1
|
Limoges A, Yarur HE, Tejeda HA. Dynorphin/kappa opioid receptor system regulation on amygdaloid circuitry: Implications for neuropsychiatric disorders. Front Syst Neurosci 2022; 16:963691. [PMID: 36276608 PMCID: PMC9579273 DOI: 10.3389/fnsys.2022.963691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Amygdaloid circuits are involved in a variety of emotional and motivation-related behaviors and are impacted by stress. The amygdala expresses several neuromodulatory systems, including opioid peptides and their receptors. The Dynorphin (Dyn)/kappa opioid receptor (KOR) system has been implicated in the processing of emotional and stress-related information and is expressed in brain areas involved in stress and motivation. Dysregulation of the Dyn/KOR system has also been implicated in various neuropsychiatric disorders. However, there is limited information about the role of the Dyn/KOR system in regulating amygdala circuitry. Here, we review the literature on the (1) basic anatomy of the amygdala, (2) functional regulation of synaptic transmission by the Dyn/KOR system, (3) anatomical architecture and function of the Dyn/KOR system in the amygdala, (4) regulation of amygdala-dependent behaviors by the Dyn/KOR system, and (5) future directions for the field. Future work investigating how the Dyn/KOR system shapes a wide range of amygdala-related behaviors will be required to increase our understanding of underlying circuitry modulation by the Dyn/KOR system. We anticipate that continued focus on the amygdala Dyn/KOR system will also elucidate novel ways to target the Dyn/KOR system to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aaron Limoges
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- NIH-Columbia University Individual Graduate Partnership Program, National Institutes of Health, Bethesda, MD, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
2
|
Leconte C, Mongeau R, Noble F. Traumatic Stress-Induced Vulnerability to Addiction: Critical Role of the Dynorphin/Kappa Opioid Receptor System. Front Pharmacol 2022; 13:856672. [PMID: 35571111 PMCID: PMC9091501 DOI: 10.3389/fphar.2022.856672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Substance use disorders (SUD) may emerge from an individual’s attempt to limit negative affective states and symptoms linked to stress. Indeed, SUD is highly comorbid with chronic stress, traumatic stress, or post-traumatic stress disorder (PTSD), and treatments approved for each pathology individually often failed to have a therapeutic efficiency in such comorbid patients. The kappa-opioid receptor (KOR) and its endogenous ligand dynorphin (DYN), seem to play a key role in the occurrence of this comorbidity. The DYN/KOR function is increased either in traumatic stress or during drug use, dependence acquisition and DYN is released during stress. The behavioural effects of stress related to the DYN/KOR system include anxiety, dissociative and depressive symptoms, as well as increased conditioned fear response. Furthermore, the DYN/KOR system is implicated in negative reinforcement after the euphoric effects of a drug of abuse ends. During chronic drug consumption DYN/KOR functions increase and facilitate tolerance and dependence. The drug-seeking behaviour induced by KOR activation can be retrieved either during the development of an addictive behaviour, or during relapse after withdrawal. DYN is known to be one of the most powerful negative modulators of dopamine signalling, notably in brain structures implicated in both reward and fear circuitries. KOR are also acting as inhibitory heteroreceptors on serotonin neurons. Moreover, the DYN/KOR system cross-regulate with corticotropin-releasing factor in the brain. The sexual dimorphism of the DYN/KOR system could be the cause of the gender differences observed in patients with SUD or/and traumatic stress-related pathologies. This review underlies experimental and clinical results emphasizing the DYN/KOR system as common mechanisms shared by SUD or/and traumatic stress-related pathologies, and suggests KOR antagonist as a new pharmacological strategy to treat this comorbidity.
Collapse
|
3
|
Estave PM, Spodnick MB, Karkhanis AN. KOR Control over Addiction Processing: An Exploration of the Mesolimbic Dopamine Pathway. Handb Exp Pharmacol 2022; 271:351-377. [PMID: 33301050 PMCID: PMC8192597 DOI: 10.1007/164_2020_421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug addiction is a complex, persistent, and chronically relapsing neurological disorder exacerbated by acute and chronic stress. It is well known that the dynorphin/kappa opioid receptor (KOR) system regulates stress perception and responsivity, while the mesolimbic dopamine system plays a role in reward and reinforcement associated with alcohol and substance use disorders. Interestingly, the dopamine and dynorphin/KOR systems are highly integrated in mesolimbic areas, with KOR activation leading to inhibition of dopamine release, further altering the perception of reinforcing and aversive stimuli. Chronic or repeated exposure to stress or drugs potentiates KOR function ultimately contributing to a hypodopaminergic state. This hypodopaminergic state is one of the hallmarks of hyperkatifeia, defined as the hypersensitivity to emotional distress that is exacerbated during drug withdrawal and abstinence. The relationship between stress and drug addiction is bidirectional; repeated/chronic stress promotes pro-addictive behaviors, and repeated cycles of drug exposure and withdrawal, across various drug classes, produces stress. Neuroadaptations driven by this bidirectional relationship ultimately influence the perception of the reinforcing value of rewarding stimuli. In this chapter, we address the involvement of the dopamine and dynorphin/KOR systems and their interactions in shaping reinforcement value processing after drug and stress exposure, as well as a combinatorial impact of both drugs and stress.
Collapse
Affiliation(s)
- Paige M Estave
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mary B Spodnick
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, Binghamton, NY, USA
| | - Anushree N Karkhanis
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, Binghamton, NY, USA.
| |
Collapse
|
4
|
Gibula-Tarlowska E, Grochecki P, Silberring J, Kotlinska JH. The kisspeptin derivative kissorphin reduces the acquisition, expression, and reinstatement of ethanol-induced conditioned place preference in rats. Alcohol 2019; 81:11-19. [PMID: 30981809 DOI: 10.1016/j.alcohol.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/17/2022]
Abstract
Research has shown that opioids are involved in the rewarding effects of ethanol. Neuropeptide FF (NPFF) has been described as an anti-opioid peptide because, in many cases, it inhibits opioid and ethanol effects in rodents. Kissorphin (KSO) is a new peptide derived from kisspeptin-10 with structural similarities to NPFF. This peptide possesses NPFF-like biological activity in vitro. The aim of the current study was to investigate whether KSO (Tyr-Asn-Trp-Asn-Ser-Phe-NH2) influences the acquisition, expression, and reinstatement of ethanol-induced conditioned place preference (ethanol-CPP) in rats. The ethanol-CPP was established (conditioning for 5 days) by intraperitoneal (i.p.) administration of ethanol (1 g/kg, 20%, w/v) using an unbiased procedure. After that, one group of rats was used in final post-conditioning testing (expression of CPP) and the other group received a priming injection of ethanol after 10 days of extinction (reinstatement of CPP). Our experiments showed that KSO, given intravenously (i.v.) at the doses of 1, 3, and 10 nmol before every ethanol administration, inhibited the acquisition and, given acutely before the post-conditioning test or before the priming dose of ethanol, inhibited the expression and reinstatement of ethanol-CPP, respectively, in a dose-dependent manner. KSO given by itself neither induced place preference nor aversion and did not alter locomotor activity and coordination of rats. These results suggest that KSO can alter rewarding/motivational effects of ethanol. These data suggest this peptide possesses an anti-opioid character.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland.
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Jerzy Silberring
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland; Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| |
Collapse
|
5
|
Guttlein L, Macchione AF, Hernández-Fonseca K, Haymal OB, Molina JC, Méndez Ubach M, Abate P. Maternal manipulation during late gestation (GDs 17-20) enhances ethanol consumption and promotes changes and opioid mRNA expression in infant rats. Behav Brain Res 2019; 368:111908. [PMID: 30986490 DOI: 10.1016/j.bbr.2019.111908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Fetal ethanol experience generates learning and memories capable to increase ethanol consummatory behaviors during infancy. Opioid system seems to be involved in mediating those alcohol-related behaviors. In this work, we proposed to study the impact of prenatal exposure to a moderate ethanol dose, upon ingestion of the drug and possible ethanol-induced molecular changes on opioid precursor peptides (POMC, Pro-enk and Pro-DYN) and receptors (MOR, DOR and KOR) mRNA expression, in hypothalamus. Pregnant rats received during gestational days (GDs) 17-20, a daily intragastric (i.g.) administration with 2g/kg ethanol or water. A third group of dams was left undisturbed during pregnancy (Unmanipulated group). Intake test was conducted at postnatal days (PDs) 14-15. Three groups of pups were performed: control (no intake test), water (vehicle) and 5% ethanol. At the end of intake test blood samples were taken to quantify blood ethanol concentrations (BECs) and hypothalamus sections were obtained to perform qRT-PRC assessment of opioid precursor peptides and receptors. The analysis of the consummatory responses (% of consumption) and pharmacokinetic profiles (BECs) suggested that maternal manipulation induced by i.g. intubations, during the last four days of gestation (whenever ethanol or water), are sufficient to induce infantile ethanol intake during infancy. Gene expression from the hypothalamus of unmanipulated group revealed that infantile ingestive experiences with ethanol can down-regulate expression of mRNA Pro-Dyn and up-regulate mRNA expression of MOR and KOR. Finally, MOR mRNA expression was attenuated by prenatal i.g. manipulation in pups exposed to 5% ethanol.
Collapse
Affiliation(s)
- Larisa Guttlein
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, C.P. 5016, Argentina
| | - Ana Fabiola Macchione
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, C.P. 5016, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina
| | - Karla Hernández-Fonseca
- Departamento de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México D.F., Mexico
| | - Olga Beatriz Haymal
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, C.P. 5016, Argentina
| | - Juan Carlos Molina
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, C.P. 5016, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina
| | - Milagros Méndez Ubach
- Departamento de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México D.F., Mexico.
| | - Paula Abate
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina; Instituto de Investigaciones Psicológicas (IIPsi-CONICET-UNC), Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina.
| |
Collapse
|
6
|
Yang PP, Yeh TK, Loh HH, Law PY, Wang Y, Tao PL. Delta-opioid receptor antagonist naltrindole reduces oxycodone addiction and constipation in mice. Eur J Pharmacol 2019; 852:265-273. [PMID: 30959048 DOI: 10.1016/j.ejphar.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
Oxycodone, a widely prescribed and very potent oral opioid analgesic agent, is highly addictive and has many side effects, including troublesome constipation. Our studies in mice indicated that pretreatment of naltrindole did not significantly affect the analgesic efficacy of oxycodone but attenuated the tolerance and withdrawal induced by chronic oxycodone administration. Naltrindole also attenuated the oxycodone-induced rewarding and re-instatement behaviors, as shown by the conditioned place preference test. Further, oxycodone-induced decrease in intestinal transit (i.e., constipation) was reduced by naltrindole. However, naltrindole did not block the respiratory depression produced by oxycodone. Taken together, these data suggest that naltrindole can attenuate some major side effects while retaining the analgesic efficacy of oxycodone in mice. Naltrindole and oxycodone may have the potential to be a potent analgesic combination with much lower levels of oxycodone's side effects of addictive liability and constipation.
