1
|
Gordon-Fennell L, Farero R, Burgeno L, Murray N, Abraham A, Soden M, Stuber G, Chavkin C, Zweifel L, Phillips P. Kappa Opioid Receptors in Mesolimbic Terminals Mediate Escalation of Cocaine Consumption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572842. [PMID: 38187718 PMCID: PMC10769440 DOI: 10.1101/2023.12.21.572842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Increases in drug consumption over time, also known as escalation, is a key behavioral component of substance use disorder (SUD) that is related to potential harm to users, such as overdose. Studying escalation also allows researchers to investigate the transition from casual drug use to more SUD-like drug use. Understanding the neurobiological systems that drive this transition will inform therapeutic treatments in the aim to prevent increases in drug use and the development of SUD. The kappa opioid receptor (KOR) system is typically known for its role in negative affect, which is commonly found in SUD as well. Furthermore, the KOR system has also been implicated in drug use and importantly, modulating the negative effects of drug use. However, the specific neuronal subpopulation expressing KOR involved has not been identified. Here, we first demonstrated that pharmacologically inhibiting KOR in the nucleus accumbens core (NAcC), as a whole, blocks cocaine escalation under long-access self-administration conditions. We then demonstrated that KOR expressed on ventral tegmental area (VTA) neurons but not NAcC neurons is sufficient for blocking cocaine escalation by utilizing a novel virally-mediated CRISPR-SaCas9 knock-out of the oprk1 gene. Together, this suggests that activation of KOR on VTA terminals in the NAcC drives the transition to the SUD-like phenotype of escalation of cocaine consumption.
Collapse
Affiliation(s)
- L. Gordon-Fennell
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA 98195
- Department of Psychiatry & Behavioral Science, University of Washington, Seattle, WA 98195
| | - R.D. Farero
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA 98195
- Department of Psychiatry & Behavioral Science, University of Washington, Seattle, WA 98195
| | - L.M. Burgeno
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA 98195
- Department of Psychiatry & Behavioral Science, University of Washington, Seattle, WA 98195
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - N.L. Murray
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA 98195
- Department of Psychiatry & Behavioral Science, University of Washington, Seattle, WA 98195
| | - A.D. Abraham
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA 98195
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - M.E. Soden
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA 98195
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - G.D. Stuber
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA 98195
- Department of Psychiatry & Behavioral Science, University of Washington, Seattle, WA 98195
- Department of Pharmacology, University of Washington, Seattle, WA 98195
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195
| | - C. Chavkin
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA 98195
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - L.S. Zweifel
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA 98195
- Department of Psychiatry & Behavioral Science, University of Washington, Seattle, WA 98195
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - P.E.M. Phillips
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA 98195
- Department of Psychiatry & Behavioral Science, University of Washington, Seattle, WA 98195
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| |
Collapse
|
2
|
Nielsen DA, Walker R, Graham DP, Nielsen EM, Hamon SC, Hillhouse M, Shmueli-Blumberg D, Lawson WB, Shores-Wilson K, Settles-Reaves BD, Rotrosen J, Trivedi MH, Saxon AJ, Ling W, Kosten TR. Moderation of buprenorphine therapy for cocaine dependence efficacy by variation of the Prodynorphin gene. Eur J Clin Pharmacol 2022; 78:965-973. [PMID: 35218405 DOI: 10.1007/s00228-022-03302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/20/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this secondary analysis was to identify prodynorphin (PDYN) genetic markers moderating the therapeutic response to treatment of cocaine dependence with buprenorphine/naloxone (Suboxone®; BUP). METHODS Cocaine-dependent participants (N = 302) were randomly assigned to a platform of injectable, extended-release naltrexone (XR-NTX) and one of three daily medication arms: 4 mg BUP (BUP4), 16 mg BUP (BUP16), or placebo (PLB) for 8 weeks (Parent Trial Registration: Protocol ID: NIDA-CTN-0048, Clinical Trials.gov ID: NCT01402492). DNA was obtained from 277 participants. Treatment response was determined from weeks 3 to 7 over each 1-week period by the number of cocaine-positive urines per total possible urines. RESULTS In the cross-ancestry group, the PLB group had more cocaine-positive urines than the BUP16 group (P = 0.0021). The interactions of genetic variant × treatment were observed in the rs1022563 A-allele carrier group where the BUP16 group (N = 35) had fewer cocaine-positive urines (P = 0.0006) than did the PLB group (N = 26) and in the rs1997794 A-allele carrier group where the BUP16 group (N = 49) had fewer cocaine-positive urines (P = 0.0003) than did the PLB group (N = 58). No difference was observed in the rs1022563 GG or rs1997794 GG genotype groups between the BUP16 and PLB groups. In the African American-ancestry subgroup, only the rs1022563 A-allele carrier group was associated with treatment response. CONCLUSION These results suggest that PDYN variants may identify patients who are best suited to treatment with XR-NTX plus buprenorphine for cocaine use disorder pharmacotherapy.
Collapse
Affiliation(s)
- David A Nielsen
- The Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 2002 Holcombe Blvd., Research 151, Building 110, Suite 227, Houston, TX, 77030, USA.
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA.
- Michael E. DeBakey V.A. Medical Center, Houston, TX, USA.
| | - Robrina Walker
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David P Graham
- The Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 2002 Holcombe Blvd., Research 151, Building 110, Suite 227, Houston, TX, 77030, USA
- Michael E. DeBakey V.A. Medical Center, Houston, TX, USA
| | - Ellen M Nielsen
- The Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 2002 Holcombe Blvd., Research 151, Building 110, Suite 227, Houston, TX, 77030, USA
| | - Sara C Hamon
- Statistical and Genetic Consulting LLC, Daren, CT, USA
| | | | | | - William B Lawson
- Department of Psychiatry and Behavioral Sciences, Howard University, Washington, D.C, USA
| | | | | | - John Rotrosen
- New York University School of Medicine, New York University, New York, NY, USA
| | | | - Andrew J Saxon
- Center of Excellence in Substance Addiction Treatment and Education, VA Puget Sound Health Care System and Center of Excellence in Substance Addiction Treatment and Education, VA Puget Sound Health Care System and Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Walter Ling
- Integrated Substance Abuse Programs, UCLA, Los Angeles, CA, USA
| | - Thomas R Kosten
- The Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 2002 Holcombe Blvd., Research 151, Building 110, Suite 227, Houston, TX, 77030, USA
| |
Collapse
|
3
|
Zhou P, Li Y, Yong Z, Chen M, Zhang Y, Su R, Gong Z. Thienorphine induces antinociception without dependence through activation of κ- and δ-, and partial activation of μ- opioid receptor. Brain Res 2020; 1748:147083. [DOI: 10.1016/j.brainres.2020.147083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022]
|
4
|
Effects of Kappa opioid receptor blockade by LY2444296 HCl, a selective short-acting antagonist, during chronic extended access cocaine self-administration and re-exposure in rat. Psychopharmacology (Berl) 2020; 237:1147-1160. [PMID: 31915862 DOI: 10.1007/s00213-019-05444-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/27/2019] [Indexed: 12/14/2022]
Abstract
RATIONALE Cocaine addiction is a chronic brain disease characterized by compulsive drug intake and dysregulation of brain reward systems. Few preclinical studies have modeled the natural longitudinal course of cocaine addiction. Extended access self-administration protocols are powerful tools for modeling the advanced stages of addiction; however, few studies have duration of drug access longer than 12 h/session, potentially limiting their construct validity. Identification of changes in cocaine intake patterns during the development of addictive-like states may allow better treatments for vulnerable subjects. The kappa opioid receptor (KOPr) system has been implicated in the neurobiological regulation of addictive states as well as mood and stress disorders, with selective KOPr antagonists proposed as possible pharmacotherapeutic agents. Chronic cocaine exposure increases the expression of KOPr and its endogenous agonists, the dynorphins, in several brain areas in rodents. OBJECTIVES To examine the behavioral pattern of intake during chronic (14 days) 18 h intravenous cocaine self-administration (0.5 mg/kg/infusion) and the effect of a novel short-acting KOPr antagonist LY2444296 HCl (3 mg/kg) administered during sessions 8 to 14 of chronic 18 h/day cocaine self-administration and prior to a single re-exposure session after 2 cocaine-free withdrawal days. RESULTS Both daily and hourly cocaine intake patterns changed over 14 days of 18 h self-administration. LY pretreatment affected the pattern of self-administration across the second week of extended access cocaine self-administration and prevented the increase in cocaine intake during re-exposure. CONCLUSIONS Overall, the KOPr antagonist attenuated escalated cocaine consumption in a rat model of extended access cocaine self-administration.
