1
|
Wang Y, Zhao GA, Li X, Zhang E, Tan W, Chen JQ. Establishment of a sensitive UPLC-MS/MS method to quantify safinamide in rat plasma. Front Pharmacol 2023; 14:1211383. [PMID: 37701033 PMCID: PMC10493267 DOI: 10.3389/fphar.2023.1211383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/03/2023] [Indexed: 09/14/2023] Open
Abstract
A fast, simple, and sensitive ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established for the quantification of safinamide in rat plasma. Plasma samples were treated with acetonitrile for protein precipitation, and diazepam was used as an internal standard (IS). The analytes were separated on an Acquity UPLC C18 (2.1 mm × 50 mm, 1.7 μm) chromatographic column with gradient elution using a mobile phase (0.1% formic acid-acetonitrile). Then, the eluates were detected by electrospray ionization (ESI) in positive ion mode. The analytes were quantified by multiple reaction monitoring (MRM) using the transition m/z 303.3→215.0 of safinamide and m/z 285.0→154.0 of IS. Safinamide had good linearity in the concentration range of 1.0-2000 ng/mL, and the lower limit of quantitation (LLOQ) was 1.0 ng/mL. The intra- and inter-day precision and accuracy of safinamide were less than 7.63%, while the average recovery rate was 92.98%-100.29%. The method was validated to be stable and had low noise, short chromatographic run time, wide linear range, small sample volumes, low sample injection volumes, and high sensitivity. Therefore, it can be used in pharmacokinetics and preclinical and clinical studies.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacy, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Guan-An Zhao
- Urinary Surgery, The People’s Hospital of Lishui, Lishui, Zhejiang, China
| | - Xia Li
- Clinical Laboratory, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - En Zhang
- Clinical Laboratory, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Wei Tan
- The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Jia-qi Chen
- Clinical Lab, The People’s Hospital of Lishui, Lishui, Zhejiang, China
| |
Collapse
|
2
|
Vavers E, Zvejniece L, Dambrova M. Sigma-1 receptor and seizures. Pharmacol Res 2023; 191:106771. [PMID: 37068533 PMCID: PMC10176040 DOI: 10.1016/j.phrs.2023.106771] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Over the last decade, sigma-1 receptor (Sig1R) has been recognized as a valid target for the treatment of seizure disorders and seizure-related comorbidities. Clinical trials with Sig1R ligands are underway testing therapies for the treatment of drug-resistant seizures, developmental and epileptic encephalopathies, and photosensitive epilepsy. However, the direct molecular mechanism by which Sig1R modulates seizures and the balance between excitatory and inhibitory pathways has not been fully elucidated. This review article aims to summarize existing knowledge of Sig1R and its involvement in seizures by focusing on the evidence obtained from Sig1R knockout animals and the anti-seizure effects of Sig1R ligands. In addition, this review article includes a discussion of the advantages and disadvantages of the use of existing compounds and describes the challenges and future perspectives on the use of Sig1R as a target for the treatment of seizure disorders.
Collapse
Affiliation(s)
- Edijs Vavers
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; University of Tartu, Faculty of Science and Technology, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Liga Zvejniece
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; Riga Stradiņš University, Faculty of Pharmacy, Konsula 21, LV-1007, Riga, Latvia
| |
Collapse
|
3
|
Onishi K, Kamida T, Fujiki M, Momii Y, Sugita K. Anticonvulsant and antioxidant effects of lamotrigine on pilocarpine-induced status epilepticus in mice. Neuroreport 2023; 34:61-66. [PMID: 36484279 PMCID: PMC11115457 DOI: 10.1097/wnr.0000000000001859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The anticonvulsant and antioxidant effects of lamotrigine on status epilepticus (SE) are incompletely understood. We assessed these effects of lamotrigine on pilocarpine (Pilo)-induced SE in mice. METHODS Male C57BL/J6 mice were assigned to three groups: the control group, Pilo (400 mg/kg, s.c.)-induced SE (Pilo group) and lamotrigine (20 mg/kg, i.p.) treated (Pilo/lamotrigine group). The latency to SE of Racine's stage 3 or higher, the mortality rate within 2 h of Pilo administration, and the duration of SE until sacrifice were examined. Nitric oxide (NO), malondialdehyde and glutathione of oxidative stress biomarkers were detected in the hippocampus of the sacrificed animals in the above groups. NO was also detected in the cultured rat hippocampal neurons treated with 4 μM Pilo, Pilo+100 μM lamotrigine (Pilo/lamotrigine) and Pilo/lamotrigine+ N-methyl-D-aspartic acid (NMDA) receptor antagonist (10 μM MK-801, 3 μM ifenprodil) to examine the antioxidant effects of lamotrigine via non-NMDA-related pathways. RESULTS lamotrigine prolonged the latency to SE, the SE duration until sacrifice, and decreased the mortality rate in mice with Pilo-induced SE. Lamotrigine also decreased hippocampal concentrations of NO and malondialdehyde and increased the concentrations of glutathione in the SE model. Furthermore, there were significant differences in NO concentrations between groups of cultured rat hippocampal neurons treated with Pilo and Pilo/lamotrigine, and with Pilo/lamotrigine and Pilo/lamotrigine+MK-801. CONCLUSION Our findings suggest that lamotrigine exerts anticonvulsant and antioxidant effects on SE, but its antioxidant activity may not be fully exerted via NMDA-related pathways.
Collapse
Affiliation(s)
- Kouhei Onishi
- Department of Neurosurgery, School of Medicine, Oita University, Hasama-machi, Oita, Japan
| | - Tohru Kamida
- Department of Neurosurgery, School of Medicine, Oita University, Hasama-machi, Oita, Japan
| | - Minoru Fujiki
- Department of Neurosurgery, School of Medicine, Oita University, Hasama-machi, Oita, Japan
| | - Yasutomo Momii
- Department of Neurosurgery, School of Medicine, Oita University, Hasama-machi, Oita, Japan
| | - Kenji Sugita
- Department of Neurosurgery, School of Medicine, Oita University, Hasama-machi, Oita, Japan
| |
Collapse
|
4
|
Wasan H, Singh D, Kh R. Safinamide in neurological disorders and beyond: Evidence from preclinical and clinical studies. Brain Res Bull 2020; 168:165-177. [PMID: 33387637 DOI: 10.1016/j.brainresbull.2020.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023]
Abstract
The discovery and development of safinamide, an alpha-aminoamide, has been a valuable addition to the existing clinical management of Parkinson's disease (PD). The journey of safinamide dates back to the year 1983, when an alpha-aminoamide called milacemide showed a weak anticonvulsant activity. Milacemide was then structurally modified to give rise to safinamide, which in turn produced robust anticonvulsant activity. The underlying mechanism behind this action of safinamide is attributed to the inhibition of voltage gated calcium and sodium channels. Moreover, owing to the importance of ion channels in maintaining neuronal circuitry and neurotransmitter release, numerous studies explored the potential of safinamide in neurological diseases including PD, stroke, multiple sclerosis and neuromuscular disorders such as Duchenne muscular dystrophy and non-dystrophic myotonias. Nevertheless, evidence from multiple preclinical studies suggested a potent, selective and reversible inhibitory activity of safinamide against monoamine oxidase (MAO)-B enzyme which is responsible for degrading dopamine, a neurotransmitter primarily implicated in the pathophysiology of PD. Therefore, clinical studies were conducted to assess safety and efficacy of safinamide in PD. Indeed, results from various Phase 3 clinical trials suggested strong evidence of safinamide as an add-on therapy in controlling the exacerbation of PD. This review presents a thorough developmental history of safinamide in PD and provides comprehensive insight into plausible mechanisms via which safinamide can be explored in other neurological and muscular diseases.
