1
|
Reguera-Gomez M, Munzen ME, Hamed MF, Charles-Niño CL, Martinez LR. IL-6 deficiency accelerates cerebral cryptococcosis and alters glial cell responses. J Neuroinflammation 2024; 21:242. [PMID: 39334365 PMCID: PMC11437997 DOI: 10.1186/s12974-024-03237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Cryptococcus neoformans (Cn) is an opportunistic encapsulated fungal pathogen that causes life-threatening meningoencephalitis in immunosuppressed individuals. Since IL-6 is important for blood-brain barrier support and its deficiency has been shown to facilitate Cn brain invasion, we investigated the impact of IL-6 on systemic Cn infection in vivo, focusing on central nervous system (CNS) colonization and glial responses, specifically microglia and astrocytes. IL-6 knock-out (IL-6-/-) mice showed faster mortality than C57BL/6 (Wild-type) and IL-6-/- supplemented with recombinant IL-6 (rIL-6; 40 pg/g/day) mice. Despite showing early lung inflammation but no major histological differences in pulmonary cryptococcosis progression among the experimental groups, IL-6-/- mice had significantly higher blood and brain tissue fungal burden at 7-days post infection. Exposure of cryptococci to rIL-6 in vitro increased capsule growth. In addition, IL-6-/- brains were characterized by an increased dystrophic microglia number during Cn infection, which are associated with neurodegeneration and senescence. In contrast, the brains of IL-6-producing or -supplemented mice displayed high numbers of activated and phagocytic microglia, which are related to a stronger anti-cryptococcal response or tissue repair. Likewise, culture of rIL-6 with microglia-like cells promoted high fungal phagocytosis and killing, whereas IL-6 silencing in microglia decreased fungal phagocytosis. Lastly, astrogliosis was high and moderate in infected brains removed from Wild-type and IL-6-/- supplemented with rIL-6 animals, respectively, while minimal astrogliosis was observed in IL-6-/- tissue, highlighting the potential of astrocytes in containing and combating cryptococcal infection. Our findings suggest a critical role for IL-6 in Cn CNS dissemination, neurocryptococcosis development, and host defense.
Collapse
Affiliation(s)
- Marta Reguera-Gomez
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA
| | - Melissa E Munzen
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA
| | - Mohamed F Hamed
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Claudia L Charles-Niño
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA
| | - Luis R Martinez
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA.
- Emerging Pathogens Institute, Gainesville, FL, USA.
- Center for Immunology and Transplantation, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Amlerova Z, Chmelova M, Anderova M, Vargova L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024; 18:1335849. [PMID: 38481632 PMCID: PMC10933082 DOI: 10.3389/fncel.2024.1335849] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
Collapse
Affiliation(s)
- Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
He Z, Chen Q, Wang K, Lin J, Peng Y, Zhang J, Yan X, Jie Y. Single-cell transcriptomics analysis of cellular heterogeneity and immune mechanisms in neurodegenerative diseases. Eur J Neurosci 2024; 59:333-357. [PMID: 38221677 DOI: 10.1111/ejn.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
Single-cell transcriptomics analysis is an advanced technology that can describe the intracellular transcriptome in complex tissues. It profiles and analyses datasets by single-cell RNA sequencing. Neurodegenerative diseases are identified by the abnormal apoptosis of neurons in the brain with few or no effective therapy strategies at present, which has been a growing healthcare concern and brought a great burden to society. The transcriptome of individual cells provides deep insights into previously unforeseen cellular heterogeneity and gene expression differences in neurodegenerative disorders. It detects multiple cell subsets and functional changes during pathological progression, which deepens the understanding of the molecular underpinnings and cellular basis of neurodegenerative diseases. Furthermore, the transcriptome analysis of immune cells shows the regulation of immune response. Different subtypes of immune cells and their interaction are found to contribute to disease progression. This finding enables the discovery of novel targets and biomarkers for early diagnosis. In this review, we emphasize the principles of the technology, and its recent progress in the study of cellular heterogeneity and immune mechanisms in neurodegenerative diseases. The application of single-cell transcriptomics analysis in neurodegenerative disorders would help explore the pathogenesis of these diseases and develop novel therapeutic methods.
Collapse
Affiliation(s)
- Ziping He
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Kaiyue Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, China
| | - Yan Jie
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
4
|
Shim S, Ha S, Choi J, Kwon HK, Cheon KA. Alterations in Plasma Cytokine Levels in Korean Children with Autism Spectrum Disorder. Yonsei Med J 2024; 65:70-77. [PMID: 38288647 PMCID: PMC10827638 DOI: 10.3349/ymj.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 02/01/2024] Open
Abstract
PURPOSE Numerous studies have supported the role of the immune dysfunction in the pathogenesis of autism spectrum disorder (ASD); however, to our knowledge, no study has been conducted on plasma cytokine levels in children with ASD in South Korea. In this study, we aimed to analyze the immunological characteristics of Korean children with ASD through plasma cytokine analysis. MATERIALS AND METHODS Blood samples were collected from 94 ASD children (mean age 7.1; 81 males and 13 females) and 48 typically developing children (TDC) (mean age 7.3; 30 males and 18 females). Plasma was isolated from 1 mL of blood by clarifying with centrifugation at 8000 rpm at 4℃ for 10 min. Cytokines in plasma were measured with LEGENDplex HU Th cytokine panel (BioLegend, 741028) and LEGENDplex HU cytokine panel 2 (BioLegend, 740102). RESULTS Among 25 cytokines, innate immune cytokine [interleukin (IL)-33] was significantly decreased in ASD children compared with TDC. In acute phase proteins, tumor necrosis factor α (TNF-α) was significantly increased, while IL-6, another inflammation marker, was decreased in ASD children compared with TDC. The cytokines from T cell subsets, including interferon (IFN)-γ, IL-5, IL-13, and IL-17f, were significantly decreased in ASD children compared to TDC. IL-10, a major anti-inflammatory cytokine, and IL-9, which modulates immune cell growth and proliferation, were also significantly decreased in ASD children compared to TDC. CONCLUSION We confirmed that Korean children with ASD showed altered immune function and unique cytokine expression patterns distinct from TDC.
Collapse
Affiliation(s)
- Songjoo Shim
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sungji Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Juli Choi
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Keun-Ah Cheon
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Child and Adolescent Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Hamel R, Peruzzotti-Jametti L, Ridley K, Testa V, Yu B, Rowitch D, Marioni JC, Pluchino S. Time-resolved single-cell RNAseq profiling identifies a novel Fabp5+ subpopulation of inflammatory myeloid cells with delayed cytotoxic profile in chronic spinal cord injury. Heliyon 2023; 9:e18339. [PMID: 37636454 PMCID: PMC10450865 DOI: 10.1016/j.heliyon.2023.e18339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023] Open
Abstract
Traumatic spinal cord injuries (SCI) are a group of highly debilitating pathologies affecting thousands annually, and adversely affecting quality of life. Currently, no fully restorative therapies exist, and SCI still results in significant personal, societal and financial burdens. Inflammation plays a major role in the evolution of SCI, with myeloid cells, including bone marrow derived macrophages (BMDMs) and microglia (MG) being primary drivers of both early secondary pathogenesis and delayed wound healing events. The precise role of myeloid cell subsets is unclear as upon crossing the blood-spinal cord barrier, infiltrating bone marrow derived macrophages (BMDMs) may take on the morphology of resident microglia, and upregulate canonical microglia markers, thus making the two populations difficult to distinguish. Here, we used time-resolved scRNAseq and transgenic fate-mapping to chart the transcriptional profiles of tissue-resident and -infiltrating myeloid cells in a mouse model of thoracic contusion SCI. Our work identifies a novel subpopulation of foam cell-like inflammatory myeloid cells with increased expression of Fatty Acid Binding Protein 5 (Fabp5) and comprise both tissue-resident and -infiltrating cells. Fabp5+ inflammatory myeloid cells display a delayed cytotoxic profile that is predominant at the lesion epicentre and extends into the chronic phase of SCI.
Collapse
Affiliation(s)
- Regan Hamel
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | - Veronica Testa
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Bryan Yu
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - David Rowitch
- Cambridge Stem Cell Institute, University of Cambridge, UK
| | - John C. Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
McNaughton KA, Williamson LL. Effects of sex and pro-inflammatory cytokines on context discrimination memory. Behav Brain Res 2023; 442:114320. [PMID: 36720350 PMCID: PMC9930642 DOI: 10.1016/j.bbr.2023.114320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
In learning and memory tasks, immune overactivation is associated with impaired performance, while normal immune activation is associated with optimal performance. In one specific domain of memory, context discrimination memory, peripheral immune stimulation has been shown to impair performance on the context-object discrimination memory task in male rats. In order to evaluate potential sex differences in this task, as well as potential mechanisms for the memory impairment, we evaluated the ability of peripheral immune stimulation to impair task performance in both males and females. Next, we examined whether treatment with interleukin-1 receptor antagonist (IL-1ra), a receptor antagonist for the pro-inflammatory cytokine interleukin (IL)-1β, was able to rescue the memory deficit. We examined microglial morphology in the hippocampus and cytokine mRNA and protein expression in the hippocampus and the periphery. Male rats displayed memory impairment in response to LPS, and this impairment was not rescued by IL-1ra. Female rats did not have significant memory impairments and IL-1ra administration improved memory following inflammation. A subset of cytokines and chemokines were increased only in LPS-treated males. Inflammation alone did not alter microglia morphology, but IL-1ra did in certain sub-regions of the hippocampus. Together, these results indicate that sex differences exist in the ability of a peripheral immune stimulus to influence context discrimination memory and specific cytokine signals may be altered in impaired males. This study highlights the importance of sex differences in response to inflammatory challenges, especially related to memory impairments in context discrimination memory.
Collapse
Affiliation(s)
- Kathryn A McNaughton
- University of Maryland (UMD), 0112 Biology-Psychology Building, Department of Psychology, College Park, MD 20742, United States.
| | - Lauren L Williamson
- Northern Kentucky University, 100 Nunn Dr, FH 359F, Highland Heights, KY 41099, United States.
| |
Collapse
|
7
|
Liu Y, Liu X, Chen Z, Wang Y, Li J, Gong J, He A, Zhao M, Yang C, Yang W, Wang Z. Evaluation of decompressive craniectomy in mice after severe traumatic brain injury. Front Neurol 2022; 13:898813. [PMID: 35959411 PMCID: PMC9360741 DOI: 10.3389/fneur.2022.898813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Decompressive craniectomy (DC) is of great significance for relieving acute intracranial hypertension and saving lives after traumatic brain injury (TBI). In this study, a severe TBI mouse model was created using controlled cortical impact (CCI), and a surgical model of DC was established. Furthermore, a series of neurological function assessments were performed to better understand the pathophysiological changes after DC. In this study, mice were randomly allocated into three groups, namely, CCI group, CCI+DC group, and Sham group. The mice in the CCI and CCI+DC groups received CCI after opening a bone window, and after brain injury, immediately returned the bone window to simulate skull condition after a TBI. The CCI+DC group underwent DC and contused tissue removal 6 h after CCI. The mice in the CCI group underwent the same anesthesia process; however, no further treatment of the bone window and trauma was performed. The mice in the Sham group underwent anesthesia and the process of opening the skin and bone window, but not in the CCI group. Changes in Modified Neurological Severity Score, rotarod performance, Morris water maze, intracranial pressure (ICP), cerebral blood flow (CBF), brain edema, blood–brain barrier (BBB), inflammatory factors, neuronal apoptosis, and glial cell expression were evaluated. Compared with the CCI group, the CCI+DC group had significantly lower ICP, superior neurological and motor function at 24 h after injury, and less severe BBB damage after injury. Most inflammatory cytokine expressions and the number of apoptotic cells in the brain tissue of mice in the CCI+DC group were lower than in the CCI group at 3 days after injury, with markedly reduced astrocyte and microglia expression. However, the degree of brain edema in the CCI+DC group was greater than in the CCI group, and neurological and motor functions, as well as spatial cognitive and learning ability, were significantly poorer at 14 days after injury.