Collapse
Affiliation(s)
- Pao-Pao Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan, ROC; Department of Pharmacology, National Defense Medical Center, Taipei City, 11490, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan, ROC
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan, ROC
| | - Pao-Luh Tao
- Department of Pharmacology, National Defense Medical Center, Taipei City, 11490, Taiwan, ROC; Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan, ROC.
| |
Collapse
|
7
|
Kappa Opioid Receptors Drive a Tonic Aversive Component of Chronic Pain. J Neurosci 2019; 39:4162-4178. [PMID: 30862664 DOI: 10.1523/jneurosci.0274-19.2019] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022] Open
Abstract
Pain is a multidimensional experience and negative affect, or how much the pain is "bothersome", significantly impacts the sufferers' quality of life. It is well established that the κ opioid system contributes to depressive and dysphoric states, but whether this system contributes to the negative affect precipitated by the occurrence of chronic pain remains tenuous. Using a model of persistent pain, we show by quantitative real-time-PCR, florescence in situ hybridization, Western blotting and GTPgS autoradiography an upregulation of expression and the function of κ opioid receptors (KORs) and its endogenous ligand dynorphin in the mesolimbic circuitry in animals with chronic pain compared with surgical controls. Using in vivo microdialysis and microinjection of drugs into the mesolimbic dopamine system, we demonstrate that inhibiting KORs reinstates evoked dopamine release and reward-related behaviors in chronic pain animals. Chronic pain enhanced KOR agonist-induced place aversion in a sex-dependent manner. Using various place preference paradigms, we show that activation of KORs drives pain aversive states in male but not female mice. However, KOR antagonist treatment was effective in alleviating anxiogenic and depressive affective-like behaviors in both sexes. Finally, ablation of KORs from dopamine neurons using AAV-TH-cre in KORloxP mice prevented pain-induced aversive states as measured by place aversion assays. Our results strongly support the use of KOR antagonists as therapeutic adjuvants to alleviate the emotional, tonic-aversive component of chronic pain, which is argued to be the most significant component of the pain experience that impacts patients' quality of life.SIGNIFICANCE STATEMENT We show that KORs are sufficient to drive the tonic-aversive component of chronic pain; the emotional component of pain that is argued to significantly impact a patient's quality of life. The impact of our study is broadly relevant to affective disorders associated with disruption of reward circuitry and thus likely contributes to many of the devastating sequelae of chronic pain, including the poor response to treatment of many patients, debilitating affective disorders (other disorders including anxiety and depression that demonstrate high comorbidity with chronic pain) and substance abuse. Indeed, coexisting psychopathology increases pain intensity, pain-related disability and effectiveness of treatments (Jamison and Edwards, 2013).
Collapse
|
8
|
Age as a factor in stress and alcohol interactions: A critical role for the kappa opioid system. Alcohol 2018; 72:9-18. [PMID: 30322483 DOI: 10.1016/j.alcohol.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
The endogenous kappa opioid system has primarily been shown to be involved with a state of dysphoria and aversion. Stress and exposure to drugs of abuse, particularly alcohol, can produce similar states of unease and anxiety, implicating the kappa opioid system as a target of stress and alcohol. Numerous behavioral studies have demonstrated reduced sensitivity to manipulations of the kappa opioid system in early life relative to adulthood, and recent reports have shown that the kappa opioid system is functionally different across ontogeny. Given the global rise in early-life stress and alcohol consumption, understanding how the kappa opioid system responds and adapts to stress and/or alcohol exposure differently in early life and adulthood is imperative. Therefore, the objective of this review is to highlight and discuss studies examining the impact of early-life stress and/or alcohol on the kappa opioid system, with focus on the documented neuroadaptations that may contribute to future vulnerability to stress and/or increase the risk of relapse. We first provide a brief summary of the importance of studying the effects of stress and alcohol during early life (prenatal, neonatal/juvenile, and adolescence). We then discuss the literature on the effects of stress or alcohol during early life and adulthood on the kappa opioid system. Finally, we discuss the few studies that have shown interactions between stress and alcohol on the kappa opioid system and provide some discussion about the need for studies investigating the development of the kappa opioid system.
Collapse
|
9
|
Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the neural systems that drive alcohol motivation and are disrupted in alcohol use disorders is of critical importance in developing novel treatments. The dynorphin and orexin/hypocretin neuropeptide systems are particularly relevant with respect to alcohol use and misuse. Both systems are strongly associated with alcohol-seeking behaviors, particularly in cases of high levels of alcohol use as seen in dependence. Furthermore, both systems also play a role in stress and anxiety, indicating that disruption of these systems may underlie long-term homeostatic dysregulation seen in alcohol use disorders. These systems are also closely interrelated with one another - dynorphin/kappa opioid receptors and orexin/hypocretin receptors are found in similar regions and hypocretin/orexin neurons also express dynorphin - suggesting that these two systems may work together in the regulation of alcohol seeking and may be mutually disrupted in alcohol use disorders. This chapter reviews studies demonstrating a role for each of these systems in motivated behavior, with a focus on their roles in regulating alcohol-seeking and self-administration behaviors. Consideration is also given to evidence indicating that these neuropeptide systems may be viable targets for the development of potential treatments for alcohol use disorders.
Collapse
Affiliation(s)
- Rachel I Anderson
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.,Science and Technology Policy Fellowships, American Association for the Advancement of Science, Washington, DC, USA
| | - David E Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA. .,Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA. .,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA. .,Department of Veterans Affairs, Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
10
|
Anderson RI, Becker HC. Role of the Dynorphin/Kappa Opioid Receptor System in the Motivational Effects of Ethanol. Alcohol Clin Exp Res 2017; 41:1402-1418. [PMID: 28425121 DOI: 10.1111/acer.13406] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
Evidence has demonstrated that dynorphin (DYN) and the kappa opioid receptor (KOR) system contribute to various psychiatric disorders, including anxiety, depression, and addiction. More recently, this endogenous opioid system has received increased attention as a potential therapeutic target for treating alcohol use disorders. In this review, we provide an overview and synthesis of preclinical studies examining the influence of alcohol (ethanol [EtOH]) exposure on DYN/KOR expression and function, as well as studies examining the effects of DYN/KOR manipulation on EtOH's rewarding and aversive properties. We then describe work that has characterized effects of KOR activation and blockade on EtOH self-administration and EtOH dependence/withdrawal-related behaviors. Finally, we address how the DYN/KOR system may contribute to stress-EtOH interactions. Despite an apparent role for the DYN/KOR system in motivational effects of EtOH, support comes from relatively few studies. Nevertheless, review of this literature reveals several common themes: (i) rodent strains genetically predisposed to consume more EtOH generally appear to have reduced DYN/KOR tone in brain reward circuitry; (ii) acute and chronic EtOH exposure typically up-regulate the DYN/KOR system; (iii) KOR antagonists reduce behavioral indices of negative affect associated with stress and chronic EtOH exposure/withdrawal; and (iv) KOR antagonists are effective in reducing EtOH consumption, but are often more efficacious under conditions that engender high levels of consumption, such as dependence or stress exposure. These results support the contention that the DYN/KOR system plays a significant role in contributing to dependence- and stress-induced elevation in EtOH consumption. Overall, more comprehensive analyses (on both behavioral and mechanistic levels) are needed to provide additional insight into how the DYN/KOR system is engaged and adapts to influence the motivation effects of EtOH. This information will be critical for the development of new pharmacological agents targeting KORs as promising novel therapeutics for alcohol use disorders and comorbid affective disorders.
Collapse
Affiliation(s)
- Rachel I Anderson
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina.,Department of Neuroscience , Medical University of South Carolina, Charleston, South Carolina.,RHJ Department of Veterans Affairs Medical Center , Charleston, South Carolina
| |
Collapse
|
11
|
Abate P, Reyes-Guzmán AC, Hernández-Fonseca K, Méndez M. Prenatal ethanol exposure modifies locomotor activity and induces selective changes in Met-enk expression in adolescent rats. Neuropeptides 2017; 62:45-56. [PMID: 27889070 DOI: 10.1016/j.npep.2016.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
Several studies suggest that prenatal ethanol exposure (PEE) facilitates ethanol intake. Opioid peptides play a main role in ethanol reinforcement during infancy and adulthood. However, PEE effects upon motor responsiveness elicited by an ethanol challenge and the participation of opioids in these actions remain to be understood. This work assessed the susceptibility of adolescent rats to prenatal and/or postnatal ethanol exposure in terms of behavioral responses, as well as alcohol effects on Met-enk expression in brain areas related to drug reinforcement. Motor parameters (horizontal locomotion, rearings and stereotyped behaviors) in pre- and postnatally ethanol-challenged adolescents were evaluated. Pregnant rats received ethanol (2g/kg) or water during gestational days 17-20. Adolescents at postnatal day 30 (PD30) were tested in a three-trial activity paradigm (habituation, vehicle and drug sessions). Met-enk content was quantitated by radioimmunoassay in several regions: ventral tegmental area [VTA], nucleus accumbens [NAcc], prefrontal cortex [PFC], substantia nigra [SN], caudate-putamen [CP], amygdala, hypothalamus and hippocampus. PEE significantly reduced rearing responses. Ethanol challenge at PD30 decreased horizontal locomotion and showed a tendency to reduce rearings and stereotyped behaviors. PEE increased Met-enk content in the PFC, CP, hypothalamus and hippocampus, but did not alter peptide levels in the amygdala, VTA and NAcc. These findings suggest that PEE selectively modifies behavioral parameters at PD30 and induces specific changes in Met-enk content in regions of the mesocortical and nigrostriatal pathways, the hypothalamus and hippocampus. Prenatal and postnatal ethanol actions on motor activity in adolescents could involve activation of specific neural enkephalinergic pathways.
Collapse
Affiliation(s)
- P Abate
- Laboratorio de Psicología Experimental miembro del Centro de Investigación en Psicología (CIPSi), Facultad de Psicología, Universidad Nacional de Córdoba, CP 5000 Córdoba, Argentina; Enfermera Gordillo esq. Enrique Barros, Ciudad Universitaria, CP 5000 Córdoba, Argentina.
| | - A C Reyes-Guzmán
- Departamento de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, CP 14370 Ciudad de México, Mexico
| | - K Hernández-Fonseca
- Departamento de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, CP 14370 Ciudad de México, Mexico
| | - M Méndez
- Departamento de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, CP 14370 Ciudad de México, Mexico.
| |
Collapse
|
12
|
Yu L, Wang L, Zhao X, Song M, Wang X. Role of single prolonged stress in acquisition of alcohol conditioned place preference in rats. Life Sci 2016; 151:259-263. [PMID: 26946306 DOI: 10.1016/j.lfs.2016.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/16/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
AIMS Previous studies showed that exposure to certain types of stressors enhance the rewarding effects of many drugs of abuse, including alcohol; however, no systematic study has investigated the role of single prolonged stress (SPS) in acquisition of alcohol conditioned place preference (CPP). The purpose of this study was to examine whether SPS would facilitate the acquisition of alcohol CPP in rats. MAIN METHODS Male Sprague-Dawley rats were randomly assigned to either SPS exposure condition or no exposure condition. Freezing behavior and Elevated plus maze (EPM) were employed to evaluate PTSD-like symptoms induced by SPS. Further, using unbiased procedure, CPP conditioning was conducted with alcohol (2g/kg). KEY FINDINGS SPS significantly enhanced freezing behavior of rats, decreased percentages (%) of both time spent and number of entry into the open arms, and facilitated the acquisition of alcohol CPP without inhibiting rats' activity. SIGNIFICANCE Our findings suggest that SPS plays an important role in alcohol dependence, and CPP paradigm with SPS may be useful for exploring the rewarding mechanism of alcohol with regard to the interaction between alcohol and post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Lulu Yu
- Department of Psychiatry, First Hospital of the Hebei Medical University, China; Mental Health Institute of the Hebei Medical University, China
| | - Lan Wang
- Department of Psychiatry, First Hospital of the Hebei Medical University, China; Mental Health Institute of the Hebei Medical University, China
| | - Xiaochuan Zhao
- Department of Psychiatry, First Hospital of the Hebei Medical University, China; Mental Health Institute of the Hebei Medical University, China
| | - Mei Song
- Department of Psychiatry, First Hospital of the Hebei Medical University, China; Mental Health Institute of the Hebei Medical University, China
| | - Xueyi Wang
- Department of Psychiatry, First Hospital of the Hebei Medical University, China; Mental Health Institute of the Hebei Medical University, China.
| |
Collapse
|
13
|
Alongkronrusmee D, Chiang T, van Rijn RM. Delta Opioid Pharmacology in Relation to Alcohol Behaviors. Handb Exp Pharmacol 2016; 247:199-225. [PMID: 27316912 DOI: 10.1007/164_2016_30] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Delta opioid receptors (DORs) are heavily involved in alcohol-mediated processes in the brain. In this chapter we provide an overview of studies investigating how alcohol directly impacts DOR pharmacology and of early studies indicating DOR modulation of alcohol behavior. We will offer a brief summary of the different animal species used in alcohol studies investigating DORs followed by a broader overview of the types of alcohol behaviors modulated by DORs. We will highlight a small set of studies investigating the relationship between alcohol and DORs in analgesia. We will then provide an anatomical overview linking DOR expression in specific brain regions to different alcohol behaviors. In this section, we will provide two models that try to explain how endogenous opioids acting at DORs may influence alcohol behaviors. Next, we will provide an overview of studies investigating certain new aspects of DOR pharmacology, including the formation of heteromers and biased signaling. Finally, we provide a short overview of the genetics of the DORs in relation to alcohol use disorders (AUDs) and a short statement on the potential of using DOR-based therapeutics for treatment of AUDs.