Collapse
Affiliation(s)
- Himika Wasan
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Devendra Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Reeta Kh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
5
|
Xu T, Sun R, Wei G, Kong S. The Protective Effect of Safinamide in Ischemic Stroke Mice and a Brain Endothelial Cell Line. Neurotox Res 2020; 38:733-740. [DOI: 10.1007/s12640-020-00246-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 01/03/2023]
|
6
|
Guerra A, Suppa A, D'Onofrio V, Di Stasio F, Asci F, Fabbrini G, Berardelli A. Abnormal cortical facilitation and L-dopa-induced dyskinesia in Parkinson's disease. Brain Stimul 2019; 12:1517-1525. [DOI: 10.1016/j.brs.2019.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022] Open
|
7
|
The effects of lamotrigine and ethosuximide on seizure frequency, neuronal loss, and astrogliosis in a model of temporal-lobe epilepsy. Brain Res 2019; 1712:1-6. [DOI: 10.1016/j.brainres.2019.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 12/28/2022]
|
8
|
Jiang J, Yu Y, Kinjo ER, Du Y, Nguyen HP, Dingledine R. Suppressing pro-inflammatory prostaglandin signaling attenuates excitotoxicity-associated neuronal inflammation and injury. Neuropharmacology 2019; 149:149-160. [PMID: 30763657 DOI: 10.1016/j.neuropharm.2019.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
Abstract
Glutamate receptor-mediated excitotoxicity is a common pathogenic process in many neurological conditions including epilepsy. Prolonged seizures induce elevations in extracellular glutamate that contribute to excitotoxic damage, which in turn can trigger chronic neuroinflammatory reactions, leading to secondary damage to the brain. Blocking key inflammatory pathways could prevent such secondary brain injury following the initial excitotoxic insults. Prostaglandin E2 (PGE2) has emerged as an important mediator of neuroinflammation-associated injury, in large part via activating its EP2 receptor subtype. Herein, we investigated the effects of EP2 receptor inhibition on excitotoxicity-associated neuronal inflammation and injury in vivo. Utilizing a bioavailable and brain-permeant compound, TG6-10-1, we found that pharmacological inhibition of EP2 receptor after a one-hour episode of kainate-induced status epilepticus (SE) in mice reduced seizure-promoted functional deficits, cytokine induction, reactive gliosis, blood-brain barrier impairment, and hippocampal damage. Our preclinical findings endorse the feasibility of blocking PGE2/EP2 signaling as an adjunctive strategy to treat prolonged seizures. The promising benefits from EP2 receptor inhibition should also be relevant to other neurological conditions in which excitotoxicity-associated secondary damage to the brain represents a pathogenic event.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA; Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, USA.
| | - Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Erika Reime Kinjo
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Yifeng Du
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Hoang Phuong Nguyen
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ray Dingledine
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Affiliation(s)
| | - Anne P Kim
- Washington State University, Yakima, USA
| |
Collapse
|
10
|
|
11
|
Perez-Lloret S, Rascol O. The safety and efficacy of safinamide mesylate for the treatment of Parkinson's disease. Expert Rev Neurother 2016; 16:245-58. [PMID: 26849427 DOI: 10.1586/14737175.2016.1150783] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Safinamide (brand name Xadago®, Zambon S.p.A) is a third-generation reversible MAO-B inhibitor, which also blocks sodium voltage-sensitive channels and modulates stimulated release of glutamate. Safinamide was recently licensed by EMA for the treatment of PD as add-on therapy to a stable dose of levodopa alone or in combination with other PD medicinal products in mid-to advanced-stage fluctuating patients. It is also under review by the US FDA. Studies in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and 6OHDA-lesioned rats suggest antiparkinsonian efficacy and antidyskinesic effects. Randomized, double-blind, placebo-controlled trials have shown efficacy for the treatment of motor symptoms in stable PD patients on dopamine agonists and in fluctuating PD patients on levodopa. Significant improvement in daily ON time was also observed in the latter. This effect was maintained for at least 2 years in double-blind conditions and, interestingly, without significant worsening of dyskinesia. Clinical studies have not detected any specific safety issue other than those already known with MAO-B inhibitors.
Collapse
Affiliation(s)
- Santiago Perez-Lloret
- a Institute of Cardiologic Research, National Scientific and Research Council (ININCA-CONICET), Faculty of Medicine , University of Buenos Aires , Buenos Aires , Argentina
| | - Olivier Rascol
- b Department of Clinical Pharmacology and Neurosciences , NeuroToul Excellence Center for Neurodegenerative Disorders, University Hospital and University of Toulouse 3 , Toulouse , France.,c INSERM CIC1436 and UMR825 , Toulouse , France.,d NS-Park Network, INSERM , Toulouse , France
| |
Collapse
|
12
|
Friedman LK, Slomko AM, Wongvravit JP, Naseer Z, Hu S, Wan WY, Ali SS. Efficacy of Retigabine on Acute Limbic Seizures in Adult Rats. J Epilepsy Res 2015; 5:46-59. [PMID: 26819936 PMCID: PMC4724852 DOI: 10.14581/jer.15010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/01/2015] [Indexed: 12/17/2022] Open
Abstract
Background and Purpose: The efficacy of retigabine (RGB), a positive allosteric modulator of K+ channels indicated for adjunct treatment of partial seizures, was studied in two adult models of kainic acid (KA)-induced status epilepticus to determine it’s toleratbility. Methods: Retigabine was administered systemiclly at high (5 mg/kg) and low (1–2 mg/kg) doses either 30 min prior to or 2 hr after KA-induced status epilepticus. High (1 µg/µL) and low (0.25 µg/µL) concentrations of RGB were also delivered by intrahippocampal microinjection in the presence of KA. Results: Dose-dependent effects of RGB were observed with both models. Lower doses increased seizure behavior latency and reduced the number of single spikes and synchronized burst events in the electroencephalogram (EEG). Higher doses worsened seizure behavior, produced severe ataxia, and increased spiking activity. Animals treated with RGB that were resistant to seizures did not exhibit significant injury or loss in GluR1 expression; however if stage 5–6 seizures were reached, typical hippocampal injury and depletion of GluR1 subunit protein in vulernable pyramidal fields occurred. Conclusions: RGB was neuroprotective only if seizures were significantly attenuated. GluR1 was simultaneously suppressed in the resistant granule cell layer in presence of RGB which may weaken excitatory transmission. Biphasic effects observed herein suggest that the human dosage must be carefully scrutinized to produce the optimal clinical response.