Collapse
|
5
|
Abstract
Substance use disorders represent a global public health issue. This mental health disorder is hypothesized to result from neurobiological changes as a result of chronic drug exposure and clinically manifests as inappropriate behavioral allocation toward the procurement and use of the abused substance and away from other behaviors maintained by more adaptive nondrug reinforcers (e.g., social relationships, work). The dynorphin/kappa-opioid receptor (KOR) is one receptor system that has been altered following chronic exposure to drugs of abuse (e.g., cocaine, opioids, alcohol) in both laboratory animals and humans, implicating the dynorphin/KOR system in the expression, mechanisms, and treatment of substance use disorders. KOR antagonists have reduced drug self-administration in laboratory animals under certain experimental conditions, but not others. Recently, several human laboratory and clinical trials have evaluated the effectiveness of KOR antagonists as candidate pharmacotherapies for cocaine or tobacco use disorder to test hypotheses generated from preclinical studies. KOR antagonists failed to significantly alter drug use metrics in humans suggesting translational discordance between some preclinical drug self-administration studies and consistent with other preclinical drug self-administration studies that provide concurrent access to an alternative nondrug reinforcer (e.g., food). The implications of this translational discordance and future directions for examining the therapeutic potential of KOR agonists or antagonists as candidate substance use disorder pharmacotherapies are discussed.
Collapse
Affiliation(s)
- Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
6
|
D’Addario C, Palazzo MC, Benatti B, Grancini B, Pucci M, Di Francesco A, Camuri G, Galimberti D, Fenoglio C, Scarpini E, Altamura AC, Maccarrone M, Dell’Osso B. Regulation of gene transcription in bipolar disorders: Role of DNA methylation in the relationship between prodynorphin and brain derived neurotrophic factor. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:314-321. [PMID: 28830794 PMCID: PMC5859566 DOI: 10.1016/j.pnpbp.2017.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/04/2017] [Accepted: 08/13/2017] [Indexed: 10/19/2022]
Abstract
Bipolar Disorder (BD) is a prevalent and disabling condition, determined by gene-environment interactions, possibly mediated by epigenetic mechanisms. The present study aimed at investigating the transcriptional regulation of BD selected target genes by DNA methylation in peripheral blood mononuclear cells of patients with a DSM-5 diagnosis of type I (BD-I) and type II (BD-II) Bipolar Disorders (n=99), as well as of healthy controls (CT, n=42). The analysis of gene expression revealed prodynorphin (PDYN) mRNA levels significantly reduced in subjects with BD-II but not in those with BD-I, when compared to CT. Other target genes (i.e. catechol-O-methyltransferase (COMT), glutamate decarboxylase (GAD67), serotonin transporter (SERT) mRNA levels remained unaltered. Consistently, an increase in DNA methylation at PDYN gene promoter was observed in BD-II patients vs CT. After stratifying data on the basis of pharmacotherapy, patients on mood-stabilizers (i.e., lithium and anticonvulsants) were found to have lower DNA methylation at PDYN gene promoter. A significantly positive correlation in promoter DNA methylation was observed in all subjects between PDYN and brain derived neurotrophic factor (BDNF), whose methylation status had been previously found altered in BD. Moreover, among key genes relevant for DNA methylation establishment here analysed, an up-regulation of DNA Methyl Transferases 3b (DNMT3b) and of the methyl binding protein MeCP2 (methyl CpG binding protein 2) mRNA levels was also observed again just in BD-II subjects. A clear selective role of DNA methylation involvement in BD-II is shown here, further supporting a role for BDNF and its possible interaction with PDYN. These data might be relevant in the pathophysiology of BD, both in relation to BDNF and for the improvement of available treatments and development of novel ones that modulate epigenetic signatures.
Collapse
Affiliation(s)
- Claudio D’Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden,Correspondence to: Claudio D’Addario, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy,
| | - Maria Carlotta Palazzo
- Centro Sant’Ambrogio Ordine Ospedaliero San Giovanni di Dio Fatebenefratelli, Milano, Italy
| | - Beatrice Benatti
- Department of Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Benedetta Grancini
- Department of Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Andrea Di Francesco
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Giulia Camuri
- Department of Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Daniela Galimberti
- Department of Neurology, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Chiara Fenoglio
- Department of Neurology, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Elio Scarpini
- Department of Neurology, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - A. Carlo Altamura
- Department of Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy,European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Bernardo Dell’Osso
- Department of Psychiatry, Università degli Studi di Milano, Fondazione IRRCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy,Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford University, CA, USA,Correspondence to: Bernardo Dell’Osso, Department of Psychiatry, University of Milan, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Italy,
| |
Collapse
|
7
|
Noble F, Lenoir M, Marie N. The opioid receptors as targets for drug abuse medication. Br J Pharmacol 2015; 172:3964-79. [PMID: 25988826 DOI: 10.1111/bph.13190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/24/2015] [Accepted: 05/10/2015] [Indexed: 12/24/2022] Open
Abstract
The endogenous opioid system is largely expressed in the brain, and both endogenous opioid peptides and receptors are present in areas associated with reward and motivation. It is well known that this endogenous system plays a key role in many aspects of addictive behaviours. The present review summarizes the modifications of the opioid system induced by chronic treatment with drugs of abuse reported in preclinical and clinical studies, as well as the action of opioid antagonists and agonists on the reinforcing effects of drugs of abuse, with therapeutic perspectives. We have focused on the effects of chronic psychostimulants, alcohol and nicotine exposure. Taken together, the changes in both opioid peptides and opioid receptors in different brain structures following acute or chronic exposure to these drugs of abuse clearly identify the opioid system as a potential target for the development of effective pharmacotherapy for the treatment of addiction and the prevention of relapse.
