1
|
Abstract
Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.
Collapse
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| |
Collapse
|
2
|
Rey Hipolito AG, van der Heijden ME, Sillitoe RV. Physiology of Dystonia: Animal Studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:163-215. [PMID: 37482392 DOI: 10.1016/bs.irn.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is currently ranked as the third most prevalent motor disorder. It is typically characterized by involuntary muscle over- or co-contractions that can cause painful abnormal postures and jerky movements. Dystonia is a heterogenous disorder-across patients, dystonic symptoms vary in their severity, body distribution, temporal pattern, onset, and progression. There are also a growing number of genes that are associated with hereditary dystonia. In addition, multiple brain regions are associated with dystonic symptoms in both genetic and sporadic forms of the disease. The heterogeneity of dystonia has made it difficult to fully understand its underlying pathophysiology. However, the use of animal models has been used to uncover the complex circuit mechanisms that lead to dystonic behaviors. Here, we summarize findings from animal models harboring mutations in dystonia-associated genes and phenotypic animal models with overt dystonic motor signs resulting from spontaneous mutations, neural circuit perturbations, or pharmacological manipulations. Taken together, an emerging picture depicts dystonia as a result of brain-wide network dysfunction driven by basal ganglia and cerebellar dysfunction. In the basal ganglia, changes in dopaminergic, serotonergic, noradrenergic, and cholinergic signaling are found across different animal models. In the cerebellum, abnormal burst firing activity is observed in multiple dystonia models. We are now beginning to unveil the extent to which these structures mechanistically interact with each other. Such mechanisms inspire the use of pre-clinical animal models that will be used to design new therapies including drug treatments and brain stimulation.
Collapse
Affiliation(s)
- Alejandro G Rey Hipolito
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
3
|
Sng KS, Li G, Zhou LY, Song YJ, Chen XQ, Wang YJ, Yao M, Cui XJ. Ginseng extract and ginsenosides improve neurological function and promote antioxidant effects in rats with spinal cord injury: A meta-analysis and systematic review. J Ginseng Res 2022; 46:11-22. [PMID: 35058723 PMCID: PMC8753526 DOI: 10.1016/j.jgr.2021.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) is defined as damage to the spinal cord that temporarily or permanently changes its function. There is no definite treatment established for neurological complete injury patients. This study investigated the effect of ginseng extract and ginsenosides on neurological recovery and antioxidant efficacies in rat models following SCI and explore the appropriate dosage. Searches were done on PubMed, Embase, and Chinese databases, and animal studies matches the inclusion criteria were selected. Pair-wise meta-analysis and subgroup analysis were performed. Ten studies were included, and the overall methodological qualities were low quality. The result showed ginseng extract and ginsenosides significantly improve neurological function, through the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale (pooled MD = 4.40; 95% CI = 3.92 to 4.88; p < 0.00001), significantly decrease malondialdehyde (MDA) (n = 290; pooled MD = −2.19; 95% CI = −3.16 to −1.22; p < 0.0001) and increase superoxide dismutase (SOD) levels (n = 290; pooled MD = 2.14; 95% CI = 1.45 to 2.83; p < 0.00001). Both low (<25 mg/kg) and high dosage (≥25 mg/kg) showed significant improvement in the motor function recovery in SCI rats. Collectively, this review suggests ginseng extract and ginsenosides has a protective effect on SCI, with good safety and a clear mechanism of action and may be suitable for future clinical trials and applications.