Collapse
Affiliation(s)
- L K Friedman
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - A M Slomko
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - J P Wongvravit
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Z Naseer
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - S Hu
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - W Y Wan
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - S S Ali
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
13
|
Prabhavalkar KS, Poovanpallil NB, Bhatt LK. Management of bipolar depression with lamotrigine: an antiepileptic mood stabilizer. Front Pharmacol 2015; 6:242. [PMID: 26557090 PMCID: PMC4615936 DOI: 10.3389/fphar.2015.00242] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/08/2015] [Indexed: 11/13/2022] Open
Abstract
The efficacy of lamotrigine in the treatment of focal epilepsies have already been reported in several case reports and open studies, which is thought to act by inhibiting glutamate release through voltage-sensitive sodium channels blockade and neuronal membrane stabilization. However, recent findings have also illustrated the importance of lamotrigine in alleviating the depressive symptoms of bipolar disorder, without causing mood destabilization or precipitating mania. Currently, no mood stabilizers are available having equal efficacy in the treatment of both mania and depression, two of which forms the extreme sides of the bipolar disorder. Lamotrigine, a well established anticonvulsant has received regulatory approval for the treatment and prevention of bipolar depression in more than 30 countries worldwide. Lamotrigine, acts through several molecular targets and overcomes the major limitation of other conventional antidepressants by stabilizing mood from “below baseline” thereby preventing switches to mania or episode acceleration, thus being effective for bipolar I disorder. Recent studies have also suggested that these observations could also be extended to patients with bipolar II disorder. Thus, lamotrigine may supposedly fulfill the unmet requirement for an effective depression mood stabilizer.
Collapse
Affiliation(s)
- Kedar S Prabhavalkar
- Department of Pharmacology, Dr. Bhanuben Nanavati College of Pharmacy , Mumbai, India
| | - Nimmy B Poovanpallil
- Department of Pharmacology, Dr. Bhanuben Nanavati College of Pharmacy , Mumbai, India
| | - Lokesh K Bhatt
- Department of Pharmacology, Dr. Bhanuben Nanavati College of Pharmacy , Mumbai, India
| |
Collapse
|
14
|
Kandadai RM, Jabeen SA, Kanikannan MA, Borgohain R. Safinamide for the treatment of Parkinson’s disease. Expert Rev Clin Pharmacol 2014; 7:747-59. [DOI: 10.1586/17512433.2014.968555] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
An Immunological Approach to Increase the Brain's Resilience to Insults. ISRN NEUROSCIENCE 2014; 2014:103213. [PMID: 24967312 PMCID: PMC4045558 DOI: 10.1155/2014/103213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/12/2014] [Indexed: 01/13/2023]
Abstract
We have previously demonstrated the therapeutic potential of inducing a humoral response with autoantibodies to the N-methyl D-aspartate (NMDA) receptor using a genetic approach. In this study, we generated three recombinant proteins to different functional domains of the NMDA receptor, which is implicated in mediating brain tolerance, specifically NR1[21-375], NR1[313-619], NR1[654-800], and an intracellular scaffolding protein, Homer1a, with a similar anatomical expression pattern. All peptides showed similar antigenicity and antibody titers following systemic vaccination, and all animals thrived. Two months following vaccination, rats were administered the potent neurotoxin, kainic acid. NR1[21-375] animals showed an antiepileptic phenotype but no neuroprotection. Remarkably, despite ineffective antiepileptic activity, 6 of 7 seizing NR1[654-800] rats showed absolutely no injury with only minimal changes in the remaining animal, whereas the majority of persistently seizing rats in the other groups showed moderate to severe hippocampal injury. CREB, BDNF, and HSP70, proteins associated with preconditioning, were selectively upregulated in the hippocampus of NR1[654-800] animals, consistent with the observed neuroprotective phenotype. These results identify NR1 epitopes important in conferring anticonvulsive and neuroprotective effects and support the concept of an immunological strategy to induce a chronic state of tolerance in the brain.
Collapse
|
16
|
Halbsgut LR, Fahim E, Kapoor K, Hong H, Friedman LK. Certain secondary antiepileptic drugs can rescue hippocampal injury following a critical growth period despite poor anticonvulsant activity and cognitive deficits. Epilepsy Behav 2013; 29:466-77. [PMID: 24103817 DOI: 10.1016/j.yebeh.2013.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 12/23/2022]
Abstract
Clinical and experimental studies have shown that many common secondary antiepileptic drugs (AEDs) are ineffective at blocking seizures in adulthood; however, some afford neuroprotection. In early development, certain AEDs cause apoptosis; however, it is unknown whether these drugs are neurotoxic to the juvenile brain following a developmentally regulated proapoptotic period and whether they alter the seizure threshold, seizure-induced neuronal vulnerability, and/or cognitive function. Lamotrigine (LTG), carbamazepine (CBZ), phenytoin (PHT), valproate (VPA), and topiramate (TPM) were systemically administered to rat pups for 7days beginning on postnatal (P) day 14 (P14), then half the animals were injected with kainate (KA) to trigger seizures, an age when the CA1 subregion becomes preferentially sensitive to status epilepticus. Histological outcome, seizure severity, and learning and memory were determined with an electroencephalograph (EEG), silver impregnation, and a water-maze swim task. None of the AEDs tested significantly attenuated behavioral or electrographic seizures. Phenytoin increased mortality, identifying a detrimental side effect of this drug. The other drugs (LTG, VPA, TPM, and CBZ) afforded different amounts of protection to the CA1 subregion but not to the CA3 subregion or extrahippocampal structures. With the exception of VPA, AED-treated animals lagged behind during swim task acquisition. All groups improved in the water-maze swim task over time, particularly on the last trials; however, the average escape latency was still impaired for TPM-treated animals and all AED+KA-treated groups. Thus, while certain AEDs demonstrated some neuroprotective effects, poor antiepileptic activity, memory impairment, and other deleterious side effects were observed with these drugs suggesting that the search for potentially more effective and tolerated agents is essential for improving clinical outcome in children and adolescents with epilepsy.
Collapse
|
17
|
Borgohain R, Kandadai RM. Safinamide: a novel anti-Parkinsonian drug with multiple actions. Neurodegener Dis Manag 2013. [DOI: 10.2217/nmt.13.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
SUMMARY Parkinson’s disease is the second most common neurodegenerative disease associated with motor symptoms, such as resting tremor, rigidity, bradykinesia and postural instability. Levodopa, dopamine agonists, MAO-B inhibitors and COMTs form the mainstay of treatment. However, advanced disease is associated with motor complications, especially dyskinesias, that limit dopaminergic replacement therapy. Safinamide is a novel anti-Parkinsonian drug with actions such as MAO-B and glutamate receptor inhibition, and sodium and calcium channel blockade. Safinamide has been shown to be effective as an adjunct to dopamine agonists and levodopa. The possible antidyskinetic and neuroprotective properties add to the usefulness of the drug; it is also a potential anticonvulsant drug.
Collapse
Affiliation(s)
- Rupam Borgohain
- Department of Neurology, Nizam’s Institute of Medical Science, Punjagutta, Hyderabad 500082, India.
| | - Rukmini Mridula Kandadai
- Department of Neurology, Nizam’s Institute of Medical Science, Punjagutta, Hyderabad 500082, India
| |
Collapse
|
18
|
Abstract
Mood disorders are common and debilitating, resulting in a significant public health burden. Current treatments are only partly effective and patients who have failed to respond to trials of existing antidepressant agents (eg, those who suffer from treatment-resistant depression [TRD]) require innovative therapeutics with novel mechanisms of action. Although neuroscience research has elucidated important aspects of the basic mechanisms of antidepressant action, most antidepressant drugs target monoaminergic mechanisms identified decades ago. Glutamate, the major excitatory neurotransmitter in the central nervous system, and glutamatergic dysfunction has been implicated in mood disorders. These data provide a rationale for the pursuit of glutamatergic agents as novel therapeutic agents. Here, we review preclinical and clinical investigations of glutamatergic agents in mood disorders with a focus on depression. We begin with discussion of evidence for the rapid antidepressant effects of ketamine, followed by studies of the antidepressant efficacy of the currently marketed drugs riluzole and lamotrigine. Promising novel agents currently in development, including N-methyl-D-aspartate (NMDA) receptor modulators, 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptor modulators, and drugs with activity at the metabotropic glutamate (mGlu) receptors are then reviewed. Taken together, both preclinical and clinical evidence exists to support the pursuit of small molecule modulators of the glutamate system as novel therapeutic agents in mood disorders. It is hoped that by targeting neural systems outside of the monoamine system, more effective and perhaps faster acting therapeutics can be developed for patients suffering from these disabling disorders.