Collapse
Affiliation(s)
- Florence Noble
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| | - Magalie Lenoir
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| | - Nicolas Marie
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
8
|
Schank JR, Goldstein AL, Rowe KE, King CE, Marusich JA, Wiley JL, Carroll FI, Thorsell A, Heilig M. The kappa opioid receptor antagonist JDTic attenuates alcohol seeking and withdrawal anxiety. Addict Biol 2012; 17:634-47. [PMID: 22515275 DOI: 10.1111/j.1369-1600.2012.00455.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of kappa-opioid receptors (KOR) in the regulation of alcohol-related behaviors is not completely understood. For example, alcohol consumption has been reported to increase following treatment with KOR antagonists in rats, but was decreased in mice with genetic deletion of KOR. Recent studies have further suggested that KOR antagonists may selectively decrease alcohol self-administration in rats following a history of dependence. We assessed the effects of the KOR antagonist JDTic on alcohol self-administration, reinstatement of alcohol seeking induced by alcohol-associated cues or stress, and acute alcohol withdrawal-induced anxiety ('hangover anxiety'). JDTic dose-dependently reversed hangover anxiety when given 48 hours prior to testing, a time interval corresponding to the previously demonstrated anxiolytic efficacy of this drug. In contrast, JDTic decreased alcohol self-administration and cue-induced reinstatement of alcohol seeking when administered 2 hours prior to testing, but not at longer pre-treatment times. For comparison, we determined that the prototypical KOR antagonist nor-binaltorphimine can suppress self-administration of alcohol at 2 hours pre-treatment time, mimicking our observations with JDTic. The effects of JDTic were behaviorally specific, as it had no effect on stress-induced reinstatement of alcohol seeking, self-administration of sucrose, or locomotor activity. Further, we demonstrate that at a 2 hours pre-treatment time JDTic antagonized the antinociceptive effects of the KOR agonist U50,488H but had no effect on morphine-induced behaviors. Our results provide additional evidence for the involvement of KOR in regulation of alcohol-related behaviors and provide support for KOR antagonists, including JDTic, to be evaluated as medications for alcoholism.
Collapse
Affiliation(s)
- Jesse R Schank
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Femenía T, Manzanares J. Increased ethanol intake in prodynorphin knockout mice is associated to changes in opioid receptor function and dopamine transmission. Addict Biol 2012; 17:322-37. [PMID: 21966993 DOI: 10.1111/j.1369-1600.2011.00378.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to examine the role of the prodynorphin gene in alcohol sensitivity, preference and vulnerability to alcohol consumption. Handling-induced convulsion (HIC) associated to alcohol, alcohol-induced loss of righting reflex (LORR), hypothermic effects in response to acute ethanol challenge, blood ethanol levels (BELs), conditioned place preference, voluntary ethanol consumption and preference, tyrosine hydroxylase (TH), dopamine transporter (DAT) and proenkephalin (PENK) gene expression, and µ-, δ- and κ-opioid agonist-stimulated [S(35) ]- guanosine 5'-triphosphate-binding autoradiography were studied in prodynorphin knockout (PDYN KO) and wild-type (WT) mice. There were no differences in HIC, LORR or the decrease in body temperature in response to acute ethanol challenge between PDYN KO and WT mice. PDYN KO mice presented higher BEL, higher ethanol-conditioned place preference and more ethanol consumption and preference in a two-bottle choice paradigm than WT mice. These findings were associated with lower TH and higher DAT gene expression in the ventral tegmental area and substantia nigra, and with lower PENK gene expression in the caudate-putamen (CPu), accumbens core (AcbC) and accumbens shell (AcbSh) in PDYN KO. The functional activity of the µ-opioid receptor was lower in the CPu, AcbC, AcbSh and cingulate cortex (Cg) of PDYN KO mice. In contrast, δ- and κ-opioid receptor-binding autoradiographies were increased in the CPu and Cg (δ), and in the CPu, AcbC and Cg (κ) of PDYN KO. These results suggest that deletion of the PDYN gene increased vulnerability for ethanol consumption by altering, at least in part, PENK, TH and DAT gene expression, and µ-, δ- and κ-opioid receptor functional activity in brain areas closely related to ethanol reinforcement.
Collapse
Affiliation(s)
- Teresa Femenía
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | | |
Collapse
|
10
|
Mitch CH, Quimby SJ, Diaz N, Pedregal C, de la Torre MG, Jimenez A, Shi Q, Canada EJ, Kahl SD, Statnick MA, McKinzie DL, Benesh DR, Rash KS, Barth VN. Discovery of aminobenzyloxyarylamides as κ opioid receptor selective antagonists: application to preclinical development of a κ opioid receptor antagonist receptor occupancy tracer. J Med Chem 2011; 54:8000-12. [PMID: 21958337 DOI: 10.1021/jm200789r] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Arylphenylpyrrolidinylmethylphenoxybenzamides were found to have high affinity and selectivity for κ opioid receptors. On the basis of receptor binding assays in Chinese hamster ovary (CHO) cells expressing cloned human opioid receptors, (S)-3-fluoro-4-(4-((2-(3-fluorophenyl)pyrrolidin-1-yl)methyl)phenoxy)benzamide (25) had a K(i) = 0.565 nM for κ opioid receptor binding while having a K(i) = 35.8 nM for μ opioid receptors and a K(i) = 211 nM for δ opioid receptor binding. Compound 25 was also a potent antagonist of κ opioid receptors when tested in vitro using a [(35)S]-guanosine 5'O-[3-thiotriphosphate] ([(35)S]GTP-γ-S) functional assay in CHO cells expressing cloned human opioid receptors. Compounds were also evaluated for potential use as receptor occupancy tracers. Tracer evaluation was done in vivo, using liquid chromatography-tandem mass spectrometry (LC/MS/MS) methods, precluding the need for radiolabeling. (S)-3-Chloro-4-(4-((2-(pyridine-3-yl)pyrrolidin-1-yl)methyl)phenoxy)benzamide (18) was found to have favorable properties for a tracer for receptor occupancy, including good specific versus nonspecific binding and good brain uptake.
Collapse
Affiliation(s)
- Charles H Mitch
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285-0150, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yuan Y, Elbegdorj O, Chen J, Akubathini SK, Beletskaya IO, Selley DE, Zhang Y. Structure selectivity relationship studies of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4'-pyridyl)carboxamido]morphinan derivatives toward the development of the mu opioid receptor antagonists. Bioorg Med Chem Lett 2011; 21:5625-9. [PMID: 21788135 PMCID: PMC3171173 DOI: 10.1016/j.bmcl.2011.06.135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
Mu opioid receptor antagonists have been applied to target a variety of diseases clinically. The current study is designed to explore the structure selectivity relationship (SSR) of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4'-pyridyl)carboxamido]morphinan (NAP), a lead compound identified as a selective mu opioid receptor antagonist based on the previous study. Among a series of NAP derivatives synthesized, compounds 6 (NMP) and 9 (NGP) maintained comparable binding affinity, selectivity and efficacy to the lead compound. Particularly, the mu opioid receptor selectivity over kappa opioid receptor of NGP was considerably enhanced compared to that of NAP. Overall, the preliminary SSR supported our original hypothesis that an alternate 'address' domain may exist in the mu opioid receptor, which favors the ligands carrying a hydrogen bond acceptor and an aromatic system to selectively recognize the mu opioid receptor.