Collapse
Affiliation(s)
- Doungkamol Alongkronrusmee
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Terrance Chiang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
14
|
Saitoh A, Nagase H. Delta Opioid Receptor (DOR) Ligands and Pharmacology: Development of Indolo- and Quinolinomorphinan Derivatives Based on the Message-Address Concept. Handb Exp Pharmacol 2016; 247:3-19. [PMID: 27787711 DOI: 10.1007/164_2016_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pharmacology of the delta opioid receptor (DOR) has lagged, mainly due to the lack of an agonist with high potency and selectivity in vivo. The DOR is now receiving increasing attention, and there has been progress in the synthesis of better novel ligands. The discovery of a selective receptor DOR antagonist, naltrindole (NTI), stimulated the design and synthesis of (±)TAN-67, which was designed based on the message-address concept and the accessory site theory. Intensive studies using (±)TAN-67 determined the DOR-mediated various pharmacological effects, such as antinociceptive effects for painful diabetic neuropathy and cardiovascular protective effects. We improved the agonist activity of TAN-67 to afford SN-28, which was modified to KNT-127, a novel compound that improved the blood-brain barrier permeability. In addition, KNT-127 showed higher selectivity for the DOR and had potent agonist activity following systemic administration. Interestingly, KNT-127 produced no convulsive effects, unlike prototype DOR agonists. The KNT-127 type derivatives with a quinolinomorphinan structure are expected to be promising candidates for the development of therapeutic DOR agonists.
Collapse
Affiliation(s)
- Akiyoshi Saitoh
- Department of Neuropsychopharmacology, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, 187-8553, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
15
|
Gibula-Bruzda E, Marszalek-Grabska M, Gawel K, Witkowska E, Izdebski J, Kotlinska JH. The influence of the new enkephalin derivative, cyclo[N(ε),N(β)-carbonyl-d-Lys(2),Dap(5)] enkephalinamide (cUENK6), on reinstatement of ethanol-induced conditioned place preference in rats. Physiol Behav 2015; 145:50-6. [PMID: 25817357 DOI: 10.1016/j.physbeh.2015.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/18/2015] [Accepted: 03/24/2015] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to determine whether a new cyclic analog of enkephalin, cyclo[N(ε),N(β)-carbonyl-d-Lys(2),Dap(5)] enkephalinamide (cUENK6), a preferential μ-(MORs), and, to a lower extent, a δ-opioid receptor (DORs) agonist in vitro, could reinstate ethanol-induced conditioned place preference (CPP). In our work, male Wistar rats were first conditioned either with ethanol (10% w/v, 0.5g/kg, intraperitoneally (i.p.)) or 0.9% NaCl in a biased CPP procedure. The intracerebroventricular (i.c.v.) administration of DORs antagonist (naltrindole, 2.5 and 5nmol) or MORs antagonist (β-funaltrexamine, 5 and 10nmol), but not the κ opioid receptor (KORs) antagonist (norbinaltorphimine, 5 and 10nmol) was then administered and inhibited the expression of ethanol-induced CPP. After the extinction session, i.c.v. administration of cUENK6 at the dose of 0.125, 0.25 and 0.5nmol occurred, and was found to reinstate the ethanol-induced CPP similar to that of the priming injection of ethanol. However, the reinstated effect of cUENK6 (0.25nmol) was strongly abolished by administration of naltrindole and, to lesser extent, by β-funaltrexamine. Furthermore, the preferential MORs agonist-morphine (13nmol, i.c.v.) and the DORs agonist-[Leu(5)]-enkephalin (2.7 and 5.4nmol, i.c.v.) also reinstated the ethanol-induced CPP. cUENK6 given alone at the dose of 0.25nmol before the testing phase had no effect in animals that received 0.9% NaCl during the conditioning phase and also did not influence their locomotor activity. These data suggest that the effects of cUENK6 did not have an impact on the results obtained in the reinstatement procedure of CPP. Overall, the data support the idea that both MORs and DORs are normally involved in the expression and reinstatement of ethanol conditioned seeking behavior - as indexed by CPP in rats.
Collapse
Affiliation(s)
- Ewa Gibula-Bruzda
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland.
| | | | - Kinga Gawel
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Ewa Witkowska
- Laboratory of Peptides, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Jan Izdebski
- Laboratory of Peptides, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| |
Collapse
|
16
|
The kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI), decreases morphine withdrawal and the consequent conditioned place aversion in rats. Behav Brain Res 2015; 283:16-21. [PMID: 25591478 DOI: 10.1016/j.bbr.2015.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 01/02/2023]
Abstract
Much data suggest that the binding of dynorphin-like peptides to kappa-opioid receptors (KORs) during the administration of and withdrawal from a variety of addictive drugs is aversive and serves to limit the reinforcing properties of those drugs and to enhance tolerance, withdrawal, and the probability of stress-induced relapse. In this study, we examined the role of KORs in mediating opioid withdrawal and its aversive consequences in rats. We found that selective blockade of KORs by i.p. administration of 20mg/kg nor-binaltorphimine (nor-BNI) 5h prior to naltrexone-precipitated withdrawal in morphine-dependent rats decreased feces excreted during a 30-min withdrawal session. More critically, this injection of nor-BNI decreased the subsequent conditioned place aversion (CPA) for the withdrawal chamber 2 days later. The subsequent finding that administration of nor-BNI 2h following withdrawal did not affect the CPA 2 days later suggested that nor-BNI reduced the CPA in the prior experiment because it reduced the aversive effects of withdrawal, not because it reduced the aversive/anxiogenic effects of the withdrawal chamber at the time of CPA testing. These data indicate that the binding of dynorphin-like peptides to KORs during opioid withdrawal serves to enhance withdrawal and its aversive consequences and suggest that selective KOR antagonists may be useful in reducing these aversive effects and consequent relapse.
Collapse
|
17
|
Prenatal ethanol exposure alters met-enkephalin expression in brain regions related with reinforcement: possible mechanism for ethanol consumption in offspring. Behav Brain Res 2014; 274:194-204. [PMID: 25150040 DOI: 10.1016/j.bbr.2014.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 11/22/2022]
Abstract
The endogenous opioid system is involved in ethanol reinforcement. Ethanol-induced changes in opioidergic transmission have been extensively studied in adult organisms. However, the impact of ethanol exposure at low or moderate doses during early ontogeny has been barely explored. We investigated the effect of prenatal ethanol exposure on alcohol intake and Methionine-enkephalin (Met-enk) content in rat offspring. Met-enk content was assessed in the ventral tegmental area [VTA], nucleus accumbens [NAcc], prefrontal cortex [PFC], substantia nigra [SN], caudate-putamen [CP], amygdala, hypothalamus and hippocampus. Pregnant rats were treated with ethanol (2g/kg) or water during GDs 17-20. At PDs 14 and 15, preweanlings were evaluated in an intake test (5% and 10% ethanol, or water). Met-enk content in brain regions of infants prenatally exposed to ethanol was quantitated by radioimmunoassay. Ethanol consumption was facilitated by prenatal experience with the drug, particularly in females. Met-enk content in mesocorticolimbic regions - PFC and NAcc - was increased as a consequence of prenatal exposure to ethanol. Conversely, Met-enk levels in the VTA were reduced by prenatal ethanol manipulation. Prenatal ethanol also increased peptide levels in the medial-posterior zone of the CP, and strongly augmented Met-enk content in the hippocampus and hypothalamus. These findings show that prenatal ethanol exposure stimulates consumption of the drug in infant rats, and induces selective changes in Met-enk levels in regions of the mesocorticolimbic and nigrostriatal systems, the hypothalamus and hippocampus. Our results support the role of mesocorticolimbic enkephalins in ethanol reinforcement in offspring, as has been reported in adults.
Collapse
|
18
|
Sacharczuk M, Lesniak A, Lipkowski AW, Korostynski M, Przewlocki R, Sadowski B. Association between the A107V substitution in the δ-opioid receptors and ethanol drinking in mice selected for high and low analgesia. Addict Biol 2014; 19:643-51. [PMID: 23301597 DOI: 10.1111/adb.12030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Experimental evidence suggests that endogenous opioids play an important role in the development of ethanol addiction. In this study, we employed two mouse lines divergently bred for opioid-mediated stress-induced analgesia. In comparison with HA (high analgesia line) mice, LA (low analgesia line) mice, having lower opioid receptor system activity, manifest enhanced basal as well as stress-induced ethanol drinking. Here, we found that recently discovered C320T transition in exon 2 of the δ-opioid receptor gene (EU446125.1), which results in an A107V substitution (ACA23171.1), leads to higher ethanol preference in CT mice compared with CC homozygotes. This genetic association is particularly evident under chronic mild stress (CMS) conditions. The interaction between stress and ethanol intake was significantly stronger in HA than in LA mice. Ethanol almost completely attenuated the pro-depressive effect of CMS (assessed with the tail suspension test) in both the CC and CT genotypes in the HA line. In the LA mice, a lack of response to ethanol was observed in the CC genotype, whereas ethanol consumption strengthened depressive-like behaviours in CT individuals. Our results suggest that constitutively active A107V substitution in δ-opioid receptors may be involved in stress-enhanced vulnerability to ethanol abuse and in the risk of ethanol dependence.