Collapse
Affiliation(s)
- Kyle Ab Lapidus
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | |
Collapse
|
19
|
Malek NM, Grosset DG. Investigational agents in the treatment of Parkinson's disease: focus on safinamide. J Exp Pharmacol 2012; 4:85-90. [PMID: 27186120 PMCID: PMC4863549 DOI: 10.2147/jep.s34343] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The authors review management issues in Parkinson's disease (PD) and provide an overview of the current pharmacological management strategies, with a specific focus on safinamide. Current therapeutic management of PD largely involves strategies to optimize the replacement of deficient dopamine, using levodopa, dopamine agonists, and inhibitors of dopamine-metabolizing enzymes. Currently under investigation for use in the treatment of PD, safinamide has multiple modes of action including monoamine oxidase B inhibition. It is well absorbed orally, has a long plasma half-life, and does not have liver enzyme-inducing or liver enzyme-inhibiting activity. Peak plasma concentration occurs 2-4 hours after single oral doses. Safinamide as monotherapy and as an adjunct to dopamine agonists improves Unified Parkinson's Disease Rating Scale motor scores. One randomized, placebo-controlled trial involving 168 patients given a median safinamide dose of 70 mg/day (range 40-90 mg/day) significantly increased the proportion of responders - defined as patients improving their Unified Parkinson's Disease Rating Scale motor scores by 30% or more from baseline - after 3 months (37.5% for safinamide versus 21.4% for placebo; P < 0.05). Safinamide increased "on" time with no or minor dyskinesia compared with the placebo in another trial, but dyskinesia severity was not reduced. Safinamide was well tolerated, with an adverse effect profile similar to that of the placebo. Further Phase III trial data for safinamide efficacy is awaited, and will be of interest in a comparison with other developments in PD therapeutics: modified formulations of available compounds, new drug classes such as adenosine receptor antagonists, and gene-based therapies.
Collapse
Affiliation(s)
- Naveed M Malek
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | - Donald G Grosset
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| |
Collapse
|
20
|
Ramadan E, Basselin M, Rao JS, Chang L, Chen M, Ma K, Rapoport SI. Lamotrigine blocks NMDA receptor-initiated arachidonic acid signalling in rat brain: implications for its efficacy in bipolar disorder. Int J Neuropsychopharmacol 2012; 15:931-43. [PMID: 21733229 PMCID: PMC3204186 DOI: 10.1017/s1461145711001003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
An up-regulated brain arachidonic acid (AA) cascade and a hyperglutamatergic state characterize bipolar disorder (BD). Lamotrigine (LTG), a mood stabilizer approved for treating BD, is reported to interfere with glutamatergic neurotransmission involving N-methyl-d-aspartate receptors (NMDARs). NMDARs allow extracellular calcium into the cell, thereby stimulating calcium-dependent cytosolic phospholipase A2 (cPLA2) to release AA from membrane phospholipid. We hypothesized that LTG, like other approved mood stabilizers, would reduce NMDAR-mediated AA signalling in rat brain. An acute subconvulsant dose of NMDA (25 mg/kg) or saline was administered intraperitoneally to unanaesthetized rats that had been treated p.o. daily for 42 d with vehicle or a therapeutically relevant dose of LTG (10 mg/kg.d). Regional brain AA incorporation coefficients k* and rates J in, and AA signals, were measured using quantitative autoradiography after intravenous [1-14C]AA infusion, as were other AA cascade markers. In chronic vehicle-treated rats, acute NMDA compared to saline increased k* and J in in widespread regions of the brain, as well as prostaglandin (PG)E2 and thromboxane B2 concentrations. Chronic LTG treatment compared to vehicle reduced brain cyclooxygenase (COX) activity, PGE2 concentration, and DNA-binding activity of the COX-2 transcription factor, NF-κB. Pretreatment with chronic LTG blocked the acute NMDA effects on AA cascade markers. In summary, chronic LTG like other mood stabilizers blocks NMDA-mediated signalling involving the AA metabolic cascade. Since markers of the AA cascade and of NMDAR signalling are up-regulated in the post-mortem BD brain, mood stabilizers generally may be effective in BD by dampening NMDAR signalling and the AA cascade.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Hunsberger J, Austin DR, Henter ID, Chen G. The neurotrophic and neuroprotective effects of psychotropic agents. DIALOGUES IN CLINICAL NEUROSCIENCE 2009. [PMID: 19877500 PMCID: PMC2804881 DOI: 10.31887/dcns.2009.11.3/jhunsberger] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Accumulating evidence suggests that psychotropic agents such as mood stabilizers, antidepressants, and antipsychotics realize their neurotrophic/neuroprotective effects by activating the mitogen activated protein kinaselextracellular signal-related kinase, PI3-kinase, and winglesslglycogen synthase kinase (GSK) 3 signaling pathways. These agents also upregulate the expression of trophic/protective molecules such as brain-derived neurotrophic factor, nerve growth factor, B-cell lymphoma 2, serine-threonine kinase, and Bcl-2 associated athanogene 1, and inactivate proapoptotic molecules such as GSK-3, They also promote neurogenesis and are protective in models of neurodegenerative diseases and ischemia. Most if not all, of this evidence was collected from animal studies that used clinically relevant treatment regimens. Furthermore, human imaging studies have found that these agents increase the volume and density of brain tissue, as well as levels of N-acetyl aspartate and glutamate in selected brain regions. Taken together, these data suggest that the neurotrophic/neuroprotective effects of these agents have broad therapeutic potential in the treatment, not only of mood disorders and schizophrenia, but also neurodegenerative diseases and ischemia.
Collapse
Affiliation(s)
- Joshua Hunsberger
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, NIMH, NIH, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Safinamide (SAF) ((S)-(+)-2-(4-(3-fluorobenzyloxy) benzylamino)propanamide) was initially synthetized by Farmitalia Carlo Erba (Italy). Following initial anticonvulsant screening, safinamide was selected for its potency, broad spectrum of action, and good safety margin. Pharmacodynamic properties probably relevant to its antiepileptic activity are use- and frequency-dependent block of voltage sensitive Na+ channels, block of Ca++ channels, and glutamate release inhibition. Possibly contributing mechanism are also selective and reversible monoamide oxidase B inhibition and dopamine and noradrenaline uptake inhibition. The high selectivity for the sigma-1 receptor site does not entail psychotomimetic or behavioral changes. In several experimental in vitro and in vivo conditions, SAF exerts neurorescuing and neuroprotectant effects. Safinamide is water soluble and suitable for 1 times a day oral administration in humans. In a pilot phase II study in 38 refractory epilepsy patients affected by multiple types of seizures, 41% of subjects obtained > or =50% seizure reduction during a 12-week escalating dose up to 300 mg 1 times day compared with perspective baseline. Safinamide is being developed in phase III for treatment of Parkinson's disease, whereas the development in epilepsy relates to the industrial strategy of the company.
