1
|
Zhu W, Neuwirth LS, Cadet P. Regulation of the Endogenous Opiate Signaling Pathway against Oxidative Stress and Inflammation: A Considerable Approach for Exploring Preclinical Treatment of Parkinson's Disease. Pharmacology 2023; 108:550-564. [PMID: 37820589 DOI: 10.1159/000533775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/22/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION Oxidative stress and inflammation are major factors contributing to the progressive death of dopaminergic neurons in Parkinson's disease (PD). Recent studies have demonstrated that morphine's biosynthetic pathway, coupled with nitric oxide (NO) release, is evolutionarily conserved throughout animals and humans. Moreover, dopamine is a key precursor for morphine biosynthesis. METHOD The present study evaluated a series of preclinical experiments to evaluate the effects of low-level morphine treatment upon neuro-immune tissues exposed to rotenone and 6-OHDA as models of PD, followed by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell proliferation assay and cell/tissue computer-assisted imaging analyses to assess cell/neuronal viability. RESULTS Morphine at normal physiological concentrations (i.e., 10-6 M and 10-7 M) provided neuroprotection, as it significantly inhibited rotenone and 6-OHDA dopaminergic insults; thereby, reducing and/or forestalling cell death in invertebrate ganglia and human nerve cells. To ensure that morphine caused this neuroprotective effect, naloxone, a potent opiate receptor antagonist, was employed and the results showed that it blocked morphine's neuroprotective effects. Additionally, co-incubation of NO synthase inhibitor L-NAME also blocked morphine's neuroprotective effects against rotenone and 6-OHDA insults. CONCLUSIONS Taken together, the present preclinical study showed that while morphine can attenuate lipopolysaccharide-induced inflammation and cell death, both naloxone and L-NAME can abolish this effect. Preincubation of morphine precursors (i.e., L-3,4-dihydroxyphenylalanine, reticuline, and trihexyphenidyl [THP] at physiological concentrations) mimics the observed morphine effect. However, high concentrations of THP, a precursor of the morphine biosynthetic pathway, induced cell death, indicating the physiological importance of morphine biosynthesis in neural tissues. Thus, understanding the morphine biosynthetic pathway coupled with a NO signaling mechanism as a molecular target for neuroprotection against oxidative stress and inflammation in other preclinical models of PD is warranted.
Collapse
Affiliation(s)
- Wei Zhu
- SUNY Neuroscience Research Institute (NRI), Old Westbury, New York, USA
- Department of Psychology, SUNY Old Westbury, Old Westbury, New York, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, New York, USA
| | - Lorenz S Neuwirth
- SUNY Neuroscience Research Institute (NRI), Old Westbury, New York, USA
- Department of Psychology, SUNY Old Westbury, Old Westbury, New York, USA
| | - Patrick Cadet
- SUNY Neuroscience Research Institute (NRI), Old Westbury, New York, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, New York, USA
| |
Collapse
|
2
|
Chauhan P, Wadhwa K, Singh G. Caenorhabditis elegans as a model system to evaluate neuroprotective potential of nano formulations. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1018754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The impact of neurodegenerative illnesses on society is significant, but the mechanisms leading to neuronal malfunction and death in these conditions remain largely unknown despite identifying essential disease genes. To pinpoint the mechanisms behind the pathophysiology of neurodegenerative diseases, several researchers have turned to nematode C. elegans instead of using mammals. Since C. elegans is transparent, free-living, and amenable to culture, it has several benefits. As a result, all the neurons in C. elegans can be easily identified, and their connections are understood. Human proteins linked to Neurodegeneration can be made to express in them. It is also possible to analyze how C. elegans orthologs of the genes responsible for human neurodegenerative diseases function. In this article, we focused at some of the most important C. elegans neurodegeneration models that accurately represent many elements of human neurodegenerative illness. It has been observed that studies using the adaptable C. elegans have helped us in better understanding of human diseases. These studies have used it to replicate several aspects of human neurodegeneration. A nanotech approach involves engineering materials or equipments interacting with biological systems at the molecular level to trigger physiological responses by increasing stimulation, responding, and interacting with target sites while minimizing side effects, thus revolutionizing the treatment and diagnosis of neurodegenerative diseases. Nanotechnologies are being used to treat neurological disorders and deliver nanoscale drugs. This review explores the current and future uses of these nanotechnologies as innovative therapeutic modalities in treatment of neurodegenerative diseases using C elegans as an experimental model.
Collapse
|
3
|
Neuroprotective Effect of Luteolin-7-O-Glucoside against 6-OHDA-Induced Damage in Undifferentiated and RA-Differentiated SH-SY5Y Cells. Int J Mol Sci 2022; 23:ijms23062914. [PMID: 35328335 PMCID: PMC8949357 DOI: 10.3390/ijms23062914] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Luteolin is one of the most common flavonoids present in edible plants and its potential benefits to the central nervous system include decrease of microglia activation, neuronal damage and high antioxidant properties. The aim of this research was to evaluate the neuroprotective, antioxidant and anti-inflammatory activities of luteolin-7-O-glucoside (Lut7). Undifferentiated and retinoic acid (RA)-differentiated SH-SY5Y cells were pretreated with Lut7 and incubated with 6-hydroxydopamine (6-OHDA). Cytotoxic and neuroprotective effects were determined by MTT assay. Antioxidant capacity was determined by DPPH, FRAP, and ORAC assays. ROS production, mitochondrial membrane potential (ΔΨm), Caspase–3 activity, acetylcholinesterase inhibition (AChEI) and nuclear damage were also determined in SH-SY5Y cells. TNF-α, IL-6 and IL-10 release were evaluated in LPS-induced RAW264.7 cells by ELISA. In undifferentiated SH-SY5Y cells, Lut7 increased cell viability after 24 h, while in RA-differentiated SH-SY5Y cells, Lut7 increased cell viability after 24 and 48 h. Lut7 showed a high antioxidant activity when compared with synthetic antioxidants. In undifferentiated cells, Lut7 prevented mitochondrial membrane depolarization induced by 6-OHDA treatment, decreased Caspase-3 and AChE activity, and inhibited nuclear condensation and fragmentation. In LPS-stimulated RAW264.7 cells, Lut7 treatment reduced TNF-α levels and increased IL-10 levels after 3 and 24 h, respectively. In summary, the results suggest that Lut7 has neuroprotective effects, thus, further studies should be considered to validate its pharmacological potential in more complex models, aiming the treatment of neurodegenerative diseases.
Collapse
|
4
|
1,5-Benzodiazepin-2(3H)-ones: In Vitro Evaluation as Antiparkinsonian Agents. Antioxidants (Basel) 2021; 10:antiox10101584. [PMID: 34679721 PMCID: PMC8533176 DOI: 10.3390/antiox10101584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
A new series of twenty-three 1,5-benzodiazepin-2(3H)-ones were synthesized and evaluated in the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays as a new chemotype with antioxidant and good drug-like properties. All of the derivatives showed low cytotoxicity in comparison to curcumin against the human neuroblastoma SH-SY5Y and the human hepatoma HepG2 cell lines. Experimental solubility in bio-relevant media showed a good relationship with melting points in this series. Five compounds with the best antioxidant properties showed neuroprotectant activity against H2O2-induced oxidative stress in the SH-SY5Y cell line. From them, derivatives 4-phenyl-1H-1,5-benzodiazepin-2(3H)-one (18) and 4-(3,4,5-trimethoxyphenyl)-1H-1,5-benzodiazepin-2(3H)-one (20) yielded good neuroprotection activity in the same neuronal cell line under 6-OHD and MPP+ insults as in vitro models of mitochondrial dysfunction and oxidative stress in Parkinson’s disease (PD). Both compounds also demonstrated a significant reduction of intracellular Reactive Oxygen Species (ROS) and superoxide levels, in parallel with a good improvement of the Mitochondrial Membrane Potential (ΔΨm). Compared with curcumin, compound 18 better reduced lipid peroxidation levels, malondialdehyde (MDA), in SH-SY5Y cells under oxidative stress pressure and recovered intracellular glutathione synthetase (GSH) levels. Apoptosis and caspase-3 levels of SH-SY5Y under H2O2 pressure were also reduced after treatment with 18. Neuroprotection in neuron-like differentiated SH-SY5Y cells was also achieved with 18. In summary, this family of 1,5-benzodiazepin-2-ones with an interesting antioxidant and drug-like profile, with low cytotoxic and good neuroprotectant activity, constitutes a new promising chemical class with high potential for the development of new therapeutic agents against PD.
Collapse
|
5
|
Rehfeldt SCH, Laufer S, Goettert MI. A Highly Selective In Vitro JNK3 Inhibitor, FMU200, Restores Mitochondrial Membrane Potential and Reduces Oxidative Stress and Apoptosis in SH-SY5Y Cells. Int J Mol Sci 2021; 22:ijms22073701. [PMID: 33918172 PMCID: PMC8037381 DOI: 10.3390/ijms22073701] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Current treatments for neurodegenerative diseases (ND) are symptomatic and do not affect disease progression. Slowing this progression remains a crucial unmet need for patients and their families. c-Jun N-terminal kinase 3 (JNK3) are related to several ND hallmarks including apoptosis, oxidative stress, excitotoxicity, mitochondrial dysfunction, and neuroinflammation. JNK inhibitors can play an important role in addressing neuroprotection. This research aims to evaluate the neuroprotective, anti-inflammatory, and antioxidant effects of a synthetic compound (FMU200) with known JNK3 inhibitory activity in SH-SY5Y and RAW264.7 cell lines. SH-SY5Y cells were pretreated with FMU200 and cell damage was induced by 6-hydroxydopamine (6-OHDA) or hydrogen peroxide (H2O2). Cell viability and neuroprotective effect were assessed with an MTT assay. Flow cytometric analysis was performed to evaluate cell apoptosis. The H2O2-induced reactive oxygen species (ROS) generation and mitochondrial membrane potential (ΔΨm) were evaluated by DCFDA and JC-1 assays, respectively. The anti-inflammatory effect was determined in LPS-induced RAW264.7 cells by ELISA assay. In undifferentiated SH-SY5Y cells, FMU200 decreased neurotoxicity induced by 6-OHDA in approximately 20%. In RA-differentiated cells, FMU200 diminished cell death in approximately 40% and 90% after 24 and 48 h treatment, respectively. FMU200 reduced both early and late apoptotic cells, decreased ROS levels, restored mitochondrial membrane potential, and downregulated JNK phosphorylation after H2O2 exposure. In LPS-stimulated RAW264.7 cells, FMU200 reduced TNF-α levels after a 3 h treatment. FMU200 protects neuroblastoma SH-SY5Y cells against 6-OHDA- and H2O2-induced apoptosis, which may result from suppressing the JNK pathways. Our findings show that FMU200 can be a useful candidate for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery (TüCAD2), D-72076 Tübingen, Germany
- Correspondence: (S.L.); (M.I.G.); Tel.: +55-(51)3714-7000 (ext. 5445) (M.I.G.)