Collapse
Affiliation(s)
- Mariusz Sacharczuk
- Department of Molecular Cytogenetics, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Poland
| | | | | | | | | | | |
Collapse
|
19
|
Central effects of ethanol interact with endogenous mu-opioid activity to control isolation-induced analgesia in maternally separated infant rats. Behav Brain Res 2013; 260:119-30. [PMID: 24315831 DOI: 10.1016/j.bbr.2013.11.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 12/23/2022]
Abstract
Endogenous opioid activity plays an important role in ethanol consumption and reinforcement in infant rats. Opioid systems are also involved in mediation and regulation of stress responses. Social isolation is a stressful experience for preweanling rats and changes the effects of ethanol through opioid-dependent mechanisms. The present study assessed effects of intracisternal (i.c.) administration of a selective mu-opioid antagonist (CTOP) and i.p. administration of a nonspecific opioid antagonist (naloxone) on voluntary intake and behavior in socially isolated 12-day-old (P12) pups treated with 0.5 g/kg ethanol. Voluntary intake of 0.1% saccharin or water, locomotion, rearing activity, paw licking and grooming were assessed during short-term isolation from littermates (STSI; 8-min duration). Thermal nociceptive reactivity was measured before and after this intake test, with normalized differences between pre- and post-test latencies of paw withdrawal from a hot plate (49°C) used as an index of isolation-induced analgesia (IIA). Results indicated several effects of social isolation and ethanol mediated through the mu-opioid system. Effects of low dose ethanol (0.5 g/kg) and voluntary consumption of saccharin interacted with endogenous mu-opioid activity associated with STSI. Blockade of mu-opioid receptors on saccharin consumption and paw licking-grooming affected intoxicated animals. Low dose ethanol and ingestion of saccharin blunted effects of CTOP on rearing behavior and nociceptive reactivity. Central injections of CTOP stimulated paw licking and grooming dependent on ethanol dose and type of fluid ingested. Ethanol selectively increased saccharin intake during STSI in females, naloxone and CTOP blocked ethanol-mediated enhancement of saccharin intake. We suggest that enhancement of saccharin intake by ethanol during STSI is the product of synergism between isolation-induced mu-opioid activity that increases the pup's sensitivity to appetitive taste stimulation and the anxiolytic effects of 0.5 g/kg ethanol that decreases behaviors otherwise competing with independent ingestive activity.
Collapse
|
20
|
Gilpin NW, Roberto M, Koob GF, Schweitzer P. Kappa opioid receptor activation decreases inhibitory transmission and antagonizes alcohol effects in rat central amygdala. Neuropharmacology 2013; 77:294-302. [PMID: 24157490 DOI: 10.1016/j.neuropharm.2013.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/19/2013] [Accepted: 10/08/2013] [Indexed: 12/30/2022]
Abstract
Activation of the kappa opioid receptor (KOR) system mediates negative emotional states and considerable evidence suggests that KOR and their natural ligand, dynorphin, are involved in ethanol dependence and reward. The central amygdala (CeA) plays a major role in alcohol dependence and reinforcement. Dynorphin peptide and gene expression are activated in the amygdala during acute and chronic administration of alcohol, but the effects of activation or blockade of KOR on inhibitory transmission and ethanol effects have not been studied. We used the slice preparation to investigate the physiological role of KOR and interaction with ethanol on GABA(A) receptor-mediated synaptic transmission. Superfusion of dynorphin or U69593 onto CeA neurons decreased evoked inhibitory postsynaptic potentials (IPSPs) in a concentration-dependent manner, an effect prevented by the KOR antagonist norbinaltorphimine (norBNI). Applied alone, norBNI increased GABAergic transmission, revealing a tonic endogenous activity at KOR. Paired-pulse analysis suggested a presynaptic KOR mechanism. Superfusion of ethanol increased IPSPs and pretreatment with KOR agonists diminished the ethanol effect. Surprisingly, the ethanol-induced augmentation of IPSPs was completely obliterated by KOR blockade. Our results reveal an important role of the dynorphin/KOR system in the regulation of inhibitory transmission and mediation of ethanol effects in the CeA.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University, Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70130, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders & Pearson Center for Alcoholism and Addiction Research, SP30 2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - George F Koob
- Committee on the Neurobiology of Addictive Disorders & Pearson Center for Alcoholism and Addiction Research, SP30 2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paul Schweitzer
- Committee on the Neurobiology of Addictive Disorders & Pearson Center for Alcoholism and Addiction Research, SP30 2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Effect of chronic ethanol treatment on μ-opioid receptor function, interacting proteins and morphine-induced place preference. Psychopharmacology (Berl) 2013; 228:207-15. [PMID: 23430162 DOI: 10.1007/s00213-013-3023-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 02/05/2013] [Indexed: 01/03/2023]
Abstract
RATIONALE Both the acute and chronic consumption of ethanol have been reported to modify several molecular events in the central nervous system, and the endogenous μ-opioid receptor system is involved in the reinforcing/rewarding effects of ethanol. OBJECTIVES The present study was designed to clarify the effects of chronic ethanol treatment on cellular processes involving μ-opioid receptor and the development of morphine-induced rewarding effects. METHODS Male C57BL/6J mice were continuously treated with a liquid diet containing 3.0 w/v ethanol. The direct involvement of μ-opioid receptor functions in the activation of G-proteins and changes in protein levels in the lower midbrain of mice after chronic treatment with ethanol were investigated by a [(35)S] GTPγS binding assay and Western blotting, respectively. The rewarding effects of morphine (5 mg/kg) under treatment with ethanol were measured by the conditioned place preference paradigm. RESULTS The function of μ-opioid receptor was increased by treatment with ethanol in the lower midbrain using [(35)S] GTPγS binding assay. Furthermore, the GRK2 protein level was significantly increased by treatment with ethanol. Chronic treatment with ethanol enhanced the rewarding effects of morphine. On the other hand, this enhancement of the rewarding effects of morphine by ethanol treatment was significantly inhibited by the GRK2 inhibitor β-adrenergic receptor kinase 1 inhibitor. CONCLUSIONS The present study demonstrated that chronic treatment with ethanol enhanced the rewarding effects of morphine by up-regulating functional changes in μ-opioid receptor, mediated by GRK2.
Collapse
|
22
|
Ise Y, Mori T, Katayama S, Nagase H, Suzuki T. Rewarding Effects of Ethanol Combined with Low Doses of Morphine through Dopamine D1 Receptors. J NIPPON MED SCH 2013; 80:34-41. [DOI: 10.1272/jnms.80.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yuya Ise
- Section of Pharmaceutical Services, Nippon Medical School Hospital
- Department of Toxicology, Hoshi University, School of Pharmacy and Pharmaceutical Science
| | - Tomohisa Mori
- Department of Toxicology, Hoshi University, School of Pharmacy and Pharmaceutical Science
| | - Shirou Katayama
- Section of Pharmaceutical Services, Nippon Medical School Hospital
| | - Hiroshi Nagase
- Laboratory of Medical Chemistry, School of Pharmacy, Kitasato University
| | - Tsutomu Suzuki
- Department of Toxicology, Hoshi University, School of Pharmacy and Pharmaceutical Science
| |
Collapse
|
23
|
Anderson RI, Agoglia AE, Morales M, Varlinskaya EI, Spear LP. Stress, κ manipulations, and aversive effects of ethanol in adolescent and adult male rats. Neuroscience 2012; 249:214-22. [PMID: 23276674 DOI: 10.1016/j.neuroscience.2012.12.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/11/2012] [Accepted: 12/18/2012] [Indexed: 12/16/2022]
Abstract
Elevated ethanol use during adolescence, a potentially stressful developmental period, is accompanied by insensitivity to many aversive effects of ethanol relative to adults. Given evidence that supports a role for stress and the kappa opioid receptor (KOR) system in mediating aversive properties of ethanol and other drugs, the present study assessed the role of KOR antagonism by nor-binaltorphimine (nor-BNI) on ethanol-induced conditioned taste aversion (CTA) in stressed (exposed to repeated restraint) and non-stressed male rats (Experiment 1), with half of the rats pretreated with nor-BNI before stressor exposure. In Experiment 2, CTA induced by the kappa agonist U62,066 was also compared in stressed and non-stressed adolescents and adults. A highly palatable solution (chocolate Boost) was used as the conditioned stimulus (CS), thereby avoiding the need for water deprivation to motivate consumption of the CS during conditioning. No effects of stress on ethanol-induced CTA were found, with all doses eliciting aversions in adolescents and adults in both stress conditions. However, among stressed subjects, adults given nor-BNI before the repeated stressor displayed blunted ethanol aversion relative to adults given saline at that time. This effect of nor-BNI was not seen in adolescents, findings that support a differential role for the KOR involvement in ethanol CTA in stressed adolescents and adults. Results from Experiment 2 revealed that all doses of U62,066 elicited aversions in non-stressed animals of both ages that were attenuated in stressed animals, findings that support a modulatory role for stress in aversive effects of KOR activation. Collectively, these results suggest that although KOR sensitivity appears to be reduced in stressed subjects, this receptor system does not appear to contribute to age differences in ethanol-induced CTA under the present test circumstances.
Collapse
Affiliation(s)
- R I Anderson
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | | | | | | | | |
Collapse
|
24
|
Acevedo MB, Nizhnikov ME, Spear NE, Molina JC, Pautassi RM. Ethanol-induced locomotor activity in adolescent rats and the relationship with ethanol-induced conditioned place preference and conditioned taste aversion. Dev Psychobiol 2012; 55:429-42. [PMID: 22592597 DOI: 10.1002/dev.21048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/23/2012] [Indexed: 12/18/2022]
Abstract
Adolescent rats exhibit ethanol-induced locomotor activity (LMA), which is considered an index of ethanol's motivational properties likely to predict ethanol self-administration, but few studies have reported or correlated ethanol-induced LMA with conditioned place preference (CPP) by ethanol at this age. The present study assessed age-related differences in ethanol's motor stimulating effects and analyzed the association between ethanol-induced LMA and conventional measures of ethanol-induced reinforcement. Experiment 1 compared ethanol-induced LMA in adolescent and adult rats. Subsequent experiments analyzed ethanol-induced CPP and conditioned taste aversion (CTA) in adolescent rats evaluated for ethanol-induced LMA. Adolescent rats exhibit a robust LMA after high-dose ethanol. Ethanol-induced LMA was fairly similar across adolescents and adults. As expected, adolescents were sensitive to ethanol's aversive reinforcement, but they also exhibited CPP. These measures of ethanol reinforcement, however, were not related to ethanol-induced LMA. Spontaneous LMA in an open field was, however, negatively associated with ethanol-induced CTA.
Collapse
Affiliation(s)
- María Belén Acevedo
- Instituto de Investigación Médica M. y M. Ferreyra INIMEC-CONICET, Friuli 2434, Córdoba, C.P. 5000, Argentina
| | | | | | | | | |
Collapse
|
25
|
Nizhnikov ME, Pautassi RM, Valinskaya E, Rahmani P, Spear NE. Ontogenetic differences in ethanol's motivational properties during infancy. Alcohol 2012; 46:225-34. [PMID: 22440692 PMCID: PMC3376757 DOI: 10.1016/j.alcohol.2011.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 08/17/2011] [Accepted: 09/07/2011] [Indexed: 01/15/2023]
Abstract
Pairing a conditioned stimulus (CS) with ethanol generally produces aversion for that CS in adult rodents. However, infant rats (PD1-PD3) exposed to ethanol demonstrate appetitive reinforcement to ethanol (Nizhnikov, Varlinskaya, Petrov, & Spear, 2006; Petrov, Varlinskaya, & Spear, 2003). This sensitivity to the appetitive properties of ethanol during infancy may be transient, as during the second postnatal week rat pups tend to exhibit conditioned aversions to flavors paired with ethanol. The present study examined changes in the motivation properties of ethanol through ontogeny and the neurobiology underlying these changes. Rat pups were exposed to a taste conditioning procedure on PD4 or PD12. Rat pups were intraorally infused with 2.5% of their body weight of saccharin solution (0.1%) and immediately after injected intraperitoneolly (i.p.) with one of six doses of ethanol (0.0-2.0 g/kg). A day later pups were given saccharine infusions and percent body weight gain was used as an index of ethanol's reinforcing effects. PD4 pups expressed appetitive reinforcement to ethanol, as indicated by greater saccharin intake, as compared to control counterparts and to the older PD12 pups. Subsequent experiments revealed that PD4 pups were less sensitive to the aversive properties of the drug than PD12 pups. The older pups found high doses of ethanol aversive while PD4 rat pups did not condition aversions to this dose of ethanol after a single trial. A similar pattern of results was observed between the low doses of ethanol and the highest doses of a kappa opioid agonist. The PD12 animals did not condition to the kappa opioid agonist, while the younger rats expressed an appetitive response. These results illustrate an ontogenetic change in the motivational properties of ethanol, with sensitivity to its appetitive properties declining and responsiveness to the aversive properties increasing with age during early infancy.