Collapse
|
23
|
Youdim MBH, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 2006; 7:295-309. [PMID: 16552415 DOI: 10.1038/nrn1883] [Citation(s) in RCA: 961] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Monoamine oxidase inhibitors were among the first antidepressants to be discovered and have long been used as such. It now seems that many of these agents might have therapeutic value in several common neurodegenerative conditions, independently of their inhibition of monoamine oxidase activity. However, many claims and some counter-claims have been made about the physiological importance of these enzymes and the potential of their inhibitors. We evaluate these arguments in the light of what we know, and still have to learn, of the structure, function and genetics of the monoamine oxidases and the disparate actions of their inhibitors.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Technion-Rappaport Family Faculty of Medicine, Eve Topf and US National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases.
| | | | | |
Collapse
|
24
|
Sumanont Y, Murakami Y, Tohda M, Vajragupta O, Watanabe H, Matsumoto K. Prevention of kainic acid-induced changes in nitric oxide level and neuronal cell damage in the rat hippocampus by manganese complexes of curcumin and diacetylcurcumin. Life Sci 2005; 78:1884-91. [PMID: 16266725 DOI: 10.1016/j.lfs.2005.08.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 08/27/2005] [Indexed: 12/21/2022]
Abstract
Curcumin is a natural antioxidant isolated from the medicinal plant Curcuma longa Linn. We previously reported that manganese complexes of curcumin (Cp-Mn) and diacetylcurcumin (DiAc-Cp-Mn) exhibited potent superoxide dismutase (SOD)-like activity in an in vitro assay. Nitric oxide (NO) is a free radial playing a multifaceted role in the brain and its excessive production is known to induce neurotoxicity. Here, we examined the in vivo effect of Cp-Mn and DiAc-Cp-Mn on NO levels enhanced by kainic acid (KA) and L-arginine (L-Arg) in the hippocampi of awake rats using a microdialysis technique. Injection of KA (10 mg/kg, i.p.) and L-Arg (1000 mg/kg, i.p.) significantly increased the concentration of NO and Cp-Mn and DiAc-Cp-Mn (50 mg/kg, i.p.) significantly reversed the effects of KA and L-Arg without affecting the basal NO concentration. Following KA-induced seizures, severe neuronal cell damage was observed in the CA1 and CA3 subfields of hippocampal 3 days after KA administration. Pretreatment with Cp-Mn and DiAc-Cp-Mn (50 mg/kg, i.p.) significantly attenuated KA-induced neuronal cell death in both CA1 and CA3 regions of rat hippocampus compared with vehicle control, and Cp-Mn and DiAc-Cp-Mn showed more potent neuroprotective effect than their parent compounds, curcumin and diacetylcurcumin. These results suggest that Cp-Mn and DiAc-Cp-Mn protect against KA-induced neuronal cell death by suppression of KA-induced increase in NO levels probably by their NO scavenging activity and antioxidative activity. Cp-Mn and DiAc-Cp-Mn have an advantage to be neuroprotective agents in the treatment of acute brain pathologies associated with NO-induced neurotoxicity and oxidative stress-induced neuronal damage such as epilepsy, stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Yaowared Sumanont
- Division of Medicinal Pharmacology, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Liu CS, Hsu HM, Cheng WL, Hsieh M. Clinical and molecular events in patients with Machado-Joseph disease under lamotrigine therapy. Acta Neurol Scand 2005; 111:385-90. [PMID: 15876340 DOI: 10.1111/j.1600-0404.2005.00405.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 is an autosomal dominant spinocerebellar degeneration, for which there is no effective treatment. PATIENTS AND METHODS This study involved the clinical response of lamotrigine (LTG) on six MJD patients with early truncal ataxia and the effect of LTG on the alteration of ataxin-3 expression in the transformed MJD lymphoblastoid cells. RESULT LTG medication was found, on the basis of single leg standing test tandem gait index, to effectively improve gait balance, but did not prove to be effective in the withdrawal period. In Western blot analysis of ataxin-3 in MJD lymphoblastoid cells, extracellular application of LTG, while leaving the normal level of ataxin-3 intact, decreased the expression of mutant ataxin-3 in a dose-related manner. CONCLUSION Our results indicated that LTG may have significant benefits in relief of gait disturbance in MJD patients with early ataxia, and may be related to the decreased expression of mutant ataxin-3.
Collapse
Affiliation(s)
- C-S Liu
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | | | | | | |
Collapse
|
26
|
Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Perucca E, Tomson T. Progress report on new antiepileptic drugs: a summary of the Seventh Eilat Conference (EILAT VII). Epilepsy Res 2004; 61:1-48. [PMID: 15570674 DOI: 10.1016/j.eplepsyres.2004.07.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Seventh Eilat Conference on New Antiepileptic Drugs (AEDs) (EILAT VII) took place in Villasimius, Sardinia, Italy from the 9th to 13th May 2004. Basic scientists, clinical pharmacologists and neurologists from 24 countries attended the conference,whose main themes included advances in pathophysiology of drug resistance, new AEDs in pediatric epilepsy syndromes, modes of AED action and spectrum of adverse effects and a re-appraisal of comparative responses to AED combinations. Consistent with previous formats of this conference, the central part of the conference was devoted to a review of AEDs in development, as well as updates on second-generation AEDs. This article summarizes the information presented on drugs in development, including atipamezole, BIA-2-093, fluorofelbamate, NPS 1776, pregabalin, retigabine, safinamide, SPM 927, stiripentol, talampanel,ucb 34714 and valrocemide (TV 1901). Updates on felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, tiagabine,topiramate, vigabatrin, zonisamide, new oral and parenteral formulations of valproic acid and SPM 927 and the antiepileptic vagal stimulator device are also presented.
Collapse
Affiliation(s)
- Meir Bialer
- Department of Pharmaceutics, Faculty of Medicine, School of Pharmacy and David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
27
|
Nissinen J, Large CH, Stratton SC, Pitkänen A. Effect of lamotrigine treatment on epileptogenesis: an experimental study in rat. Epilepsy Res 2004; 58:119-32. [PMID: 15120743 DOI: 10.1016/j.eplepsyres.2004.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 01/09/2004] [Accepted: 01/14/2004] [Indexed: 11/20/2022]
Abstract
Prevention of epileptogenesis in patients with acute brain damaging insults like status epilepticus (SE) is a major challenge. We investigated whether lamotrigine (LTG) treatment started during SE is antiepileptogenic or disease-modifying. To mimic a clinical study design, LTG treatment (20 mg/kg) was started 2 h after the beginning of electrically induced SE in 14 rats and continued for 11 weeks (20 mg/kg per day for 2 weeks followed by 10 mg/kg per day for 9 weeks). One group of rats (n = 14) was treated with vehicle. Nine non-stimulated rats with vehicle treatment served as controls. Outcome measures were occurrence of epilepsy, severity of epilepsy, and histology (neuronal loss, mossy fiber sprouting). Clinical occurrence of seizures was assessed with 1-week continuous video-electroencephalography monitoring during the 11th (i.e. during treatment) and 14th week (i.e. after drug wash-out) after SE. LTG reduced the number of electrographic seizures during SE to 43% of that in the vehicle group (P < 0.05). In the vehicle group, 93% (13/14), and in the LTG group, 100% (14/14) of the animals, developed epilepsy. In both groups, 64% of the rats had severe epilepsy (seizure frequency >1 per day). The mean frequency of spontaneous seizures, seizure duration, or behavioral severity of seizures did not differ between groups. The severity of hippocampal neuronal damage and density of mossy fiber sprouting were similar. In LTG-treated rats with severe epilepsy, however, the duration of seizures was shorter (34 versus 54s, P < 0.05) and the behavioral seizure score was milder (1.4 versus 3.4, P < 0.05) during LTG treatment than after drug wash-out. LTG treatment started during SE and continued for 11 weeks was not antiepileptogenic but did not worsen the outcome. These data, together with earlier studies of other antiepileptic drugs, suggest that strategies other than Na(+)-channel blockade should be explored to modulate the molecular cascades leading to epileptogenesis after SE.