| | - Márcia Inês Goettert
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, RS 95914-014, Brazil;
- Correspondence: (S.L.); (M.I.G.); Tel.: +55-(51)3714-7000 (ext. 5445) (M.I.G.)
| |
Collapse
|
6
|
Marchetti B. Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson's disease. Redox Biol 2020; 36:101664. [PMID: 32863224 PMCID: PMC7395594 DOI: 10.1016/j.redox.2020.101664] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and inflammation have long been recognized to contribute to Parkinson's disease (PD), a common movement disorder characterized by the selective loss of midbrain dopaminergic neurons (mDAn) of the substantia nigra pars compacta (SNpc). The causes and mechanisms still remain elusive, but a complex interplay between several genes and a number of interconnected environmental factors, are chiefly involved in mDAn demise, as they intersect the key cellular functions affected in PD, such as the inflammatory response, mitochondrial, lysosomal, proteosomal and autophagic functions. Nuclear factor erythroid 2 -like 2 (NFE2L2/Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/β-catenin signaling cascade, a vital pathway for mDAn neurogenesis and neuroprotection, emerge as critical intertwinned actors in mDAn physiopathology, as a decline of an Nrf2/Wnt/β-catenin prosurvival axis with age underlying PD mutations and a variety of noxious environmental exposures drive PD neurodegeneration. Unexpectedly, astrocytes, the so-called "star-shaped" cells, harbouring an arsenal of "beneficial" and "harmful" molecules represent the turning point in the physiopathological and therapeutical scenario of PD. Fascinatingly, "astrocyte's fil rouge" brings back to Nrf2/Wnt resilience, as boosting the Nrf2/Wnt resilience program rejuvenates astrocytes, in turn (i) mitigating nigrostriatal degeneration of aged mice, (ii) reactivating neural stem progenitor cell proliferation and neuron differentiation in the brain and (iii) promoting a beneficial immunomodulation via bidirectional communication with mDAns. Then, through resilience of Nrf2/Wnt/β-catenin anti-ageing, prosurvival and proregenerative molecular programs, it seems possible to boost the inherent endogenous self-repair mechanisms. Here, the cellular and molecular aspects as well as the therapeutical options for rejuvenating glia-neuron dialogue will be discussed together with major glial-derived mechanisms and therapies that will be fundamental to the identification of novel diagnostic tools and treatments for neurodegenerative diseases (NDs), to fight ageing and nigrostriatal DAergic degeneration and promote functional recovery.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Pharmacology Section, Medical School, University of Catania, Via S. Sofia 65, 95125, Catania, Italy; Oasi Research Institute-IRCCS, Neuropharmacology Section, Via Conte Ruggero 73, 94018, Troina, EN, Italy.
| |
Collapse
|
7
|
Khalili A, Peimani AR, Safarian N, Youssef K, Zoidl G, Rezai P. Phenotypic chemical and mutant screening of zebrafish larvae using an on-demand response to electric stimulation. Integr Biol (Camb) 2020; 11:373-383. [PMID: 31851358 DOI: 10.1093/intbio/zyz031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
Behavioral responses of zebrafish larvae to environmental cues are important functional readouts that should be evoked on-demand and studied phenotypically in behavioral, genetical and developmental investigations. Very recently, it was shown that zebrafish larvae execute a voluntary and oriented movement toward the positive electrode of an electric field along a microchannel. Phenotypic characterization of this response was not feasible due to larva's rapid movement along the channel. To overcome this challenge, a microfluidic device was introduced to partially immobilize the larva's head while leaving its mid-body and tail unrestrained in a chamber to image motor behaviors in response to electric stimulation, hence achieving quantitative phenotyping of the electrically evoked movement in zebrafish larvae. The effect of electric current on the tail-beat frequency and response duration of 5-7 days postfertilization zebrafish larvae was studied. Investigations were also performed on zebrafish exposed to neurotoxin 6-hydroxydopamine and larvae carrying a pannexin1a (panx1a) gene knockout, as a proof of principle applications to demonstrate on-demand movement behavior screening in chemical and mutant assays. We demonstrated for the first time that 6-hydroxydopamine leads to electric response impairment, levodopa treatment rescues the response and panx1a is involved in the electrically evoked movement of zebrafish larvae. We envision that our technique is broadly applicable as a screening tool to quantitatively examine zebrafish larvae's movements in response to physical and chemical stimulations in investigations of Parkinson's and other neurodegenerative diseases, and as a tool to combine recent advances in genome engineering of model organisms to uncover the biology of electric response.
Collapse
Affiliation(s)
- Arezoo Khalili
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Amir Reza Peimani
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | | | - Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Georg Zoidl
- Department of Biology, York University, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
8
|
|
9
|
Milanese C, Tapias V, Gabriels S, Cerri S, Levandis G, Blandini F, Tresini M, Shiva S, Greenamyre JT, Gladwin MT, Mastroberardino PG. Mitochondrial Complex I Reversible S-Nitrosation Improves Bioenergetics and Is Protective in Parkinson's Disease. Antioxid Redox Signal 2018; 28:44-61. [PMID: 28816057 PMCID: PMC5749586 DOI: 10.1089/ars.2017.6992] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS This study was designed to explore the neuroprotective potential of inorganic nitrite as a new therapeutic avenue in Parkinson's disease (PD). RESULTS Administration of inorganic nitrite ameliorates neuropathology in phylogenetically distinct animal models of PD. Beneficial effects are not confined to prophylactic treatment and also occur if nitrite is administered when the pathogenic cascade is already active. Mechanistically, the effect is mediated by both complex I S-nitrosation, which under nitrite administration is favored over formation of other forms of oxidation, and down-stream activation of the antioxidant Nrf2 pathway. Nitrite also rescues respiratory reserve capacity and increases proton leakage in LRRK2 PD patients' dermal fibroblasts. INNOVATION The study proposes an unprecedented approach based on the administration of the nitrosonium donor nitrite to contrast complex I and redox anomalies in PD. Dysfunctional mitochondrial complex I propagates oxidative stress in PD, and treatments mitigating this defect may, therefore, limit disease progression. Therapeutic complex I targeting has been successfully achieved in ischemia/reperfusion by using nitrosonium donors such as nitrite to reversibly modify its subunits and protect from oxidative damage after reperfusion. This evidence led to the innovative hypothesis that nitrite could exert protective effects also in pathological conditions where complex I dysfunction occurs in normoxia, such as in PD. CONCLUSIONS Overall, these results demonstrate that administration of inorganic nitrite improves mitochondrial function in PD, and it, therefore, represents an amenable intervention to hamper disease progression. Antioxid. Redox Signal. 28, 44-61.
Collapse
Affiliation(s)
- Chiara Milanese
- 1 Department of Molecular Genetics, Erasmus MC , Rotterdam, The Netherlands .,2 Ri.MED Foundation, Palermo , Italy
| | - Victor Tapias
- 3 Department of Neurology, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sylvia Gabriels
- 1 Department of Molecular Genetics, Erasmus MC , Rotterdam, The Netherlands
| | - Silvia Cerri
- 5 Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute , Pavia, Italy
| | - Giovanna Levandis
- 5 Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute , Pavia, Italy
| | - Fabio Blandini
- 5 Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute , Pavia, Italy
| | - Maria Tresini
- 1 Department of Molecular Genetics, Erasmus MC , Rotterdam, The Netherlands
| | - Sruti Shiva
- 6 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,7 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - John Timothy Greenamyre
- 3 Department of Neurology, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- 8 Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,9 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | |
Collapse
|
10
|
Chuang CS, Chang JC, Cheng FC, Liu KH, Su HL, Liu CS. Modulation of mitochondrial dynamics by treadmill training to improve gait and mitochondrial deficiency in a rat model of Parkinson's disease. Life Sci 2017; 191:236-244. [DOI: 10.1016/j.lfs.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 11/16/2022]
|
11
|
Neuroprotective and Neuro-restorative Effects of Minocycline and Rasagiline in a Zebrafish 6-Hydroxydopamine Model of Parkinson's Disease. Neuroscience 2017; 367:34-46. [PMID: 29079063 DOI: 10.1016/j.neuroscience.2017.10.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 02/01/2023]
Abstract
Parkinson's disease is a common, debilitating, neurodegenerative disorder for which the current gold standard treatment, levodopa (L-DOPA) is symptomatic. There is an urgent, unmet need for neuroprotective or, ideally, neuro-restorative drugs. We describe a 6-hydroxydopamine (6-OHDA) zebrafish model to screen drugs for neuroprotective and neuro-restorative capacity. Zebrafish larvae at two days post fertilization were exposed to 6-OHDA for three days, with co-administration of test drugs for neuroprotection experiments, or for 32 h, with subsequent treatment with test drugs for neuro-restoration experiments. Locomotor activity was assessed by automated tracking and dopaminergic neurons were visualized by tyrosine hydroxylase immuno-histochemistry. Exposure to 6-OHDA for either 32 h or 3 days induced similar, significant locomotor deficits and neuronal loss in 5-day-old larvae. L-DOPA (1 mM) partially restored locomotor activity, but was neither neuroprotective nor neuro-restorative, mirroring the clinical situation. The calcium channel blocker, isradipine (1 µM) did not prevent or reverse 6-OHDA-induced locomotor deficit or neuronal loss. However, both the tetracycline analog, minocycline (10 µM), and the monoamine oxidase B inhibitor, rasagiline (1 µM), prevented the locomotor deficits and neuronal loss due to three-day 6-OHDA exposure. Importantly, they also reversed the locomotor deficit caused by prior exposure to 6-OHDA; rasagiline also reversed neuronal loss and minocycline partially restored neuronal loss due to prior 6-OHDA, making them candidates for investigation as neuro-restorative treatments for Parkinson's disease. Our findings in zebrafish reflect preliminary clinical findings for rasagiline and minocycline. Thus, we have developed a zebrafish model suitable for high-throughput screening of putative neuroprotective and neuro-restorative therapies for the treatment of Parkinson's disease.