Collapse
Affiliation(s)
- Michael Eduard Nizhnikov
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Ricardo Marcos Pautassi
- Instituto de Investigaciones Medicas M. y M. Ferreyra (INIMEC-CONICET), Friuli 2434, Cordoba, Cba, 5016, Argentina
| | - Elena Valinskaya
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA
| | | | - Norman E. Spear
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA
| |
Collapse
|
26
|
Nielsen CK, Simms JA, Li R, Mill D, Yi H, Feduccia AA, Santos N, Bartlett SE. δ-opioid receptor function in the dorsal striatum plays a role in high levels of ethanol consumption in rats. J Neurosci 2012; 32:4540-52. [PMID: 22457501 PMCID: PMC6622068 DOI: 10.1523/jneurosci.5345-11.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 11/21/2022] Open
Abstract
Binge-like patterns of excessive drinking during young adulthood increase the propensity for alcohol use disorders (AUDs) later in adult life; however, the mechanisms that drive this are not completely understood. Previous studies showed that the δ-opioid peptide receptor (DOP-R) is dynamically regulated by exposure to ethanol and that the DOP-R plays a role in ethanol-mediated behaviors. The aim of this study was to determine the role of the DOP-R in high ethanol consumption from young adulthood through to late adulthood by measuring DOP-R-mediated [(35)S]GTPγS binding in brain membranes and DOP-R-mediated analgesia using a rat model of high ethanol consumption in Long Evans rats. We show that DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia changes during development, being highest during early adulthood and reduced in late adulthood. Intermittent access to ethanol but not continuous ethanol or water from young adulthood leads to an increase in DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia into late adulthood. Multiple microinfusions of naltrindole into the dorsal striatum or multiple systemic administration of naltrindole reduces ethanol consumption, and following termination of treatment, DOP-R activity in the dorsal striatum is attenuated. These findings suggest that DOP-R activity in the dorsal striatum plays a role in high levels of ethanol consumption and suggest that targeting the DOP-R is an alternative strategy for the treatment of AUDs.
Collapse
Affiliation(s)
- Carsten K. Nielsen
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Jeffrey A. Simms
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Rui Li
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Douglas Mill
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Henry Yi
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Allison A. Feduccia
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Nathan Santos
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
| | - Selena E. Bartlett
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, and
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia
| |
Collapse
|
27
|
Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 2012; 69:857-96. [PMID: 22002579 PMCID: PMC11114766 DOI: 10.1007/s00018-011-0844-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
The dynorphin/κ-opioid receptor system has been implicated in the pathogenesis and pathophysiology of several psychiatric disorders. In the present review, we present evidence indicating a key role for this system in modulating neurotransmission in brain circuits that subserve mood, motivation, and cognitive function. We overview the pharmacology, signaling, post-translational, post-transcriptional, transcriptional, epigenetic and cis regulation of the dynorphin/κ-opioid receptor system, and critically review functional neuroanatomical, neurochemical, and pharmacological evidence, suggesting that alterations in this system may contribute to affective disorders, drug addiction, and schizophrenia. We also overview the dynorphin/κ-opioid receptor system in the genetics of psychiatric disorders and discuss implications of the reviewed material for therapeutics development.
Collapse
Affiliation(s)
- H. A. Tejeda
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201 USA
| | - T. S. Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
| | - R. Henriksson
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Clinical Neuroscience, Karolinska Institutet, CMM, L8:04, 17176 Stockholm, Sweden
| |
Collapse
|
28
|
Kozlov AP, Nizhnikov ME, Varlinskaya EI, Spear NE. The role of social isolation in ethanol effects on the preweanling rat. Behav Brain Res 2012; 227:43-57. [PMID: 22051944 DOI: 10.1016/j.bbr.2011.10.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/19/2011] [Indexed: 01/08/2023]
Abstract
The present experiments investigated the effects of acute ethanol exposure on voluntary intake of 0.1% saccharin or water as well as behavioral and nociceptive reactivity in 12-day-old (P12) rats exposed to differing levels of isolation. The effects of ethanol emerged only during short-term social isolation (STSI) with different patterns observed in males and females and in pups exposed to saccharin or water. The 0.5g/kg ethanol dose selectively increased saccharin intake in females, decreased rearing activity in males and attenuated isolation-induced analgesia (IIA) in all water-exposed pups. Ingestion of saccharin decreased IIA, and the 0.5g/kg ethanol dose further reduced IIA. The 1.0g/kg ethanol dose, administered either intragastrically or intraparentionally, also decreased IIA in P12 females, but not in P9 pups. A significant correlation between voluntary saccharin intake and baseline nociceptive reactivity was revealed in saline injected animals, saccharin intake was inversely correlated with behavioral activation and latency of reaction to noxious heat after 0.5g/kg ethanol in females. The 0.5g/kg ethanol dose did not affect plasma corticosterone (CORT) measured 5h after maternal separation or 20min after ethanol injection. Female pups CORT level was inversely correlated with magnitude of IIA that accompanied the first episode of STSI (pretest isolation) 1.5-2h before CORT measurement. The present findings suggest that the anxiolytic properties of ethanol are responsible for enhancement of saccharin intake during STSI. Furthermore, differential reactivity of P12 males and females to STSI plays an important role in ethanol effects observed at this age.
Collapse
Affiliation(s)
- Andrey P Kozlov
- Center for Development & Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | | | | | | |
Collapse
|
29
|
Wróbel M. Acquisition and expression of ethanol-induced conditioned place preference in mice is inhibited by naloxone. Pharmacol Rep 2011; 63:79-85. [PMID: 21441614 DOI: 10.1016/s1734-1140(11)70401-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 09/15/2010] [Indexed: 10/25/2022]
Abstract
The effects of opioid antagonists on conditioned reward produced by ethanol provide variable and sometimes conflicting results, especially in mice. In the present set of experiments, male C57BL/6 mice received 4 vehicle and 4 ethanol conditionings, and the rewarding effects of ethanol were assessed in an unbiased version of the conditioned place preference (CPP) apparatus and an unbiased stimulus assignment procedure. Intraperitoneal (ip) administration of ethanol (2 g/kg, but not 1 g/kg) resulted in the conditioned reward when conditionings lasted for 6 min but not when conditioning lasted for 20 min. Administration of the non-selective opioid receptor antagonist naloxone (1 and 5 mg/kg) before the conditionings attenuated the acquisition of ethanol-induced place preference. Naloxone (1 mg/kg) also inhibited expression of the CPP response, but it did not alter the preference of vehicle-conditioned mice, suggesting the lack of its own motivational effects in this experimental setting. Taken together, the present results suggest that an unbiased version of ethanol-induced CPP in C57BL/6 mice could be a valid model for the study of the motivational effects of ethanol, confirming and expanding previous findings that have demonstrated inhibitory effects of opioid receptor antagonist on alcohol conditioned reward.
Collapse
Affiliation(s)
- Małgorzata Wróbel
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| |
Collapse
|
30
|
Liu X, Jernigan C. Activation of the opioid μ1, but not δ or κ, receptors is required for nicotine reinforcement in a rat model of drug self-administration. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:146-53. [PMID: 20965223 PMCID: PMC3019243 DOI: 10.1016/j.pnpbp.2010.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/11/2010] [Accepted: 10/11/2010] [Indexed: 12/17/2022]
Abstract
There has long been an interest in examining the involvement of opioid neurotransmission in nicotine rewarding process and addiction to nicotine. Over the past 3 decades, however, clinical effort to test the effectiveness of nonselective opioid antagonists (mainly naloxone and naltrexone) for smoking cessation has yielded equivocal results. In light of the fact that there are three distinctive types of receptors mediating actions of the endogenous opioid peptides, this study, using a rat model of nicotine self-administration, examined involvement of different opioid receptors in the reinforcement of nicotine by selective blockade of the μ1, the δ, and the κ opioid receptors. Male Sprague-Dawley rats were trained in daily 1h sessions to intravenously self-administer nicotine (0.03 mg/kg/infusion) on a fixed-ratio 5 schedule. After establishment of stable nicotine self-administration behavior, the effects of the opioid antagonists were tested. Separate groups of rats were used to test the effects of naloxanazine (selective for μ1 receptors, 0, 5 and 15 mg/kg), naltrindole (selective for δ receptors, 0, 0.5 and 5mg/kg), and 5'-guanidinonaltrindole (GNTI, selective for κ receptors, 0, 0.25 and 1mg/kg). In each individual drug group, the 3 drug doses were tested by using a within-subject and Latin-Square design. The effects of these antagonists on food self-administering behavior were also examined in the same rats in each respective drug group after retrained for food self-administration. Pretreatment with naloxonazine, but not naltrindole or GNTI, significantly reduced responses on the active lever and correspondingly the number of nicotine infusions. None of these antagonists changed lever-pressing behavior for food reinforcement. These results indicate that activation of the opioid μ1, but not the δ or the κ, receptors is required for the reinforcement of nicotine and suggest that opioid neurotransmission via the μ1 receptors would be a promising target for the development of opioid ligands for smoking cessation.
Collapse
Affiliation(s)
- Xiu Liu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | |
Collapse
|
31
|
Rösner S, Hackl-Herrwerth A, Leucht S, Vecchi S, Srisurapanont M, Soyka M. Opioid antagonists for alcohol dependence. Cochrane Database Syst Rev 2010:CD001867. [PMID: 21154349 DOI: 10.1002/14651858.cd001867.pub3] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Alcohol dependence belongs to the globally leading health risk factors. Therapeutic success of psychosocial programs for relapse prevention is moderate and could be increased by an adjuvant treatment with the opioid antagonists naltrexone and nalmefene. OBJECTIVES To determine the effectiveness and tolerability of opioid antagonists in the treatment of alcohol dependence. SEARCH STRATEGY We searched the Cochrane Drugs and Alcohol Group (CDAG) Specialized Register, PubMed, EMBASE and CINAHL in January 2010 and inquired manufacturers and researchers for unpublished trials. SELECTION CRITERIA All double-blind randomised controlled trials (RCTs) which compare the effects of naltrexone or nalmefene with placebo or active control on drinking-related outcomes. DATA COLLECTION AND ANALYSIS Two authors independently extracted outcome data. Trial quality was assessed by one author and cross-checked by a second author. MAIN RESULTS Based on a total of 50 RCTs with 7793 patients, naltrexone reduced the risk of heavy drinking to 83% of the risk in the placebo group RR 0.83 (95% CI 0.76 to 0.90) and decreased drinking days by about 4%, MD -3.89 (95% CI -5.75 to -2.04). Significant effects were also demonstrated for the secondary outcomes of the review including heavy drinking days, MD - 3.25 (95% CI -5.51 to -0.99), consumed amount of alcohol, MD - 10.83 (95% CI -19.69 to -1.97) and gamma-glutamyltransferase, MD - 10.37 (95% CI -18.99 to -1.75), while effects on return to any drinking, RR 0.96 (95 CI 0.92 to 1.00) missed statistical significance. Side effects of naltrexone were mainly gastrointestinal problems (e.g. nausea: RD 0.10; 95% CI 0.07 to 0.13) and sedative effects (e.g. daytime sleepiness: RD 0.09; 95% CI 0.05 to 0.14). Based on a limited study sample, effects of injectable naltrexone and nalmefene missed statistical significance. Effects of industry-sponsored studies, RR 0.90 (95% CI 0.78 to 1.05) did not significantly differ from those of non-profit funded trials, RR 0.84 (95% CI 0.77 to 0.91) and the linear regression test did not indicate publication bias (P = 0.765). AUTHORS' CONCLUSIONS Naltrexone appears to be an effective and safe strategy in alcoholism treatment. Even though the sizes of treatment effects might appear moderate in their magnitudes, these should be valued against the background of the relapsing nature of alcoholism and the limited therapeutic options currently available for its treatment.
