be particularly susceptible to alcohol cues that could trigger further drinking.
Collapse
|
44
|
Frenk H, Martin J, Vitouchanskaia C, Dar R, Shalev U. Effects of contingent and noncontingent nicotine on lever pressing for liquids and consumption in water-deprived rats. Eur J Pharmacol 2017; 794:224-233. [DOI: 10.1016/j.ejphar.2016.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022]
|
45
|
McGuier NS, Griffin WC, Gass JT, Padula AE, Chesler EJ, Mulholland PJ. Kv7 channels in the nucleus accumbens are altered by chronic drinking and are targets for reducing alcohol consumption. Addict Biol 2016; 21:1097-1112. [PMID: 26104325 DOI: 10.1111/adb.12279] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alcohol use disorders (AUDs) are a major public health issue and produce enormous societal and economic burdens. Current Food and Drug Administration (FDA)-approved pharmacotherapies for treating AUDs suffer from deleterious side effects and are only effective in a subset of individuals. It is therefore essential to find improved medications for the management of AUDs. Emerging evidence suggests that anticonvulsants are a promising class of drugs for treating individuals with AUDs. In these studies, we used integrative functional genomics to demonstrate that genes that encode Kv7 channels (i.e. Kcnq2/3) are related to alcohol (ethanol) consumption, preference and acceptance in rodents. We then tested the ability of the FDA-approved anticonvulsant retigabine, a Kv7 channel opener, to reduce voluntary ethanol consumption of Wistar rats in a two-bottle choice intermittent alcohol access paradigm. Systemic administration and microinjections of retigabine into the nucleus accumbens significantly reduced alcohol drinking, and retigabine was more effective at reducing intake in high- versus low-drinking populations of Wistar rats. Prolonged voluntary drinking increased the sensitivity to the proconvulsant effects of pharmacological blockade of Kv7 channels and altered surface trafficking and SUMOylation patterns of Kv7.2 channels in the nucleus accumbens. These data implicate Kcnq2/3 in the regulation of ethanol drinking and demonstrate that long-term drinking produces neuroadaptations in Kv7 channels. In addition, these results have identified retigabine as a potential pharmacotherapy for treating AUDs and Kv7 channels as a novel therapeutic target for reducing heavy drinking.
Collapse
Affiliation(s)
- Natalie S. McGuier
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | - William C. Griffin
- Department of Psychiatry and Behavioral Sciences; Medical University of South Carolina; Charleston SC USA
| | - Justin T. Gass
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | - Audrey E. Padula
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | | | - Patrick J. Mulholland
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
- Department of Psychiatry and Behavioral Sciences; Medical University of South Carolina; Charleston SC USA
| |
Collapse
|
46
|
Tarren JR, Bartlett SE. Alcohol and nicotine interactions: pre-clinical models of dependence. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:146-154. [PMID: 27740856 DOI: 10.1080/00952990.2016.1197232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While the co-morbidity of alcohol (ethanol) and tobacco (nicotine) dependence is well described, the processes that underpin this strong connection are still under debate. With the increasing popularity of electronic cigarettes (e-cigarettes), it is now becoming more important to look to the neurobiological mechanisms involving alcohol and nicotine interactions to effectively treat a new generation of co-dependent individuals. Researchers have already recognized that the neuropathology produced by the combination of nicotine and ethanol is likely to produce an addictive nature very different to that of either one alone, and are employing a mixture of pre-clinical techniques to establish and investigate every stage in the development of both nicotine and ethanol-seeking behaviors. While it is agreed that multiple pathways orchestrate the complex reward profile of alcohol and nicotine co-addiction, several lines of evidence suggest the convergent site of action is within the mesolimbic dopaminergic system, at neuronal nicotinic acetylcholine receptors (nAChRs). A whole host of strategies are currently being employed to discover and unravel previously unknown or ill understood neurobiological processes in the brain, contributing greatly toward the development of novel pharmacotherapies with the aim of improving patient outcomes. This review intends to shed some light on the most influential and most recent pre-clinical work that is leading the charge in modeling this complicated relationship.