Collapse
Affiliation(s)
- Yunyun Yuan
- Department of Medicinal Chemistry, Virginia Commonwealth University, Biotech I, 800 E. Leigh Street, Richmond, VA 23298
| | - Orgil Elbegdorj
- Department of Medicinal Chemistry, Virginia Commonwealth University, Biotech I, 800 E. Leigh Street, Richmond, VA 23298
| | - Jianyang Chen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Biotech I, 800 E. Leigh Street, Richmond, VA 23298
| | - Shashidhar K. Akubathini
- Department of Medicinal Chemistry, Virginia Commonwealth University, Biotech I, 800 E. Leigh Street, Richmond, VA 23298
| | - Irina O. Beletskaya
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Biotech I, 800 E. Leigh Street, Richmond, VA 23298
| |
Collapse
|
12
|
The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology (Berl) 2010; 210:121-35. [PMID: 20352414 PMCID: PMC2879894 DOI: 10.1007/s00213-010-1825-8] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Initial hypotheses regarding the role of the kappa opioid system in drug addiction suggested that kappa receptor stimulation had anti-addictive effects. However, recent research suggests that kappa receptor antagonists may reverse motivational aspects of dependence. In the present review, we revisit the studies that measured the effects of kappa receptor ligands on the reinforcing and rewarding effects of drugs and postulate underlying neurobiological mechanisms for these effects to elaborate a more complex view of the role of kappa receptor ligands in drug addiction. RESULTS The review of studies indicates that kappa receptor stimulation generally antagonizes the acute reinforcing/rewarding effects of drugs whereas kappa receptor blockade has no consistent effect. However, in a drug dependent-like state, kappa receptor blockade was effective in reducing increased drug intake. In animal models of reinstatement, kappa receptor stimulation can induce reinstatement via a stress-like mechanism. Results in conditioned place preference/aversion and intracranial self-stimulation indicate that kappa receptor agonists produce, respectively, aversive-like and dysphoric-like effects. Additionally, preclinical and postmortem studies show that administration or self-administration of cocaine, ethanol, and heroin activate the kappa opioid system. CONCLUSION kappa receptor agonists antagonize the reinforcing/rewarding effects of drugs possibly through punishing/aversive-like effects and reinstate drug seeking through stress-like effects. Evidence suggests that abused drugs activate the kappa opioid system, which may play a key role in motivational aspects of dependence. Kappa opioid systems may have an important role in driving compulsive drug intake.
Collapse
|
13
|
Trigo JM, Martin-García E, Berrendero F, Robledo P, Maldonado R. The endogenous opioid system: a common substrate in drug addiction. Drug Alcohol Depend 2010; 108:183-94. [PMID: 19945803 DOI: 10.1016/j.drugalcdep.2009.10.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/30/2009] [Accepted: 10/28/2009] [Indexed: 12/17/2022]
Abstract
Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.
Collapse
Affiliation(s)
- José Manuel Trigo
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | | | | | | | | |
Collapse
|
14
|
D'Souza MS, Markou A. Neural substrates of psychostimulant withdrawal-induced anhedonia. Curr Top Behav Neurosci 2010; 3:119-178. [PMID: 21161752 DOI: 10.1007/7854_2009_20] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Psychostimulant drugs have powerful reinforcing and hedonic properties and are frequently abused. Cessation of psychostimulant administration results in a withdrawal syndrome characterized by anhedonia (i.e., an inability to experience pleasure). In humans, psychostimulant withdrawal-induced anhedonia can be debilitating and has been hypothesized to play an important role in relapse to drug use. Hence, understanding the neural substrates involved in psychostimulant withdrawal-induced anhedonia is essential. In this review, we first summarize the theoretical perspectives of psychostimulant withdrawal-induced anhedonia. Experimental procedures and measures used to assess anhedonia in experimental animals are also discussed. The review then focuses on neural substrates hypothesized to play an important role in anhedonia experienced after termination of psychostimulant administration, such as with cocaine, amphetamine-like drugs, and nicotine. Both neural substrates that have been extensively investigated and some that need further evaluation with respect to psychostimulant withdrawal-induced anhedonia are reviewed. In the context of reviewing the various neurosubstrates of psychostimulant withdrawal, we also discuss pharmacological medications that have been used to treat psychostimulant withdrawal in humans. This literature review indicates that great progress has been made in understanding the neural substrates of anhedonia associated with psychostimulant withdrawal. These advances in our understanding of the neurobiology of anhedonia may also shed light on the neurobiology of nondrug-induced anhedonia, such as that seen as a core symptom of depression and a negative symptom of schizophrenia.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
15
|
Maldonado R. [The endogenous opioid system and drug addiction]. ANNALES PHARMACEUTIQUES FRANÇAISES 2010; 68:3-11. [PMID: 20176158 PMCID: PMC3444724 DOI: 10.1016/j.pharma.2009.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 11/15/2022]
Abstract
Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits. Several neurotransmitters, including the endogenous opioid system are involved in these changes. The opioid system plays a pivotal role in different aspects of addiction. Thus, opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within the reward circuits. Opioid receptors and peptides are selectively involved in several components of the addictive processes induced by opioids, cannabinoids, psychostimulants, alcohol and nicotine. This review is focused on the contribution of each component of the endogenous opioid system in the addictive properties of the different drugs of abuse.
Collapse
Affiliation(s)
- R Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Espagne.
| |
Collapse
|
16
|
Wee S, Orio L, Ghirmai S, Cashman JR, Koob GF. Inhibition of kappa opioid receptors attenuated increased cocaine intake in rats with extended access to cocaine. Psychopharmacology (Berl) 2009; 205:565-75. [PMID: 19484223 PMCID: PMC2739447 DOI: 10.1007/s00213-009-1563-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/02/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Previous studies demonstrated that the dynorphin/kappa opioid system was up-regulated upon repeated cocaine self-administration. In the present study, we tested the hypothesis that increased cocaine self-administration with extended access was associated with increased activity of the kappa opioid system in rats. MATERIALS AND METHODS Rats self-administered 0.5 mg/kg per injection of cocaine on a fixed-ratio (FR) schedule in either 1-h (short access, ShA) or 6-h (long access, LgA) sessions. After cocaine intake in the LgA rats increased to a maximum, the effects of kappa opioid receptor antagonists and a partial agonist were tested on cocaine intake in ShA and LgA rats. RESULTS Cocaine self-administration increased under FR and progressive-ratio (PR) schedules in LgA rats. Nor-BNI (15-30 mg/kg), a kappa receptor antagonist, decreased cocaine intake in LgA rats under a PR schedule (ShA, +1.7%; LgA, -27.4% from baseline), whereas naltrexone (0.3-10 mg/kg) and SG-II-49 (0.025-0.1 mg/kg), a nonspecific opioid receptor antagonist and a partial agonist, respectively, decreased cocaine intake in both groups (PR data: SG-II-49, ShA -28.6%, LgA -19.8%; naltrexone, ShA -34.6%, LgA -11.8% compared with vehicle data). CONCLUSIONS The present study demonstrated that the antagonism of kappa opioid receptors attenuated only the increased cocaine intake in LgA rats under a PR schedule, whereas the antagonism of micro and kappa receptors decreased cocaine intake in both ShA and LgA groups. The data suggest that increased motivation for cocaine in rats with extended access may be related to increased kappa opioid activity and may contribute to compulsive use.