Collapse
Affiliation(s)
- Susanne Rösner
- Psychiatric Hospital, University of Munich, Nußbaumstr. 7, Munich, Germany, 80336
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
IMPORTANCE OF THE FIELD Alcoholism is a widespread disorder with substantial mortality and negative treatment outcomes. To date, few medications have been found to reduce relapse rates or drinking in alcohol-dependent patients. AREAS COVERED IN THIS REVIEW This review focuses on drugs that have been clinically tested for the treatment of alcohol dependence in clinical trials, pilot trials or which are considered to have a clinical perspective. For this purpose, a detailed Medline search was conducted on this issue. Although the neurochemical basis of alcoholism and the neuronal circuitry mediating its psychotropic effects have been explored in great detail in recent years, few drugs have emerged for the treatment of alcohol dependence, also because pharmaceutical companies have only a limited interest in this area of research. Acamprosate and the opioid antagonist naltrexone have been found to be effective, although data are mixed. A depot formula of naltrexone and the alternate opioid antagonist nalmefene have been studied in clinical trials and will presumably be introduced in the markets soon. Other emerging drugs are topiramate, novel acetaldehyde dehydrogenase (ALDH) inhibitors, baclofen, a combination therapy of gababentin and flumazenil and drugs targeting the cortitropin-releasing factor/neuropeptide Y mediated stress axis. WHAT THE READER WILL GAIN Insights on the neurochemical basis of alcohol dependence and possible targets of medications. TAKE HOME MESSAGE Acamprosate, naltrexone and the ALDH inhibitor disulfiram are proven medications for the treatment of alcohol dependence with modest efficacy. Novel alternate medications, a depot formulation of the opioid antagonist naltrexone and another oral opioid antagonist, nalmefene, are available now with good evidence for clinical efficacy. Novel ALDH inhibitors, antiepileptic drugs such as topiramate and drugs targeting the stress axis are currently among the most promising emerging drugs.
Collapse
Affiliation(s)
- Michael Soyka
- Psychiatric Hospital, University of Munich, Nussbaumstr. 7 80336 Munich, Germany.
| | | |
Collapse
|
33
|
Chatterjee S, Bartlett SE. Neuronal nicotinic acetylcholine receptors as pharmacotherapeutic targets for the treatment of alcohol use disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2010; 9:60-76. [PMID: 20201817 DOI: 10.2174/187152710790966597] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 12/13/2009] [Indexed: 12/20/2022]
Abstract
Alcohol use disorders (AUDs) are complex, and developing effective treatments will require the combination of novel medications and cognitive behavioral therapy approaches. Epidemiological studies have shown there is a high correlation between alcohol consumption and tobacco use, and the prevalence of smoking in alcoholics is as high as 80% compared to about 30% for the general population. Both preclinical and clinical data provide evidence that nicotine administration increases alcohol intake and non-specific nicotinic receptor antagonists reduce alcohol-mediated behaviors. As nicotine interacts specifically with the neuronal nicotinic acetylcholine receptor (nAChR) system, this suggests that nAChRs play an important role in the behavioral effects of alcohol. In this review, we discuss the importance of nAChRs for the treatment of AUDs and argue that the use of FDA approved nAChR ligands, such as varenicline and mecamylamine, approved as smoking cessation aids may prove to be valuable treatments for AUDs. We also address the importance of combining effective medications with behavioral therapy for the treatment of alcohol dependent individuals.
Collapse
Affiliation(s)
- S Chatterjee
- Ernest Gallo Clinic and Research Center at the University of California San Francisco, 5858 Horton Street, Suite 200 Emeryville, CA 94608, USA
| | | |
Collapse
|
34
|
The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology (Berl) 2010; 210:121-35. [PMID: 20352414 PMCID: PMC2879894 DOI: 10.1007/s00213-010-1825-8] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Initial hypotheses regarding the role of the kappa opioid system in drug addiction suggested that kappa receptor stimulation had anti-addictive effects. However, recent research suggests that kappa receptor antagonists may reverse motivational aspects of dependence. In the present review, we revisit the studies that measured the effects of kappa receptor ligands on the reinforcing and rewarding effects of drugs and postulate underlying neurobiological mechanisms for these effects to elaborate a more complex view of the role of kappa receptor ligands in drug addiction. RESULTS The review of studies indicates that kappa receptor stimulation generally antagonizes the acute reinforcing/rewarding effects of drugs whereas kappa receptor blockade has no consistent effect. However, in a drug dependent-like state, kappa receptor blockade was effective in reducing increased drug intake. In animal models of reinstatement, kappa receptor stimulation can induce reinstatement via a stress-like mechanism. Results in conditioned place preference/aversion and intracranial self-stimulation indicate that kappa receptor agonists produce, respectively, aversive-like and dysphoric-like effects. Additionally, preclinical and postmortem studies show that administration or self-administration of cocaine, ethanol, and heroin activate the kappa opioid system. CONCLUSION kappa receptor agonists antagonize the reinforcing/rewarding effects of drugs possibly through punishing/aversive-like effects and reinstate drug seeking through stress-like effects. Evidence suggests that abused drugs activate the kappa opioid system, which may play a key role in motivational aspects of dependence. Kappa opioid systems may have an important role in driving compulsive drug intake.
Collapse
|
35
|
Endogenous kappa-opioid mediation of stress-induced potentiation of ethanol-conditioned place preference and self-administration. Psychopharmacology (Berl) 2010; 210:199-209. [PMID: 20401606 DOI: 10.1007/s00213-010-1844-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE Exposure to inescapable stressors increases both the rewarding properties and self-administration of cocaine through the signaling of the kappa-opioid receptor (KOR), but the effect of this signaling on other reinforcing agents remains unclear. OBJECTIVE The objective of this study is to test the hypothesis that signaling of the KOR mediates the forced swim stress (FSS)-induced potentiation of ethanol reward and self-administration. METHODS Male C57Bl/6J mice were tested in a biased ethanol-conditioned place preference (CPP) procedure, and both C57Bl/6J and prodynorphin gene-disrupted (Dyn -/-) mice were used in two-bottle free choice (TBC) assays, with or without exposure to FSS. To determine the role of the KOR in the resulting behaviors, the KOR agonist U50,488 (10 mg/kg) and antagonist nor-binaltorphimine (nor-BNI, 10 mg/kg) were administered prior to parallel testing. RESULTS C57Bl/6J mice exposed to repeated FSS 5 min prior to daily place conditioning with ethanol (0.8 g/kg) demonstrated a 4.4-fold potentiation of ethanol-CPP compared to unstressed mice that was prevented by nor-BNI pretreatment. Likewise, pretreatment with U50,488 90 min prior to daily ethanol place conditioning resulted in a 2.8-fold potentiation of ethanol-CPP. In the TBC assay, exposure to FSS significantly increased the consumption of 10% (v/v) ethanol by 19.3% in a nor-BNI-sensitive manner. Notably, Dyn -/- mice consumed a similar volume of ethanol as wild-type littermates and C57Bl/6J mice, but did not demonstrate significant stress-induced increases in consumption. CONCLUSIONS These data demonstrated a stress-induced potentiation of the rewarding effects and self-administration of ethanol mediated by KOR signaling.
Collapse
|
36
|
Nizhnikov ME, Pautassi RM, Truxell E, Spear NE. Opioid antagonists block the acquisition of ethanol-mediated conditioned tactile preference in infant rats. Alcohol 2009; 43:347-58. [PMID: 19671461 DOI: 10.1016/j.alcohol.2009.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 06/11/2009] [Accepted: 06/20/2009] [Indexed: 11/24/2022]
Abstract
It has been difficult to find conditioned preference for tactile cues paired with ethanol intoxication in rats. Toward understanding the ontogeny of ethanol reinforcement, we aimed at establishing a simple and reliable procedure for (1) assessing primary appetitive conditioning to ethanol in infant rats and (2) discerning the role the opioid system plays in ethanol-mediated conditioning at this age. Experiment 1 determined the parameters (i.e., dose, interval of conditioning) for assessing ethanol-mediated conditioning. Pups were then trained with differential Pavlovian conditioning (Experiments 2 and 3) in which ethanol intoxication (1.0-2.0 g/kg, intragastrically or intraperitoneally delivered) was paired with a tactile stimulus (sandpaper) while an alternative texture signaled the absence of ethanol's effects. Unpaired control conditions were also used. Tactile preferences were assessed after two conditioning sessions. Paired rats spent significantly more time on sandpaper than unpaired controls, an effect that was greater after intragastric administration of 1.0 than 2.0 g/kg ethanol. This effect was replicated in Experiments 4a and 4c and found to be inhibited by pretreatment with general (naloxone [NAL]) or specific (d-Pen-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH2 [CTOP] and naltrindole) opioid antagonists. Blood ethanol levels at conditioning were not altered by NAL (Experiment 4b). The study outlines a procedure that reveals appetitive conditioning to ethanol by infant rats. The results are discussed in terms of a potential ethanol-induced activation of the endogenous opioid system during the onset of the intoxication process.
Collapse
|
37
|
Logrip ML, Janak PH, Ron D. Blockade of ethanol reward by the kappa opioid receptor agonist U50,488H. Alcohol 2009; 43:359-65. [PMID: 19671462 DOI: 10.1016/j.alcohol.2009.05.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 05/11/2009] [Accepted: 05/15/2009] [Indexed: 11/17/2022]
Abstract
Alcoholism is a pervasive social problem, and thus understanding factors that regulate alcohol (ethanol) reward is important for designing effective therapies. One putative regulatory system includes the kappa opioid receptor (KOR) and its endogenous ligand, dynorphin. Previously, we demonstrated that acute ethanol increased preprodynorphin expression via brain-derived neurotrophic factor (BDNF) in striatal neurons, and that blockade of the KOR attenuated decreases in ethanol intake observed following increased expression of BDNF. As high doses of KOR agonists can generate an aversive state, we hypothesized that endogenous dynorphin may regulate ethanol intake by interfering with the rewarding properties of ethanol. We found that low, nonaversive doses of the KOR agonist U50,488H blocked the rewarding properties of ethanol during conditioning, thus impairing the acquisition of conditioned place preference. Importantly, we demonstrate that U50,488H also inhibited the conditioned increase in locomotor activation normally observed in the ethanol-paired chamber on test day. Taken together, these data indicate that the KOR/dynorphin system may acutely regulate ethanol intake via inhibition of the rewarding properties of ethanol.