Collapse
|
12
|
Smith ES, Clark ME, Hardy GA, Kraan DJ, Biondo E, Gonzalez-Lima F, Cormack LK, Monfils M, Lee HJ. Daily consumption of methylene blue reduces attentional deficits and dopamine reduction in a 6-OHDA model of Parkinson's disease. Neuroscience 2017; 359:8-16. [PMID: 28694175 DOI: 10.1016/j.neuroscience.2017.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/01/2017] [Accepted: 07/02/2017] [Indexed: 01/05/2023]
Abstract
Recently, alternative drug therapies for Parkinson's disease (PD) have been investigated as there are many shortcomings of traditional dopamine-based therapies including difficulties in treating cognitive and attentional dysfunction. A promising therapeutic avenue is to target mitochondrial dysfunction and oxidative stress in PD. One option might be the use of methylene blue (MB), an antioxidant and metabolic enhancer. MB has been shown to improve cognitive function in both intact rodents and rodent disease models. Therefore, we investigated whether MB might treat attentional deficits in a rat model of PD induced by 6-hydroxydopamine (6-OHDA). MB also has neuroprotective capabilities against neurotoxic insult, so we also assessed the ability of MB to provide neuroprotection in our PD model. The results show that MB could preserve some dopamine neurons in the substantia nigra par compacta when 6-OHDA was infused into the medial forebrain bundle. This neuroprotection did not yield a significant behavioral improvement when motor functions were measured. However, MB significantly improved attentional performance in the five-choice task designed to measure selective and sustained attention. In conclusion, MB might be useful in improving some attentional function and preserving dopaminergic cells in this model. Future work should continue to study and optimize the abilities of MB for the treatment of PD.
Collapse
Affiliation(s)
- Elizabeth S Smith
- The University of Texas at Austin, Department of Psychology, United States
| | - Madeline E Clark
- The University of Texas at Austin, Department of Psychology, United States
| | - Gwendolyn A Hardy
- The University of Texas at Austin, Department of Psychology, United States
| | - David J Kraan
- The University of Texas at Austin, Department of Psychology, United States
| | - Elisa Biondo
- The University of Texas at Austin, Department of Psychology, United States
| | - F Gonzalez-Lima
- The University of Texas at Austin, Department of Psychology, United States
| | - Lawrence K Cormack
- The University of Texas at Austin, Department of Psychology, United States
| | - Marie Monfils
- The University of Texas at Austin, Department of Psychology, United States
| | - Hongjoo J Lee
- The University of Texas at Austin, Department of Psychology, United States.
| |
Collapse
|
13
|
Anandhan A, Jacome MS, Lei S, Hernandez-Franco P, Pappa A, Panayiotidis MI, Powers R, Franco R. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism. Brain Res Bull 2017; 133:12-30. [PMID: 28341600 PMCID: PMC5555796 DOI: 10.1016/j.brainresbull.2017.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022]
Abstract
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism.
Collapse
Affiliation(s)
- Annadurai Anandhan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Maria S Jacome
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States
| | - Shulei Lei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Pablo Hernandez-Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | | | - Robert Powers
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States.
| |
Collapse
|
14
|
Maulik M, Mitra S, Bult-Ito A, Taylor BE, Vayndorf EM. Behavioral Phenotyping and Pathological Indicators of Parkinson's Disease in C. elegans Models. Front Genet 2017; 8:77. [PMID: 28659967 PMCID: PMC5468440 DOI: 10.3389/fgene.2017.00077] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with symptoms that progressively worsen with age. Pathologically, PD is characterized by the aggregation of α-synuclein in cells of the substantia nigra in the brain and loss of dopaminergic neurons. This pathology is associated with impaired movement and reduced cognitive function. The etiology of PD can be attributed to a combination of environmental and genetic factors. A popular animal model, the nematode roundworm Caenorhabditis elegans, has been frequently used to study the role of genetic and environmental factors in the molecular pathology and behavioral phenotypes associated with PD. The current review summarizes cellular markers and behavioral phenotypes in transgenic and toxin-induced PD models of C. elegans.
Collapse
Affiliation(s)
- Malabika Maulik
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, United States
| | - Swarup Mitra
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, United States
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska FairbanksFairbanks, AK, United States
| | - Barbara E Taylor
- Department of Biological Sciences, California State University, Long BeachLong Beach, CA, United States
| | - Elena M Vayndorf
- Institute of Arctic Biology, University of Alaska FairbanksFairbanks, AK, United States
| |
Collapse
|
15
|
Ganapathy K, Datta I, Sowmithra S, Joshi P, Bhonde R. Influence of 6-Hydroxydopamine Toxicity on α-Synuclein Phosphorylation, Resting Vesicle Expression, and Vesicular Dopamine Release. J Cell Biochem 2016; 117:2719-2736. [DOI: 10.1002/jcb.25570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 04/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Kavina Ganapathy
- School of Regenerative Medicine; Manipal University; Bengaluru Karnataka India
| | - Indrani Datta
- Department of Biophysics; National Institute of Mental Health and Neurosciences, an Institute of National Importance; Bengaluru Karnataka India
| | - Sowmithra Sowmithra
- Department of Biophysics; National Institute of Mental Health and Neurosciences, an Institute of National Importance; Bengaluru Karnataka India
| | - Preeti Joshi
- Department of Biophysics; National Institute of Mental Health and Neurosciences, an Institute of National Importance; Bengaluru Karnataka India
| | - Ramesh Bhonde
- School of Regenerative Medicine; Manipal University; Bengaluru Karnataka India
| |
Collapse
|
16
|
Regulators of mitochondrial complex I activity: A review of literature and evaluation in postmortem prefrontal cortex from patients with bipolar disorder. Psychiatry Res 2016; 236:148-157. [PMID: 26723136 DOI: 10.1016/j.psychres.2015.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/28/2022]
Abstract
Phenomenologically, bipolar disorder (BD) is characterized by biphasic increases and decreases in energy. As this is a state-related phenomenon, identifying regulators responsible for this phasic dysregulation has the potential to uncover key elements in the pathophysiology of BD. Given the evidence suggesting mitochondrial complex I dysfunction in BD, we aimed to identify the main regulators of complex I in BD by reviewing the literature and using the published microarray data to examine their gene expression profiles. We also validated protein expression levels of the main complex I regulators by immunohistochemistry. Upon reviewing the literature, we found PARK-7, STAT-3, SIRT-3 and IMP-2 play an important role in regulating complex I activity. Published microarray studies however revealed no significant direction of regulation of STAT-3, SIRT-3, and IMP-2, but a trend towards downregulation of PARK-7 was observed in BD. Immunocontent of DJ-1 (PARK-7-encoded protein) were not elevated in post mortem prefrontal cortex from patients with BD. We also found a trend towards upregulation of DJ-1 expression with age. Our results suggest that DJ-1 is not significantly altered in BD subjects, however further studies are needed to examine DJ-1 expression levels in a cohort of older patients with BD.
Collapse
|
17
|
Kuter K, Kratochwil M, Berghauzen-Maciejewska K, Głowacka U, Sugawa MD, Ossowska K, Dencher NA. Adaptation within mitochondrial oxidative phosphorylation supercomplexes and membrane viscosity during degeneration of dopaminergic neurons in an animal model of early Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1862:741-753. [PMID: 26844379 DOI: 10.1016/j.bbadis.2016.01.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 01/02/2023]
Abstract
In Parkinson's disease (PD) motor symptoms are not observed until loss of 70% of dopaminergic neurons in substantia nigra (SN), preventing early diagnosis. Mitochondrial dysfunction was indicated in neuropathological process already at early PD stages. Aging and oxidative stress, the main factors in PD pathogenesis, cause membrane stiffening, which could influence functioning of membrane-bound oxidative phosphorylation (OxPhos) complexes (Cxs) in mitochondria. In 6-OHDA rat model, medium-sized dopaminergic lesion was used to study mitochondrial membrane viscosity and changes at the level of OxPhos Cxs and their higher assembled states-supercomplexes (SCxs), during the early degeneration processes and after it. We observed loss of dopaminergic phenotype in SN and decreased dopamine level in striatum (STR) before actual death of neurons in SN. Behavioural deficits induced by lesion were reversed despite progressing neurodegeneration. Along with degeneration process in STR, mitochondrial Cx I performance and amount decreased in almost all forms of SCxs. Also, progressing decrease of Cx IV performance in SCxs (I1III2IV3-1, I1IV2-1) in STR was observed during degeneration. In SN, SCxs containing Cx I increased protein amount and a shifted individual Cx I1 into superassembled states. Importantly, mitochondrial membrane viscosity changed in parallel with altered SCxs performance. We show for the first time changes at the level of mitochondrial membrane viscosity influencing SCxs function after dopaminergic system degeneration. It implicates that altered mitochondrial membrane viscosity could play an important role in regulation of mitochondria functioning and pathomechanisms of PD. The data obtained are also discussed in relation to compensatory processes observed.