Collapse
|
4
|
Enomoto A, Seki S, Tanaka S, Ishihama K, Yamanishi T, Kogo M, Hamada S. Development of resurgent and persistent sodium currents in mesencephalic trigeminal neurons. J Neurosci Res 2017; 96:305-312. [PMID: 28752895 DOI: 10.1002/jnr.24134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022]
Abstract
Sodium channels play multiple roles in the formation of neural membrane properties in mesencephalic trigeminal (Mes V) neurons and in other neural systems. Mes V neurons exhibit conditional robust high-frequency spike discharges. As previously reported, resurgent and persistent sodium currents (INaR and INaP , respectively) may carry small currents at subthreshold voltages that contribute to generation of spike firing. These currents play an important role in maintaining and allowing high-frequency spike discharge during a burst. In the present study, we investigated the developmental changes in tetrodotoxin-sensitive INaR and INaP underlying high-frequency spike discharges in Mes V neurons. Whole-cell patch-clamp recordings showed that both current densities increased one and a half times from postnatal day (P) 0-6 neurons to P7-14 neurons. Although these neurons do not exhibit subthreshold oscillations or burst discharges with high-frequency firing, INaR and INaP do exist in Mes V neurons at P0-6. When the spike frequency at rheobase was examined in firing Mes V neurons, the developmental change in firing frequency among P7-14 neurons was significant. INaR and INaP density at -40 mV also increased significantly among P7-14 neurons. The change to an increase in excitability in the P7-14 group could result from this quantitative change in INaP. In neurons older than P7 that exhibit repetitive firing, quantitative increases in INaR and INaP density may be major factors that facilitate and promote high-frequency firing as a function of age in Mes V neurons.
Collapse
Affiliation(s)
- Akifumi Enomoto
- Department of Oral and Maxillofacial Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- 1st Department of Oral Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Soju Seki
- 1st Department of Oral Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Susumu Tanaka
- 1st Department of Oral Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Kohji Ishihama
- 1st Department of Oral Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Tadashi Yamanishi
- 1st Department of Oral Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Mikihiko Kogo
- 1st Department of Oral Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Suguru Hamada
- Department of Oral and Maxillofacial Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
5
|
Richter A, Hamann M, Wissel J, Volk HA. Dystonia and Paroxysmal Dyskinesias: Under-Recognized Movement Disorders in Domestic Animals? A Comparison with Human Dystonia/Paroxysmal Dyskinesias. Front Vet Sci 2015; 2:65. [PMID: 26664992 PMCID: PMC4672229 DOI: 10.3389/fvets.2015.00065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022] Open
Abstract
Dystonia is defined as a neurological syndrome characterized by involuntary sustained or intermittent muscle contractions causing twisting, often repetitive movements, and postures. Paroxysmal dyskinesias are episodic movement disorders encompassing dystonia, chorea, athetosis, and ballism in conscious individuals. Several decades of research have enhanced the understanding of the etiology of human dystonia and dyskinesias that are associated with dystonia, but the pathophysiology remains largely unknown. The spontaneous occurrence of hereditary dystonia and paroxysmal dyskinesia is well documented in rodents used as animal models in basic dystonia research. Several hyperkinetic movement disorders, described in dogs, horses and cattle, show similarities to these human movement disorders. Although dystonia is regarded as the third most common movement disorder in humans, it is often misdiagnosed because of the heterogeneity of etiology and clinical presentation. Since these conditions are poorly known in veterinary practice, their prevalence may be underestimated in veterinary medicine. In order to attract attention to these movement disorders, i.e., dystonia and paroxysmal dyskinesias associated with dystonia, and to enhance interest in translational research, this review gives a brief overview of the current literature regarding dystonia/paroxysmal dyskinesia in humans and summarizes similar hereditary movement disorders reported in domestic animals.