Collapse
Affiliation(s)
- Marian L Logrip
- The Ernest Gallo Research Center, Suite 200, Emeryville, CA 94608, USA
| | | | | |
Collapse
|
38
|
Bie B, Zhu W, Pan ZZ. Ethanol-induced delta-opioid receptor modulation of glutamate synaptic transmission and conditioned place preference in central amygdala. Neuroscience 2009; 160:348-58. [PMID: 19258026 PMCID: PMC2669697 DOI: 10.1016/j.neuroscience.2009.02.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/18/2009] [Accepted: 02/22/2009] [Indexed: 12/15/2022]
Abstract
Alcoholism involves compulsive behaviors of alcohol drinking, which is thought to be related at least initially to the rewarding effect of alcohol. It has been shown that mu-opioid receptors play an essential role in drug reward and dependence for many drugs of abuse including alcohol, but the function of delta-opioid receptors (DOR) in drug reward remains largely unknown at present. Previous animal studies using systemic approaches with DOR antagonists or DOR knockout animals have yielded inconsistent results, showing a decrease, an increase or no change in alcohol consumption and behaviors of alcohol reward after DOR inhibition or deletion. In the present study, we used ethanol-conditioned rats to investigate adaptive DOR function in neurons of the central nucleus of the amygdala (CeA), a key brain site for alcohol reward and addiction. We found that functional DOR was absent in glutamate synapses of CeA neurons from control rats, but it emerged and inhibited glutamate synaptic currents in CeA neurons from rats displaying ethanol-induced behavior of conditioned place preference (CPP). Analysis of paired-pulse ratios and miniature glutamate synaptic currents revealed that the recruited DOR was present on glutamatergic presynaptic terminals. Similar induction of functional DOR was also found on GABA synapses. Furthermore, microinjection of a DOR antagonist into the CeA reversed ethanol-induced CPP behavior in rats in vivo. These results suggest that repeated alcohol exposure recruits new functional DOR on CeA glutamate and GABA synapses, which may be involved in the expression or maintenance of ethanol-induced CPP behavior.
Collapse
Affiliation(s)
- Bihua Bie
- Department of Anesthesiology and Pain Medicine, The University of Texas-MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Wei Zhu
- Department of Anesthesiology and Pain Medicine, The University of Texas-MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Zhizhong Z. Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas-MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| |
Collapse
|
39
|
Cecchi M, Capriles N, Watson SJ, Akil H. Differential responses to morphine-induced analgesia in the tail-flick test. Behav Brain Res 2008; 194:146-51. [PMID: 18656501 DOI: 10.1016/j.bbr.2008.06.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 06/20/2008] [Accepted: 06/29/2008] [Indexed: 11/25/2022]
Abstract
We compared acute and chronic antinociceptive effects of morphine in animals with high reactivity (HR) vs. low reactivity (LR) to novelty. Antinociception was assessed by tail-flick test. Rats were i.p. injected with either saline or morphine (1.5 or 3mg/kg) every 12h for 7 days according to the treatment group. On day 1 of the experiment, LR animals in the 1.5mg/kg morphine group showed significantly higher tail-flick latency than HR. Moreover, significant tolerance to the antinociceptive effects of morphine at the used doses was observed in LR but not HR animals. However, effects of chronic morphine treatment on tail-flick latency in rat groups with similar morphine-induced acute antinociception were undistinguishable. The difference in tail-flick latency between HR and LR rats observed after acute 1.5mg/kg morphine injection was eliminated if beta-funaltrexamine (3mg/kg, i.p.) was administered 24h before the test, an indication that mu opioid receptors are responsible for the difference observed. Studies to anatomically characterize the difference in the acute analgesic effect of morphine in HR vs. LR animals did not however yield any significant difference in mu opioid receptor mRNA levels in locus coeruleus (LC), ventral periaqueductal gray (vPAG), nucleus raphe magnus (NRM) and nucleus reticularis paragigantocellularis (NRPG) between these two groups of animals. In conclusion, our results show that differences in novelty-seeking behavior can predict inter-individual variability in morphine-induced antinociception in rats. Such variability is dependent upon activation of mu opioid receptors, but does not correlate with mu opioid receptor expression in LC, vPAG or ventral medulla.
Collapse
Affiliation(s)
- M Cecchi
- Molecular and Behavioral Neuroscience Institute, The University of Michigan School of Medicine, Ann Arbor, MI 48109-0720, USA.
| | | | | | | |
Collapse
|
40
|
Zhang XJ, Li Z, Leung WM, Liu L, Xu HX, Bian ZX. The analgesic effect of paeoniflorin on neonatal maternal separation-induced visceral hyperalgesia in rats. THE JOURNAL OF PAIN 2008; 9:497-505. [PMID: 18387856 DOI: 10.1016/j.jpain.2007.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 12/06/2007] [Accepted: 12/06/2007] [Indexed: 02/07/2023]
Abstract
UNLABELLED Paeoniflorin (PF) is one of the principle active ingredients of the root of Paeonia lactiflora Pall (family Ranunculaceae), a Chinese herb traditionally used to relieve pain, especially visceral pain. The present study aimed to investigate both the effect of PF on neonatal maternal separation-induced visceral hyperalgesia in rats and the mechanism by which such effect is exerted. A dose-dependent analgesic effect was produced by PF (45, 90, 180, and 360 mg/kg i.p.). Centrally administered PF (4.5 mg/kg i.c.v) also produced a significant analgesic effect. The analgesic effect of PF (45 mg/kg i.p.) was maximal at 30 minutes after administration. Furthermore, it was found that nor-binaltorphimine (nor-BNI, 3 mg/kg i.p.), dl-alpha-methyltyrosine (alpha-AMPT, 250 mg/kg i.p.), and yohimbine (3 mg/kg i.p.) could block the analgesic effect of PF (45 mg/kg i.p.). Time course determination of PF in brain nuclei showed that the maximal concentration of PF was 30 minutes after intraperitoneal administration of PF (180 mg/kg) in cerebral nuclei, involving the amygdala, hypothalamus, thalamus, and cortex. These data indicate that PF has an analgesic effect on visceral pain in rats with neonatal maternal separation and that this effect may be mediated by kappa-opioid receptors and alpha(2)-adrenoceptors in the central nervous system. PERSPECTIVE This study demonstrates that PF has an analgesic effect on pain in visceral hyperalgesic rats. These results suggest that PF might be potentially useful in clinical therapy for irritable bowel syndrome as a pharmacological agent in alleviating visceral pain.
Collapse
Affiliation(s)
- Xiao-Jun Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
41
|
Shippenberg TS, Zapata A, Chefer VI. Dynorphin and the pathophysiology of drug addiction. Pharmacol Ther 2007; 116:306-21. [PMID: 17868902 PMCID: PMC2939016 DOI: 10.1016/j.pharmthera.2007.06.011] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 06/27/2007] [Indexed: 12/30/2022]
Abstract
Drug addiction is a chronic relapsing disease in which drug administration becomes the primary stimulus that drives behavior regardless of the adverse consequence that may ensue. As drug use becomes more compulsive, motivation for natural rewards that normally drive behavior decreases. The discontinuation of drug use is associated with somatic signs of withdrawal, dysphoria, anxiety, and anhedonia. These consequences of drug use are thought to contribute to the maintenance of drug use and to the reinstatement of compulsive drug use that occurs during the early phase of abstinence. Even, however, after prolonged periods of abstinence, 80-90% of human addicts relapse to addiction, suggesting that repeated drug use produces enduring changes in brain circuits that subserve incentive motivation and stimulus-response (habit) learning. A major goal of addiction research is the identification of the neural mechanisms by which drugs of abuse produce these effects. This article will review data showing that the dynorphin/kappa-opioid receptor (KOPr) system serves an essential function in opposing alterations in behavior and brain neurochemistry that occur as a consequence of repeated drug use and that aberrant activity of this system may not only contribute to the dysregulation of behavior that characterizes addiction but to individual differences in vulnerability to the pharmacological actions of cocaine and alcohol. We will provide evidence that the repeated administration of cocaine and alcohol up-regulates the dynorphin/KOPr system and that pharmacological treatments that target this system may prove effective in the treatment of drug addiction.
Collapse
Affiliation(s)
- T S Shippenberg
- Integrative Neuroscience Section, NIH/NIDA Intramural Research Program, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
42
|
Nizhnikov ME, Molina JC, Spear NE. Central reinforcing effects of ethanol are blocked by catalase inhibition. Alcohol 2007; 41:525-34. [PMID: 17980789 DOI: 10.1016/j.alcohol.2007.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/13/2007] [Accepted: 08/24/2007] [Indexed: 10/22/2022]
Abstract
Recent studies have systematically indicated that newborn rats are highly sensitive to ethanol's positive reinforcing effects. Central administrations of ethanol (25-200mg %) associated with an olfactory conditioned stimulus (CS) promote subsequent conditioned approach to the CS as evaluated through the newborn's response to a surrogate nipple scented with the CS. It has been shown that ethanol's first metabolite, acetaldehyde, exerts significant reinforcing effects in the central nervous system. A significant amount of acetaldehyde is derived from ethanol metabolism via the catalase system. In newborn rats, catalase levels are particularly high in several brain structures. The present study tested the effect of catalase inhibition on central ethanol reinforcement. In the first experiment, pups experienced lemon odor either paired or unpaired with intracisternal (IC) administrations of 100mg% ethanol. Half of the animals corresponding to each learning condition were pretreated with IC administrations of either physiological saline or a catalase inhibitor (sodium-azide). Catalase inhibition completely suppressed ethanol reinforcement in paired groups without affecting responsiveness to the CS during conditioning or responding by unpaired control groups. A second experiment tested whether these effects were specific to ethanol reinforcement or due instead to general impairment in learning and expression capabilities. Central administration of an endogenous kappa opioid receptor agonist (dynorphin A-13) was used as an alternative source of reinforcement. Inhibition of the catalase system had no effect on the reinforcing properties of dynorphin. The present results support the hypothesis that ethanol metabolism regulated by the catalase system plays a critical role in determination of ethanol reinforcement in newborn rats.
Collapse
|
43
|
Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 2007; 12:227-462. [PMID: 17678505 DOI: 10.1111/j.1369-1600.2007.00070.x] [Citation(s) in RCA: 1015] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conditioned place preference (CPP) continues to be one of the most popular models to study the motivational effects of drugs and non-drug treatments in experimental animals. This is obvious from a steady year-to-year increase in the number of publications reporting the use this model. Since the compilation of the preceding review in 1998, more than 1000 new studies using place conditioning have been published, and the aim of the present review is to provide an overview of these recent publications. There are a number of trends and developments that are obvious in the literature of the last decade. First, as more and more knockout and transgenic animals become available, place conditioning is increasingly used to assess the motivational effects of drugs or non-drug rewards in genetically modified animals. Second, there is a still small but growing literature on the use of place conditioning to study the motivational aspects of pain, a field of pre-clinical research that has so far received little attention, because of the lack of appropriate animal models. Third, place conditioning continues to be widely used to study tolerance and sensitization to the rewarding effects of drugs induced by pre-treatment regimens. Fourth, extinction/reinstatement procedures in place conditioning are becoming increasingly popular. This interesting approach is thought to model certain aspects of relapse to addictive behavior and has previously almost exclusively been studied in drug self-administration paradigms. It has now also become established in the place conditioning literature and provides an additional and technically easy approach to this important phenomenon. The enormous number of studies to be covered in this review prevented in-depth discussion of many methodological, pharmacological or neurobiological aspects; to a large extent, the presentation of data had to be limited to a short and condensed summary of the most relevant findings.