Collapse
Affiliation(s)
- Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanzhi Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Junjie Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Anqi He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chen Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Weidong Yang
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- *Correspondence: Zengguang Wang
| |
Collapse
|
8
|
Liu W, Fan M, Lu W, Zhu W, Meng L, Lu S. Emerging Roles of T Helper Cells in Non-Infectious Neuroinflammation: Savior or Sinner. Front Immunol 2022; 13:872167. [PMID: 35844577 PMCID: PMC9280647 DOI: 10.3389/fimmu.2022.872167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells, also known as T helper (Th) cells, contribute to the adaptive immunity both in the periphery and in the central nervous system (CNS). At least seven subsets of Th cells along with their signature cytokines have been identified nowadays. Neuroinflammation denotes the brain’s immune response to inflammatory conditions. In recent years, various CNS disorders have been related to the dysregulation of adaptive immunity, especially the process concerning Th cells and their cytokines. However, as the functions of Th cells are being discovered, it’s also found that their roles in different neuroinflammatory conditions, or even the participation of a specific Th subset in one CNS disorder may differ, and sometimes contrast. Based on those recent and contradictory evidence, the conflicting roles of Th cells in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, traumatic brain injury as well as some typical mental disorders will be reviewed herein. Research progress, limitations and novel approaches concerning different neuroinflammatory conditions will also be mentioned and compared.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| |
Collapse
|
9
|
Morimoto K, Ouchi M, Kitano T, Eguchi R, Otsuguro KI. Dopamine regulates astrocytic IL-6 expression and process formation via dopamine receptors and adrenoceptors. Eur J Pharmacol 2022; 928:175110. [PMID: 35738452 DOI: 10.1016/j.ejphar.2022.175110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Dopamine levels in the central nervous system change under pathological conditions such as Parkinson's disease, Huntington's disease, and addiction. Under those pathological conditions, astrocytes become reactive astrocytes characterized by morphological changes and the release of inflammatory cytokines involved in pathogenesis. However, it remains unclear whether dopamine regulates astrocytic morphology and functions. Elucidating these issues will help us to understand the pathogenesis of neurodegenerative diseases caused by abnormal dopamine signaling. In this study, we investigated the effects of dopamine on IL-6 expression and process formation in rat primary cultured astrocytes and acute hippocampal slices. Dopamine increased IL-6 expression in a concentration-dependent manner, and this was accompanied by CREB phosphorylation. The effects of a low dopamine concentration (1 μM) were inhibited by a D1-like receptor antagonist, whereas the effects of a high dopamine concentration (100 μM) were inhibited by a β-antagonist and enhanced by a D2-like receptor antagonist. Furthermore, dopamine (100 μM) promoted process formation, which was inhibited by a β-antagonist and enhanced by both an α-antagonist and a D2-like receptor antagonist. In acute hippocampal slices, both a D1-like receptor agonist and β-agonist changed astrocytic morphology. Together, these results indicate that dopamine promotes IL-6 expression and process formation via D1-like receptors and β-adrenoceptors. Furthermore, bidirectional regulation exists; namely, the effects of D1-like receptors and β-adrenoceptors were negatively regulated by D2-like receptors and α2-adrenoceptors.
Collapse
Affiliation(s)
- Kohei Morimoto
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Mai Ouchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Taisuke Kitano
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Ryota Eguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Ken-Ichi Otsuguro
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.
| |
Collapse
|
10
|
The role of IL-6 in TBI and PTSD, a potential therapeutic target? Clin Neurol Neurosurg 2022; 218:107280. [PMID: 35567833 DOI: 10.1016/j.clineuro.2022.107280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 01/14/2023]
Abstract
This literature review focuses on the role of IL-6 in TBI or PTSD-induced neuroinflammation. While TBI and PTSD are widely prevalent, these diagnoses are particularly common amongst veterans. Given the role of IL-6 in neuroprotection acutely, compared to detrimental chronically, targeting this cytokine at specific time points may be beneficial in modulating neuroinflammation. Current treatments for TBI or PTSD are variably affective. By reviewing the role of IL-6 in these two diagnoses, future studies can focus on therapeutics to treat neuroinflammation and ultimately reduce the devastating impacts of neuroinflammation on cognition in PTSD and TBI.
Collapse
|
11
|
Wiseman-Hakes C, Foster E, Langer L, Chandra T, Bayley M, Comper P. Characterizing Sleep and Wakefulness in the Acute Phase of Concussion in the General Population: A Naturalistic Cohort from the Toronto Concussion Study. J Neurotrauma 2021; 39:172-180. [PMID: 34714132 DOI: 10.1089/neu.2021.0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Growing literature links concussion to changes in sleep and wakefulness in humans and in rodent models. Sleep has been linked with synaptic reorganization under other conditions; however, the characterization and role of sleep after acute concussion remains poorly understood. While much research has focused on insomnia among patients with chronic or persistent concussion symptoms, there is limited understanding of sleep and acute concussion, its potential role in recovery, and associated risk factors for the development of chronic sleep disturbance. Studies to date are limited by small sample sizes of primarily athlete or military populations. Additional studies among the general population are critical to inform best practice guidelines. We examined the sleep and daytime wakefulness of 472 adults from a naturalistic general population cohort (mean age, 33.3 years, females = 60.8%) within seven days of diagnosed concussion, using a validated, condition-specific measure, the Sleep and Concussion Questionnaire. Participants identified immediate changes in sleep characterized by hypersomnia and difficulty maintaining daytime wakefulness; 35% considered these changes as moderate to severe and 79% required monitoring or follow-up. Females experienced significantly greater severity of changes in sleep compared with males. Positive correlations between severity of sleep and pain and headache were identified. Differences by sex are an important consideration for early intervention and long-term monitoring. Because sleep was compromised by pain, pain management is also an integral part of early intervention. Our findings suggest that assessment of sleep beginning in the acute stage is a critical component of concussion management in the general population.
Collapse
Affiliation(s)
- Catherine Wiseman-Hakes
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
| | - Evan Foster
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Translational Research Program, University of Toronto, Toronto, Ontario, Canada
| | - Laura Langer
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Tharshini Chandra
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Mark Bayley
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Physiatry, University of Toronto, Toronto, Ontario, Canada
| | - Paul Comper
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Bao W, Lin Y, Chen Z. The Peripheral Immune System and Traumatic Brain Injury: Insight into the role of T-helper cells. Int J Med Sci 2021; 18:3644-3651. [PMID: 34790036 PMCID: PMC8579286 DOI: 10.7150/ijms.46834] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence suggests that immune-inflammatory processes are key elements in the physiopathological events associated with traumatic brain injury (TBI). TBI is followed by T-cell-specific immunological changes involving several subsets of T-helper cells and the cytokines they produce; these processes can have opposite effects depending on the disease course and cytokine concentrations. Efforts are underway to identify the T-helper cells and cytokine profiles associated with prognosis. These predictors may eventually serve as effective treatment targets to decrease morbidity and mortality and to improve the management of TBI patients. Here, we review the immunological response to TBI, the possible molecular mechanisms of this response, and therapeutic strategies to address it.
Collapse
Affiliation(s)
| | | | - Zuobing Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Welleford AS, Quintero JE, Seblani NE, Blalock E, Gunewardena S, Shapiro SM, Riordan SM, Huettl P, Guduru Z, Stanford JA, van Horne CG, Gerhardt GA. RNA Sequencing of Human Peripheral Nerve in Response to Injury: Distinctive Analysis of the Nerve Repair Pathways. Cell Transplant 2021; 29:963689720926157. [PMID: 32425114 PMCID: PMC7563818 DOI: 10.1177/0963689720926157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The development of regenerative therapies for central nervous system diseases can likely benefit from an understanding of the peripheral nervous system repair process, particularly in identifying potential gene pathways involved in human nerve repair. This study employed RNA sequencing (RNA-seq) technology to analyze the whole transcriptome profile of the human peripheral nerve in response to an injury. The distal sural nerve was exposed, completely transected, and a 1 to 2 cm section of nerve fascicles was collected for RNA-seq from six participants with Parkinson’s disease, ranging in age between 53 and 70 yr. Two weeks after the initial injury, another section of the nerve fascicles of the distal and pre-degenerated stump of the nerve was dissected and processed for RNA-seq studies. An initial analysis between the pre-lesion status and the postinjury gene expression revealed 3,641 genes that were significantly differentially expressed. In addition, the results support a clear transdifferentiation process that occurred by the end of the 2-wk postinjury. Gene ontology (GO) and hierarchical clustering were used to identify the major signaling pathways affected by the injury. In contrast to previous nonclinical studies, important changes were observed in molecular pathways related to antiapoptotic signaling, neurotrophic factor processes, cell motility, and immune cell chemotactic signaling. The results of our current study provide new insights regarding the essential interactions of different molecular pathways that drive neuronal repair and axonal regeneration in humans.
Collapse
Affiliation(s)
- Andrew S Welleford
- Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, USA.,Brain Restoration Center, University of Kentucky, Lexington, KY, USA.,* These are co-first authors and have contributed equally to this article
| | - Jorge E Quintero
- Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, USA.,Brain Restoration Center, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky Medical Center, Lexington, KY, USA.,* These are co-first authors and have contributed equally to this article
| | - Nader El Seblani
- Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, USA.,Brain Restoration Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA.,* These are co-first authors and have contributed equally to this article
| | - Eric Blalock
- Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, USA.,Brain Restoration Center, University of Kentucky, Lexington, KY, USA
| | - Sumedha Gunewardena
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, KS, USA
| | - Steven M Shapiro
- Division of Neurology, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, KS, USA
| | - Sean M Riordan
- Division of Neurology, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Peter Huettl
- Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, USA.,Brain Restoration Center, University of Kentucky, Lexington, KY, USA
| | - Zain Guduru
- Department of Neurology, University of Kentucky Medical Center, Lexington, KY, USA
| | - John A Stanford
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, KS, USA
| | - Craig G van Horne
- Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, USA.,Brain Restoration Center, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky Medical Center, Lexington, KY, USA
| | - Greg A Gerhardt
- Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, USA.,Brain Restoration Center, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky Medical Center, Lexington, KY, USA.,Department of Neurology, University of Kentucky Medical Center, Lexington, KY, USA
| |
Collapse
|
14
|
Network pharmacology identifies IL6 as an important hub and target of tibolone for drug repurposing in traumatic brain injury. Biomed Pharmacother 2021; 140:111769. [PMID: 34058440 DOI: 10.1016/j.biopha.2021.111769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is characterized by a complex network of signals mediating inflammatory, proliferative and apoptotic processes during its acute and chronic phases. Current therapies mitigate damage and are mainly for palliative care and there are currently no effective therapies for secondary damage. This suggests a need to discover a compound with a greater spectrum of action that can control various pathological aspects of TBI. Here we used a network pharmacology approach to explore the benefits of tibolone, an estrogen and androgen receptor agonist with broader actions in cells, as a possible repurposing drug for TBI therapy. Using different databases we retrieved the targets significantly associated to TBI and tibolone, obtaining 2700 and 652, respectively. The top 10 GO enriched terms were mostly related to cell proliferation, apoptosis and inflammation. Following protein-protein functional analysis, the top connected proteins were related to kinase activity (MAPK1/14/3, AKT1 PIK3R1), apoptosis (TP53, CASP3), growth factors (EGFR), estrogen signalling (ESR1) and inflammation (IL6, TNF), with IL6 as an important signalling hub belonging to the top GO categories. Thus, we identified IL6 as a cellular node which we then validated using molecular mechanics-generalized born surface area (MMGBSA) and docking to explore which tibolone metabolite might interact with this protein. Both 3α and 3β-OH tibolone seemed to bind better to IL6 at important sites responsible for its binding to IL6R. In conclusion, our study demonstrates key hubs involved in TBI pathology which indicates IL6 as a target molecule of tibolone as drug repurposing for TBI therapy.