Collapse
Affiliation(s)
- Josephine R Tarren
- a Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology , Woolloongabba , QLD , Australia
| | - Selena E Bartlett
- a Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology , Woolloongabba , QLD , Australia
| |
Collapse
|
47
|
Kohut SJ. Interactions between nicotine and drugs of abuse: a review of preclinical findings. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:155-170. [PMID: 27589579 DOI: 10.1080/00952990.2016.1209513] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polysubstance abuse is common among substance-use disorder patients, and nicotine is one of the most commonly co-used substances. Epidemiological and clinical laboratory studies suggest that nicotine, when combined with other drugs of abuse, increases intake of one or both substances. This review focuses on the preclinical literature regarding nicotine's interaction with alcohol, stimulants (i.e., cocaine, amphetamines), opioids (i.e., morphine, heroin), and Δ9-tetrahydrocannabinol (THC). The current understanding of how these various classes of abused drugs may interact with nicotine on behavioral, physiological, and pharmacological indices that may be important in maintaining co-use of one or both substances in human populations are highlighted. Suggestions as to future areas of research and gaps in knowledge are offered.
Collapse
Affiliation(s)
- Stephen J Kohut
- a McLean Hospital and Department of Psychiatry, Harvard Medical School , Belmont , MA , USA
| |
Collapse
|
48
|
Srisontiyakul J, Kastman HE, Krstew EV, Govitrapong P, Lawrence AJ. The Nicotinic α6-Subunit Selective Antagonist bPiDI Reduces Alcohol Self-Administration in Alcohol-Preferring Rats. Neurochem Res 2016; 41:3206-3214. [PMID: 27573375 DOI: 10.1007/s11064-016-2045-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
Cigarettes and alcohol are the most abused substances in the world and are commonly co-abused. Nicotine primarily acts in the brain on nicotinic acetylcholine receptors (nAChR), which are also a target for alcohol. The alpha6 subunit of nAChR is expressed almost exclusively in the brain reward system and may modulate the rewarding properties of alcohol and nicotine. Recently, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI) was synthesized as a selective, brain penetrant α6 subunit antagonist that reduces nicotine self-administration. The current study aimed to examine the effects of bPiDI on alcohol self-administration in inbred alcohol-preferring (iP) rats. Adult, male iP rats were trained to self-administer alcohol or sucrose. Once stable responding was achieved, rats were injected with bPiDI (1, 3 mg/kg, i.p.) and tested for self-administration under fixed and progressive ratio schedules of reinforcement. They subsequently underwent extinction, in which no rewards or cues were presented in the operant chambers. Then, they were injected with bPiDI prior to testing for cue-induced reinstatement of reward seeking. bPiDI (3 mg/kg) significantly reduced alcohol self-administration in both fixed and progressive ratios without any effects on sucrose self-administration or locomotor activity. In contrast, bPiDI (3 mg/kg) did not inhibit cue-induced reinstatement of either alcohol or sucrose seeking. The results support the involvement of α6 containing nAChR in reinforcing effects of alcohol, but not relapse to alcohol-seeking, without any impact on responding for a natural reward or general activity. bPiDI may be a potential lead molecule for a therapeutic strategy to limit nicotine and alcohol consumption.