Collapse
Affiliation(s)
- Katarzyna Kuter
- Department of Neuropsychopharmacology, Polish Academy of Sciences, Smętna St. 12, 31-343 Kraków, Poland.
| | - Manuela Kratochwil
- Physical Biochemistry, Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | | | - Urszula Głowacka
- Department of Neuropsychopharmacology, Polish Academy of Sciences, Smętna St. 12, 31-343 Kraków, Poland
| | - Michiru D Sugawa
- Physical Biochemistry, Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany; Clinical Neurobiology, Charité-Universitätsmedizin, D-12203 Berlin, Germany
| | - Krystyna Ossowska
- Department of Neuropsychopharmacology, Polish Academy of Sciences, Smętna St. 12, 31-343 Kraków, Poland
| | - Norbert A Dencher
- Physical Biochemistry, Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| |
Collapse
|
18
|
6-Hydroxydopamine impairs mitochondrial function in the rat model of Parkinson's disease: respirometric, histological, and behavioral analyses. J Neural Transm (Vienna) 2014; 121:1245-57. [PMID: 24627045 DOI: 10.1007/s00702-014-1185-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/23/2014] [Indexed: 10/25/2022]
Abstract
Mitochondrial defects have been shown to be associated with the pathogenesis of Parkinson's disease (PD). Yet, experience in PD research linking mitochondrial dysfunction, e.g., deregulation of oxidative phosphorylation, with neuronal degeneration and behavioral changes is rather limited. Using the 6-hydroxydopamine (6-OHDA) rat model of PD, we have investigated the potential role of mitochondria in dopaminergic neuronal cell death in the substantia nigra pars compacta by high-resolution respirometry. Mitochondrial function was correlated with the time course of disease-related motor behavior asymmetry and dopaminergic neuronal cell loss, respectively. Unilateral 6-OHDA injections (>2.5 μg/2 μl) into the median forebrain bundle induced an impairment of oxidative phosphorylation due to a decrease in complex I activity. This was indicated by increased flux control coefficient. During the period of days 2-21, a progressive decrease in respiratory control ratio of up to -58 % was observed in the lesioned compared to the non-lesioned substantia nigra of the same animals. This decrease was associated with a marked uncoupling of oxidative phosphorylation. Mitochondrial dysfunction, motor behavior asymmetry, and dopaminergic neuronal cell loss correlated with dosage (1.25-5 μg/2 μl). We conclude that high-resolution respirometry may allow the detection of distinct mitochondrial dysfunction as a suitable surrogate marker for the preclinical assessment of potential neuroprotective strategies in the 6-OHDA model of PD.
Collapse
|
19
|
Liu J, Ames BN. Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer's disease, and Parkinson's disease. Nutr Neurosci 2013; 8:67-89. [PMID: 16053240 DOI: 10.1080/10284150500047161] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitochondrial decay due to oxidative damage is a contributor to brain aging and age-related neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). One type of mitochondrial decay is oxidative modification of key mitochondrial enzymes. Enzyme dysfunction, that is due to poor binding of substrates and coenzymes may be ameliorated by supplementing adequate levels of substrates or coenzyme precursors. Such supplementation with mitochondrial nutrients (mt-nutrients) may be useful to prevent or delay mitochondrial decay, thus prevent or treat AD and PD. In the present review, we survey the literature to identify mt-nutrients that can (1) protect mitochondrial enzymes and/or stimulate enzyme activity by elevating levels of substrates and cofactors; (2) induce phase-2 enzymes to enhance antioxidant defenses; (3) scavenge free radicals and prevent oxidant production in mitochondria, and (4) repair mitochondrial membrane. Then, we discuss the relationships among mt-nutrient deficiency, mitochondrial decay, and cognitive dysfunction, and summarize available evidence suggesting an effect of mt-nutrient supplementation on AD and PD. It appears that greater effects might be obtained by longer-term administration of combinations of mt-nutrients. Thus, optimal doses of combinations of mt-nutrients to delay and repair mitochondrial decay could be a strategy for preventing and treating cognitive dysfunction, including AD and PD.
Collapse
Affiliation(s)
- Jiankang Liu
- Nutritional Genomic Center, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | |
Collapse
|
20
|
Tobón-Velasco JC, Limón-Pacheco JH, Orozco-Ibarra M, Macías-Silva M, Vázquez-Victorio G, Cuevas E, Ali SF, Cuadrado A, Pedraza-Chaverrí J, Santamaría A. RETRACTED: 6-OHDA-induced apoptosis and mitochondrial dysfunction are mediated by early modulation of intracellular signals and interaction of Nrf2 and NF-κB factors. Toxicology 2013; 304:109-19. [DOI: 10.1016/j.tox.2012.12.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/02/2012] [Accepted: 12/17/2012] [Indexed: 11/26/2022]
|
21
|
Iglesias-González J, Sánchez-Iglesias S, Méndez-Álvarez E, Rose S, Hikima A, Jenner P, Soto-Otero R. Differential toxicity of 6-hydroxydopamine in SH-SY5Y human neuroblastoma cells and rat brain mitochondria: protective role of catalase and superoxide dismutase. Neurochem Res 2012; 37:2150-60. [PMID: 22821477 DOI: 10.1007/s11064-012-0838-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/22/2012] [Accepted: 07/12/2012] [Indexed: 11/24/2022]
Abstract
Oxidative stress and mitochondrial dysfunction are two pathophysiological factors often associated with the neurodegenerative process involved in Parkinson's disease (PD). Although, 6-hydroxydopamine (6-OHDA) is able to cause dopaminergic neurodegeneration in experimental models of PD by an oxidative stress-mediated process, the underlying molecular mechanism remains unclear. It has been established that some antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) are often altered in PD, which suggests a potential role of these enzymes in the onset and/or development of this multifactorial syndrome. In this study we have used high-resolution respirometry to evaluate the effect of 6-OHDA on mitochondrial respiration of isolated rat brain mitochondria and the lactate dehydrogenase cytotoxicity assay to assess the percentage of cell death induced by 6-OHDA in human neuroblastoma cell line SH-SY5Y. Our results show that 6-OHDA affects mitochondrial respiration by causing a reduction in both respiratory control ratio (IC(50) = 200 ± 15 nM) and state 3 respiration (IC(50) = 192 ± 17 nM), with no significant effects on state 4(o). An inhibition in the activity of both complex I and V was also observed. 6-OHDA also caused cellular death in human neuroblastoma SH-SY5Y cells (IC(50) = 100 ± 9 μM). Both SOD and CAT have been shown to protect against the toxic effects caused by 6-OHDA on mitochondrial respiration. However, whereas SOD protects against 6-OHDA-induced cellular death, CAT enhances its cytotoxicity. The here reported data suggest that both superoxide anion and hydroperoxyl radical could account for 6-OHDA toxicity. Furthermore, factors reducing the rate of 6-OHDA autoxidation to its p-quinone appear to enhance its cytotoxicity.
Collapse
Affiliation(s)
- Javier Iglesias-González
- Group of Neurochemistry for Parkinson's Disease, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Santiago de Compostela, San Francisco 1, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Youdim MB. M30, a brain permeable multi target neurorestorative drug in post nigrostriatal dopamine neuron lesion of parkinsonism animal models. Parkinsonism Relat Disord 2012; 18 Suppl 1:S151-4. [DOI: 10.1016/s1353-8020(11)70047-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Gubellini P, Picconi B, Di Filippo M, Calabresi P. Downstream mechanisms triggered by mitochondrial dysfunction in the basal ganglia: from experimental models to neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2009; 1802:151-61. [PMID: 19683569 DOI: 10.1016/j.bbadis.2009.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 07/22/2009] [Accepted: 08/06/2009] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunctions have been implicated in the cellular processes underlying several neurodegenerative disorders affecting the basal ganglia. These include Huntington's chorea and Parkinson's disease, two highly debilitating motor disorders for which recent research has also involved gene mutation linked to mitochondrial deficits. Experimental models of basal ganglia diseases have been developed by using toxins able to disrupt mitochondrial function: these molecules act by selectively inhibiting mitochondrial respiratory complexes, uncoupling cellular respiration. This in turn leads to oxidative stress and energy deficit that trigger critical downstream mechanisms, ultimately resulting in neuronal vulnerability and loss. Here we review the molecular and cellular downstream effects triggered by mitochondrial dysfunction, and the different experimental models that are obtained by the administration of selective mitochondrial toxins or by the expression of mutant genes.
Collapse
Affiliation(s)
- Paolo Gubellini
- Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR6216 (CNRS/Université de la Méditerranée), Marseille, France.
| | | | | | | |
Collapse
|
24
|
Restoration of Nigrostriatal Dopamine Neurons in Post-MPTP Treatment by the Novel Multifunctional Brain-Permeable Iron Chelator-Monoamine Oxidase Inhibitor Drug, M30. Neurotox Res 2009; 17:15-27. [DOI: 10.1007/s12640-009-9070-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/31/2009] [Accepted: 05/31/2009] [Indexed: 10/20/2022]
|
25
|
Martin HL, Teismann P. Glutathione--a review on its role and significance in Parkinson's disease. FASEB J 2009; 23:3263-72. [PMID: 19542204 DOI: 10.1096/fj.08-125443] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting over a million people in the United States alone, and is characterized by rigidity, bradykinesia, resting tremor, and postural instability. Its main neuropathological feature is the loss of dopaminergic neurons of the substantia nigra pars compacta. However, the pathogenesis of this loss is not understood fully. One of the earliest biochemical changes seen in PD is a reduction in the levels of total glutathione, a key cellular antioxidant. Traditionally, it has been thought that this decrease in GSH levels is the consequence of increased oxidative stress, a process heavily implicated in PD pathogenesis. However, emerging evidence suggests that GSH depletion may itself play an active role in PD pathogenesis. This review aims to explore the contribution of GSH depletion to PD pathogenesis.
Collapse
Affiliation(s)
- Heather L Martin
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | | |
Collapse
|
26
|
Cai X, Jia H, Liu Z, Hou B, Luo C, Feng Z, Li W, Liu J. Polyhydroxylated fullerene derivative C60(OH)24prevents mitochondrial dysfunction and oxidative damage in an MPP+-induced cellular model of Parkinson's disease. J Neurosci Res 2008; 86:3622-34. [DOI: 10.1002/jnr.21805] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Armentero M, Levandis G, Bramanti P, Nappi G, Blandini F. Dietary restriction does not prevent nigrostriatal degeneration in the 6-hydroxydopamine model of Parkinson's disease. Exp Neurol 2008; 212:548-51. [DOI: 10.1016/j.expneurol.2008.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/21/2008] [Accepted: 04/01/2008] [Indexed: 12/26/2022]
|
28
|
Jia H, Liu Z, Li X, Feng Z, Hao J, Li X, Shen W, Zhang H, Liu J. Synergistic anti-Parkinsonism activity of high doses of B vitamins in a chronic cellular model. Neurobiol Aging 2008; 31:636-46. [PMID: 18639366 DOI: 10.1016/j.neurobiolaging.2008.05.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 05/11/2008] [Accepted: 05/28/2008] [Indexed: 10/21/2022]
Abstract
We propose that elevation of mitochondrial enzyme cofactors may prevent or ameliorate neurodegenerative diseases by improving mitochondrial function. In the present study, we investigated the effects of high doses of B vitamins, the precursors of mitochondrial enzyme cofactors, on mitochondrial dysfunction, oxidative stress, and Parkinsonism in a 4-week long rotenone treatment-induced cellular model of Parkinson's disease (PD). Pretreatment with B vitamins (also 4 weeks) prevented rotenone-induced: (1) mitochondrial dysfunction, including reduced mitochondrial membrane potential and activities of complex I; (2) oxidative stress, including increase in reactive oxygen species, oxidative DNA damage and protein oxidation, and (3) Parkinsonism parameters, including accumulation of alpha-synuclein and poly-ubiquitin. The optimum doses were found around 2.5- and 5-fold of that in normal MEM medium. The 4-week pretreatment was chosen based on time-dependent experiments that pretreatments longer than 2 weeks resulted in a decrease in oxidants, an increase in oxygen consumption, and up-regulation of complex I activity and PGC-1alpha expression. Individual B vitamins at the same doses did not show a similar effect suggesting that these B vitamins work synergistically. These results suggest that administration of high doses of B vitamins sufficient to elevate mitochondrial enzyme cofactors may be effective in preventing PD by reducing oxidative stress and improving mitochondrial function.