Collapse
|
15
|
Postolache TT, Wadhawan A, Can A, Lowry CA, Woodbury M, Makkar H, Hoisington AJ, Scott AJ, Potocki E, Benros ME, Stiller JW. Inflammation in Traumatic Brain Injury. J Alzheimers Dis 2021; 74:1-28. [PMID: 32176646 DOI: 10.3233/jad-191150] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is an increasing evidence that inflammation contributes to clinical and functional outcomes in traumatic brain injury (TBI). Many successful target-engaging, lesion-reducing, symptom-alleviating, and function-improving interventions in animal models of TBI have failed to show efficacy in clinical trials. Timing and immunological context are paramount for the direction, quality, and intensity of immune responses to TBI and the resulting neuroanatomical, clinical, and functional course. We present components of the immune system implicated in TBI, potential immune targets, and target-engaging interventions. The main objective of our article is to point toward modifiable molecular and cellular mechanisms that may modify the outcomes in TBI, and contribute to increasing the translational value of interventions that have been identified in animal models of TBI.
Collapse
Affiliation(s)
- Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| | - Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Saint Elizabeths Hospital, Department of Psychiatry, Washington, DC, USA
| | - Adem Can
- School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Christopher A Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Margaret Woodbury
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Michael E Benros
- Copenhagen Research Center for Mental Health-CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - John W Stiller
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Maryland State Athletic Commission, Baltimore, MD, USA.,Saint Elizabeths Hospital, Neurology Consultation Services, Washington, DC, USA
| |
Collapse
|
16
|
Ndode-Ekane XE, Kyyriäinen J, Pitkänen A. Inflammation at the Neurovascular Unit in Post-traumatic Epilepsy. PROGRESS IN INFLAMMATION RESEARCH 2021:221-237. [DOI: 10.1007/978-3-030-67403-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Edwards KA, Gill JM, Pattinson CL, Lai C, Brière M, Rogers NJ, Milhorn D, Elliot J, Carr W. Interleukin-6 is associated with acute concussion in military combat personnel. BMC Neurol 2020; 20:209. [PMID: 32450801 PMCID: PMC7249335 DOI: 10.1186/s12883-020-01760-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/03/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Concussion is the most common type of TBI, yet reliable objective measures related to these injuries and associated recovery processes remain elusive, especially in military personnel. The purpose of this study was to characterize the relationship between cytokines and recovery from acute brain injury in active duty service members. Inflammatory cytokines (IL-6, IL-10, and TNFα) were measured acutely in blood samples within 8 h following a medically diagnosed concussion and then 24 h later. METHODS Participants (n = 94) were categorized into two groups: 1) military personnel who sustained provider-diagnosed concussion, without other major medical diagnosis (n = 45) and 2) healthy control participants in the same deployment environment who did not sustain concussion or other illness or injuries (n = 49). IL-6, IL-10, and TNFα concentrations were measured using an ultrasensitive single-molecule enzyme-linked immunosorbent assay. Differences in cytokine levels between concussed and healthy groups were evaluated at two time points (time point 1 ≤ 8 h after injury; time point 2 = 24 h following time point 1). RESULTS At time point 1, IL-6 median (IQR) concentrations were 2.62 (3.62) in the concussed group, which was greater compared to IL-6 in the healthy control group (1.03 (0.90); U = 420.00, z = - 5.12, p < 0.001). Compared to healthy controls, the concussed group did not differ at time point 1 in IL-10 or TNFα concentrations (p's > 0.05). At time point 2, no differences were detected between concussed and healthy controls for IL-6, IL-10, or TNFα (p's > 0.05). The median difference between time points 1 and 2 were compared between the concussed and healthy control groups for IL-6, IL-10, and TNFα. Change in IL-6 across time was greater for the concussed group than healthy control (- 1.54 (3.12); U = 315.00, z = - 5.96, p < 0.001), with no differences between groups in the change of IL-10 or TNFα (p's > 0.05). CONCLUSION Reported here is a significant elevation of IL-6 levels in concussed military personnel less than 8 h following injury. Future studies may examine acute and chronic neurological symptomology associated with inflammatory cytokine levels, distinguish individuals at high risk for developing neurological complications, and identify underlying biological pathways to mitigate inflammation and improve outcomes.
Collapse
Affiliation(s)
- Katie A Edwards
- National Institute of Nursing Research, National Institutes of Health, 3 Center Drive, Building 3, Room 26E, Bethesda, MD, 20892, USA. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Bethesda, MD, 20817, USA.
| | - Jessica M Gill
- National Institute of Nursing Research, National Institutes of Health, 3 Center Drive, Building 3, Room 26E, Bethesda, MD, 20892, USA.,CNRM Co-Director Biomarkers Core, Uniformed Services University of the Health Sciences, Bethesda, USA
| | - Cassandra L Pattinson
- National Institute of Nursing Research, National Institutes of Health, 3 Center Drive, Building 3, Room 26E, Bethesda, MD, 20892, USA
| | - Chen Lai
- National Institute of Nursing Research, National Institutes of Health, 3 Center Drive, Building 3, Room 26E, Bethesda, MD, 20892, USA
| | - Misha Brière
- 87th Medical Group, Joint Base McGuire-Dix-Lakehurst, 3458 Neely Road, Trenton, NJ, 08641, USA
| | - Nicholas J Rogers
- United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA
| | - Denise Milhorn
- United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA
| | - Jonathan Elliot
- USS Gerald R. Ford (CVN78), FPO, AE, Norfolk, VA, 09523, USA
| | - Walter Carr
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.,Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| |
Collapse
|
18
|
Wertz MH, Pineda SS, Lee H, Kulicke R, Kellis M, Heiman M. Interleukin-6 deficiency exacerbates Huntington's disease model phenotypes. Mol Neurodegener 2020; 15:29. [PMID: 32448329 PMCID: PMC7247164 DOI: 10.1186/s13024-020-00379-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/13/2020] [Indexed: 01/04/2023] Open
Abstract
Huntington’s disease (HD) is an incurable neurodegenerative disorder caused by CAG trinucleotide expansions in the huntingtin gene. Markers of both systemic and CNS immune activation and inflammation have been widely noted in HD and mouse models of HD. In particular, elevation of the pro-inflammatory cytokine interleukin-6 (IL-6) is the earliest reported marker of immune activation in HD, and this elevation has been suggested to contribute to HD pathogenesis. To test the hypothesis that IL-6 deficiency would be protective against the effects of mutant huntingtin, we generated R6/2 HD model mice that lacked IL-6. Contrary to our prediction, IL-6 deficiency exacerbated HD-model associated behavioral phenotypes. Single nuclear RNA Sequencing (snRNA-seq) analysis of striatal cell types revealed that IL-6 deficiency led to the dysregulation of various genes associated with synaptic function, as well as the BDNF receptor Ntrk2. These data suggest that IL-6 deficiency exacerbates the effects of mutant huntingtin through dysregulation of genes of known relevance to HD pathobiology in striatal neurons, and further suggest that modulation of IL-6 to a level that promotes proper regulation of genes associated with synaptic function may hold promise as an HD therapeutic target.
Collapse
Affiliation(s)
- Mary H Wertz
- Picower Institute for Learning and Memory, Cambridge, MA, 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - S Sebastian Pineda
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, 02139, USA.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 02139, USA
| | - Hyeseung Lee
- Picower Institute for Learning and Memory, Cambridge, MA, 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ruth Kulicke
- Picower Institute for Learning and Memory, Cambridge, MA, 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, 02139, USA.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 02139, USA
| | - Myriam Heiman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, 02139, USA. .,Picower Institute for Learning and Memory, Cambridge, MA, 02139, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
19
|
Edwards KA, Pattinson CL, Guedes VA, Peyer J, Moore C, Davis T, Devoto C, Turtzo LC, Latour L, Gill JM. Inflammatory Cytokines Associate With Neuroimaging After Acute Mild Traumatic Brain Injury. Front Neurol 2020; 11:348. [PMID: 32508732 PMCID: PMC7248260 DOI: 10.3389/fneur.2020.00348] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/08/2020] [Indexed: 01/03/2023] Open
Abstract
Introduction: Elevated levels of blood-based proinflammatory cytokines are linked to acute moderate to severe traumatic brain injuries (TBIs), yet less is known in acute mild (m)TBI cohorts. The current study examined whether blood-based cytokines can differentiate patients with mTBI, with and without neuroimaging findings (CT and MRI). Material and Methods: Within 24 h of a mTBI, determined by a Glasgow Coma Scale (GCS) between 13 and 15, participants (n = 250) underwent a computed tomography (CT) and magnetic resonance imaging (MRI) scan and provided a blood sample. Participants were classified into three groups according to imaging findings; (1) CT+, (2) MRI+ (CT–), (3) Controls (CT– MRI–). Plasma levels of circulating cytokines (IL-6, IL-10, TNFα), and vascular endothelial growth factor (VEGF) were measured using an ultra-sensitive immunoassay. Results: Concentrations of inflammatory cytokines (IL-6, TNFα) and VEGF were elevated in CT+, as well as MRI+ groups (p < 0.001), compared to controls, even after controlling for age, sex and cardiovascular disease (CVD)-related risk factors; hypertension, and hyperlipidemia. Post-concussive symptoms were associated with imaging groupings, but not inflammatory cytokines in this cohort. Levels of VEGF, IL-6, and TNFα differentiated patients with CT+ findings from controls, with the combined biomarker model (VEGF, IL-6, TNFα, and IL-10) showing good discriminatory power (AUC 0.92, 95% CI 0.87–0.97). IL-6 was a fair predictor of MRI+ findings compared to controls (AUC 0.70, 95% CI 0.60–0.78). Finally, the combined biomarker model discriminated patients with MRI+ from CT+ with an AUC of 0.71 (95% CI 0.62–0.80). Conclusions: When combined, IL-6, TNFα, and VEGF may provide a promising biomarker cytokine panel to differentiate mTBI patients with CT+ imaging vs. controls. Singularly, IL-6 was a fair discriminator between each of the imaging groups. Future research directions may help elucidate mechanisms related to injury severity and potentially, recovery following an mTBI.