Collapse
Affiliation(s)
- Sunmee Wee
- Committee on the Neurobiology of Addictive Disorders SP30-2400, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
17
|
Yuferov V, Ji F, Nielsen DA, Levran O, Ho A, Morgello S, Shi R, Ott J, Kreek MJ. A functional haplotype implicated in vulnerability to develop cocaine dependence is associated with reduced PDYN expression in human brain. Neuropsychopharmacology 2009; 34:1185-97. [PMID: 18923396 PMCID: PMC2778041 DOI: 10.1038/npp.2008.187] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dynorphin peptides and the kappa-opioid receptor are important in the rewarding properties of cocaine, heroin, and alcohol. We tested polymorphisms of the prodynorphin gene (PDYN) for association with cocaine dependence and cocaine/alcohol codependence. We genotyped six single nucleotide polymorphisms (SNPs), located in the promoter region, exon 4 coding, and 3' untranslated region, in 106 Caucasians and 204 African Americans who were cocaine dependent, cocaine/alcohol codependent, or controls. In Caucasians, we found point-wise significant associations of 3'UTR SNPs (rs910080, rs910079, and rs2235749) with cocaine dependence and cocaine/alcohol codependence. These SNPs are in high linkage disequilibrium, comprising a haplotype block. The haplotype CCT was significantly experiment-wise associated with cocaine dependence and with combined cocaine dependence and cocaine/alcohol codependence (false discovery rate, q=0.04 and 0.03, respectively). We investigated allele-specific gene expression of PDYN, using SNP rs910079 as a reporter, in postmortem human brains from eight heterozygous subjects, using SNaPshot assay. There was significantly lower expression for C allele (rs910079), with ratios ranging from 0.48 to 0.78, indicating lower expression of the CCT haplotype of PDYN in both the caudate and nucleus accumbens. Analysis of total PDYN expression in 43 postmortem brains also showed significantly lower levels of preprodynorphin mRNA in subjects having the risk CCT haplotype. This study provides evidence that a 3'UTR PDYN haplotype, implicated in vulnerability to develop cocaine addiction and/or cocaine/alcohol codependence, is related to lower mRNA expression of the PDYN gene in human dorsal and ventral striatum.
Collapse
Affiliation(s)
- Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Current pharmacotherapy for bipolar disorder is generally unsatisfactory for a large number of patients. Even with adequate modern bipolar pharmacological therapies, many afflicted individuals continue to have persistent mood episode relapses, residual symptoms, functional impairment, and psychosocial disability. Creating novel therapeutics for bipolar disorder is urgently needed. Promising drug targets and compounds for bipolar disorder worthy of further study include both systems and intracellular pathways and targets. Specifically, the purinergic system, the dynorphin opioid neuropeptide system, the cholinergic system (muscarinic and nicotinic systems), the melatonin and serotonin [5-hydroxytryptamine receptor 2C] system, the glutamatergic system, and the hypothalamic-pituitary adrenal axis have all been implicated. Intracellular pathways and targets worthy of further study include glycogen synthase kinase-3 protein, protein kinase C, and the arachidonic acid cascade.
Collapse
Affiliation(s)
- Carlos A Zarate
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Bethesda, MD, USA.
| | | |
Collapse
|
19
|
Exposure to the selective kappa-opioid receptor agonist salvinorin A modulates the behavioral and molecular effects of cocaine in rats. Neuropsychopharmacology 2008; 33:2676-87. [PMID: 18185499 PMCID: PMC2564810 DOI: 10.1038/sj.npp.1301659] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stress and chronic exposure to drugs of abuse can trigger addictive and depressive disorders. Both stimuli increase activity of dynorphin, a neuropeptide that acts at kappa-opioid receptors (KORs). In humans, KOR agonists cause dysphoria, raising the possibility that dynorphin modulates the depressive-like effects of stress and chronic drug use. We examined if KOR activation alters sensitivity to stimulant drugs by assessing the effects of the selective KOR agonist, salvinorin A (SalvA), on cocaine-induced locomotor activity and c-Fos expression. Acute administration of SalvA blocked the locomotor-stimulant effects of cocaine, whereas repeated SalvA together with concomitant exposure to activity testing chambers potentiated the locomotor response to a cocaine challenge. In contrast, repeated SalvA administered in home cages rather than the activity chambers failed to potentiate the locomotor response to a cocaine challenge. One potential explanation for these findings is that activation of KORs disrupts context conditioning: acute locomotor responses to SalvA alone did not fully habituate with repeated testing in the activity chambers. The effects of SalvA on locomotor activity paralleled its effects on cocaine-induced c-Fos expression in the dorsal striatum: acute SalvA attenuated cocaine-induced c-Fos, whereas repeated SalvA potentiated it when administered in the activity chambers but not the home cage. Acute SalvA also blocked the locomotor stimulant effects of the D1 receptor agonist SKF 82958, whereas repeated SalvA potentiated these effects when administered in the activity chambers. These findings suggest that SalvA regulates the stimulant effects of cocaine through interactions with D1 receptor-mediated signaling in the dorsal striatum.
Collapse
|
20
|
Yang CH, Lee BH, Sohn SH. A possible mechanism underlying the effectiveness of acupuncture in the treatment of drug addiction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2008; 5:257-66. [PMID: 18830420 PMCID: PMC2529396 DOI: 10.1093/ecam/nem081] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 06/06/2007] [Indexed: 01/08/2023]
Abstract
Clinical trials are currently underway to determine the effectiveness of acupuncture in the treatment of drug addiction. While there are still many unanswered questions about the basic mechanisms of acupuncture, some evidence exists to suggest that acupuncture can play an important role in reducing reinforcing effects of abused drugs. The purpose of this article is to critically review these data. The neurochemical and behavioral evidence showed that acupuncture's role in suppressing the reinforcing effects of abused drugs takes place by modulating mesolimbic dopamine neurons. Also, several brain neurotransmitter systems such as serotonin, opioid and amino acids including GABA have been implicated in the modulation of dopamine release by acupuncture. These results provided clear evidence for the biological effects of acupuncture that ultimately may help us to understand how acupuncture can be used to treat abused drugs. Additional research using animal models is of primary importance to understanding the basic mechanism underlying acupuncture's effectiveness in the treatment of drug addiction.
Collapse
Affiliation(s)
- Chae Ha Yang
- Department of Physiology and Department of Acupuncture, Moxibution and Acupointology, College of Oriental Medicine, Daegu Haany University, Daegu, 706-828, South Korea
| | - Bong Hyo Lee
- Department of Physiology and Department of Acupuncture, Moxibution and Acupointology, College of Oriental Medicine, Daegu Haany University, Daegu, 706-828, South Korea
| | - Sung Hoon Sohn
- Department of Physiology and Department of Acupuncture, Moxibution and Acupointology, College of Oriental Medicine, Daegu Haany University, Daegu, 706-828, South Korea
| |
Collapse
|
21
|
Boutrel B. A neuropeptide-centric view of psychostimulant addiction. Br J Pharmacol 2008; 154:343-57. [PMID: 18414383 PMCID: PMC2442449 DOI: 10.1038/bjp.2008.133] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 11/08/2022] Open
Abstract
Drugs of abuse all share common properties classically observed in human beings and laboratory animals. They enhance neural firing and dopamine tone within the nucleus accumbens and produce progressively greater drug-induced motor responses defined as behavioural sensitization. They produce conditioned place preference, a behavioural model of incentive motivation, which highlights the role of environmental cues in drug addiction. They increase brain reward function as seen by a lowering of intracranial self-stimulation thresholds. And last but not least, they are self-administered, and sometimes even abused, and can trigger reinstatement of drug-seeking behaviour in animals extinguished from drug self-administration. It has long been considered that the reinforcing properties of virtually all drugs of abuse, more specifically psychostimulants, are primarily dependent on activation of the mesolimbic dopamine system. However, recent evidence raises the importance of dopamine-independent mechanisms in reward-related behaviours. The overwhelming body of evidence that indicates a critical role for the mesolimbic dopamine system in the reinforcing effect of psychostimulants should not mask the key contribution of other modulatory systems in the brain. This review summarizes the complex and subtle role of several neuropeptidergic systems in various aspects of addictive behaviours observed in laboratory animals exposed to psychostimulants. A special emphasis is given to the cannabinoid, opioid, nociceptin/orphanin FQ, corticotropin-releasing factor and hypocretin/orexin systems. The relevance of these systems viewed as potential therapeutic targets for drug addiction is discussed in the light of their narrow pharmacological profile and their effectiveness in preventing drug addiction at doses usually not accompanied by severe side effects.