Collapse
Affiliation(s)
- Haiqun Jia
- Institute for Nutritional Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
SK channel function regulates the dopamine phenotype of neurons in the substantia nigra pars compacta. Exp Neurol 2008; 213:419-30. [PMID: 18680743 DOI: 10.1016/j.expneurol.2008.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 07/02/2008] [Accepted: 07/05/2008] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is characterized by loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc). It is widely believed that replacing lost SNc DA neurons is a key to longer-term effective treatment of PD motor symptoms, but generating new SNc DA neurons in PD patients has proven difficult. Following loss of tyrosine hydroxylase-positive (TH+) SNc neurons in the rodent 6-hydroxy-DA (6-OHDA) model of PD, the number of TH+ neurons partially recovers and there is evidence this occurs via phenotype "shift" from TH- to TH+ cells. Understanding how this putative phenotype shift occurs may help increase SNc DAergic neurons in PD patients. In this study we characterize the electrophysiology of SNc TH- and TH+ cells during recovery from 6-OHDA in mice. Three distinct phenotypes were observed: (1) TH- were fast discharging with a short duration action potential (AP), short afterhyperpolarization (AHP) and no small conductance Ca(2+)-activated K(+) (SK) current; (2) TH+ were slow discharging with a long AP, long AHP and prominent SK current; and (3) cells with features "intermediate" between these TH- and TH+ phenotypes. The same 3 phenotypes were present also in the normal and D2 DA receptor knock-out SNc suggesting they are more closely related to the biology of TH expression than recovery from 6-OHDA. Acute inhibition of SK channel function shifted the electrophysiological phenotype of TH+ neurons toward TH- and chronic (2 weeks) inhibition of SK channel function in normal mice shifted the neurochemical phenotype of SNc from TH+ to TH- (i.e. decreased TH+ and increased TH- cell numbers). Importantly, chronic facilitation of SK channel function shifted the neurochemical phenotype of SNc from TH- to TH+ (i.e. increased TH+ and decreased TH- cell numbers). We conclude that SK channel function bidirectionally regulates the DA phenotype of SNc cells and facilitation of SK channels may be a novel way to increase the number of SNc DAergic neurons in PD patients.
Collapse
|
30
|
Sabolek M, Mieskes I, Lenk T, Lehmensiek V, Hermann A, Schwarz J, Storch A. Stage-dependent vulnerability of fetal mesencephalic neuroprogenitors towards dopaminergic neurotoxins. Neurotoxicology 2008; 29:714-21. [PMID: 18513801 DOI: 10.1016/j.neuro.2008.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/10/2008] [Accepted: 04/16/2008] [Indexed: 12/17/2022]
Abstract
Although extensive knowledge exists on selective vulnerability of dopaminergic neurons against parkinsonism-inducing neurotoxins, there is a complete lack of such data on immature neuroprogenitors. Here we investigated the toxicity of 1-methyl-4-phenylpyridinium (MPP+), 6-hydroxydopamine (6-OHDA) and the free radical generator H2O2 on various developmental stages of predopaminergic mesencephalic neuroprogenitors (mNPCs) to evaluate stage-dependency of selective dopaminergic neurotoxicity. Striatal NPCs (sNPCs) without dopaminergic differentiation potential served as controls. Exposure of both undifferentiated NPCs to MPP+ resulted in concentration-dependent cell death at concentrations of >10 microM after 72 h without differences between both cell types, while 6-OHDA led to relevant cell death at 1000 microM after 24h with significant higher sensitivity of mNPCs compared to sNPCs. H2O2 did not induce relevant cell death in all cell types. In NPC cultures differentiated for 14 days, MPP+ showed enhanced toxicity compared to the undifferentiated counterparts, but no significant differences between both NPC type and differentiation conditions. 6-OHDA showed similar toxicity pattern in differentiated compared to undifferentiated NPCs. By evaluating the toxicity of MPP+ on MAP2ab+ neurons derived from both mNPCs and sNPCs as well as tyrosine hydroxylase (TH)+ dopaminergic cells from mNPCs, we found concentration-dependent cell death of all cell types with no increased vulnerability of TH+ cells. Primary TH+ neurons showed significantly higher vulnerability to MPP+. Together, we demonstrated stage-dependent vulnerability of NPCs towards dopaminergic neurotoxins, but no selective vulnerability of NPC-derived TH+ dopaminergic cells towards MPP+. This cell system seems not suitable as a screening tool for selective dopaminergic toxicity.
Collapse
|
31
|
Bogaerts V, Theuns J, van Broeckhoven C. Genetic findings in Parkinson's disease and translation into treatment: a leading role for mitochondria? GENES, BRAIN, AND BEHAVIOR 2008; 7:129-51. [PMID: 17680806 PMCID: PMC2268956 DOI: 10.1111/j.1601-183x.2007.00342.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 06/06/2007] [Accepted: 06/25/2007] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder and in most patients its aetiology remains unknown. Molecular genetic studies in familial forms of the disease identified key proteins involved in PD pathogenesis, and support a major role for mitochondrial dysfunction, which is also of significant importance to the common sporadic forms of PD. While current treatments temporarily alleviate symptoms, they do not halt disease progression. Drugs that target the underlying pathways to PD pathogenesis, including mitochondrial dysfunction, therefore hold great promise for neuroprotection in PD. Here we summarize how the proteins identified through genetic research (alpha-synuclein, parkin, PINK1, DJ-1, LRRK2 and HTRA2) fit into and add to our current understanding of the role of mitochondrial dysfunction in PD. We highlight how these genetic findings provided us with suitable animal models and critically review how the gained insights will contribute to better therapies for PD.
Collapse
Affiliation(s)
- V Bogaerts
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| | - J Theuns
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| | - C van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| |
Collapse
|
32
|
Abstract
Growing evidence suggests an involvement of iron in the pathophysiology of neurodegenerative diseases. Several of the diseases are associated with parkinsonian syndromes, induced by degeneration of basal ganglia regions that contain the highest amount of iron within the brain. The group of neurodegenerative disorders associated with parkinsonian syndromes with increased brain iron content can be devided into two groups: (1) parkinsonian syndromes associated with brain iron accumulation, including Parkinson's disease, diffuse Lewy body disease, parkinsonian type of multiple system atrophy, progressive supranuclear palsy, corticobasal ganglionic degeneration, and Westphal variant of Huntington's disease; and (2) monogenetically caused disturbances of brain iron metabolism associated with parkinsonian syndromes, including aceruloplasminemia, hereditary ferritinopathies affecting the basal ganglia, and panthotenate kinase associated neurodegeneration type 2. Although it is still a matter of debate whether iron accumulation is a primary cause or secondary event in the first group, there is no doubt that iron-induced oxidative stress contributes to neurodegeneration. Parallels concerning pathophysiological as well as clinical aspects can be drawn between disorders of both groups. Results from animal models and reduction of iron overload combined with at least partial relief of symptoms by application of iron chelators in patients of the second group give hope that targeting the iron overload might be one possibility to slow down the neurodegenerative cascade also in the first group of inevitably progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniela Berg
- Hertie Institute of Clinical Brain Research and Department of Medical Genetics, University of Tübingen, Germany.
| | | |
Collapse
|
33
|
Abstract
Although the pathophysiology underlying a number of neurodegenerative diseases is complex and, in many aspects, only partly understood, increased iron levels in pathologically relevant brain areas and iron-mediated oxidative stress seem to play a central role in many of them. Much has been learned from monogenetically caused disturbances of brain iron metabolism including pantothenate kinase-associated neurodegeneration type 2, hereditary ferritinopathies affecting the basal ganglia, and aceruloplasminemia that may well be applied to the most common neurodegenerative disorders associated with brain iron accumulation including Parkinson disease and Alzheimer disease. Iron-mediated oxidative stress in neurodegenerative diseases caused by other genetic pathways like Huntington disease and Friedreich ataxia underscore the complex interaction of this trace metal and genetic variations. Therapeutical strategies derived from application of iron chelators in monogenetically caused disturbances of brain iron metabolism and new iron and oxidative stress diminishing substances in animal models of Parkinson disease are promising and warrant further investigational effort.
Collapse
Affiliation(s)
- Daniela Berg
- Center of Neurology, Department of Neurodegeneration and Hertie Institute of Clinical Brain, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
34
|
Sánchez-Iglesias S, Rey P, Méndez-Alvarez E, Labandeira-García JL, Soto-Otero R. Time-course of brain oxidative damage caused by intrastriatal administration of 6-hydroxydopamine in a rat model of Parkinson's disease. Neurochem Res 2006; 32:99-105. [PMID: 17160721 DOI: 10.1007/s11064-006-9232-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The unilateral and intrastriatal injection of 6-hydroxydopamine is commonly used to provide a partial lesion model of Parkinson's disease in the investigation of the molecular mechanisms involved in its pathogenesis and to assess new neuroprotective treatments. Its capacity to induce neurodegeneration has been related to its ability to undergo autoxidation in the presence of oxygen and consequently to generate oxidative stress. The aim of the present study was to investigate the time course of brain oxidative damage induced by 6-hydroxydopamine (6 microg in 5 microl of sterile saline containing 0.2% ascorbic acid) injection in the right striatum of the rat. The results of this study show that the indices of both lipid peroxidation (TBARS) and protein oxidation (carbonyl and free thiol contents) increase simultaneously in the ipsilateral striatum and ventral midbrain, reaching a peak value at 48-h post-injection for both TBARS and protein carbonyl content, and at 24 h for protein free thiol content. A lower but significant increase was also observed in the contralateral side (striatum and ventral midbrain). The indices of oxidative stress returned to values close to those found in controls at 7-day post-injection. These data show that the oxidative stress is a possible triggering factor for the neurodegenerative process and the retrograde neurodegeneration observed after 1-week post-injection is a consequence of the cell damage caused during the first days post-injection. The optimal time to assess brain indices of oxidative stress in this model is 48-h post-injection.