Collapse
Affiliation(s)
- Katie A Edwards
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Cassandra L Pattinson
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, United States
| | - Vivian A Guedes
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, United States
| | - Jordan Peyer
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, United States
| | - Candace Moore
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, United States
| | - Tara Davis
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States.,Johns Hopkins Suburban Hospital, Bethesda, MD, United States
| | - Christina Devoto
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - L Christine Turtzo
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Lawrence Latour
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Jessica M Gill
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, United States.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Biomarker Core, Bethesda, MD, United States
| |
Collapse
|
20
|
Gano A, Mondello JE, Doremus-Fitzwater TL, Deak T. Rapid alterations in neuroimmune gene expression after acute ethanol: Timecourse, sex differences and sensitivity to cranial surgery. J Neuroimmunol 2019; 337:577083. [PMID: 31675629 PMCID: PMC6866658 DOI: 10.1016/j.jneuroim.2019.577083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/08/2023]
Abstract
Prior work has established that that an acute ethanol challenge mimicking high intensity alcohol consumption increased IL-6 and suppressed IL-1β and TNFα mRNA in intoxication, with the opposite pattern seen in withdrawal. These experiments utilized Sprague-Dawley rats to further extend these results across time course (from 45 min to 6 h after ethanol), sex, and central versus peripheral expression. Furthermore, these data show that cannulation surgery may selectively modify the central neuroimmune response to ethanol. These findings highlight a unique plasticity of IL-6 that is specific to central structures and responsive to alterations by environmental factors.
Collapse
Affiliation(s)
- Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States of America
| | - Jamie E Mondello
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States of America
| | - Tamara L Doremus-Fitzwater
- Department of Psychology, Williams Hall, Ithaca College, 953 Danby Road, Ithaca, NY 14850, United States of America
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States of America.
| |
Collapse
|
21
|
Sanchis P, Fernández‐Gayol O, Vizueta J, Comes G, Canal C, Escrig A, Molinero A, Giralt M, Hidalgo J. Microglial cell‐derived interleukin‐6 influences behavior and inflammatory response in the brain following traumatic brain injury. Glia 2019; 68:999-1016. [DOI: 10.1002/glia.23758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Paula Sanchis
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| | - Olaya Fernández‐Gayol
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| | - Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de BiologiaUniversitat de Barcelona Barcelona Spain
| | - Gemma Comes
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| | - Carla Canal
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| | - Anna Escrig
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| | - Amalia Molinero
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| | - Mercedes Giralt
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| | - Juan Hidalgo
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of BiosciencesUniversitat Autònoma de Barcelona Barcelona Spain
| |
Collapse
|
22
|
Dokalis N, Prinz M. Resolution of neuroinflammation: mechanisms and potential therapeutic option. Semin Immunopathol 2019; 41:699-709. [PMID: 31705317 DOI: 10.1007/s00281-019-00764-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
The central nervous system (CNS) is comprised by an elaborate neural network that is under constant surveillance by tissue-intrinsic factors for maintenance of its homeostasis. Invading pathogens or sterile injuries might compromise vitally the CNS integrity and function. A prompt anti-inflammatory response is therefore essential to contain and repair the local tissue damage. Although the origin of the insults might be different, the principles of tissue backlashes, however, share striking similarities. CNS-resident cells, such as microglia and astrocytes, together with peripheral immune cells orchestrate an array of events that aim to functional restoration. If the acute inflammatory event remains unresolved, it becomes toxic leading to progressive CNS degeneration. Therefore, the cellular, molecular, and biochemical processes that regulate inflammation need to be on a fine balance with the intrinsic CNS repair mechanisms that influence tissue healing. The purpose of this review is to highlight aspects that facilitate the resolution of CNS inflammation, promote tissue repair, and functional recovery after acute injury and infection that could potentially contribute as therapeutic interventions.
Collapse
Affiliation(s)
- Nikolaos Dokalis
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany. .,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany. .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
23
|
González-Giraldo Y, Garzón-Benitez AV, Forero DA, Barreto GE. TERT inhibition leads to reduction of IL-6 expression induced by palmitic acid and interferes with the protective effects of tibolone in an astrocytic cell model. J Neuroendocrinol 2019; 31:e12768. [PMID: 31278797 DOI: 10.1111/jne.12768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/04/2023]
Abstract
Although it has been shown that telomerase has neuroprotective effects, mainly as a result of its non-canonical functions in neuronal cells, its role with respect to glial cells remains unknown. There is growing evidence indicating that telomerase plays an important role with respect to inflammation, especially in the regulation of pro-inflammatory cytokine gene expression. The present study aimed to evaluate the role of telomerase in an astrocyte cell model treated with palmitic acid (PA) and tibolone. Cell death, reactive oxygen species production and interleukin-6 expression were evaluated under telomerase inhibition with the BIBR1532 compound in T98G cells treated with tibolone and PA, using fluorometry, flow cytometry, enzyme-linked immunosorbent assays and the quantitative polymerase chain reaction. The results obtained showed that telomerase protein was increased by PA after 36 hours, alone or in combination with tibolone, and that its activity was affected by PA. Telomerase inhibition reduced interleukin-6 expression and it interfered with the protective effects of tibolone on cell death. Moreover, tibolone increased Tyr707 phosphorylation in PA-treated cells. In the present study, we provide novel findings about the regulation of telomerase by PA and tibolone. Telomerase was involved in inflammation by PA and in protective effects of tibolone. Therefore, we conclude that telomerase could play a dual role in these cells.
Collapse
Affiliation(s)
- Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Angie V Garzón-Benitez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Diego A Forero
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| |
Collapse
|
24
|
The immunological response to traumatic brain injury. J Neuroimmunol 2019; 332:112-125. [DOI: 10.1016/j.jneuroim.2019.04.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022]
|
25
|
Receno CN, Liang C, Korol DL, Atalay M, Heffernan KS, Brutsaert TD, DeRuisseau KC. Effects of Prolonged Dietary Curcumin Exposure on Skeletal Muscle Biochemical and Functional Responses of Aged Male Rats. Int J Mol Sci 2019; 20:E1178. [PMID: 30866573 PMCID: PMC6429120 DOI: 10.3390/ijms20051178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress resulting from decreased antioxidant protection and increased reactive oxygen and nitrogen species (RONS) production may contribute to muscle mass loss and dysfunction during aging. Curcumin is a phenolic compound shown to upregulate antioxidant defenses and directly quench RONS in vivo. This study determined the impact of prolonged dietary curcumin exposure on muscle mass and function of aged rats. Thirty-two-month-old male F344xBN rats were provided a diet with or without 0.2% curcumin for 4 months. The groups included: ad libitum control (CON; n = 18); 0.2% curcumin (CUR; n = 18); and pair-fed (PAIR; n = 18) rats. CUR rats showed lower food intake compared to CON, making PAIR a suitable comparison group. CUR rats displayed larger plantaris mass and force production (vs. PAIR). Nuclear fraction levels of nuclear factor erythroid-2 related-factor-2 were greater, and oxidative macromolecule damage was lower in CUR (vs. PAIR). There were no significant differences in measures of antioxidant status between any of the groups. No difference in any measure was observed between CUR and CON rats. Thus, consumption of curcumin coupled with reduced food intake imparted beneficial effects on aged skeletal muscle. The benefit of curcumin on aging skeletal muscle should be explored further.
Collapse
Affiliation(s)
- Candace N Receno
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Chen Liang
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Donna L Korol
- 107 College Place, Department of Biology, Syracuse University, Syracuse, NY 13244, USA.
| | - Mustafa Atalay
- Yliopistonranta 1 E, Institute of Biomedicine, Physiology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Kevin S Heffernan
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Tom D Brutsaert
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| | - Keith C DeRuisseau
- 201 Women's Building, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
26
|
Hu Y, Xu Y. Relationship between interleukin‐6 and brain ischemia. IBRAIN 2019. [DOI: 10.1002/j.2769-2795.2019.tb00039.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yue Hu
- Department of AnesthesiologyThe First People's Hospital of Shuangliu DistrictChengduSichuanChina
| | - Yang Xu
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
27
|
Jurga AM, Rojewska E, Makuch W, Mika J. Lipopolysaccharide from Rhodobacter sphaeroides (TLR4 antagonist) attenuates hypersensitivity and modulates nociceptive factors. PHARMACEUTICAL BIOLOGY 2018; 56:275-286. [PMID: 29656686 PMCID: PMC6130482 DOI: 10.1080/13880209.2018.1457061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Accumulating evidence has demonstrated that Toll-like receptors (TLRs), especially TLR4 localized on microglia/macrophages, may play a significant role in nociception. OBJECTIVE We examine the role of TLR4 in a neuropathic pain model. Using behavioural/biochemical methods, we examined the influence of TLR4 antagonist on levels of hypersensitivity and nociceptive factors whose contribution to neuropathy development has been confirmed. MATERIALS AND METHODS Behavioural (von Frey's/cold plate) tests were performed with Wistar male rats after intrathecal administration of a TLR4 antagonist (LPS-RS ULTRAPURE (LPS-RSU), 20 μG: lipopolysaccharide from Rhodobacter sphaeroides, InvivoGen, San Diego, CA) 16 H and 1 h before chronic constriction injury (cci) to the sciatic nerve and then daily for 7 d. three groups were used: an intact group and two cci-exposed groups that received vehicle or LPS-RSU. tissue [spinal cord/dorsal root ganglia (DRG)] for western blot analysis was collected on day 7. RESULTS The pharmacological blockade of TLR4 diminished mechanical (from ca. 40% to 16% that in the INTACT group) and thermal (from ca. 51% to 32% that in the INTACT group) hypersensitivity despite the enhanced activation of IBA-1-positive cells in DRG. Moreover, LPS-RSU changed the ratio between IL-18/IL-18BP and MMP-9/TIMP-1 in favour of the increase of antinociceptive factors IL-18BP (25%-spinal; 96%-DRG) and TIMP-1 (15%-spinal; 50%-DRG) and additionally led to an increased IL-6 (40%-spinal; 161%-DRG), which is known to have analgesic properties in neuropathy. CONCLUSIONS Our results provide evidence that LPS-RSU influences pain through the expression of TLR4. TLR4 blockade has analgesic properties and restores the balance between nociceptive factors, which indicates its engagement in neuropathy development.
Collapse
Affiliation(s)
- Agnieszka M. Jurga
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- CONTACT Joanna MikaDepartment of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31343Krakow, Poland
| |
Collapse
|
28
|
Moreno MA, Or-Geva N, Aftab BT, Khanna R, Croze E, Steinman L, Han MH. Molecular signature of Epstein-Barr virus infection in MS brain lesions. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 5:e466. [PMID: 29892607 PMCID: PMC5994704 DOI: 10.1212/nxi.0000000000000466] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/25/2018] [Indexed: 12/15/2022]
Abstract
Objective We sought to confirm the presence and frequency of B cells and Epstein-Barr virus (EBV) (latent and lytic phase) antigens in archived MS and non-MS brain tissue by immunohistochemistry. Methods We quantified the type and location of B-cell subsets within active and chronic MS brain lesions in relation to viral antigen expression. The presence of EBV-infected cells was further confirmed by in situ hybridization to detect the EBV RNA transcript, EBV-encoded RNA-1 (EBER-1). Results We report the presence of EBV latent membrane protein 1 (LMP-1) in 93% of MS and 78% of control brains, with a greater percentage of MS brains containing CD138+ plasma cells and LMP-1–rich populations. Notably, 78% of chronic MS lesions and 33.3% of non-MS brains contained parenchymal CD138+ plasma cells. EBV early lytic protein, EBV immediate-early lytic gene (BZLF1), was also observed in 46% of MS, primarily in association with chronic lesions and 44% of non-MS brain tissue. Furthermore, 85% of MS brains revealed frequent EBER-positive cells, whereas non-MS brains seldom contained EBER-positive cells. EBV infection was detectable, by immunohistochemistry and by in situ hybridization, in both MS and non-MS brains, although latent virus was more prevalent in MS brains, while lytic virus was restricted to chronic MS lesions. Conclusions Together, our observations suggest an uncharacterized link between the EBV virus life cycle and MS pathogenesis.