Collapse
Affiliation(s)
- Angelika Richter
- Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, Leipzig, Germany
| | - Melanie Hamann
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Free University Berlin, Berlin, Germany
| | - Jörg Wissel
- Department of Neurological Rehabilitation and Physical Therapy, Vivantes Hospital Spandau and Humboldt Hospital, Berlin, Germany
- Department of Neurology, Vivantes Hospital Spandau and Humboldt Hospital, Berlin, Germany
| | - Holger A. Volk
- Clinical Science and Services, The Royal Veterinary College, Hatfield, UK
| |
Collapse
|
6
|
Makinson CD, Dutt K, Lin F, Papale LA, Shankar A, Barela AJ, Liu R, Goldin AL, Escayg A. An Scn1a epilepsy mutation in Scn8a alters seizure susceptibility and behavior. Exp Neurol 2015; 275 Pt 1:46-58. [PMID: 26410685 DOI: 10.1016/j.expneurol.2015.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 09/03/2015] [Accepted: 09/12/2015] [Indexed: 11/26/2022]
Abstract
Understanding the role of SCN8A in epilepsy and behavior is critical in light of recently identified human SCN8A epilepsy mutations. We have previously demonstrated that Scn8a(med) and Scn8a(med-jo) mice carrying mutations in the Scn8a gene display increased resistance to flurothyl and kainic acid-induced seizures; however, they also exhibit spontaneous absence seizures. To further investigate the relationship between altered SCN8A function and epilepsy, we introduced the SCN1A-R1648H mutation, identified in a family with generalized epilepsy with febrile seizures plus (GEFS+), into the corresponding position (R1627H) of the mouse Scn8a gene. Heterozygous R1627H mice exhibited increased resistance to some forms of pharmacologically and electrically induced seizures and the mutant Scn8a allele ameliorated the phenotype of Scn1a-R1648H mutants. Hippocampal slices from heterozygous R1627H mice displayed decreased bursting behavior compared to wild-type littermates. Paradoxically, at the homozygous level, R1627H mice did not display increased seizure resistance and were susceptible to audiogenic seizures. We furthermore observed increased hippocampal pyramidal cell excitability in heterozygous and homozygous Scn8a-R1627H mutants, and decreased interneuron excitability in heterozygous Scn8a-R1627H mutants. These results expand the phenotypes associated with disruption of the Scn8a gene and demonstrate that an Scn8a mutation can both confer seizure protection and increase seizure susceptibility.
Collapse
Affiliation(s)
| | - Karoni Dutt
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
| | - Frank Lin
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Ligia A Papale
- Department of Human Genetics, Emory University, Atlanta, GA 30022, USA
| | - Anupama Shankar
- Department of Human Genetics, Emory University, Atlanta, GA 30022, USA
| | - Arthur J Barela
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
| | - Robert Liu
- Department of Biology, Emory University, Atlanta, GA 30022, USA
| | - Alan L Goldin
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA.
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA 30022, USA.
| |
Collapse
|
7
|
Blanchard MG, Willemsen MH, Walker JB, Dib-Hajj SD, Waxman SG, Jongmans MCJ, Kleefstra T, van de Warrenburg BP, Praamstra P, Nicolai J, Yntema HG, Bindels RJM, Meisler MH, Kamsteeg EJ. De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. J Med Genet 2015; 52:330-7. [PMID: 25725044 PMCID: PMC4413743 DOI: 10.1136/jmedgenet-2014-102813] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/05/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mutations of SCN8A encoding the neuronal voltage-gated sodium channel NaV1.6 are associated with early-infantile epileptic encephalopathy type 13 (EIEE13) and intellectual disability. Using clinical exome sequencing, we have detected three novel de novo SCN8A mutations in patients with intellectual disabilities, and variable clinical features including seizures in two patients. To determine the causality of these SCN8A mutations in the disease of those three patients, we aimed to study the (dys)function of the mutant sodium channels. METHODS The functional consequences of the three SCN8A mutations were assessed using electrophysiological analyses in transfected cells. Genotype-phenotype correlations of these and other cases were related to the functional analyses. RESULTS The first mutant displayed a 10 mV hyperpolarising shift in voltage dependence of activation (gain of function), the second did not form functional channels (loss of function), while the third mutation was functionally indistinguishable from the wildtype channel. CONCLUSIONS Comparison of the clinical features of these patients with those in the literature suggests that gain-of-function mutations are associated with severe EIEE, while heterozygous loss-of-function mutations cause intellectual disability with or without seizures. These data demonstrate that functional analysis of missense mutations detected by clinical exome sequencing, both inherited and de novo, is valuable for clinical interpretation in the age of massive parallel sequencing.