Collapse
Affiliation(s)
- B Boutrel
- Center for Psychiatric Neuroscience and Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Site de Cery, Prilly, Switzerland.
| |
Collapse
|
22
|
Ward SJ, Roberts DCS. Microinjection of the delta-opioid receptor selective antagonist naltrindole 5'-isothiocyanate site specifically affects cocaine self-administration in rats responding under a progressive ratio schedule of reinforcement. Behav Brain Res 2007; 182:140-4. [PMID: 17572514 PMCID: PMC2076745 DOI: 10.1016/j.bbr.2007.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 05/03/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Whether the delta-opioid receptor (DOR) system can modulate behavioral effects of cocaine remains equivocal. We examined whether site- and subtype-selective blockade of DORs within the rat mesocorticolimbic system affects cocaine self-administration. The DOR antagonist naltrindole 5'-isothiocyanate (5'-NTII; 5nmol) was microinjected into the nucleus accumbens (NAcc), ventral tegmental area (VTA), or amygdala (AMYG) in rats self-administering 1.5mg/kg cocaine under a progressive ratio (PR) schedule. Intra-NAcc 5'-NTII significantly decreased cocaine self-administration, while 5'-NTII administration into the VTA significantly increased cocaine-maintained responding. 5'-NTII administration into the AMYG produced no effect. These data support a site-specific role of DORs in cocaine's behavioral effects.
Collapse
Affiliation(s)
- Sara Jane Ward
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
23
|
Kudryavtseva N, Gerrits MAFM, Avgustinovich DF, Tenditnik MV, Van Ree JM. Anxiety and ethanol consumption in victorious and defeated mice; effect of kappa-opioid receptor activation. Eur Neuropsychopharmacol 2006; 16:504-11. [PMID: 16524701 DOI: 10.1016/j.euroneuro.2006.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 12/15/2005] [Accepted: 01/10/2006] [Indexed: 11/19/2022]
Abstract
Alcohol consumption and addiction have been related to anxiety and the anxiolytic effect of ethanol. It has been shown in mice that losers with repeated experience of social defeats are more anxious than winners with repeated experience of victories. Mice with a different social status were tested for their oral ethanol consumption using a free two bottle choice paradigm and for their social approach behaviour after ethanol consumption using the partition test, in which anxiety is an important component. In addition, the sensitivity of the animals for the kappa-opioid receptor agonist U-50,488H (2.5 mg/kg, s.c.) was assessed using the partition test, in which this drug has been shown to induce anxiolytic-like effects. Further, the effect of daily treatment with U-50,488H for 8 days on ethanol consumption was tested in animals that had consumed ethanol and were subjected during these 8 days to a period of 5 days of interruption of ethanol supply and subsequently to a period of 3 days of renewed access to ethanol. Losers consumed more ethanol than winners. Consumption of ethanol was accompanied by a decrease of anxiety level, as evidenced by an increased approach behaviour in the partition test. U-50,488H stimulated ethanol consumption after a period of 5 days of interruption of ethanol supply and drug treatment in the losers, but not in the winners. U-50,488H increased approach behaviour in the losers not consuming ethanol and decreased this behaviour in the winners, especially in those that had consumed ethanol. It is postulated that U-50,488H acts as a partial agonist in this respect. The increased anxiety may be related to the enhanced ethanol consumption in the losers, which may be of relevance for the etiology of alcohol addiction.
Collapse
Affiliation(s)
- Natalia Kudryavtseva
- Institute of Cytology and Genetics, Siberian Branch of Russia, Academy of Sciences, Novosibirsk, Russian
| | | | | | | | | |
Collapse
|
24
|
McLaughlin JP, Land BB, Li S, Pintar JE, Chavkin C. Prior activation of kappa opioid receptors by U50,488 mimics repeated forced swim stress to potentiate cocaine place preference conditioning. Neuropsychopharmacology 2006; 31:787-94. [PMID: 16123754 PMCID: PMC2096772 DOI: 10.1038/sj.npp.1300860] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repeated forced-swim stress (FSS) produced analgesia, immobility and potentiation of cocaine-conditioned place preference (CPP) in wild-type C57Bl/6 mice, but not in littermates lacking the kappa opioid receptor (KOR) gene. These results were surprising because kappa agonists are known to produce conditioned place aversion and to suppress cocaine-CPP when coadministered with cocaine. The possibility that disruption of the kappa system blocked the stress response by adversely affecting the hypothalamic-pituitary axis was examined by measuring plasma corticosterone levels. However, disruption of the dynorphin/kappa system by gene deletion or receptor antagonism did not reduce the FSS-induced elevation of plasma corticosterone levels. A second explanation for the difference is that kappa receptor activation caused by FSS occurred prior to cocaine conditioning rather than contemporaneously. To test this hypothesis, we measured the effects of the kappa agonist (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide (U50,488) administered to mice at various intervals preceding cocaine conditioning. The results showed that the interaction between the kappa system and cocaine reinforcement depended on the timing of the drug pairing. Mice given U50,488 60 min prior to cocaine showed a robust, nor-BNI-sensitive potentiation of cocaine-CPP, whereas administration 15 min before cocaine significantly suppressed cocaine-CPP. In the absence of cocaine, U50,488 given 60 min prior to saline conditioning produced no place preference, whereas administration 15 min before saline conditioning produced significant place aversion. The results of this study suggest that kappa receptor activation induced by FSS prior to the cocaine-conditioning session may be both necessary and sufficient for potentiation of the reinforcing actions of cocaine.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analysis of Variance
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Cocaine/pharmacology
- Conditioning, Operant/drug effects
- Drug Interactions
- Enkephalins/deficiency
- Enzyme Activation/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Motor Activity/genetics
- Pain Measurement/methods
- Protein Precursors/deficiency
- Reaction Time/drug effects
- Receptors, Opioid, kappa/deficiency
- Receptors, Opioid, kappa/metabolism
- Stress, Physiological/etiology
- Stress, Physiological/prevention & control
- Swimming
- Time Factors
Collapse
Affiliation(s)
- Jay P McLaughlin
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Benjamin B Land
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
- Program in Neurobiology and Behavior, University of Washington School of Medicine, Seattle, WA, USA
| | - Shuang Li
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - John E Pintar
- Department of Neuroscience and Cell Biology, UMDNJ, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Charles Chavkin
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
- Program in Neurobiology and Behavior, University of Washington School of Medicine, Seattle, WA, USA
- *Correspondence: Dr C Chavkin, Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195-7280, USA, Tel: +1 206 543 4266, Fax: +1 206 685 3822, E-mail:
| |
Collapse
|
25
|
Mitchell JM, Liang MT, Fields HL. A single injection of the kappa opioid antagonist norbinaltorphimine increases ethanol consumption in rats. Psychopharmacology (Berl) 2005; 182:384-92. [PMID: 16001119 DOI: 10.1007/s00213-005-0067-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Kappa opioid receptor (KOR) agonists interfere with the reinforcing effects of drugs of abuse. KOR agonists decrease heroin, cocaine, and ethanol self-administration, and block heroin and cocaine conditioned place preference (CPP) in rats. However, KOR agonists also produce emesis and dysphoria, making it difficult to determine if their effects on self-administration are due to an action on reward mechanisms or are secondary to the drug's direct aversive effects. Assuming that endogenous KOR ligands modulate circuits involved in drug and alcohol reward, selective KOR antagonists can be used to clarify these issues. If KOR antagonists increase drug self-administration then it is likely that endogenous KOR agonists directly modulate drug intake. OBJECTIVES To determine the effects of nor-BNI, the highly selective KOR antagonist, on ethanol consumption and CPP. METHODS Thirty-eight male Lewis rats were given free access to ethanol until stable self-administration was achieved. Animals were then administered a single injection of nor-BNI (10 mg kg(-1)) while ethanol intake was monitored. RESULTS A single injection of nor-BNI induces a long-lasting increase in ethanol consumption, but does not induce a CPP. A high/low split revealed that this effect was primarily due to an increase in drinking in nor-BNI-treated high drinkers, which drank significantly more than saline-treated high drinkers and also drank significantly more when compared to their own pretreatment baseline. CONCLUSIONS Blocking the KOR system increases ethanol self-administration, suggesting that the decrease in self-administration seen with KOR agonists is due to a direct modulation of reward circuitry.