Collapse
Affiliation(s)
- Jari Nissinen
- A.I. Virtanen Institute, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | |
Collapse
|
28
|
Abstract
Safinamide [NW 1015, PNU 151774E; FCE 26743] is a potent anticonvulsant and antiparkinsonian compound that is being developed by Newron Pharmaceuticals in Europe. It has been shown to antagonise the calcium and sodium channels, as well as inhibit monoamine oxidase type-B (MAO-B). Phase III trials for the treatment of Parkinson's disease are underway in Germany and Europe, while phase II trials in patients with epilepsy are ongoing in Italy. Newron Pharmaceuticals was founded at the end of 1998 after Pharmacia & Upjohn announced its worldwide restructuring programme. Newron obtained the rights to safinamide, which Pharmacia Corporation (now Pfizer) had been developing as PNU 151774E. Safinamide was originated by Farmitalia-CarloErba in Italy. Newron now owns all intellectual property associated with the drug.A multinational phase II trial for Parkinson's disease in Europe has shown positive results in slowing the progression of the disease; however, due to the placebo-effect seen in this study, a longer (6-month) phase IIb study is planned for the second quarter of 2003. In July 2003, Newron received an IND from the US FDA authorising a phase I trial to confirm that no dietary restrictions are needed in patients while being treated with safinamide. This study is be conducted in 12 healthy volunteers at the University of Vienna, Austria, and will be followed by efficacy studies in Parkinson's disease in the US. Five phase I trials were completed in April 2001 in Switzerland. Safinamide combines sodium and calcium channel modulatory activity with monoamine oxidase B inhibition.
Collapse
|
29
|
Ketter TA, Manji HK, Post RM. Potential mechanisms of action of lamotrigine in the treatment of bipolar disorders. J Clin Psychopharmacol 2003; 23:484-95. [PMID: 14520126 DOI: 10.1097/01.jcp.0000088915.02635.e8] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Based on the mood-stabilizing properties of carbamazepine and valproate, new anticonvulsants have been explored for use in bipolar disorders. One such agent, lamotrigine, has a novel clinical profile in that it may "stabilize mood from below," as it appears to maximally impact depressive symptoms in bipolar disorders. In this paper, we review the mechanisms of action of lamotrigine in an effort to understand the basis of its distinctive clinical use in the management of bipolar disorders as well as its diverse antiseizure effects. We consider lamotrigine mechanisms, emphasizing commonalities and dissociations among actions of lamotrigine, older mood stabilizers, and other anticonvulsants. Although ion channel effects, especially sodium channel blockade, may importantly contribute to antiseizure effects, such actions may be less central to lamotrigine thymoleptic effects. Antiglutamatergic and neuroprotective actions are important candidate mechanisms for lamotrigine psychotropic effects. Lamotrigine has a variable profile in kindling and contingent tolerance experiments and does not appear to have robust gamma-aminobutyric acid or monoaminergic actions. Lamotrigine intracellular signaling effects warrant investigation. Although lamotrigine mechanisms overlap those of other mood-stabilizing anticonvulsants, important dissociations suggest candidate mechanisms, which could contribute to lamotrigine's distinctive psychotropic profile.
Collapse
Affiliation(s)
- Terence A Ketter
- Bipolar Disorders Clinic, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| | | | | |
Collapse
|
30
|
Jourquin J, Tremblay E, Décanis N, Charton G, Hanessian S, Chollet AM, Le Diguardher T, Khrestchatisky M, Rivera S. Neuronal activity-dependent increase of net matrix metalloproteinase activity is associated with MMP-9 neurotoxicity after kainate. Eur J Neurosci 2003; 18:1507-17. [PMID: 14511330 DOI: 10.1046/j.1460-9568.2003.02876.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Matrix metalloproteinases (MMPs) and the tissue inhibitors of MMPs (TIMPs) are emerging as important modulators of brain physiopathology. Dramatic changes in the expression of MMPs and TIMPs occur during excitotoxic/neuroinflammatory processes. However, only the measurement of net protease activity is relevant physiologically, and the functional consequences of MMP/TIMP ratio modifications in the brain remain elusive. In order to assess MMP activity and effects in brain tissue, we combined in vivo and organotypic culture models of kainate (KA)-induced excitotoxicity to provoke selective neuronal death and neuroinflammation in the hippocampus. Using in situ zymography, we show that KA-induced excitotoxic seizures in rats increase net MMP activity in hippocampal neurons 8 h after seizures, before their death, and that this increase is neuronal activity-dependent. Three days after KA, proteolytic activity increases in blood vessels and reactive glial cells of vulnerable areas, in relation with neuroinflammation. At 7 and 15 days, proteolysis remains high in blood vessels whereas it is reduced in glia. In organotypic hippocampal cultures, which lack blood cell-mediated inflammation and extrinsic connections, a broad-spectrum inhibitor of MMPs (MMPI), but also a selective MMP-9 inhibitor, protect hippocampal neurons against KA-induced excitotoxicity. Moreover, recombinant MMP-9, but not MMP-2, induces selective pyramidal cell death in these cultures and KA-induced neuronal activity exacerbates the neuronal death promoting effects of MMP-9. These data strongly implicate MMPs, and MMP-9 in particular, in both excitotoxic neuronal damage and subsequent neuroinflammatory processes, and suggest that selective MMPIs could be therapeutically relevant in related neurological disorders.
Collapse
Affiliation(s)
- Jérôme Jourquin
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, CNRS FRE 2533. IFR Jean Roche. Université de la Méditerranée. Faculté de Médecine de Marseille, 27 Bd. Jean Moulin 13385, Marseille cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zucchini S, Buzzi A, Bergamaschi M, Pietra C, Villetti G, Simonato M. Neuroprotective activity of CHF3381, a putative N-methyl-D-aspartate receptor antagonist. Neuroreport 2002; 13:2071-4. [PMID: 12438928 DOI: 10.1097/00001756-200211150-00016] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study was to evaluate the neuroprotective effect of CHF3381, a novel putative NMDA antagonist characterized by a good therapeutic index. We have compared the effects of CHF3381 on kainate seizure-induced neurodegeneration with those produced by the non competitive NMDA receptor antagonist MK-801 and by the Na channel blocker lamotrigine. All compounds have been employed at doses incapable of preventing or attenuating seizures. The fluorescent marker Fluoro-Jade B has been used to identify degenerating cells. Animals pretreated with lamotrigine presented the same degree of cell damage as the controls. As for the controls, a clear correlation was also observed between seizure severity and neurodegeneration. In contrast, MK-801 and CHF3381 completely prevented cell damage. These data indicate that CHF3381 may be successfully utilized in neurological disorders characterized by or associated with neurodegenerative excitotoxicity.