Collapse
Affiliation(s)
- Maxime G Blanchard
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaclyn B Walker
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sulayman D Dib-Hajj
- The Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, Connecticut, USA The Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Stephen G Waxman
- The Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, Connecticut, USA The Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Marjolijn C J Jongmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Praamstra
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands Epilepsy Center Kempenhaeghe, Heeze, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Hess EJ, Jinnah H. Mouse Models of Dystonia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Modeling Disorders of Movement. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Assessment of Movement Disorders in Rodents. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Black V, Garosi L, Lowrie M, Harvey RJ, Gale J. Phenotypic characterisation of canine epileptoid cramping syndrome in the Border terrier. J Small Anim Pract 2013; 55:102-7. [PMID: 24372194 PMCID: PMC4277704 DOI: 10.1111/jsap.12170] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To characterise the phenotype of Border terriers suspected to be affected by canine epileptoid cramping syndrome and to identify possible contributing factors. METHODS Owners of Border terriers with suspected canine epileptoid cramping syndrome were invited to complete an online questionnaire. The results of these responses were collated and analysed. RESULTS Twenty-nine Border terriers were included. Most affected dogs had their first episode before 3 years of age (range: 0·2 to 7·0 years). The majority of episodes lasted between 2 and 30 minutes (range: 0·5 to 150 minutes). The most frequent observations during the episodes were difficulty in walking (27 of 29), mild tremor (21 of 29) and dystonia (22 of 29). Episodes most frequently affected all four limbs (25 of 29) and the head and neck (21 of 29). Borborygmi were reported during episodes in 11 of 29 dogs. Episodes of vomiting and diarrhoea occurred in 14 of 29, with 50% of these being immediately before or after episodes of canine epileptoid cramping syndrome (7 of 14). Most owners (26 of 29) had changed their dog's diet, with approximately 50% (14 of 26) reporting a subsequent reduction in the frequency of episodes. CLINICAL SIGNIFICANCE This study demonstrates similarities in the phenotype of canine epileptoid cramping syndrome to paroxysmal dystonic choreoathetosis, a paroxysmal dyskinesia reported in humans. This disorder appears to be associated with gastrointestinal signs in some dogs and appears at least partially responsive to dietary adjustments.
Collapse
Affiliation(s)
- V Black
- Davies Veterinary Specialists, Higham Gobion
| | - L Garosi
- Davies Veterinary Specialists, Higham Gobion
| | - M Lowrie
- Davies Veterinary Specialists, Higham Gobion
| | - R J Harvey
- Department of Pharmacology, UCL School of Pharmacy, London
| | | |
Collapse
|
12
|
Mettlach G, Polo-Parada L, Peca L, Rubin CT, Plattner F, Bibb JA. Enhancement of neuromuscular dynamics and strength behavior using extremely low magnitude mechanical signals in mice. J Biomech 2013; 47:162-7. [PMID: 24157062 DOI: 10.1016/j.jbiomech.2013.09.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022]
Abstract
Exercise in general, and mechanical signals in particular, help ameliorate the neuromuscular symptoms of aging and possibly other neurodegenerative disorders by enhancing muscle function. To better understand the salutary mechanisms of such physical stimuli, we evaluated the potential for low intensity mechanical signals to promote enhanced muscle dynamics. The effects of daily brief periods of low intensity vibration (LIV) on neuromuscular functions and behavioral correlates were assessed in mice. Physiological analysis revealed that LIV increased isometric force production in semitendinosus skeletal muscle. This effect was evident in both young and old mice. Isometric force recordings also showed that LIV reduced the fatiguing effects of intensive synaptic muscle stimulation. Furthermore, LIV increased evoked neurotransmitter release at neuromuscular synapses but had no effect on spontaneous end plate potential amplitude or frequency. In behavioral studies, LIV increased mouse grip strength and potentiated initial motor activity in a novel environment. These results provide evidence for the efficacy of LIV in producing changes in the neuromuscular system that translate into performance gains at a behavioral scale.