Collapse
Affiliation(s)
- Jennifer M Mitchell
- Department of Neurology, University of California at San Francisco, P. O. Box 0114, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
26
|
Metcalf MD, Coop A. Kappa opioid antagonists: past successes and future prospects. AAPS JOURNAL 2005. [PMID: 16353947 DOI: 10.1208/aapsj070371].] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antagonists of the kappa opioid receptor were initially investigated as pharmacological tools that would reverse the effects of kappa opioid receptor agonists. In the years following the discovery of the first selective kappa opioid antagonists, much information about their chemistry and pharmacology has been elicited and their potential therapeutic uses have been investigated. The review presents the current chemistry, ligand-based structure activity relationships, and pharmacology of the known nonpeptidic selective kappa opioid receptor antagonists. This manuscript endeavors to provide the reader with a useful reference of the investigations made to define the structure-activity relationships and pharmacology of selective kappa opioid receptor antagonists and their potential uses as pharmacological tools and as therapeutic agents in the treatment of disease states.
Collapse
Affiliation(s)
- Matthew D Metcalf
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
27
|
Metcalf MD, Coop A. Kappa opioid antagonists: past successes and future prospects. AAPS J 2005. [PMID: 16353947 DOI: 10.1208/aapsj070371]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antagonists of the kappa opioid receptor were initially investigated as pharmacological tools that would reverse the effects of kappa opioid receptor agonists. In the years following the discovery of the first selective kappa opioid antagonists, much information about their chemistry and pharmacology has been elicited and their potential therapeutic uses have been investigated. The review presents the current chemistry, ligand-based structure activity relationships, and pharmacology of the known nonpeptidic selective kappa opioid receptor antagonists. This manuscript endeavors to provide the reader with a useful reference of the investigations made to define the structure-activity relationships and pharmacology of selective kappa opioid receptor antagonists and their potential uses as pharmacological tools and as therapeutic agents in the treatment of disease states.
Collapse
Affiliation(s)
- Matthew D Metcalf
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
28
|
Metcalf MD, Coop A. Kappa opioid antagonists: past successes and future prospects. AAPS JOURNAL 2005; 7:E704-22. [PMID: 16353947 PMCID: PMC2751273 DOI: 10.1208/aapsj070371] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antagonists of the kappa opioid receptor were initially investigated as pharmacological tools that would reverse the effects of kappa opioid receptor agonists. In the years following the discovery of the first selective kappa opioid antagonists, much information about their chemistry and pharmacology has been elicited and their potential therapeutic uses have been investigated. The review presents the current chemistry, ligand-based structure activity relationships, and pharmacology of the known nonpeptidic selective kappa opioid receptor antagonists. This manuscript endeavors to provide the reader with a useful reference of the investigations made to define the structure-activity relationships and pharmacology of selective kappa opioid receptor antagonists and their potential uses as pharmacological tools and as therapeutic agents in the treatment of disease states.
Collapse
Affiliation(s)
- Matthew D. Metcalf
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, 21201 Baltimore, MD
| | - Andrew Coop
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, 21201 Baltimore, MD
| |
Collapse
|
29
|
|
30
|
Gekker G, Hu S, Wentland MP, Bidlack JM, Lokensgard JR, Peterson PK. κ-Opioid Receptor Ligands Inhibit Cocaine-Induced HIV-1 Expression in Microglial Cells. J Pharmacol Exp Ther 2004; 309:600-6. [PMID: 14757849 DOI: 10.1124/jpet.103.060160] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cocaine abuse has been implicated as a cofactor in human immunodeficiency virus (HIV)-1-associated dementia (HAD). In this study, we tested the hypothesis that exposure of microglial cells, the resident macrophages of the brain, to cocaine would potentiate HIV-1 expression. Because kappa-opioid receptor (KOR) agonists have been shown to suppress neurochemical and neurobehavioral responses to cocaine and to inhibit HIV-1 expression in microglial cell cultures, we also postulated that KOR ligands would inhibit cocaine-induced potentiation of HIV-1 expression. Human microglial cells were infected with HIV-1(SF162), an R5 isolate, and viral expression was quantified by measurement of p24 antigen in culture supernatants. Treatment of microglia with the KOR agonists trans-(+/-)-3,4-dichlor-N-methyl-N-(2[1-pyrrolidnyl])benzeneacetamide methanesulfonate and 8-carboxamidocyclazocine inhibited viral expression (maximal suppression of 42 and 48%, respectively). Consistent with the hypotheses, treatment of microglia with cocaine promoted HIV-1 expression (maximal enhancement of 54%), and pretreatment of microglia with these KOR agonists as well as with the KOR-selective antagonist nor-binaltorphimine abrogated cocaine-induced potentiation of viral expression. Results of flow cytometry studies suggested that the mechanism whereby KOR ligands inhibit cocaine's stimulatory effect on viral expression involves the suppression of cocaine-induced activation of extracellular signal-regulated kinase1/2, thereby blunting cocaine-enhanced up-regulation of the HIV-1 entry chemokine coreceptor CCR5. The findings of this study suggest that in addition to its neurotoxic effects, cocaine could foster development of HAD by potentiating viral expression in the brain and that this phenomenon is inhibited by KOR ligands.
Collapse
Affiliation(s)
- Genya Gekker
- Neuroimmunology Research Laboratory, Minneapolis Medical Research Foundation and Department of Medicine, University of Minnesota Medical School, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ren YH, Wang B, Luo F, Cui CL, Zheng JW, Han JS. Peripheral electric stimulation attenuates the expression of cocaine-induced place preference in rats. Brain Res 2002; 957:129-35. [PMID: 12443988 DOI: 10.1016/s0006-8993(02)03614-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study was designed to investigate the effect of peripheral electrical stimulation (PES), with high (100 Hz) or low (2 Hz) frequencies, on the expression of cocaine-induced conditioned place preference (CPP). Rats were trained with cocaine (0.1-10 mg/kg, i.p.) under a biased paradigm in a three-compartment chamber for the development of a CPP. One day following the last conditioning, the total time spent in each compartment was recorded after the deliverance of PES. Naloxone (1, 5, and 10 mg/kg, i.p.) was applied to investigate whether endogenous opioid receptor pathways play any role in the effect of PES. It was found that (1). 1 mg/kg and higher doses of cocaine, but not 0.5 mg/kg, produced significant place preference, (2). cocaine-induced CPP, once developed, maintained for more than 13 days in a cocaine-free state, (3). PES of 100 Hz, but not 2 Hz, significantly attenuated the expression of cocaine-induced CPP (P<0.01), (4). PES per se did not influence the natural place preference in rats, and (5). the inhibition of cocaine CPP induced by 100 Hz PES could be reversed by naloxone pre-treatment at 10 mg/kg, but not at lower doses. These results suggest that PES could inhibits cocaine-induced CPP in a frequency-dependent manner. This effect is probably mediated by an endogenous kappa-opioid mechanism.