Collapse
Affiliation(s)
- Monica A Moreno
- Department of Neurology and Neurological Sciences (M.A.M., N.O., L.S., M.H.H.), Stanford University School of Medicine, Multiple Sclerosis Center; Interdepartmental Program in Immunology (M.A.M., N.O., L.S., M.H.H.), Stanford; Atara Biotherapeutics (B.T.A., E.C.), San Francisco, CA; and Queensland Institute of Medical Research (R.K.), Brisbane, Queensland, Australia
| | - Noga Or-Geva
- Department of Neurology and Neurological Sciences (M.A.M., N.O., L.S., M.H.H.), Stanford University School of Medicine, Multiple Sclerosis Center; Interdepartmental Program in Immunology (M.A.M., N.O., L.S., M.H.H.), Stanford; Atara Biotherapeutics (B.T.A., E.C.), San Francisco, CA; and Queensland Institute of Medical Research (R.K.), Brisbane, Queensland, Australia
| | - Blake T Aftab
- Department of Neurology and Neurological Sciences (M.A.M., N.O., L.S., M.H.H.), Stanford University School of Medicine, Multiple Sclerosis Center; Interdepartmental Program in Immunology (M.A.M., N.O., L.S., M.H.H.), Stanford; Atara Biotherapeutics (B.T.A., E.C.), San Francisco, CA; and Queensland Institute of Medical Research (R.K.), Brisbane, Queensland, Australia
| | - Rajiv Khanna
- Department of Neurology and Neurological Sciences (M.A.M., N.O., L.S., M.H.H.), Stanford University School of Medicine, Multiple Sclerosis Center; Interdepartmental Program in Immunology (M.A.M., N.O., L.S., M.H.H.), Stanford; Atara Biotherapeutics (B.T.A., E.C.), San Francisco, CA; and Queensland Institute of Medical Research (R.K.), Brisbane, Queensland, Australia
| | - Ed Croze
- Department of Neurology and Neurological Sciences (M.A.M., N.O., L.S., M.H.H.), Stanford University School of Medicine, Multiple Sclerosis Center; Interdepartmental Program in Immunology (M.A.M., N.O., L.S., M.H.H.), Stanford; Atara Biotherapeutics (B.T.A., E.C.), San Francisco, CA; and Queensland Institute of Medical Research (R.K.), Brisbane, Queensland, Australia
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences (M.A.M., N.O., L.S., M.H.H.), Stanford University School of Medicine, Multiple Sclerosis Center; Interdepartmental Program in Immunology (M.A.M., N.O., L.S., M.H.H.), Stanford; Atara Biotherapeutics (B.T.A., E.C.), San Francisco, CA; and Queensland Institute of Medical Research (R.K.), Brisbane, Queensland, Australia
| | - May H Han
- Department of Neurology and Neurological Sciences (M.A.M., N.O., L.S., M.H.H.), Stanford University School of Medicine, Multiple Sclerosis Center; Interdepartmental Program in Immunology (M.A.M., N.O., L.S., M.H.H.), Stanford; Atara Biotherapeutics (B.T.A., E.C.), San Francisco, CA; and Queensland Institute of Medical Research (R.K.), Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Kobayashi M, Tamari K, Kitano M, Takeuchi K. A Time Limit for Initiating Anti-Inflammatory Treatment for Improved Olfactory Function after Head Injury. J Neurotrauma 2018; 35:652-660. [PMID: 29117762 DOI: 10.1089/neu.2017.5316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously reported that treatment with an anti-inflammatory drug, specifically a steroid, is effective in improving recovery during the acute phase of head injury. Clinically, however, patients with head injury usually become aware of their olfactory loss several weeks or months after the injury, which may be a critical factor in poor recovery from olfactory dysfunction. This raises an important question: When should steroid administration begin in order to achieve optimum improvement of olfactory dysfunction? The present study was designed to reveal the time limit for starting anti-inflammatory treatment for better improvement of post-traumatic olfactory dysfunction. Olfactory nerve transection (NTx) was performed in olfactory marker protein (OMP)-tau-lacZ mice and subcutaneous injections of dexamethasone sodium phosphate for 5 consecutive days was started at 7, 14, 28, and 42 days after the NTx (7-, 14-, 28-, and 42-day time-points). Histological assessment of olfactory nerve recovery in the olfactory bulb was made at 5, 14, and 42 days after the start of drug treatment. Olfactory function assessments using both an olfactory avoidance behavioral test and evoked potential testing also were performed. Animals treated at 7 days post-injury had less injury-associated tissue with fewer astrocytes and macrophages and better histological and functional nerve recovery, compared with control mice. However, those treated at 14, 28, or 42 days post-injury did not show significant histological or functional differences between saline control and treatment groups. These findings suggest that an anti-inflammatory treatment using steroids for traumatic olfactory dysfunction may be effective if started at least by 7 days, but may be ineffective at 14 days or later after head injury.
Collapse
Affiliation(s)
- Masayoshi Kobayashi
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine , Mie, Japan
| | - Kengo Tamari
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine , Mie, Japan
| | - Masako Kitano
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine , Mie, Japan
| | - Kazuhiko Takeuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine , Mie, Japan
| |
Collapse
|
30
|
Okada S, Hara M, Kobayakawa K, Matsumoto Y, Nakashima Y. Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci Res 2017; 126:39-43. [PMID: 29054466 DOI: 10.1016/j.neures.2017.10.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/09/2017] [Accepted: 09/09/2017] [Indexed: 01/12/2023]
Abstract
After traumatic injuries of the central nervous system (CNS), including spinal cord injury (SCI), astrocytes surrounding the lesion become reactive and typically undergo hypertrophy and process extension. These reactive astrocytes migrate centripetally to the lesion epicenter and aid in the tissue repair process, however, they eventually become scar-forming astrocytes and form a glial scar which produces axonal growth inhibitors and prevents axonal regeneration. This sequential phenotypic change has long been considered to be unidirectional and irreversible; thus glial scarring is one of the main causes of the limited regenerative capability of the CNS. We recently demonstrated that the process of glial scar formation is regulated by environmental cues, such as fibrotic extracellular matrix material. In this review, we discuss the role and mechanism underlying glial scar formation after SCI as well as plasticity of astrogliosis, which helps to foster axonal regeneration and functional recovery after CNS injury.
Collapse
Affiliation(s)
- Seiji Okada
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Masamitsu Hara
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
Tu THT, Sharma N, Shin EJ, Tran HQ, Lee YJ, Jeong JH, Jeong JH, Nah SY, Tran HYP, Byun JK, Ko SK, Kim HC. Ginsenoside Re Protects Trimethyltin-Induced Neurotoxicity via Activation of IL-6-Mediated Phosphoinositol 3-Kinase/Akt Signaling in Mice. Neurochem Res 2017; 42:3125-3139. [PMID: 28884396 DOI: 10.1007/s11064-017-2349-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Accepted: 07/01/2017] [Indexed: 12/23/2022]
Abstract
Ginseng (Panax ginseng), an herbal medicine, has been used to prevent neurodegenerative disorders. Ginsenosides (e.g., Re, Rb1, or Rg1) were obtained from Korean mountain cultivated ginseng. The anticonvulsant activity of ginsenoside Re (20 mg/kg/day × 3) against trimethyltin (TMT) insult was the most pronounced out of ginsenosides (e.g., Re, Rb1, and Rg1). Re itself did not significantly alter tumor necrosis factor-α (TNF-α), interferon-ϒ (IFN-ϒ), and interleukin-1β (IL-1β) expression, however, it significantly increases the interleukin-6 (IL-6) expression. In addition, Re attenuated the TMT-induced decreases in IL-6 protein level. Therefore, IL-6 knockout (-/-) mice were employed to investigate whether Re requires IL-6-dependent neuroprotective activity against TMT toxicity. Re significantly attenuated TMT-induced lipid peroxidation, protein peroxidation, and reactive oxygen species in the hippocampus. Re-mediated antioxidant effects were more pronounced in IL-6 (-/-) mice than in WT mice. Consistently, TMT-induced increase in c-Fos-immunoreactivity (c-Fos-IR), TUNEL-positive cells, and nuclear chromatin clumping in the dentate gyrus of the hippocampus were significantly attenuated by Re. Furthermore, Re attenuated TMT-induced proapoptotic changes. Protective potentials by Re were comparable to those by recombinant IL-6 protein (rIL-6) against TMT-insult in IL-6 (-/-) mice. Moreover, treatment with a phosphoinositol 3-kinase (PI3K) inhibitor, LY294002 (1.6 µg, i.c.v) counteracted the protective potential mediated by Re or rIL-6 against TMT insult. The results suggest that ginsenoside Re requires IL-6-dependent PI3K/Akt signaling for its protective potential against TMT-induced neurotoxicity.
Collapse
Affiliation(s)
- Thu-Hien Thi Tu
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yu Jeung Lee
- Clinical Pharmacy, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Pharmacology, College of Medicine, Chug-Ang University, Seoul, Republic of Korea
| | - Jung Hwan Jeong
- Headquarters of Forestry Support, Korea Forestry Promotion Institute, Seoul, 07570, Republic of Korea
| | - Seung Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Hoang-Yen Phi Tran
- Physical Chemistry Department, University of Medicine and Pharmacy, Ho Chi Minh City, 760000, Vietnam
| | - Jae Kyung Byun
- Korean Society of Forest Environment Research, Namyangju, 12014, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, 27136, Republic of Korea.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
32
|
Chandrasekar A, Heuvel FO, Palmer A, Linkus B, Ludolph AC, Boeckers TM, Relja B, Huber-Lang M, Roselli F. Acute ethanol administration results in a protective cytokine and neuroinflammatory profile in traumatic brain injury. Int Immunopharmacol 2017; 51:66-75. [PMID: 28806641 DOI: 10.1016/j.intimp.2017.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 12/01/2022]
Abstract
Ethanol intoxication is a common comorbidity in traumatic brain injury. To date, the effect of ethanol on TBI pathogenic cascades and resulting outcomes remains debated. A closed blunt weight-drop murine TBI model has been implemented to investigate behavioral (by sensorimotor and neurological tests), and neuro-immunological (by tissue cytokine arrays and immuno-histology) effects of ethanol intoxication on TBI. The effect of the occurrence of traumatic intracerebral hemorrhage was also studied. The results indicate that ethanol pretreatment results in a faster and better recovery after TBI with reduced infiltration of leukocytes and reduced microglia activation. These outcomes correspond to reduced parenchymal levels of GM-CSF, IL-6 and IL-3 and to the transient upregulation of IL-13 and VEGF, indicating an early shift in the cytokine profile towards reduced inflammation. A significant difference in the cytokine profile was still observed 24h post injury in the ethanol pretreated mice, as shown by the delayed peak in IL-6 and by the suppression of GM-CSF, IFN-γ, and IL-3. Seven days post-injury, ethanol-pretreated mice displayed a significant decrease both in CD45+ cells infiltration and in microglial activation. On the other hand, in the case of traumatic intracerebral hemorrhage, the cytokine profile was dominated by KC, CCL5, M-CSF and several interleukins and ethanol pretreatment did not produce any modification. We can thus conclude that ethanol intoxication suppresses the acute neuro-inflammatory response to TBI, an effect which is correlated with a faster and complete neurological recovery, whereas, the presence of traumatic intracerebral hemorrhage overrides the effects of ethanol.