Collapse
Affiliation(s)
- Sofía Sánchez-Iglesias
- Laboratory of Neurochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Santiago de Compostela, San Francisco 1, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
35
|
Rey P, Lopez-Real A, Sanchez-Iglesias S, Muñoz A, Soto-Otero R, Labandeira-Garcia JL. Angiotensin type-1-receptor antagonists reduce 6-hydroxydopamine toxicity for dopaminergic neurons. Neurobiol Aging 2006; 28:555-67. [PMID: 16621167 DOI: 10.1016/j.neurobiolaging.2006.02.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 02/20/2006] [Accepted: 02/27/2006] [Indexed: 02/07/2023]
Abstract
Angiotensin II activates (via type 1 receptors) NAD(P)H-dependent oxidases, which are a major source of superoxide, and is relevant in the pathogenesis of several cardiovascular diseases and certain degenerative changes associated with ageing. Given that there is a brain renin-angiotensin system and that oxidative stress is a key contributor to Parkinson's disease, we investigated the effects of angiotensin II and angiotensin type 1 (AT(1)) receptor antagonists in the 6-hydroxydopamine model of Parkinson's disease. Rats subjected to intraventricular injection of 6-hydroxydopamine showed bilateral reduction in the number of dopaminergic neurons and terminals. Injection of angiotensin alone did not induce any significant effect. However, angiotensin increased the toxic effect of 6-hydroxydopamine. Rats treated with the AT(1) receptor antagonist ZD 7155 and then 6-hydroxydopamine (with or without exogenous administration of angiotensin) showed a significant reduction in 6-hydroxydopamine-induced oxidative stress (lipid peroxidation and protein oxidation) and dopaminergic degeneration. Dopaminergic degeneration was also reduced by the NAD(P)H inhibitor apocynin. Angiotensin may play a pivotal role, via AT(1) receptors, in increasing the oxidative damage of dopaminergic cells, and treatment with AT(1) antagonists may reduce the progression of Parkinson's disease.
Collapse
Affiliation(s)
- P Rey
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Lehmensiek V, Tan EM, Liebau S, Lenk T, Zettlmeisl H, Schwarz J, Storch A. Dopamine transporter-mediated cytotoxicity of 6-hydroxydopamine in vitro depends on expression of mutant alpha-synucleins related to Parkinson's disease. Neurochem Int 2006; 48:329-40. [PMID: 16406146 DOI: 10.1016/j.neuint.2005.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 10/27/2005] [Accepted: 11/08/2005] [Indexed: 11/18/2022]
Abstract
6-Hydroxydopamine (6-OHDA) is widely used to produce animal models of Parkinson's disease (PD) by selectively destroying the nigro-striatal dopaminergic systems, but selective toxicity of 6-OHDA towards dopaminergic cells in vitro remains controversial. Mutant (A30P and A53T) alpha-synuclein isoforms cause increased vulnerability of cells towards various toxic insults and enhance dopamine transporter (DAT)-mediated toxicity of the selective dopaminergic neurotoxin and mitochondrial complex I inhibitor MPP(+) in vitro. Here we extend our recent studies on DAT-mediated toxicity to elucidate the mechanisms involved in selective dopaminergic toxicity of 6-OHDA. We studied the cytotoxicity as well as the toxic mechanisms of 6-OHDA in human embryonic kidney HEK-293 cells ectopically co-expressing mutant alpha-synucleins and the human DAT protein. 6-OHDA showed half-maximal toxic concentration (TC(50)) of 88 microM in HEK-hDAT cells without alpha-synuclein expression after 24 h, whereas the TC(50) values significantly decreased to 58 and 39 microM by expression of A30P and A53T alpha-synuclein, respectively. alpha-Synuclein expression did not affect 6-OHDA toxicity in HEK-293 cells not expressing the DAT. Analysis of intracellular parameters of cellular energy metabolism revealed that the co-expression of mutant alpha-synucleins in HEK-hDAT cells accelerates the reduction of intracellular net ATP levels and ATP/ADP ratios induced by 6-OHDA. Uptake function of the DAT was not altered by expression of alpha-synuclein isoforms. Our data suggest a mechanism of 6-OHDA-induced dopaminergic toxicity involving an interaction of mutant alpha-synucleins with the DAT molecule and subsequent acceleration of cellular energy depletion that might be relevant for the pathogenesis of PD.
Collapse
|
37
|
Lopez-Real A, Rey P, Soto-Otero R, Mendez-Alvarez E, Labandeira-Garcia JL. Angiotensin-converting enzyme inhibition reduces oxidative stress and protects dopaminergic neurons in a 6-hydroxydopamine rat model of Parkinsonism. J Neurosci Res 2005; 81:865-73. [PMID: 16015598 DOI: 10.1002/jnr.20598] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is now established that the brain possesses a local renin-angiotensin system and that angiotensin II exerts multiple actions in the nervous system, including regulation of striatal dopamine release. Furthermore, angiotensin activates NADPH-dependent oxidases, which are a major source of superoxide, and angiotensin-converting enzyme inhibitors, commonly used in the treatment of hypertension and chronic heart failure, have shown antioxidant properties in several tissues. Oxidative stress is a key contributor to the pathogenesis and progression of Parkinson's disease. In the present study, we treated rats with intraventricular injections of the dopaminergic neurotoxin 6-hydroxydopamine and subcutaneous injections of the angiotensin-converting enzyme inhibitor Captopril to study the possible neuroprotective effect of the latter on the dopaminergic system and on 6-hydroxydopamine-induced oxidative stress. Rats treated with Captopril and 6-hydroxydopamine showed significantly less reduction in the number of dopaminergic neurons (i.e., immunoreactive to tyrosine hydroxylase) in the substantia nigra and in the density of striatal dopaminergic terminals than 6-hydroxydopamine-lesioned rats not treated with Captopril. In addition, Captopril reduced the levels of major oxidative stress indicators (i.e., lipid peroxidation and protein oxidation) in the ventral midbrain and the striatum of 6-hydroxydopamine-lesioned rats. Our results suggest that angiotensin-converting enzyme inhibitors may be useful for treatment of Parkinson's disease and that further investigation should focus on the neuroprotective capacity of these compounds.
Collapse
Affiliation(s)
- A Lopez-Real
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
38
|
Fernandez-Gomez FJ, Galindo MF, Gomez-Lazaro M, González-García C, Ceña V, Aguirre N, Jordán J. Involvement of mitochondrial potential and calcium buffering capacity in minocycline cytoprotective actions. Neuroscience 2005; 133:959-67. [PMID: 15964487 DOI: 10.1016/j.neuroscience.2005.03.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 02/09/2005] [Accepted: 03/11/2005] [Indexed: 11/16/2022]
Abstract
Minocycline, a semisynthetic derivative of tetracycline, displays beneficial activity in neuroprotective in models including, Parkinson disease, spinal cord injury, amyotrophic lateral sclerosis, Huntington disease and stroke. The mechanisms by which minocycline inhibits apoptosis remain poorly understood. In the present report we have investigated the effects of minocycline on mitochondria, due to their crucial role in apoptotic pathways. In mitochondria isolated suspensions, minocycline failed to block superoxide-induced swelling but was effective in blocking mitochondrial swelling induced by calcium. This latter effect might be mediated through dissipation of mitochondrial transmembrane potential and blockade of mitochondrial calcium uptake. Consistently, minocycline fails to protect SH-SY5Y cell cultures against reactive oxygen species-mediated cell death, including malonate and 6-hydroxydopamine treatments, but it is effective against staurosporine-induced cytotoxicity. The effects of this antibiotic on mitochondrial respiratory chain complex were also analyzed. Minocycline did not modify complex IV activity, and only at the higher concentration tested (100 microM) inhibited complex II/III activity. Other members of the minocycline antibiotic family like tetracycline failed to induce these mitochondrial effects.
Collapse
Affiliation(s)
- F J Fernandez-Gomez
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Avenida Almansa, s/n, 02006 Albacete, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Eminel S, Klettner A, Roemer L, Herdegen T, Waetzig V. JNK2 Translocates to the Mitochondria and Mediates Cytochrome c Release in PC12 Cells in Response to 6-Hydroxydopamine. J Biol Chem 2004; 279:55385-92. [PMID: 15504737 DOI: 10.1074/jbc.m405858200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
6-Hydroxydopamine (6-OHDA) causes death of dopaminergic neurons by mitochondrial dysfunction with JNKs as central mediators. Here we provide novel insights into specific actions of JNK isoforms in 6-OHDA-induced death of PC12 cells. Twenty five mum 6-OHDA enhanced total JNK activity in the cytoplasm, nucleus, and at the mitochondria. Inhibition of JNKs by 2 mum SP600125 or transfection with dominant-negative JNK2 (dnJNK2) rescued more than 60% of the otherwise dying PC12 cells after 24 h, whereas transfection with dnJNK1 had no protective effects. In contrast to constitutively present JNK1, JNK2 amounts increased in the nucleus and at the mitochondria after 6-OHDA stimulation. JNK inhibition by SP600125 or transfection of dnJNK2 reduced the pool of active JNKs in the nucleus, the release of cytochrome c, as well as the cleavage of caspase-3 and its substrate poly(ADP-ribose) polymerase-1. Transfection with dnJNK1, however, had no effects on the translocation of JNKs to the mitochondria or the release of cytochrome c. Our data provide novel functional insights into the pathological role of individual JNK isoforms, the signalosome at the mitochondria, and the mode of JNK-induced release of cytochrome c.