Collapse
Affiliation(s)
- Thomas M Tzschentke
- Grünenthal GmbH, Preclinical Research and Development, Department of Pharmacology, Aachen, Germany.
| |
Collapse
|
44
|
Zhu W, Bie B, Pan ZZ. Involvement of non-NMDA glutamate receptors in central amygdala in synaptic actions of ethanol and ethanol-induced reward behavior. J Neurosci 2007; 27:289-98. [PMID: 17215388 PMCID: PMC6672066 DOI: 10.1523/jneurosci.3912-06.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 12/05/2006] [Accepted: 12/05/2006] [Indexed: 11/21/2022] Open
Abstract
The central nucleus of the amygdala (CeA) plays a critical role in positive emotional responses that involve stimulus-reward learning and are induced by the reinforcing effects of many drugs of abuse, including alcohol. Behavioral studies have implicated CeA as a key brain structure in alcohol reward, but the underlying mechanisms are still poorly understood. Recent studies have demonstrated that both NMDA and non-NMDA receptors in CeA neurons are targets of acute and chronic alcohol in naive and alcohol-dependent animals. However, little is known about the role of CeA non-NMDA receptors in synaptic actions of alcohol and, particularly, in the behavior of alcohol reward. In the present study with both whole-cell voltage-clamp recordings in CeA slices in vitro and analysis of an animal model of conditioned place preference (CPP) in vivo, we investigated the synaptic mechanisms for actions of acute and chronic ethanol on CeA non-NMDA receptor functions and their contribution to ethanol-induced reward behavior. Acute ethanol significantly inhibited evoked and miniature synaptic currents mediated by non-NMDA receptors through inhibitions of both postsynaptic non-NMDA receptors and presynaptic glutamate release involving N-type Ca2+ channels. CeA neurons from rats exhibiting the ethanol-induced CPP behavior showed a significant increase in non-NMDA synaptic transmission. Blockade of this increased synaptic transmission through CeA microinjection abolished the CPP behavior. These results suggest that acute alcohol inhibits CeA non-NMDA synaptic transmission through both presynaptic and postsynaptic mechanisms, and chronic alcohol upregulates this synaptic activity, which is required for the alcohol-induced reward behavior.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Anesthesiology and Pain Medicine, The University of Texas–MD Anderson Cancer Center, Houston, Texas 77030
| | - Bihua Bie
- Department of Anesthesiology and Pain Medicine, The University of Texas–MD Anderson Cancer Center, Houston, Texas 77030
| | - Zhizhong Z. Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas–MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
45
|
Kang-Park MH, Kieffer BL, Roberts AJ, Siggins GR, Moore SD. Presynaptic delta opioid receptors regulate ethanol actions in central amygdala. J Pharmacol Exp Ther 2006; 320:917-25. [PMID: 17114568 DOI: 10.1124/jpet.106.112722] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endogenous opioid systems are implicated in the reinforcing effects of ethanol consumption. For example, delta opioid receptor (DOR) knockout (KO) mice show greater ethanol consumption than wild-type (WT) mice (Roberts et al., 2001). To explore the neurobiological correlates underlying these behaviors, we examined effects of acute ethanol application in brain slices from DOR KO mice using whole-cell patch recording techniques. We examined the central nucleus of amygdala (CeA) because the CeA is implicated in alcohol reinforcement (Koob et al., 1998). We found that the acute ethanol effects on GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) were greater in DOR KO mice than in WT mice. Ethanol increased the frequency of miniature IPSCs (mIPSCs) significantly more in DOR KO mice than in WT mice. In CeA of WT mice, application of ICI 174864 [[allyl]2-Tyr-alpha-amino-isobutyric acid (Aib)-Aib-Phe-Leu-OH], a DOR inverse agonist, augmented ethanol actions on mIPSC frequency comparable with ethanol effects seen in DOR KO mice. Superfusion of the selective DOR agonist D-Pen(2),D-Pen(5)-enkephalin decreased the mean frequency of mIPSCs; this effect was reversed by the DOR antagonist naltrindole. These findings suggest that endogenous opioids may reduce ethanol actions on IPSCs of CeA neurons in WT mice through DOR-mediated inhibition of GABA release and that the increased ethanol effect on IPSCs in CeA of DOR KO mice could be, at least in part, due to absence of DOR-mediated inhibition of GABA release. This result supports the hypothesis that endogenous opioid peptides modulate the ethanol-induced augmentation of GABA(A) receptor-dependent circuitry in CeA (Roberto et al., 2003).
Collapse
|
46
|
Kudryavtseva N, Gerrits MAFM, Avgustinovich DF, Tenditnik MV, Van Ree JM. Anxiety and ethanol consumption in victorious and defeated mice; effect of kappa-opioid receptor activation. Eur Neuropsychopharmacol 2006; 16:504-11. [PMID: 16524701 DOI: 10.1016/j.euroneuro.2006.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 12/15/2005] [Accepted: 01/10/2006] [Indexed: 11/19/2022]
Abstract
Alcohol consumption and addiction have been related to anxiety and the anxiolytic effect of ethanol. It has been shown in mice that losers with repeated experience of social defeats are more anxious than winners with repeated experience of victories. Mice with a different social status were tested for their oral ethanol consumption using a free two bottle choice paradigm and for their social approach behaviour after ethanol consumption using the partition test, in which anxiety is an important component. In addition, the sensitivity of the animals for the kappa-opioid receptor agonist U-50,488H (2.5 mg/kg, s.c.) was assessed using the partition test, in which this drug has been shown to induce anxiolytic-like effects. Further, the effect of daily treatment with U-50,488H for 8 days on ethanol consumption was tested in animals that had consumed ethanol and were subjected during these 8 days to a period of 5 days of interruption of ethanol supply and subsequently to a period of 3 days of renewed access to ethanol. Losers consumed more ethanol than winners. Consumption of ethanol was accompanied by a decrease of anxiety level, as evidenced by an increased approach behaviour in the partition test. U-50,488H stimulated ethanol consumption after a period of 5 days of interruption of ethanol supply and drug treatment in the losers, but not in the winners. U-50,488H increased approach behaviour in the losers not consuming ethanol and decreased this behaviour in the winners, especially in those that had consumed ethanol. It is postulated that U-50,488H acts as a partial agonist in this respect. The increased anxiety may be related to the enhanced ethanol consumption in the losers, which may be of relevance for the etiology of alcohol addiction.
Collapse
Affiliation(s)
- Natalia Kudryavtseva
- Institute of Cytology and Genetics, Siberian Branch of Russia, Academy of Sciences, Novosibirsk, Russian
| | | | | | | | | |
Collapse
|
47
|
Nizhnikov ME, Varlinskaya EI, Petrov ES, Spear NE. Reinforcing properties of ethanol in neonatal rats: involvement of the opioid system. Behav Neurosci 2006; 120:267-80. [PMID: 16719691 DOI: 10.1037/0735-7044.120.2.267] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Toward understanding why infant rats ingest high levels of ethanol without initiation procedures, the authors tested effects of mu and kappa receptor antagonists on ethanol reinforcement in neonatal rats. After an intracisternal injection of CTOP (micro antagonist), nor-Binaltorphimine (kappa antagonist), or saline, newborn (3-hr-old) rats were given conditioning pairings of an odor with intraorally infused ethanol or a surrogate nipple with ethanol administered intraperitoneally (to minimize ethanol's gustatory attributes). In each case, these opioid antagonists reduced or eliminated ethanol's reinforcement effect. The same effects occurred with saccharin as the reinforcer in olfactory conditioning. The results imply that activation of mu and kappa receptors, apparently acting jointly, is necessary for reinforcement or that antagonists of this activity impair basic conditioning.
Collapse
Affiliation(s)
- Michael E Nizhnikov
- Center for Developmental Psychobiology, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY 139002-6000, USA.
| | | | | | | |
Collapse
|
48
|
Mitchell JM, Liang MT, Fields HL. A single injection of the kappa opioid antagonist norbinaltorphimine increases ethanol consumption in rats. Psychopharmacology (Berl) 2005; 182:384-92. [PMID: 16001119 DOI: 10.1007/s00213-005-0067-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Kappa opioid receptor (KOR) agonists interfere with the reinforcing effects of drugs of abuse. KOR agonists decrease heroin, cocaine, and ethanol self-administration, and block heroin and cocaine conditioned place preference (CPP) in rats. However, KOR agonists also produce emesis and dysphoria, making it difficult to determine if their effects on self-administration are due to an action on reward mechanisms or are secondary to the drug's direct aversive effects. Assuming that endogenous KOR ligands modulate circuits involved in drug and alcohol reward, selective KOR antagonists can be used to clarify these issues. If KOR antagonists increase drug self-administration then it is likely that endogenous KOR agonists directly modulate drug intake. OBJECTIVES To determine the effects of nor-BNI, the highly selective KOR antagonist, on ethanol consumption and CPP. METHODS Thirty-eight male Lewis rats were given free access to ethanol until stable self-administration was achieved. Animals were then administered a single injection of nor-BNI (10 mg kg(-1)) while ethanol intake was monitored. RESULTS A single injection of nor-BNI induces a long-lasting increase in ethanol consumption, but does not induce a CPP. A high/low split revealed that this effect was primarily due to an increase in drinking in nor-BNI-treated high drinkers, which drank significantly more than saline-treated high drinkers and also drank significantly more when compared to their own pretreatment baseline. CONCLUSIONS Blocking the KOR system increases ethanol self-administration, suggesting that the decrease in self-administration seen with KOR agonists is due to a direct modulation of reward circuitry.
Collapse
Affiliation(s)
- Jennifer M Mitchell
- Department of Neurology, University of California at San Francisco, P. O. Box 0114, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
49
|
Hasebe K, Kawai K, Suzuki T, Kawamura K, Tanaka T, Narita M, Nagase H, Suzuki T. Possible pharmacotherapy of the opioid kappa receptor agonist for drug dependence. Ann N Y Acad Sci 2005; 1025:404-13. [PMID: 15542743 DOI: 10.1196/annals.1316.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Because there are few efficacious medications for drug dependence, many clinical trials are being conducted in earnest to find such medications. Considerable evidence has shown that opioid kappa receptor agonists attenuate several behavioral responses induced by drugs of abuse. Although this raises the possibility that opioid kappa receptor agonists may be useful for the treatment of drug dependence on drugs of abuse, it has been previously reported that treatment with selective opioid kappa receptor agonists causes a psychotomimetic effect and dysphoria both in clinical studies and experimental animal models. As a result, we found the novel opioid kappa receptor agonist TRK-820, another chemical class of opioid kappa receptor agonist that has a morphinan scaffold unlike prototypical opioid kappa receptor agonists, by application of a modified message-address concept. TRK-820 showed high selectivity for an opioid kappa receptor, and strong agonistic activity in both in vitro and in vivo experiments. Like other opioid kappa receptor agonists, TRK-820 could markedly suppress the rewarding effects induced by morphine and cocaine and the discriminative stimulus effect of cocaine. Furthermore, TRK-820 attenuated the mecamylamine-precipitated nicotine-withdrawal aversion in a conditioned place preference paradigm. It is worthwhile to note that unlike prototypical opioid kappa receptor agonists, TRK-820 failed to produce a significant place aversion in rodents at doses that were sufficient to produce significant antinociception. Taken together, these findings indicate that TRK-820 may be useful for the treatment of drug dependence without any aversive effects.
Collapse
Affiliation(s)
- Ko Hasebe
- Pharmaceutical Research Laboratories, Toray Industries Inc., Kanagawa 248-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Endogenous opioids, stress, and psychopathology. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|