Collapse
Affiliation(s)
| | | | - Annette Palmer
- Institute of Clinical and Experimental Trauma Immunology, University Ulm, Ulm, Germany.
| | - Birgit Linkus
- Dept. of Neurology, University of Ulm, School of Medicine, Germany.
| | - Albert C Ludolph
- Dept. of Neurology, University of Ulm, School of Medicine, Germany.
| | - Tobias M Boeckers
- Dept. of Anatomy and Cell Biology, Ulm University, School of Medicine, Germany.
| | - Borna Relja
- Dept. of General and Visceral Surgery, Goethe University, Frankfurt, Germany.
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Ulm, Ulm, Germany.
| | | |
Collapse
|
33
|
Echevarria FD, Formichella CR, Sappington RM. Interleukin-6 Deficiency Attenuates Retinal Ganglion Cell Axonopathy and Glaucoma-Related Vision Loss. Front Neurosci 2017; 11:318. [PMID: 28620279 PMCID: PMC5450377 DOI: 10.3389/fnins.2017.00318] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/19/2017] [Indexed: 11/13/2022] Open
Abstract
The pleotropic cytokine interleukin-6 (IL-6) is implicated in retinal ganglion cell (RGC) survival and degeneration, including that associated with glaucoma. IL-6 protects RGCs from pressure-induced apoptosis in vitro. However, it is unknown how IL-6 impacts glaucomatous degeneration in vivo. To study how IL-6 influences glaucomatous RGC axonopathy, accompanying glial reactivity, and resultant deficits in visual function, we performed neural tracing, histological, and neurobehavioral assessments in wildtype (B6;129SF2/J; WT) and IL-6 knock-out mice (B6;129S2-IL6tm1kopf/J; IL-6-/-) after 8 weeks of unilateral or bilateral microbead-induced glaucoma (microbead occlusion model). IOP increased by 20% following microbead injection in both genotypes (p < 0.05). However, deficits in wound healing at the site of corneal injection were noted. In WT mice, elevated IOP produced degenerating axon profiles and decreased axon density in the optic nerve by 15% (p < 0.01). In IL-6-/- mice, axon density in the optic nerve did not differ between microbead- and saline-injected mice (p > 0.05) and degenerating axon profiles were minimal. Preservation of RGC axons was reflected in visual function, where visual acuity decreased significantly in a time-dependent manner with microbead-induced IOP elevation in WT (p < 0.001), but not IL-6-/- mice (p > 0.05). Despite this preservation of RGC axons and visual acuity, both microbead-injected WT and IL-6-/- mice exhibited a 50% decrease in anterograde CTB transport to the superior colliculus, as compared to saline-injected controls (p < 0.01). Assessment of glial reactivity revealed no genotype- or IOP-dependent changes in retinal astrocytes. IOP elevation decreased microglia density and percent retinal area covered in WT mice (p < 0.05), while IL-6-/- mice exhibited only a decrease in density (p < 0.05). Together, our findings indicate that two defining features of RGC axonopathy—axon transport deficits and structural degeneration of axons—likely occur via independent mechanisms. Our data suggest that IL-6 is part of a mechanism that specifically leads to structural degeneration of axons. Furthermore, its absence is sufficient to prevent both structural degeneration of the optic nerve and vision loss. Overall, our work supports the proposition that functional deficits in axon transport represent a therapeutic window for RGC axonopathy and identify IL-6 signaling as a strong target for such a therapeutic.
Collapse
Affiliation(s)
| | - Cathryn R Formichella
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of MedicineNashville, TN, United States.,Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashville, TN, United States
| | - Rebecca M Sappington
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of MedicineNashville, TN, United States.,Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashville, TN, United States.,Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, United States
| |
Collapse
|
34
|
Lu W, Albalawi F, Beckel JM, Lim JC, Laties AM, Mitchell CH. The P2X7 receptor links mechanical strain to cytokine IL-6 up-regulation and release in neurons and astrocytes. J Neurochem 2017; 141:436-448. [PMID: 28244110 DOI: 10.1111/jnc.13998] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/11/2017] [Accepted: 02/09/2017] [Indexed: 12/15/2022]
Abstract
Mechanical strain in neural tissues can lead to the up-regulation and release of multiple cytokines including interleukin 6 (IL-6). In the retina, the mechanosensitive release of ATP can autostimulate P2X7 receptors on both retinal ganglion cell neurons and optic nerve head astrocytes. Here, we asked whether the purinergic signaling contributed to the IL-6 response to increased intraocular pressure (IOP) in vivo, and stretch or swelling in vitro. Rat and mouse eyes were exposed to non-ischemic elevations in IOP to 50-60 mmHg for 4 h. A PCR array was used to screen cytokine changes, with quantitative (q)PCR used to confirm mRNA elevations and immunoblots used for protein levels. P2X7 antagonist Brilliant Blue G (BBG) and agonist (4-benzoyl-benzoyl)-ATP (BzATP) were injected intravitreally. ELISA was used to quantify IL-6 release from optic nerve head astrocytes or retinal ganglion cells. Receptor identity was confirmed pharmacologically and in P2X7-/- mice, acute elevation of IOP altered retinal expression of multiple cytokine genes. Elevation of IL-6 was greatest, with expression of IL1rn, IL24, Tnf, Csf1, and Lif also increased more than twofold, while expression of Tnfsf11, Gdf9, and Tnfsf4 were reduced. qPCR confirmed the rise in IL-6 and extracellular ATP marker ENTPD1, but not pro-apoptotic genes. Intravitreal injection of P2X7 receptor antagonist BBG prevented the pressure-dependent rise in IL-6 mRNA and protein in the rat retina, while injection of P2X7 receptor agonist BzATP was sufficient to elevate IL-6 expression. IOP elevation increased IL-6 in wild-type but not P2X7R knockout mice. Application of mechanical strain to isolated optic nerve head astrocytes increased IL-6 levels. This response was mimicked by agonist BzATP, but blocked by antagonists BBG and A839977. Stretch or BzATP led to IL-6 release from both astrocytes and isolated retinal ganglion cells. The mechanosensitive up-regulation and release of cytokine IL-6 from the retina involves the P2X7 receptor, with both astrocytes and neurons contributing to the response.
Collapse
Affiliation(s)
- Wennan Lu
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Farraj Albalawi
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Orthodontics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan M Beckel
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pennsylvania, USA
| | - Jason C Lim
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alan M Laties
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Claire H Mitchell
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
McKee CA, Lukens JR. Emerging Roles for the Immune System in Traumatic Brain Injury. Front Immunol 2016. [PMID: 27994591 DOI: 10.3389/fimmu.201600556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Traumatic brain injury (TBI) affects an ever-growing population of all ages with long-term consequences on health and cognition. Many of the issues that TBI patients face are thought to be mediated by the immune system. Primary brain damage that occurs at the time of injury can be exacerbated and prolonged for months or even years by chronic inflammatory processes, which can ultimately lead to secondary cell death, neurodegeneration, and long-lasting neurological impairment. Researchers have turned to rodent models of TBI in order to understand how inflammatory cells and immunological signaling regulate the post-injury response and recovery mechanisms. In addition, the development of numerous methods to manipulate genes involved in inflammation has recently expanded the possibilities of investigating the immune response in TBI models. As results from these studies accumulate, scientists have started to link cells and signaling pathways to pro- and anti-inflammatory processes that may contribute beneficial or detrimental effects to the injured brain. Moreover, emerging data suggest that targeting aspects of the immune response may offer promising strategies to treat TBI. This review will cover insights gained from studies that approach TBI research from an immunological perspective and will summarize our current understanding of the involvement of specific immune cell types and cytokines in TBI pathogenesis.
Collapse
Affiliation(s)
- Celia A McKee
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
36
|
McKee CA, Lukens JR. Emerging Roles for the Immune System in Traumatic Brain Injury. Front Immunol 2016; 7:556. [PMID: 27994591 PMCID: PMC5137185 DOI: 10.3389/fimmu.2016.00556] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) affects an ever-growing population of all ages with long-term consequences on health and cognition. Many of the issues that TBI patients face are thought to be mediated by the immune system. Primary brain damage that occurs at the time of injury can be exacerbated and prolonged for months or even years by chronic inflammatory processes, which can ultimately lead to secondary cell death, neurodegeneration, and long-lasting neurological impairment. Researchers have turned to rodent models of TBI in order to understand how inflammatory cells and immunological signaling regulate the post-injury response and recovery mechanisms. In addition, the development of numerous methods to manipulate genes involved in inflammation has recently expanded the possibilities of investigating the immune response in TBI models. As results from these studies accumulate, scientists have started to link cells and signaling pathways to pro- and anti-inflammatory processes that may contribute beneficial or detrimental effects to the injured brain. Moreover, emerging data suggest that targeting aspects of the immune response may offer promising strategies to treat TBI. This review will cover insights gained from studies that approach TBI research from an immunological perspective and will summarize our current understanding of the involvement of specific immune cell types and cytokines in TBI pathogenesis.
Collapse
Affiliation(s)
- Celia A. McKee
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - John R. Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
37
|
Okada S. The pathophysiological role of acute inflammation after spinal cord injury. Inflamm Regen 2016; 36:20. [PMID: 29259693 PMCID: PMC5725917 DOI: 10.1186/s41232-016-0026-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/10/2016] [Indexed: 11/10/2022] Open
Abstract
Traumatic spinal cord injury (SCI) causes irreparable severe motor and sensory dysfunction. Mechanical trauma rapidly leads to blood-spinal cord barrier disruption, neural cell death, axonal damage, and demyelination, followed by a cascade of secondary injury that expands the additional inflammatory reaction at the lesion site. Although the role of inflammation in this phase is complex, a number of studies have suggested that inflammatory responses spread the damage to the surrounding tissue, induce apoptotic cell death, and impair spontaneous regeneration and functional recovery. However, recent advances in experimental technology, such as the depletion antibodies for a specific fraction of inflammatory cells and the genetically engineered mice deficient only in specific cells, suggest the beneficial aspects of inflammatory cells, such as a neuroprotective effect, the removal of cellular debris, and the attenuation of the inflammatory reaction in general. In this review, I summarize our recent findings about the biological role of inflammatory cells, especially infiltrating neutrophils and activated microglia after SCI. A better understanding of the pathophysiological role of inflammation in the acute phase of SCI will aid in the development of therapeutic strategy to enhance the functional recovery after SCI.
Collapse
Affiliation(s)
- Seiji Okada
- Department of Advanced Initiatives, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan.,Orthopaedics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
38
|
Assessment of systemic cellular inflammatory response after spontaneous intracerebral hemorrhage. Clin Neurol Neurosurg 2016; 150:72-79. [PMID: 27611984 DOI: 10.1016/j.clineuro.2016.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/22/2015] [Accepted: 07/03/2016] [Indexed: 11/23/2022]
Abstract
OBJECTIVE After spontaneous intracerebral hemorrhage (ICH) a local and systemic inflammatory response is activated. Interleukin-6 (IL) is one of most relevant orchestrators of inflammatory responses in the brain and is released from multiple immune cells, including neutrophils. Herby we assessed the relevance of systemic inflammation in patients suffering ICH. METHODS From October 2010 to October 2011 we included in our routine of laboratory investigations besides to C-reactive protein (CRP), the addition of IL-6 and an analysis of the subpopulation of circulating blood cells. Values at admission, at 3rd and 7th day after admission were evaluated. We analyzed 43 patients with non-traumatic ICH; stroke-related ICH or tumor associated hemorrhage were excluded. Outcome variables were 30 and 90-day mortality and NIHSS at discharge. A natural logarithmic transformation of IL-6, lymphocytes, and monocytes was used. RESULTS 8.6% died within 30-days and mortality increased to 39.5% at 90th day. Total leukocytes and neutrophils as well as IL-6 at admission were statistically significant increased among patients who died within 30days after ICH onset (p=0.002). IL-6 and CRP in follow-up (3rd and 7th day) were higher among patients with poor outcome (NIHSS >15). The number of circulating lymphocytes and monocytes was not different in measurement. Leukocytes and neutrophils at 3rd day after admission were augmented in patients with respiratory infection and CRP in follow-up increased if some kind of infection was clinically or microbiologically detected. IL-6 at admission and in follow-up and monocytes at 7th day were related to ICH volume. CRP-values at 3rd or 7th day but not at admission were associated to bigger ICH-volume. The values of IL-6 were highly correlated to 30-day mortality and volume of ICH as CRP only with ICH volume. CONCLUSION After ICH onset a systemic activation of immune system seems to be induced and may be influencing outcome. Peripheral recruitment of leukocytes, especially neutrophils could be a target for future therapeutic interventions. Because of the tighter correlation of IL-6 at admission, it might be more accurate for prognostic issues than CRP.