Collapse
Affiliation(s)
- Sevgi Eminel
- Institute of Pharmacology, Schleswig-Holstein University Medical Center, Campus Kiel, Hospitalstrasse 4, 24105 Kiel, Germany
| | | | | | | | | |
Collapse
|
40
|
Ming Z, Zhi-shun L, Jin-fa G, Lan-yin S, Xin-yuan L. Co-treatment with ethanol enhances the toxicity of 6-hydroxydopamine. Neurosci Lett 2004; 367:250-3. [PMID: 15331164 DOI: 10.1016/j.neulet.2004.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
6-Hydroxydopamine (6-OHDA) is a widely used neural toxin in the pathogenesis research of Parkinson's disease (PD). In this work, we have studied the effect of ethanol on the toxicity of 6-OHDA on PC12 cell and SK-N-SH cell. Ethanol alone had little toxicity to these cells. However, if using 40 microM 6-OHDA along with 400 mM ethanol on PC12 cell or SK-N-SH cell for 24h, there was much more cell loss than using 40 microM 6-OHDA alone when detected by 3-(4,5-dimethylthiazal-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay or flow cytometric assay. The toxicity of 6-OHDA was enhanced only if using at least 200 mM ethanol, and the cell loss was increased with the increase of ethanol concentration. We had also found that ethanol could enhance the toxicity of 6-OHDA only when using ethanol and 6-OHDA at the same time, ethanol treatment either before or after 6-OHDA treatment did not show such effect. This effect of ethanol suggests that ethanol may contribute to the degeneration of dopaminergic cells.
Collapse
Affiliation(s)
- Zhuo Ming
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghia 20031, PR China
| | | | | | | | | |
Collapse
|
41
|
Mazzio EA, Reams RR, Soliman KFA. The role of oxidative stress, impaired glycolysis and mitochondrial respiratory redox failure in the cytotoxic effects of 6-hydroxydopamine in vitro. Brain Res 2004; 1004:29-44. [PMID: 15033417 DOI: 10.1016/j.brainres.2003.12.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2003] [Indexed: 11/16/2022]
Abstract
The neurotoxin, 6-hydroxydopamine (6-OHDA) has been implicated in the neurodegenerative process of Parkinson's disease. The current study was designed to elucidate the toxicological effects of 6-OHDA on energy metabolism in neuroblastoma (N-2A) cells. The toxicity of 6-OHDA corresponds to the total collapse of anaerobic/aerobic cell function, unlike other mitochondrial toxins such as MPP+ that target specific loss of aerobic metabolism. The toxicity of 6-OHDA paralleled the loss of mitochondrial oxygen (O2) consumption (MOC), glycolytic activity, ATP, H+ ion gradients, membrane potential and accumulation of the autoxidative product, hydrogen peroxide (H2O2). Removing H2O2 with nonenzymatic stoichiometric scavengers, such as carboxylic acids, glutathione and catalase yielded partial protection. The rapid removal of H2O2 with pyruvate or catalase restored only anaerobic glycolysis, but did not reverse the loss of MOC, indicating mitochondrial impairment is independent of H2O2. The H2O2 generated by 6-OHDA contributed toward the loss of anaerobic glycolysis through lipid peroxidation and lactic acid dehydrogenase inhibition. The ability of 6-OHDA to maintain oxidized cytochrome c (CYT-C-OX) in its reduced form (CYT-C-RED), appears to play a role in mitohondrial impairment. The reduction of CYT-C by 6-OHDA, was extensive, occurred within minutes, preceded formation of H2O2 and was unaffected by catalase or superoxide dismutase. At similar concentrations, 6-OHDA readily altered the valence state of iron [Fe(III)] to Fe(II), which would also theoretically sustain CYT-C in its reduced form. In isolated mitochondria, 6-OHDA had negligible effects on complex I, inhibited complex II and interfered with complex III by maintaining the substrate, CYT-C in a reduced state. 6-OHDA caused a transient and potent surge in isolated cytochrome oxidase (complex IV) activity, with rapid recovery as a result of 6-OHDA recycling CYT-C-OX to CYT-C-RED. Typical mitochondrial toxins such as MPP+, azide and antimycin appeared to inhibit the catalytic activity of ETC enzymes. In contrast, 6-OHDA alters the redox of the cytochromes, resulting in loss of substrate availability and obstruction of oxidation-reduction events. Complete cytoprotection against 6-OHDA toxicity and restored MOC was achieved by combining catalase with CYT-C (horse heart). In summary, CYT-C reducing properties are unique to catecholamine neurotransmitters, and may play a significant role in selective vulnerability of dopaminergic neurons to mitochondrial insults.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | | |
Collapse
|
42
|
Youdim MBH, Stephenson G, Ben Shachar D. Ironing Iron Out in Parkinson's Disease and Other Neurodegenerative Diseases with Iron Chelators: A Lesson from 6-Hydroxydopamine and Iron Chelators, Desferal and VK-28. Ann N Y Acad Sci 2004; 1012:306-25. [PMID: 15105275 DOI: 10.1196/annals.1306.025] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In Parkinson's disease (PD) and its neurotoxin-induced models, 6-hydroxydopamine (6-OHDA) and N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), significant accumulation of iron occurs in the substantia nigra pars compacta. The iron is thought to be in a labile pool, unbound to ferritin, and is thought to have a pivotal role to induce oxidative stress-dependent neurodegeneration of dopamine neurons via Fenton chemistry. The consequence of this is its interaction with H(2)O(2) to generate the most reactive radical oxygen species, the hydroxyl radical. This scenario is supported by studies in both human and neurotoxin-induced parkinsonism showing that disposition of H(2)O(2) is compromised via depletion of glutathione (GSH), the rate-limiting cofactor of glutathione peroxide, the major enzyme source to dispose H(2)O(2) as water in the brain. Further, radical scavengers have been shown to prevent the neurotoxic action of the above neurotoxins and depletion of GSH. However, our group was the first to demonstrate that the prototype iron chelator, desferal, is a potent neuroprotective agent in the 6-OHDA model. We have extended these studies and examined the neuroprotective effect of intracerebraventricular (ICV) pretreatment with the prototype iron chelator, desferal (1.3, 13, 134 mg), on ICV induced 6-OHDA (250 micro g) lesion of striatal dopamine neurons. Desferal alone at the doses studied did not affect striatal tyrosine hydroxylase (TH) activity or dopamine (DA) metabolism. All three pretreatment (30 min) doses of desferal prevented the fall in striatal and frontal cortex DA, dihydroxyphenylacetic acid, and homovalinic acid, as well as the left and right striatum TH activity and DA turnover resulting from 6-OHDA lesion of dopaminergic neurons. A concentration bell-shaped neuroprotective effect of desferal was observed in the striatum, with 13 micro g being the most effective. Neither desferal nor 6-OHDA affected striatal serotonin, 5-hydroxyindole acetic acid, or noradrenaline. Desferal also protected against 6-OHDA-induced deficit in locomotor activity, rearing, and exploratory behavior (sniffing) in a novel environment. Since the lowest neuroprotective dose (1.3 micro g) of desferal was 200 times less than 6-OHDA, its neuroprotective activity may not be attributed to interference with the neurotoxin activity, but rather iron chelation. These studies led us to develop novel brain-permeable iron chelators, the VK-28 series, with iron chelating and neuroprotective activity similar to desferal for ironing iron out from PD and other neurodegenerative diseases, such as Alzheimer's disease, Friedreich's ataxia, and Huntington's disease.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Eve Topf and US National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, and Department of Pharmacology, Technion-Rappaport Faculty of Medicine, Haifa, Israel.
| | | | | |
Collapse
|
43
|
Shachar DB, Kahana N, Kampel V, Warshawsky A, Youdim MBH. Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology 2004; 46:254-63. [PMID: 14680763 DOI: 10.1016/j.neuropharm.2003.09.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Significant increase in iron occurs in the substantia nigra pars compacta of Parkinsonian subjects, and in 6-hydroxydopamine (6-OHDA) treated rats and monkeys. This increase in iron has been attributed to its release from ferritin and is associated with the generation of reactive oxygen species and the onset of oxidative stress-induced neurodegeneration. Several iron chelators with hydroxyquinoline backbone were synthesized and their ability to inhibit basal as well as iron-induced mitochondrial lipid peroxidation was examined. The neuroprotective potential of the brain permeable iron chelator, VK-28 (5-[4-(2-hydroxyethyl) piperazine-1-ylmethyl]-quinoline-8-ol), injected either intraventricularly (ICV) or intraperitoneally (IP), to 6-OHDA lesioned rats was investigated. VK-28 inhibited both basal and Fe/ascorbate induced mitochondrial membrane lipid peroxidation, with an IC(50) (12.7 microM) value comparable to that of the prototype iron chelator, desferal, which does not cross the blood brain barrier. At an ICV pretreatment dose as low as 1 microg, VK-28 was able to completely protect against ICV 6-OHDA (250 microg) induced striatal dopaminergic lesion, as measured by dopamine (DA), dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) levels. IP injection of rats with VK-28 (1 and 5 mg/kg) daily for 10 and 7 days, respectively, demonstrated significant neuroprotection against ICV 6-OHDA at the higher dose, with 68% protection against loss of dopamine at 5mg/kg dosage of VK-28. The present study is the first to show neuroprotection with a brain permeable iron chelator. The latter can have implications for the treatment of Parkinson's disease and other neurodegenerative diseases (Alzheimer's disease, Friedreich ataxia, aceruloplasminemia, Hallervorden Spatz syndrome) where abnormal iron accumulation in the brain is thought to be associated with the degenerative processes.