Collapse
Affiliation(s)
- Silvia Zucchini
- Department of Clinical and Experimental Medicine, Section of Pharmacology Neuroscience Center, University of Ferrara, via Fossato di Mortara, 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Epilepsy is currently the most prevalent neurological disorder worldwide. Pharmacological therapy remains the cornerstone of epilepsy treatment, however, refractory epilepsy is still a significant clinical problem despite the release of the second generation of anticonvulsants. Anticonvulsant treatment failures may result from lack of efficacy and presence of significant side effects. One rationale for incomplete effectiveness of the currently available anticonvulsants is that they were identified using the same classical models and therefore work largely by the same actions. These mechanisms fail to consider variations in the pathophysiological process that results in epilepsy, nor have they been shown to prevent the process of developing epilepsy (epileptogenesis). The next generation of anticonvulsants has taken into account the shortcomings of existing agents and attempted to improve on the currently available treatments using rationale drug design. This group of investigational anticonvulsants may be broadly classified as possessing one or more of the following: 1) increased tolerability through improvement in drug chemical structure or better delivery to the site of action, 2) new mechanisms (or combinations of mechanisms) of action, 3) improved pharmacokinetic properties. This article will discuss the next generation of anticonvulsants (carabersat, CGX-1007, fluorofelbamate, harkoseride, losigamone, pregabalin, retigabine, safinamide, SPD-421, talampanel, valrocemide) and the possible populations in which they would be clinically useful.
Collapse
Affiliation(s)
- Collin A Hovinga
- Department of Pharmacy, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| |
Collapse
|
33
|
Abstract
Results of experiments performed in animal epilepsy models and human epilepsy during the past decade indicate that the epileptic brain is not a stable neuronal network, but undergoes modifications caused by the underlying etiology and/or recurrent seizures. In many forms of epilepsy, such as temporal lobe epilepsy, the underlying etiologic factor triggers a cascade of events (epileptogenesis) leading to spontaneous seizures and cognitive decline. In some patients, the condition progresses, due in part to recurrent seizures. The current treatment of epilepsy focuses exclusively on preventing or suppressing seizures, which are symptoms of the underlying disease. Now, however, we are beginning to understand the underlying neurobiology of the epileptic process, as well as factors that might predict the risk of progression in individual patients. Thus, there are new opportunities to develop neuroprotective and antiepileptogenic treatments for patients who, if untreated, would develop drug-refractory epilepsy associated with cognitive decline. These treatments might improve the long-term outcome and quality-of-life of patients with epilepsy. Here we review the available data regarding the neuroprotective effects of antiepileptic drugs (AEDs) at different phases of the epileptic process. Analysis of published data suggests that initial-insult modification and prevention of the progression of seizure-induced damage are candidate indications for treatment with AEDs. An understanding of the molecular mechanisms underlying the progression of epileptic process will eventually show what role AEDs have in the neuroprotective and antiepileptogenic treatment regimen.
Collapse
Affiliation(s)
- Asla Pitkänen
- A.I. Virtanen Institute, University of Kuopio, PO Box 1627, Kuopio, Finland.
| |
Collapse
|
34
|
Abstract
Great progress has been made in the last 150 years in the pharmacological management of epilepsy, and, despite the increasing number of technological advances available, antiepileptic drugs (AEDs) remain the mainstay of treatment for the vast majority of patients with epilepsy. This review looks at possible avenues of development in the drug treatment of epilepsy. The strengths and weaknesses of those AEDs which are currently licensed are examined, and ways in which their use may be improved are discussed (e.g. rational combinations, use of new formulations). Potentially new targets that may allow the development of effective treatments are highlighted (neuroimmunological manipulation, decreasing inherent drug resistance mechanisms, and modification of adenosine neurotransmission), and a summary of the most promising AEDs currently in development is provided [e.g. carabersat, ganaxolone, harkoseride, MDL 27192, safinamide (NW 1015), pregabalin, retigabine, talampanel, valrocemide, losigamone and BIA 2093].
Collapse
Affiliation(s)
- A Nicolson
- Walton Centre for Neurology and Neurosurgery, Liverpool, UK
| | | |
Collapse
|
35
|
Halonen T, Nissinen J, Pitkänen A. Effect of lamotrigine treatment on status epilepticus-induced neuronal damage and memory impairment in rat. Epilepsy Res 2001; 46:205-23. [PMID: 11518623 DOI: 10.1016/s0920-1211(01)00278-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Status epilepticus causes neuronal damage that is associated with cognitive impairment. The present study examined whether a novel antiepileptic drug, lamotrigine (LTG), alleviates status epilepticus-induced temporal lobe damage and memory impairment, and compared its efficacy with carbamazepine. Status epilepticus was induced by electric stimulation of the perforant pathway (PP) in rats. Treatment with LTG (12.5 mg/kg, twice a day) was started either 3 days before (preLTG group) or 1 h after (postLTG group) a 60 min PP stimulation. Treatment with carbamazepine (CBZ; 30 mg/kg, twice a day) was started 3 days before (CBZ group) a 60 min PP stimulation. All treatments were continued for 2 weeks. Thereafter, the severity of seizures, seizure-induced neuronal damage, quantitative electroencephalogram (EEG), and memory impairment were compared between vehicle-treated unstimulated and stimulated controls, LTG-treated rats, and CBZ-pretreated rats. Both in the preLTG and postLTG groups, damage to hilar somatostatin-immunoreactive neurons, hippocampal CA3b and CA3a pyramidal cells, and the piriform cortex was mild and did not differ from that in unstimulated controls. Furthermore, CA3c damage in the preLTG group did not differ from that in unstimulated controls. Vehicle-treated stimulated controls and CBZ-pretreated rats, however, had significant damage in the hilus, CA3 subregions, and piriform cortex compared with unstimulated controls (P<0.05 for the stimulated side, contralateral side, or both). Treatment with LTG or CBZ had no effect on the number or duration of behavioral seizures during PP stimulation. They did not affect the baseline EEG or status epilepticus-induced slowing of the EEG. Also, the status epilepticus-induced spatial memory impairment in the Morris water-maze was not attenuated by treatment with LTG or CBZ. Our data demonstrate that treatment with LTG has a mild neuroprotective effect on status epilepticus-induced neuronal damage in rats even when administered after the beginning of status epilepticus.