Collapse
|
39
|
Impact of Increased Astrocyte Expression of IL-6, CCL2 or CXCL10 in Transgenic Mice on Hippocampal Synaptic Function. Brain Sci 2016; 6:brainsci6020019. [PMID: 27322336 PMCID: PMC4931496 DOI: 10.3390/brainsci6020019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
An important aspect of CNS disease and injury is the elevated expression of neuroimmune factors. These factors are thought to contribute to processes ranging from recovery and repair to pathology. The complexity of the CNS and the multitude of neuroimmune factors that are expressed in the CNS during disease and injury is a challenge to an understanding of the consequences of the elevated expression relative to CNS function. One approach to address this issue is the use of transgenic mice that express elevated levels of a specific neuroimmune factor in the CNS by a cell type that normally produces it. This approach can provide basic information about the actions of specific neuroimmune factors and can contribute to an understanding of more complex conditions when multiple neuroimmune factors are expressed. This review summarizes studies using transgenic mice that express elevated levels of IL-6, CCL2 or CXCL10 through increased astrocyte expression. The studies focus on the effects of these neuroimmune factors on synaptic function at the Schaffer collateral to CA1 pyramidal neuron synapse of the hippocampus, a brain region that plays a key role in cognitive function.
Collapse
|
40
|
Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res Bull 2016; 125:19-29. [PMID: 27021169 DOI: 10.1016/j.brainresbull.2016.03.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 12/15/2022]
Abstract
Major depressive disorder (MDD), schizophrenia (SCH), Alzheimer's disease (AD), and Parkinson's disease (PD) are devastating neurological disorders, which increasingly contribute to global morbidity and mortality. Although the pathogenic mechanisms of these conditions are quite diverse, chronic neuroinflammation is one underlying feature shared by all these diseases. Even though the specific root causes of these diseases remain to be identified, evidence indicates that the observed neuroinflammation is initiated by unique pathological features associated with each specific disease. If the initial acute inflammation is not resolved, a chronic neuroinflammatory state develops and ultimately contributes to disease progression. Chronic neuroinflammation is characterized by adverse and non-specific activation of glial cells, which can lead to collateral damage of nearby neurons and other glia. This misdirected neuroinflammatory response is hypothesized to contribute to neuropathology in MDD, SCH, AD, and PD. Physical activity (PA), which is critical for maintenance of whole body and brain health, may also beneficially modify neuroimmune responses. Since PA has neuroimmune-modifying properties, and the common underlying feature of MDD, SCH, AD, and PD is chronic neuroinflammation, we hypothesize that PA could minimize brain diseases by modifying glia-mediated neuroinflammation. This review highlights current evidence supporting the disease-altering potential of PA and exercise through modifications of neuroimmune responses, specifically in MDD, SCH, AD and PD.
Collapse
|
41
|
Schober ME, Requena DF, Abdullah OM, Casper TC, Beachy J, Malleske D, Pauly JR. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury. J Neurotrauma 2016; 33:390-402. [PMID: 26247583 PMCID: PMC4761828 DOI: 10.1089/neu.2015.3945] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI.
Collapse
Affiliation(s)
- Michelle E Schober
- 1 Department of Pediatrics, Division of Critical Care, University of Utah , Salt Lake City, Utah
| | - Daniela F Requena
- 1 Department of Pediatrics, Division of Critical Care, University of Utah , Salt Lake City, Utah
| | - Osama M Abdullah
- 2 Department of Bioengineering, University of Utah , Salt Lake City, Utah
| | - T Charles Casper
- 1 Department of Pediatrics, Division of Critical Care, University of Utah , Salt Lake City, Utah
| | - Joanna Beachy
- 3 Department of Pediatrics, Division of Neonatology, University of Utah , Salt Lake City, Utah
| | - Daniel Malleske
- 3 Department of Pediatrics, Division of Neonatology, University of Utah , Salt Lake City, Utah
| | - James R Pauly
- 4 College of Pharmacy and Spinal Cord and Brain Injury Research Center, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
42
|
Liu J, Copland DA, Theodoropoulou S, Chiu HAA, Barba MD, Mak KW, Mack M, Nicholson LB, Dick AD. Impairing autophagy in retinal pigment epithelium leads to inflammasome activation and enhanced macrophage-mediated angiogenesis. Sci Rep 2016; 6:20639. [PMID: 26847702 PMCID: PMC4742917 DOI: 10.1038/srep20639] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/06/2016] [Indexed: 01/06/2023] Open
Abstract
Age-related decreases in autophagy contribute to the progression of age-related macular degeneration (AMD). We have now studied the interaction between autophagy impaired in retinal pigment epithelium (RPE) and the responses of macrophages. We find that dying RPE cells can activate the macrophage inflammasome and promote angiogenesis. In vitro, inhibiting rotenone-induced autophagy in RPE cells elicits caspase-3 mediated cell death. Co-culture of damaged RPE with macrophages leads to the secretion of IL-1β, IL-6 and nitrite oxide. Exogenous IL-6 protects the dysfunctional RPE but IL-1β causes enhanced cell death. Furthermore, IL-1β toxicity is more pronounced in dysfunctional RPE cells showing reduced IRAK3 gene expression. Co-culture of macrophages with damaged RPE also elicits elevated levels of pro-angiogenic proteins that promote ex vivo choroidal vessel sprouting. In vivo, impaired autophagy in the eye promotes photoreceptor and RPE degeneration and recruitment of inflammasome-activated macrophages. The degenerative tissue environment drives an enhanced pro-angiogenic response, demonstrated by increased size of laser-induced choroidal neovascularization (CNV) lesions. The contribution of macrophages was confirmed by depletion of CCR2+ monocytes, which attenuates CNV in the presence of RPE degeneration. Our results suggest that the interplay between perturbed RPE homeostasis and activated macrophages influences key features of AMD development.
Collapse
Affiliation(s)
- Jian Liu
- School of Clinical Sciences, University of Bristol, Bristol, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - David A Copland
- School of Clinical Sciences, University of Bristol, Bristol, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Hsi An Amy Chiu
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | | | - Ka Wang Mak
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Lindsay B Nicholson
- School of Clinical Sciences, University of Bristol, Bristol, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Andrew D Dick
- School of Clinical Sciences, University of Bristol, Bristol, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Institute of Ophthalmology, University College London, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre, London, UK
| |
Collapse
|
43
|
Gallina D, Zelinka CP, Cebulla CM, Fischer AJ. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity. Exp Neurol 2015; 273:114-25. [PMID: 26272753 DOI: 10.1016/j.expneurol.2015.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 01/06/2023]
Abstract
Reactive microglia and macrophages are prevalent in damaged retinas. Glucocorticoid signaling is known to suppress inflammation and the reactivity of microglia and macrophages. In the vertebrate retina, the glucocorticoid receptor (GCR) is known to be activated and localized to the nuclei of Müller glia (Gallina et al., 2014). Accordingly, we investigated how signaling through GCR influences the survival of neurons using the chick retina in vivo as a model system. We applied intraocular injections of GCR agonist or antagonist, assessed microglial reactivity, and the survival of retinal neurons following different damage paradigms. Microglial reactivity was increased in retinas from eyes that were injected with vehicle, and this reactivity was decreased by GCR-agonist dexamethasone (Dex) and increased by GCR-antagonist RU486. We found that activation of GCR suppresses the reactivity of microglia and inhibited the loss of retinal neurons resulting from excitotoxicity. We provide evidence that the protection-promoting effects of Dex were maintained when the microglia were selectively ablated. Similarly, intraocular injections of Dex protected ganglion cells from colchicine-treatment and protected photoreceptors from damage caused by retinal detachment. We conclude that activation of GCR promotes the survival of ganglion cells in colchicine-damaged retinas, promotes the survival of amacrine and bipolar cells in excitotoxin-damaged retinas, and promotes the survival of photoreceptors in detached retinas. We propose that suppression of microglial reactivity is secondary to activation of GCR in Müller glia, and this mode of signaling is an effective means to lessen the damage and vision loss resulting from different types of retinal damage.
Collapse
Affiliation(s)
- Donika Gallina
- Department of Neuroscience, College of Medicine, Wexner Medical Center, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave., Columbus, OH 43210-1239, USA
| | - Christopher Paul Zelinka
- Department of Neuroscience, College of Medicine, Wexner Medical Center, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave., Columbus, OH 43210-1239, USA
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, College of Medicine, The Ohio State University, 915 Olentangy River Road, Suite 5000, Columbus, OH 43212, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, Wexner Medical Center, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave., Columbus, OH 43210-1239, USA.
| |
Collapse
|
44
|
Johnson KM, Milner R, Crocker SJ. Extracellular matrix composition determines astrocyte responses to mechanical and inflammatory stimuli. Neurosci Lett 2015; 600:104-9. [PMID: 26067407 DOI: 10.1016/j.neulet.2015.06.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 01/19/2023]
Abstract
Astrocytes perform critical homeostatic physiological functions in the central nervous system (CNS) and are robustly responsive to injury, inflammation, or infection. We hypothesized that the components of the extracellular matrix (ECM), which are known to vary during development and in response to disease, determine astrocytic responses to injury and inflammation. We examined the response of primary astrocyte cultures grown on different ECM proteins to a mechanical wound (i.e., scratch). ECM substrates selected were laminin (Ln), vitronectin (Vn), fibronectin (Fn) or Tenascin C (TnC). We found that regrowth of the scratch wound was ECM dependent: recovery was arrested on fibronectin (Fn), almost complete on either Vn, Ln, or TnC. To determine whether ECM responses were also influenced by inflammation, we treated ECM plated cultures with interleukin-1β (IL-1β). We found that IL-1β arrested astrocyte growth on Ln, accelerated astrocyte growth on Fn and had no significant effect on astrocyte growth on TnC or Vn. We also determined that blocking β1integrins, the major class of receptors for all ECM proteins tested, prevented the robust response of astrocytes exposed to TnC, Ln and Vn, and also inhibited the robust effect of IL-1β to stimulate astrocyte growth on Fn. In addition, we evaluated downstream targets of integrin signaling, specifically the mammalian target of rapamycin (mTOR), and determined that activation of this pathway contributed to the response of astrocytes grown on TnC, but not on Ln, Vn or Fn. These findings provide new insights into the role of ECM as a source of heterogeneity of glial responses that may have important implications for neuropathological sequelae.