Collapse
Affiliation(s)
- Gabriel Mettlach
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, University of Missouri, Dalton Cardiovascular Research Center, Columbia, Missouri, USA
| | - Lauren Peca
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Florian Plattner
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James A Bibb
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Packer RA, Patterson EE, Taylor JF, Coates JR, Schnabel RD, O'Brien DP. Characterization and mode of inheritance of a paroxysmal dyskinesia in Chinook dogs. J Vet Intern Med 2011; 24:1305-13. [PMID: 21054538 DOI: 10.1111/j.1939-1676.2010.0629.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Paroxysmal dyskinesias are episodes of abnormal, involuntary movement or muscle tone, distinguished from seizures by the character of the episode and lack of seizure activity on ictal EEG. HYPOTHESIS Paroxysmal dyskinesia is an inherited, autosomal recessive disorder in Chinook dogs. ANIMALS Families of Chinook dogs with paroxysmal dyskinesia. METHODS Pedigrees and medical histories were reviewed for 299 Chinook dogs. A family of 51 dogs was used for analysis. Episodes were classified as seizures, paroxysmal dyskinesia, or unknown, and segregation analysis was performed. RESULTS Paroxysmal dyskinesia was identified in 16 of 51 dogs and characterized by an inability to stand or ambulate, head tremors, and involuntary flexion of 1 or multiple limbs, without autonomic signs or loss of consciousness. Episode duration varied from minutes to an hour. Inter-ictal EEGs recorded on 2 dogs with dyskinesia were normal. Three dogs with dyskinesia also had generalized tonic-clonic seizures. One of 51 dogs had episodes of undetermined type. Phenotype was unknown for 6 of 51 dogs, and 28 dogs were unaffected. Segregation was consistent with an autosomal recessive trait. CONCLUSIONS AND CLINICAL IMPORTANCE This movement disorder is prevalent in the Chinook breed, and consistent with a partially penetrant autosomal recessive or polygenic trait. Insufficient evidence exists for definitive localization; episodes may be of basal nuclear origin, but atypical seizures and muscle membrane disorders remain possible etiologies. The generalized seizures may be a variant phenotype of the same mutation that results in dyskinesia, or the 2 syndromes may be independent.
Collapse
Affiliation(s)
- R A Packer
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Lange N, Hamann M, Shashidharan P, Richter A. Behavioural and pharmacological examinations in a transgenic mouse model of early-onset torsion dystonia. Pharmacol Biochem Behav 2010; 97:647-55. [PMID: 21078339 DOI: 10.1016/j.pbb.2010.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 10/31/2010] [Accepted: 11/04/2010] [Indexed: 11/30/2022]
Abstract
Early-onset torsion dystonia is an autosomal dominant movement disorder associated with the DYT1 gene (TOR1A) defect which results in a deletion of a glutamic acid residue in the protein torsinA. The pathophysiology of dystonia is poorly understood. Well characterized animal models can help to give insights into the underlying mechanisms and thereby to develop new therapeutics. In the present study, we further characterized transgenic DYT1 mice, which were initially described to exhibit "dystonia-like" postures. In the present study, several behavioural tests in untreated animals did not show strong differences between transgenic and control mice, but nearly all transgenic mice showed "dystonia-like" postures. However, these movements, also observed in control mice, have to be regarded as a clasping reflex. Since dystonia is thought to be related to dopaminergic dysfunctions, pharmacological investigations have been performed to clarify if dopaminergic substances alter motor behaviour in transgenic mice. Chronic treatment with L-DOPA (combined with carbidopa) enhanced the hindlimb claspings only in transgenic mice, while acute applications of drugs, which exert more selective effects on the dopaminergic system, caused similar reactions in transgenic mice and control mice. Therefore, these data do not provide clear evidence for dysfunctions of the dopaminergic system in this mouse model.