Collapse
Affiliation(s)
- Dorit Ben Shachar
- Laboratory of Psychobiology Department of Psychiatry, Technion-Faculty of Medicine, Haifa, Israel
| | | | | | | | | |
Collapse
|
44
|
Youdim MBH. What have we learnt from CDNA microarray gene expression studies about the role of iron in MPTP induced neurodegeneration and Parkinson's disease? JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2003:73-88. [PMID: 12946050 DOI: 10.1007/978-3-7091-0643-3_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There have been numerous hypotheses concerning the etiology and mechanism of dorsal raphe dopaminergic neurodegeneration in Parkinson's disease and its animal models, MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and 6-hydroxydopamine. The advent of cDNA microarray gene expression where expression of thousands of genes can be globally assessed has indicated that mechanism of neurodegeneration by MPTP is a complex cascade of vicious circles. One of these is the alteration of genes associated with iron metabolism, a transitional metal closely associated with inducing the formation of reactive oxygen species and inducing oxidative stress. cDNA gene expression analyses support the established hypothesis of oxidative induced neurodegeneration involving iron deposition in substantia nigra pars compacta (SNPC) parkinsonian brains. The regulation of cellular iron metabolism has been further enhanced by the recent discovery of two iron regulatory proteins, IRP1 and IRP2 which control the level of iron with in the cell. When the cellular level of iron increases IRP2 is degraded by ubiquitination and no further iron accumulates. The reverse occurs when the level of iron is low within the cell. Knock-out IRP1 and IRP2 mice have shown that in latter mice brain iron accumulation precedes the neurodegeneration, ataxia and bradykinesia observed in these animals. Indeed MPTP treatment, which results in iron accumulation in SNCP, abolishes IRP2 with the concomitant increase in alpha-synuclein. Iron chelators such as R-apomorphine and EGCG, which protect against MPTP neurotoxicity, prevent the loss of IRP2 and the increase in alpha-synuclein. The presence of iron together with alpha-synuclein in SNPC may be detrimental for dopaminergic neurons. Since, iron has been shown to cause aggregation of alpha-synuclein to a neurotoxic agent. The use of iron chelators penetrating the blood brain barrier as neuroprotective drugs has been envisaged.
Collapse
Affiliation(s)
- M B H Youdim
- Eve Topf and National Parkinson Foundation Centers Of Excellence For Neurodegenerative Diseases Research, and Department of Pharmacology, Technion-Faculty of Medicine, Haifa, Israel.
| |
Collapse
|
45
|
Mottin S, Laporte P, Cespuglio R. Inhibition of NADH oxidation by chloramphenicol in the freely moving rat measured by picosecond time-resolved emission spectroscopy. J Neurochem 2003; 84:633-42. [PMID: 12562508 DOI: 10.1046/j.1471-4159.2003.01508.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Owing to the lack of methods capable to monitor the energetic processes taking place within small brain regions (i.e. nucleus raphe dorsalis, nRD), the neurotoxicity of various categories of substances, including antibiotics and psycho-active drugs, still remains difficult to evaluate. Using an in vivo picosecond optical spectroscopy imaging method, we report that chloramphenicol (CAP), besides its well-known ability to inhibit the mitochondria protein synthesis, also influences the NADH/NAD+ redox processes of the respiratory chain. At a 200-mg/kg dose, CAP indeed produces a marked increase in the fluorescent signal of the nRD which, according to clear evidence, is likely to be related to the NADH concentration. This effect also implies an efficient inhibition of complex I of the respiratory chain by CAP. It refers to the mechanism through which the adverse effects of the antibiotic may take place. It could explain why paradoxical sleep, a state needing aerobic energy to occur, is suppressed after CAP administration. The present approach constitutes the first attempt to determine by fluorescence methods the effects of substances on deep brain structures of the freely moving animal. It points out that in vivo ultrafast optical methods are innovative and adequate tools for combined neurochemical and behavioural approaches.
Collapse
Affiliation(s)
- Stéphane Mottin
- LTSI, CNRS UMR 5516, University of St-Etienne, F-42023 St-Etienne Cedex 02, France.
| | | | | |
Collapse
|
46
|
Kaur D, Andersen JK. Ironing out Parkinson's disease: is therapeutic treatment with iron chelators a real possibility? Aging Cell 2002; 1:17-21. [PMID: 12882349 DOI: 10.1046/j.1474-9728.2002.00001.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Levels of iron are increased in the brains of Parkinson's disease (PD) patients compared to age-matched controls. This has been postulated to contribute to progression of the disease via several mechanisms including exacerbation of oxidative stress, initiation of inflammatory responses and triggering of Lewy body formation. In this minireview, we examine the putative role of iron in PD and its pharmacological chelation as a prospective therapeutic for the disease.
Collapse
Affiliation(s)
- Deepinder Kaur
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA
| | | |
Collapse
|
47
|
Abstract
Oxidative stress is a ubiquitously observed hallmark of neurodegenerative disorders. Neuronal cell dysfunction and cell death due to oxidative stress may causally contribute to the pathogenesis of progressive neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, as well as acute syndromes of neurodegeneration, such as ischaemic and haemorrhagic stroke. Neuroprotective antioxidants are considered a promising approach to slowing the progression and limiting the extent of neuronal cell loss in these disorders. The clinical evidence demonstrating that antioxidant compounds can act as protective drugs in neurodegenerative disease, however, is still relatively scarce. In the following review, the available data from clinical, animal and cell biological studies regarding the role of antioxidant neuroprotection in progressive neurodegenerative disease will be summarised, focussing particularly on Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. The general complications in developing potent neuroprotective antioxidant drugs directed against these long-term degenerative conditions will also be discussed. The major challenges for drug development are the slow kinetics of disease progression, the unsolved mechanistic questions concerning the final causalities of cell death, the necessity to attain an effective permeation of the blood-brain barrier and the need to reduce the high concentrations currently required to evoke protective effects in cellular and animal model systems. Finally, an outlook as to which direction antioxidant drug development and clinical practice may be leading to in the near future will be provided.
Collapse
Affiliation(s)
- Bernd Moosmann
- Center for Neuroscience and Aging, The Burnham Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
48
|
Seth K, Agrawal AK, Aziz MH, Ahmad A, Shukla Y, Mathur N, Seth PK. Induced expression of early response genes/oxidative injury in rat pheochromocytoma (PC12) cell line by 6-hydroxydopamine: implication for Parkinson's disease. Neurosci Lett 2002; 330:89-93. [PMID: 12213641 DOI: 10.1016/s0304-3940(02)00714-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expression of early response gene proteins c-Fos, c-Jun, and GAP-43 and their association with 6-hydroxydopamine (6-OHDA)-mediated oxidative injury were investigated using catecholaminergic PC12 cell line. Significant induction in the expression of c-Fos (P < 0.01), c-Jun (P < 0.001) and GAP-43 (P < 0.05) was observed following 2 h exposure to 6-OHDA (10(-6) M), which persisted during 24 h of observation. The exposed cells exhibited an increase in lipid peroxidation (48, 59 and 33%) along with decreased catalase activity (49, 30 and 13%) and glutathione levels (39, 28 and 16%) following 24, 48 and 72 h exposure, respectively. A concentration-dependent functional impairment of mitochondria as studied by 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and decreased cell survival were also observed following 6-OHDA (10(-4), 10(-5) M) exposure for 24, 48 and 72 h. The results indicate a role of the early response gene in oxidative stress-mediated dopaminergic cell death by 6-OHDA. Similar mechanisms may also be operative in the development of Parkinson's disease, as an increased presence/formation of endogenous 6-OHDA has been reported in Parkinson's patients.
Collapse
Affiliation(s)
- K Seth
- Industrial Toxicology Research Centre, Mahatma Gandhi Marg, Post Box 80, Lucknow 226 001, India.
| | | | | | | | | | | | | |
Collapse
|
49
|
Méndez-Alvarez E, Soto-Otero R, Hermida-Ameijeiras A, López-Real AM, Labandeira-García JL. Effects of aluminum and zinc on the oxidative stress caused by 6-hydroxydopamine autoxidation: relevance for the pathogenesis of Parkinson's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1586:155-68. [PMID: 11959457 DOI: 10.1016/s0925-4439(01)00077-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aluminum and zinc have been related to the pathogenesis of Parkinson's disease (PD), the former for its neurotoxicity and the latter for its apparent antioxidant properties. 6-Hydroxydopamine (6-OHDA) is an important neurotoxin putatively involved in the pathogenesis of PD, its neurotoxicity often being related to oxidative stress. The potential effect of these metals on the oxidative stress induced by 6-OHDA autoxidation and the potential of ascorbic acid (AA), cysteine, and glutathione to modify this effect were investigated. Both metals, particularly Al3+, induced a significant reduction in *OH production by 6-OHDA autoxidation. The combined action of AA and a metal caused a significant and sustained increase in *OH generation, particularly with Al3+, while the effect of sulfhydryl reductants was limited to only the first few minutes of the reaction. However, both Al3+ and Zn2+ provoked a decrease in the lipid peroxidation induced by 6-OHDA autoxidation using mitochondrial preparations from rat brain, assessed by TBARS formation. In the presence of AA, only Al3+ induced a significant reduction in lipid peroxidation. After intrastriatal injections of 6-OHDA in rats, tyrosine hydroxylase immunohistochemistry revealed that Al3+ reduces 6-OHDA-induced dopaminergic lesion in the striatum, which corroborates the involvement of lipid peroxidation in 6-OHDA neurotoxicity and appears to discard the participation of this mechanism on PD by Al3+ accumulation. The previously reported antioxidant properties of Zn2+ appear to be related to the induction of Zn2+-containing proteins and not to the metal per se.
Collapse
Affiliation(s)
- Estefanía Méndez-Alvarez
- Grupo de Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco 1, E-15782, Spain
| | | | | | | | | |
Collapse
|
50
|
Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol 2001; 65:135-72. [PMID: 11403877 DOI: 10.1016/s0301-0082(01)00003-x] [Citation(s) in RCA: 893] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a preferential loss of the dopaminergic neurons of the substantia nigra pars compacta. Although the etiology of PD is unknown, major biochemical processes such as oxidative stress and mitochondrial inhibition are largely described. However, despite these findings, the actual therapeutics are essentially symptomatical and are not able to block the degenerative process. Recent histological studies performed on brains from PD patients suggest that nigral cell death could be apoptotic. However, since post-mortem studies do not allow precise determination of the sequence of events leading to this apoptotic cell death, the molecular pathways involved in this process have been essentially studied on experimental models reproducing the human disease. These latter are created by using neurotoxic compounds such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or dopamine (DA). Extensive study of these models have shown that they mimick, in vitro and in vivo, the histological and/or the biochemical characteristics of PD and thus help to define important cellular actors of cell death presumably critical for the nigral degeneration. This review reports recent data concerning the biochemical and molecular apoptotic mechanisms underlying the experimental models of PD and correlates them to the phenomena occurring in human disease.
Collapse
Affiliation(s)
- D Blum
- Unité Mixte INSERM/UJF E0108, Neurodégénérescence et plasticité, CHU Michallon, Pavillon de Neurologie, BP217, 38043 Cedex 9, Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|