Collapse
Affiliation(s)
- Kasey M Johnson
- Department of Neuroscience,University of Connecticut School of Medicine, Farmington, CT, USA
| | - Richard Milner
- Department of Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Stephen J Crocker
- Department of Neuroscience,University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
45
|
Kato CD, Alibu VP, Nanteza A, Mugasa CM, Matovu E. Interleukin (IL)-6 and IL-10 Are Up Regulated in Late Stage Trypanosoma brucei rhodesiense Sleeping Sickness. PLoS Negl Trop Dis 2015; 9:e0003835. [PMID: 26090964 PMCID: PMC4474433 DOI: 10.1371/journal.pntd.0003835] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/17/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Sleeping sickness due to Trypanosoma brucei rhodesiense has a wide spectrum of clinical presentations coupled with differences in disease progression and severity across East and Southern Africa. The disease progresses from an early (hemo-lymphatic) stage to the late (meningoencephalitic) stage characterized by presence of parasites in the central nervous system. We hypothesized that disease progression and severity of the neurological response is modulated by cytokines. METHODS A total of 55 sleeping sickness cases and 41 healthy controls were recruited passively at Lwala hospital, in Northern Uganda. A panel of six cytokines (IFN-γ, IL1-β, TNF-α, IL-6, TGF-β and IL-10) were assayed from paired plasma and cerebrospinal fluid (CSF) samples. Cytokine concentrations were analyzed in relation to disease progression, clinical presentation and severity of neurological responses. RESULTS Median plasma levels (pg/ml) of IFN-γ (46.3), IL-6 (61.7), TGF-β (8755) and IL-10 (256.6) were significantly higher in cases compared to controls (p< 0.0001). When early stage and late stage CSF cytokines were compared, IL-10 and IL-6 were up regulated in late stage patients and were associated with a reduction in tremors and cranioneuropathy. IL-10 had a higher staging accuracy with a sensitivity of 85.7% (95% CI, 63.7%-97%) and a specificity of 100% (95% CI, 39.8%-100%) while for IL-6, a specificity of 100% (95% CI, 47.8%-100%) gave a sensitivity of 83.3% (95% CI, 62.2%-95.3%). CONCLUSION Our study demonstrates the role of host inflammatory cytokines in modulating the progression and severity of neurological responses in sleeping sickness. We demonstrate here an up-regulation of IL-6 and IL-10 during the late stage with a potential as adjunct stage biomarkers. Given that both cytokines could potentially be elevated by other CNS infections, our findings should be further validated in a large cohort of patients including those with other inflammatory diseases such as cerebral malaria.
Collapse
Affiliation(s)
- Charles D. Kato
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Vincent P. Alibu
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Ann Nanteza
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Claire M. Mugasa
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Enock Matovu
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| |
Collapse
|
46
|
Karve IP, Taylor JM, Crack PJ. The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 2015; 173:692-702. [PMID: 25752446 DOI: 10.1111/bph.13125] [Citation(s) in RCA: 447] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/09/2015] [Accepted: 02/18/2015] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major cause of death and disability in developed countries. Brain injuries are highly heterogeneous and can also trigger other neurological complications, including epilepsy, depression and dementia. The initial injury often leads to the development of secondary sequelae; cellular hyperexcitability, vasogenic and cytotoxic oedema, hypoxia-ischaemia, oxidative stress and inflammation, all of which influence expansion of the primary lesion. It is widely known that inflammatory events in the brain following TBI contribute to the widespread cell death and chronic tissue degeneration. Neuroinflammation is a multifaceted response involving a number of cell types, both within the CNS and in the peripheral circulation. Astrocytes and microglia, cells of the CNS, are considered key players in initiating an inflammatory response after injury. These cells are capable of secreting various cytokines, chemokines and growth factors, and following injury to the CNS, undergo changes in morphology. Ultimately, these changes can influence the local microenvironment and thus determine the extent of damage and subsequent repair. This review will focus on the roles of microglia and astrocytes following TBI, highlighting some of the key processes, pathways and mediators involved in this response. Additionally, both the beneficial and the detrimental aspects of these cellular responses will be examined using evidence from animal models and human post-mortem TBI studies.
Collapse
Affiliation(s)
- Ila P Karve
- Neuropharmacology Laboratory, Department of Pharmacology, University of Melbourne, Melbourne, Vic., Australia
| | - Juliet M Taylor
- Neuropharmacology Laboratory, Department of Pharmacology, University of Melbourne, Melbourne, Vic., Australia
| | - Peter J Crack
- Neuropharmacology Laboratory, Department of Pharmacology, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
47
|
Fischer AJ, Zelinka C, Milani-Nejad N. Reactive retinal microglia, neuronal survival, and the formation of retinal folds and detachments. Glia 2014; 63:313-27. [PMID: 25231952 DOI: 10.1002/glia.22752] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
Abstract
Reactive microglia and macrophages are prevalent in damaged retinas. Accordingly, we investigate how the activation or ablation of microglia/macrophages influences the survival of neurons in the chick retina in vivo. We applied intraocular injections of interleukin 6 (IL6) to stimulate the reactivity of microglia/macrophages and clodronate-liposomes to ablate microglia/macrophages. Activation of the microglia/macrophages with IL6 delays the death of retinal neurons from N-methyl-D-aspartate (NMDA) -induced excitotoxicity. In addition, activation of microglia/macrophages combined with colchicine-mediated retinal damage diminished the survival of ganglion cells. Application of IL6 after an excitotoxic insult greatly exacerbates the damage, and causes widespread retinal detachments and folds, accompanied by accumulation of microglia/macrophages in the subretinal space. Damage-induced retinal folds and detachments were significantly reduced by the ablation of microglia/macrophages. We conclude that microglial reactivity is detrimental to the survival of ganglion cells in colchicine-damaged retinas and detrimental to the survival of photoreceptors in retinal folds. In addition, we conclude that IL6-treatment transiently protects amacrine and bipolar cells against an excitotoxic insult. We propose that suppressing reactivity of microglia/macrophages may be an effective means to lessen the damage and vision loss resulting from damage, in particular during retinal detachment injuries.
Collapse
Affiliation(s)
- Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio
| | | | | |
Collapse
|
48
|
Chatzipanteli K, Vitarbo E, Alonso OF, Bramlett HM, Dietrich WD. Temporal profile of cerebrospinal fluid, plasma, and brain interleukin-6 after normothermic fluid-percussion brain injury: effect of secondary hypoxia. Ther Hypothermia Temp Manag 2014; 2:167-75. [PMID: 23667780 DOI: 10.1089/ther.2012.0016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine that may play multiple roles in the pathogenesis of traumatic brain injury (TBI). The present study determined time-dependent changes in IL-6 concentrations in vulnerable brain regions, cerebrospinal fluid (CSF) samples, and plasma after normothermic TBI. Because secondary insults are common in head injured patients, we also assessed the consequences of a post-traumatic secondary hypoxic insult on this pleiotropic cytokine. Male Sprague-Dawley rats were intubated, anesthetized, and underwent a moderate parasagittal fluid-percussion brain injury (1.8-2.1 atm, 37°C) followed by either 30 minutes of normoxic or hypoxic (pO₂ = 30-40 mmHg) gas levels. Rats were sacrificed 3, 6, or 24 hours after TBI or shamoperated procedures. Brain samples, including the ipsilateral cerebral cortex and hippocampus were dissected and analyzed. Plasma and CSF samples were collected at similar times and stored at -80°C until analysis. IL-6 levels were significantly increased ( p < 0.05) at 3, 6, and 24 hours in the cerebral cortex and at 6 hours in the hippocampus after TBI. IL-6 levels in the TBI normoxic group for both structures returned to control levels by 24 hours. Plasma levels of IL-6 were elevated at all time points, while CSF levels were high at 3 and 6 hours, but normalized by 24 hours. Post-traumatic hypoxia led to significantly elevated ( p < 0.05) IL-6 protein levels in the cerebral cortex at 24 hours compared to sham-operated controls. These findings demonstrate that moderate TBI leads to an early increase in IL-6 brain, plasma, and CSF protein levels. Secondary post-traumatic hypoxia, a common secondary injury mechanism, led to prolonged elevations in plasma IL-6 levels that may participate in the pathophysiology of this complicated TBI model.
Collapse
|
49
|
Lukovic D, Valdés-Sanchez L, Sanchez-Vera I, Moreno-Manzano V, Stojkovic M, Bhattacharya SS, Erceg S. Brief Report: Astrogliosis Promotes Functional Recovery of Completely Transected Spinal Cord Following Transplantation of hESC-Derived Oligodendrocyte and Motoneuron Progenitors. Stem Cells 2014; 32:594-599. [DOI: 10.1002/stem.1562] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Spinal cord injury results in neural loss and consequently motor and sensory impairment below the injury. Reactive astrocytes contribute to formation of glial scar, thus impeding axonal regeneration, through secretion of extracellular matrix molecules, chondroitin sulfate proteoglycans (CSPGs). In this study, we analyze lesion site tissue to reveal the possible mechanism underlying the functional recovery after cell transplantation of human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cell (OPC) and motoneuron progenitors (MP) and propose that transplanted cells increase astrogliosis through the regenerative signaling pathways activated in the host tissue that may crucial for restoring locomotor ability. We show that the transplantation of hESC-derived OPC and MP promotes astrogliosis, through activation of Jagged1-dependent Notch and Jak/STAT signaling that support axonal survival. The transplanted cells in synergism with reactive astrocytes create permissive environment in which the expression of detrimental genes (Cspg, Tenascins, and genes involved in SLIT/ROBO signaling) was significantly decreased while expression of beneficial ones (Laminins and Fibronectin) was increased. According to our data, this mechanism is activated in all transplantation groups independently of the level of locomotor recovery. These results indicate that modifying the beneficial function of reactive astrocytes could be a feasible therapeutic strategy for spinal cord injury in future. Stem Cells 2014;32:594–599
Collapse
Affiliation(s)
- Dunja Lukovic
- CABIMER (Centro Andaluz de Biología Molecular y Medicina Regenerativa), Avda. Americo Vespucio s/n, Parque Científico y Tecnológico Cartuja, Sevilla, Spain
| | - Lourdes Valdés-Sanchez
- CABIMER (Centro Andaluz de Biología Molecular y Medicina Regenerativa), Avda. Americo Vespucio s/n, Parque Científico y Tecnológico Cartuja, Sevilla, Spain
| | - Irene Sanchez-Vera
- CABIMER (Centro Andaluz de Biología Molecular y Medicina Regenerativa), Avda. Americo Vespucio s/n, Parque Científico y Tecnológico Cartuja, Sevilla, Spain
| | | | - Miodrag Stojkovic
- Spebo Medical, Leskovac, Serbia
- Human Genetics Faculty of Medical Sciences, Kragujevac, Serbia
| | - Shomi S. Bhattacharya
- CABIMER (Centro Andaluz de Biología Molecular y Medicina Regenerativa), Avda. Americo Vespucio s/n, Parque Científico y Tecnológico Cartuja, Sevilla, Spain
| | - Slaven Erceg
- CABIMER (Centro Andaluz de Biología Molecular y Medicina Regenerativa), Avda. Americo Vespucio s/n, Parque Científico y Tecnológico Cartuja, Sevilla, Spain
| |
Collapse
|
50
|
Jha MK, Seo M, Kim JH, Kim BG, Cho JY, Suk K. The secretome signature of reactive glial cells and its pathological implications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2418-28. [PMID: 23269363 DOI: 10.1016/j.bbapap.2012.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/23/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022]
|