Collapse
Affiliation(s)
- T Halonen
- A.I. Virtanen Institute for Molecular Sciences, Epilepsy Research Laboratory, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | |
Collapse
|
36
|
Di Iorio P, Virgilio A, Giuliani P, Ballerini P, Vianale G, Middlemiss PJ, Rathbone MP, Ciccarelli R. AIT-082 is neuroprotective against kainate-induced neuronal injury in rats. Exp Neurol 2001; 169:392-9. [PMID: 11358452 DOI: 10.1006/exnr.2001.7654] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
4-[[3-(1,6-dihydro-6-oxo-9-purin-9-yl)-1-oxopropyl]amino]benzoic acid (AIT-082) is an hypoxanthine derivative that stimulates in vitro neurite outgrowth and the production of adenosine and neurotrophins from astrocytes. These effects may predict an in vivo neuroprotective activity of the drug. Thus, we evaluated whether AIT-082 protected against a long-term excitotoxicity of hippocampal neurons following status epilepticus induced in rats by i.p. injection of kainate (12 mg/kg). The epileptogenic effect of kainate was evaluated by monitoring behavioral signs and by electroencephalographic (EEG) recording (80% of the animals showed status epilepticus with a latency of 96.8 +/- 7.4 min starting from the injection). In surviving rats (40% of the injected animals) the neurotoxic effect was evaluated by measuring glutamic acid decarboxylase (GAD) activity, as an index of loss of hippocampal GABAergic neurons, by evaluating the body weight after 7 days and by histological examination of hippocampi. The GAD activity was reduced by 44 +/- 8%, and neuronal loss (about 70%) was found in the CA3c, the CA1 area, and in the dentate gyrus. A single dose of diazepam (20 mg/kg; i.p., 20 min before the kainate injection) almost completely inhibited both seizures and neurotoxicity, ensuring survival of animals. AIT-082 (60 mg/kg/day; i.p., for 7 days, starting from 20 min before the kainate injection) did not modify the seizures caused by kainate but, like diazepam, it decreased kainate-induced mortality, the reduction of GAD activity, and the loss of hippocampal neurons. These data confirm that AIT-082 is of potential interest for the experimental therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- P Di Iorio
- Department of Biomedical Sciences, University of Chieti, Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Loiseau P, Perucca E. Progress report on new antiepileptic drugs: a summary of the Fifth Eilat Conference (EILAT V). Epilepsy Res 2001; 43:11-58. [PMID: 11137386 DOI: 10.1016/s0920-1211(00)00171-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Fifth Eilat Conference on New Antiepileptic Drugs (AEDs) took place at the Dan Hotel, Eilat, Israel, 25-29 June 2000. Basic scientists, clinical pharmacologists and neurologists from 20 countries attended the conference, whose main themes included recognition of unexpected adverse effects, new indications of AEDs, and patient-tailored AED therapy. According to tradition, the central part of the conference was devoted to a review of AEDs in development, as well to updates on AEDs that have been marketed in recent years. This article summarizes the information presented on drugs in preclinical and clinical development, including AWD 131-138, DP-valproate, harkoseride, LY300164, NPS 1776, NW 1015, pregabalin, remacemide, retigabine, rufinamide and valrocemide. The potential value of an innovative strategy, porcine embryonic GABAergic cell transplants, is also discussed. Finally, updates on felbamate, fosphenytoin, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, tiagabine, topiramate, vigabatrin, zonisamide, and the antiepileptic vagal stimulator device are presented.
Collapse
Affiliation(s)
- M Bialer
- School of Pharmacy and David R. Bloom Centre for Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
38
|
Fariello RG, Maj R, Marrari P, Beard D, Algate C, Salvati P. Acute behavioral and EEG effects of NW-1015 on electrically-induced afterdischarge in conscious monkeys. Epilepsy Res 2000; 39:37-46. [PMID: 10690752 DOI: 10.1016/s0920-1211(99)00103-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
NW-1015 is a novel Na+ and Ca2+ channel blocker with broad spectrum anticonvulsant activity and an excellent safety margin. As the compound also shows sigma-1 receptor ligand properties it was deemed important to determine whether it possesses anticonvulsant properties in primates without causing behavioral and EEG abnormalities. Thus, the effects of NW-1015 on limbic electrically-induced afterdischarge (AD) were evaluated in four cynomolgus monkeys, and its activity compared to a single effective dose of phenytoin (PHT). The four male cynomolgus monkeys were chronically implanted for EEG recordings, from cortex and limbic structures. AD was induced in limbic areas by electrical stimulation. The effects of NW-1015 on the duration and the behavioral component of the AD were randomly tested at doses from 25 to 75 mg/kg and compared with the effects of PHT 50 mg/kg. Similarly to PHT, 50 mg/kg of NW-1015 significantly shortened the EEG AD and almost abolished AD elicited behavioral seizure. Only the behavioral effects of AD were reduced after administration of 25 mg/kg p.o. NW-1015 did not cause EEG or interictal behavioral alterations at doses up to 75 mg/kg p.o. These data further confirm the broad-spectrum anticonvulsant activity and a good safety profile of NW-1015 even in a primate model of complex partial seizures and suggest that its affinity for sigma-1 receptors is behaviorally irrelevant.
Collapse
Affiliation(s)
- R G Fariello
- Newron Pharmaceuticals SpA, Gerenzano (VA), Italy
| | | | | | | | | | | |
Collapse
|
39
|
Maj R, Fariello RG, Pevarello P, Varasi M, McArthur RA, Salvati P. Anticonvulsant activity of PNU-151774E in the amygdala kindled model of complex partial seizures. Epilepsia 1999; 40:1523-8. [PMID: 10565578 DOI: 10.1111/j.1528-1157.1999.tb02035.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE PNU-151774E [(S)-(+)-2-(4-(3-fluorobenzyloxy) benzylamino) propanamide, methanesulfonate] is a novel antiepileptic drug (AED) with a broad spectrum of activity in a variety of chemically and mechanically induced seizures. The objective of this study was to evaluate the activity of PNU-151774E in the amygdala fully kindled rat model of complex partial seizures, and to compare its effects with those of carbamazepine (CBZ), phenytoin (PHT), lamotrigine (LTG), and gabapentin (GBP), drugs used to treat this disease state. METHODS Male Wistar rats were stimulated daily through electrodes implanted in the amygdala with a threshold current until fully generalized seizures developed. The rats were then treated with various doses of a single compound. Control values for each rat and drug dose were determined after vehicle administration followed by electrical stimulation 1 day before drug treatment. RESULTS PNU-151774E (1, 10, 30 mg/kg; i.p.) reduced the duration of behavioral seizures significantly and dose-dependently at doses starting from 1 mg/kg. Higher doses significantly reduced seizure severity and afterdischarge duration. In contrast, no dose-related effects were noted after administration of PHT, whereas after CBZ treatment, a plateau of activity was noted from the intermediate to higher doses. The effects of PNU-151774E were comparable to those of LTG and GBP. CONCLUSIONS The activity shown by PNU-151774E at doses similar to those that are active in models of generalized seizures indicates that PNU-151774E would also have potential efficacy in the treatment of complex partial seizures.
Collapse
Affiliation(s)
- R Maj
- Newron Pharmaceuticals Gerenzano (VA), Italy
| | | | | | | | | | | |
Collapse
|
40
|
Prospéro-García O, Huitrón-Resendiz S, Casalman SC, Sánchez-Alavez M, Díaz-Ruiz O, Navarro L, Lerner DL, Phillips TR, Elder JH, Henriksen SJ. Feline immunodeficiency virus envelope protein (FIVgp120) causes electrophysiological alterations in rats. Brain Res 1999; 836:203-9. [PMID: 10415420 DOI: 10.1016/s0006-8993(99)01572-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Close to 20% of the patients infected with the AIDS virus develops neurological deficit; eventhough HIV does not invade neurons. Consistently with the neurological deficit, HIV(+) subjects show abnormalities in brainstem auditory and visual evoked potentials (BSAEP and VEP) and in sleep patterns. The HIV-derived glycoprotein 120 has been postulated as a neurotoxic; therefore, it may be playing a crucial role in the generation of BSAEP and VEP, as well as in sleep disturbances. To study the role of the virus-derived proteins on the development of these electrophysiological signals' alterations, we have used the feline immunodeficiency virus (FIV)-derived gp120 and evaluated the changes in these electrophysiological signals. We employed 15 adult male Sprague-Dawley rats (250-350 g), chronically implanted for evoked potential and sleep recordings. Results showed that the i.c.v. administration of FIVgp120 (5 ng/10 microliter) produces changes in the latency of both cortical auditory evoked potentials (CAEPs) and VEPs and a decrease in both REM sleep and SWS. These data support the notion that FIVgp120 is neurotoxic to the central nervous system of cats and rats and that this protein suffices to cause electrophysiological alterations. In addition, it suggests that a similar effect may be occurring in humans as a result of HIVgp120's neurotoxic effects.
Collapse
Affiliation(s)
- O Prospéro-García
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|