Collapse
Affiliation(s)
- Yan-Hua Ren
- Neuroscience Research Institute, Beijing University, 38 Xueyuan Road, 100083, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Addiction to drugs, such as heroin, cocaine and alcohol, exacts great human and financial costs on society, but the development of pharmacotherapies for addiction has been largely neglected by the pharmaceutical industry. With advances in our understanding of the underlying biology of addictions now opening the door for the development of novel pharmacotherapies, it could be time for a reassessment of involvement in this increasingly important therapeutic area. Here, we summarize the current approved and implemented pharmacotherapeutic approaches to the treatment of addiction, and then highlight the most promising areas for future drug development from the perspective of our laboratory and our National Institutes of Health (NIH) National Institute on Drug Abuse (NIDA) Research Center.
Collapse
Affiliation(s)
- Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| | | | | |
Collapse
|
33
|
Abstract
Cocaine is a widely abused psychostimulant. Its direct actions include inhibition of dopamine, serotonin, and norepinephrine reuptake into presynaptic nerve terminals, thereby potentiating the actions of these transmitters in the synapse. A variety of studies have demonstrated that cocaine can also have profound effects on the endogenous opioid system. Compelling evidence points to the importance of mu opioid receptors in human cocaine addiction and craving. Animal studies support these findings and demonstrate that chronic cocaine administration can result in alterations in opioid receptor expression and function as measured by changes in critical signal transduction pathways. This chapter reviews studies on the regulation of opioid receptors as the result of exposure to cocaine.
Collapse
Affiliation(s)
- E M Unterwald
- Department of Pharmacology, Temple University School of Medicine, 3420 N. Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
34
|
Kuzmin AV, Gerrits MA, Zvartau EE, van Ree JM. Influence of buprenorphine, butorphanol and nalbuphine on the initiation of intravenous cocaine self-administration in drug naive mice. Eur Neuropsychopharmacol 2000; 10:447-54. [PMID: 11115734 DOI: 10.1016/s0924-977x(00)00117-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of different mixed mu-kappa-opioid receptor agonists-antagonists on cocaine reinforcement was studied using the method of initiation of intravenous cocaine self-administration in naive mice. Self-administration of cocaine was readily initiated according to an inverted U-shaped unit dose-response curve. Buprenorphine, butorphanol and nalbuphine tested against the optimal unit dose of cocaine (0.8 microg per infusion), inhibited initiation of cocaine self-administration in a dose-dependent manner. When tested against a scale of cocaine unit doses (0.2 -1.6 microg per infusion) buprenorphine (0.1 mg/kg, s.c.) and nalbuphine (2 mg/kg, s. c.) produced a shift of the optimal cocaine dose from 0.8 to 0.4 microg/inf, while butorphanol (1 mg/kg, s.c.) shifted the optimal unit dose of cocaine to the right along the cocaine unit doses axis. Co-administration of naloxone (0.1 mg/kg, s.c.) significantly reduced the effect of buprenorphine but failed to influence the effect of nalbuphine and butorphanol on cocaine intake. Taken together, these results suggest that nalbuphine is capable of affecting cocaine's reinforcing properties in the same manner as buprenorphine during the initiation phase of cocaine self-administration behavior, while butorphanol causes the opposite effect. Although the exact opioid profile of action of the mixed opioid receptor agonists-antagonists is as yet not precisely known, the present findings suggest that multiple opioid receptor systems (i.e. mu and kappa) play a role in reinforcing properties of cocaine and that a co-operative interaction between mu- and kappa-opioid systems may be of importance during initiation of cocaine self-administration.
Collapse
Affiliation(s)
- A V Kuzmin
- Laboratory of Pharmacology of Narcotics, Pavlov Medical University, St.-Petersburg, Russia
| | | | | | | |
Collapse
|
35
|
Van Ree JM, Niesink RJ, Van Wolfswinkel L, Ramsey NF, Kornet MM, Van Furth WR, Vanderschuren LJ, Gerrits MA, Van den Berg CL. Endogenous opioids and reward. Eur J Pharmacol 2000; 405:89-101. [PMID: 11033317 DOI: 10.1016/s0014-2999(00)00544-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The discovery of endogenous opioids has markedly influenced the research on the biology of addiction and reward brain processes. Evidence has been presented that these brain substances modulate brain stimulation reward, self-administration of different drugs of abuse, sexual behaviour and social behaviour. There appears to be two different domains in which endogenous opioids, present in separate and distinct brain regions, are involved. One is related to the modulation of incentive motivational processes and the other to the performance of certain behaviours. It is concluded that endogenous opioids may play a role in the vulnerability to certain diseases, such as addiction and autism, but also when the disease is present, such as alcoholism.
Collapse
Affiliation(s)
- J M Van Ree
- Department of Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xu W, Huang LF, Bauer L, Bhargava HN, Dunn WJ. Synthesis and opiate receptor binding properties of 17-methyl-6,7-dehydro-3,14-dihydroxy-4,5alpha-epoxy-6,7:4',5'-pyrimidin omorphinans. Bioorg Med Chem Lett 1999; 9:3375-80. [PMID: 10612602 DOI: 10.1016/s0960-894x(99)00608-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A class of opioid receptor active derivatives of oxymorphone has been synthesized using a common enaminone intermediate. The derivatives have heterocyclic groups fused to the 6,7-positions of the morphinan system and all were synthesized in high yield. A pyrazolo derivative is an agonist for the mu and delta receptors and an antagonist for the kappa receptor.
Collapse
Affiliation(s)
- W Xu
- College of Pharmacy, University of Illinois at Chicago, 60612-7231, USA
| | | | | | | | | |
Collapse
|
37
|
Butelman ER, Harris TJ, Kreek M. Apparent efficacy of kappa-opioid receptor ligands on serum prolactin levels in rhesus monkeys. Eur J Pharmacol 1999; 383:305-9. [PMID: 10594324 DOI: 10.1016/s0014-2999(99)00640-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
These studies investigated whether serum prolactin levels could be a quantitative marker of the apparent efficacy of kappa-opioid receptor ligands in primates. The effects of s.c. bremazocine and U50,488 (trans-(+/-)-3, 4-Dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamid e; agonists), nalorphine (partial agonist) and nalmefene (antagonist) on prolactin levels were studied in intact female rhesus monkeys. The above compounds, except nalmefene, increased prolactin levels, and their actions conformed to sigmoidal dose-effect curves. The rank order of the compounds' maximum effects in this neuroendocrine endpoint is similar to that in cloned kappa-receptors in vitro, and in a presently studied thermal antinociception assay in vivo. Prolactin may therefore be a quantitative marker of the apparent efficacy of kappa-opioid receptor ligands in primates.
Collapse
Affiliation(s)
- E R Butelman
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, 1230 York Avenue (Box 171), New York, NY 10021, USA.
| | | | | |
Collapse
|
38
|
Carroll FI, Howell LL, Kuhar MJ. Pharmacotherapies for treatment of cocaine abuse: preclinical aspects. J Med Chem 1999; 42:2721-36. [PMID: 10425082 DOI: 10.1021/jm9706729] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- F I Carroll
- Chemistry and Life Sciences, Research Triangle Institute, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|