Collapse
Affiliation(s)
- Jirawoot Srisontiyakul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Hanna E Kastman
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia
| | - Elena V Krstew
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand.,Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia. .,Florey Department of Neuroscience, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
49
|
McDaid J, Abburi C, Wolfman SL, Gallagher K, McGehee DS. Ethanol-Induced Motor Impairment Mediated by Inhibition of α7 Nicotinic Receptors. J Neurosci 2016; 36:7768-78. [PMID: 27445152 PMCID: PMC4951579 DOI: 10.1523/jneurosci.0154-16.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Nicotine and ethanol (EtOH) are among the most widely co-abused substances, and nicotinic acetylcholine receptors (nAChRs) contribute to the behavioral effects of both drugs. Along with their role in addiction, nAChRs also contribute to motor control circuitry. The α7 nAChR subtype is highly expressed in the laterodorsal tegmental nucleus (LDTg), a brainstem cholinergic center that contributes to motor performance through its projections to thalamic motor relay centers, including the mediodorsal thalamus. We demonstrate that EtOH concentrations just above the legal limits for intoxication in humans can inhibit α7 nAChRs in LDTg neurons from rats. This EtOH-induced inhibition is mediated by a decrease in cAMP/PKA signaling. The α7 nAChR-positive allosteric modulator PNU120596 [N-(5-chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)-urea], which interferes with receptor desensitization, completely eliminated EtOH modulation of these receptors. These data suggest that EtOH inhibits α7 responses through a PKA-dependent enhancement of receptor desensitization. EtOH also inhibited the effects of nicotine at presynaptic α7 nAChRs on glutamate terminals in the mediodorsal thalamus. In vivo administration of PNU120596 either into the cerebral ventricles or directly into the mediodorsal thalamus attenuated EtOH-induced motor impairment. Thus, α7 nAChRs are likely important mediators of the motor impairing effects of moderate EtOH consumption. SIGNIFICANCE STATEMENT The motor-impairing effects of ethanol contribute to intoxication-related injury and death. Here we explore the cellular and neural circuit mechanisms underlying ethanol-induced motor impairment. Physiologically relevant concentrations of ethanol inhibit activity of a nicotinic receptor subtype that is expressed in brain areas associated with motor control. That receptor inhibition is mediated by decreased receptor phosphorylation, suggesting an indirect modulation of cell signaling pathways to achieve the physiological effects.
Collapse
Affiliation(s)
- John McDaid
- Department of Anesthesia and Critical Care and
| | | | - Shannon L Wolfman
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
| | | | - Daniel S McGehee
- Department of Anesthesia and Critical Care and Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
50
|
Abburi C, Wolfman SL, Metz RAE, Kamber R, McGehee DS, McDaid J. Tolerance to Ethanol or Nicotine Results in Increased Ethanol Self-Administration and Long-Term Depression in the Dorsolateral Striatum. eNeuro 2016; 3:ENEURO.0112-15.2016. [PMID: 27517088 PMCID: PMC4972936 DOI: 10.1523/eneuro.0112-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 06/22/2016] [Accepted: 07/13/2016] [Indexed: 01/27/2023] Open
Abstract
Ethanol (EtOH) and nicotine are the most widely coabused drugs. Tolerance to EtOH intoxication, including motor impairment, results in greater EtOH consumption and may result in a greater likelihood of addiction. Previous studies suggest that cross-tolerance between EtOH and nicotine may contribute to the abuse potential of these drugs. Here we demonstrate that repeated intermittent administration of either EtOH or nicotine in adult male Sprague Dawley rats results in tolerance to EtOH-induced motor impairment and increased EtOH self-administration. These findings suggest that nicotine and EtOH cross-tolerance results in decreased aversive and enhanced rewarding effects of EtOH. Endocannabinoid signaling in the dorsolateral striatum (DLS) has been implicated in both EtOH tolerance and reward, so we investigated whether nicotine or EtOH pretreatment might modulate endocannabinoid signaling in this region. Using similar EtOH and nicotine pretreatment methods resulted in increased paired-pulse ratios of evoked EPSCs in enkephalin-positive medium spiny neurons in DLS slices. Thus, EtOH and nicotine pretreatment may modulate glutamatergic synapses in the DLS presynaptically. Bath application of the CB1 receptor agonist Win 55,2-212 increased the paired-pulse ratio of evoked EPSCs in control slices, while Win 55,2-212 had no effect on paired-pulse ratio in slices from either EtOH- or nicotine-pretreated rats. Consistent with these effects, nicotine pretreatment occluded LTD induction by high-frequency stimulation of the corticostriatal inputs to the dorsolateral striatum. These results suggest that nicotine and EtOH pretreatment modulates striatal synapses to induce tolerance to the motor-impairing effects of EtOH, which may contribute to nicotine and EtOH coabuse.
Collapse
Affiliation(s)
- Chandrika Abburi
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| | - Shannon L. Wolfman
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - Ryan A. E. Metz
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| | - Rinya Kamber
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| | - Daniel S. McGehee
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - John McDaid
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|