Collapse
Affiliation(s)
- Nikola Lange
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
15
|
Sun L, Lam WP, Wong YW, Lam LH, Tang HC, Wai MS, Mak YT, Pan F, Yew DT. Permanent deficits in brain functions caused by long-term ketamine treatment in mice. Hum Exp Toxicol 2010; 30:1287-96. [PMID: 21056951 DOI: 10.1177/0960327110388958] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ketamine, an injectable anesthetic, is also a popular recreational drug used by young adults worldwide. Ketamine is a non-competitive antagonist of N-methyl-d-aspartate receptor, which plays important roles in synaptic plasticity and neuronal learning. Most previous studies have examined the immediate and short-term effects of ketamine, which include learning and cognitive deficits plus impairment of working memory, whereas little is known about the long-term effects of repeated ketamine injections of common or usual recreational doses. Therefore, we aimed to evaluate the deficits in brain functions with behavioral tests, including wire hang, hot plate and water maze tests, plus examine prefrontal cortex apoptotic markers, including Bax, Bcl-2 and caspase-3, in mice treated with 6 months of daily ketamine administration. In our study, following 6 months of ketamine injection, mice showed significant deterioration in neuromuscular strength and nociception 4 hours post-dose, but learning and working memory were not affected nor was there significant apoptosis in the prefrontal cortex. Our research revealed the important clinical finding that long-term ketamine abuse with usual recreational doses can detrimentally affect neuromuscular strength and nociception as part of measurable, stable and persistent deficits in brain function.
Collapse
Affiliation(s)
- L Sun
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice. Neuropsychopharmacology 2009; 34:501-8. [PMID: 18563058 DOI: 10.1038/npp.2008.95] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have reported that hydrogen (H(2)) acts as an efficient antioxidant by gaseous rapid diffusion. When water saturated with hydrogen (hydrogen water) was placed into the stomach of a rat, hydrogen was detected at several microM level in blood. Because hydrogen gas is unsuitable for continuous consumption, we investigated using mice whether drinking hydrogen water ad libitum, instead of inhaling hydrogen gas, prevents cognitive impairment by reducing oxidative stress. Chronic physical restraint stress to mice enhanced levels of oxidative stress markers, malondialdehyde and 4-hydroxy-2-nonenal, in the brain, and impaired learning and memory, as judged by three different methods: passive avoidance learning, object recognition task, and the Morris water maze. Consumption of hydrogen water ad libitum throughout the whole period suppressed the increase in the oxidative stress markers and prevented cognitive impairment, as judged by all three methods, whereas hydrogen water did not improve cognitive ability when no stress was provided. Neural proliferation in the dentate gyrus of the hippocampus was suppressed by restraint stress, as observed by 5-bromo-2'-deoxyuridine incorporation and Ki-67 immunostaining, proliferation markers. The consumption of hydrogen water ameliorated the reduced proliferation although the mechanistic link between the hydrogen-dependent changes in neurogenesis and cognitive impairments remains unclear. Thus, continuous consumption of hydrogen water reduces oxidative stress in the brain, and prevents the stress-induced decline in learning and memory caused by chronic physical restraint. Hydrogen water may be applicable for preventive use in cognitive or other neuronal disorders.
Collapse
|
17
|
Royeck M, Horstmann MT, Remy S, Reitze M, Yaari Y, Beck H. Role of Axonal NaV1.6 Sodium Channels in Action Potential Initiation of CA1 Pyramidal Neurons. J Neurophysiol 2008; 100:2361-80. [DOI: 10.1152/jn.90332.2008] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In many neuron types, the axon initial segment (AIS) has the lowest threshold for action potential generation. Its active properties are determined by the targeted expression of specific voltage-gated channel subunits. We show that the Na+ channel NaV1.6 displays a striking aggregation at the AIS of cortical neurons. To assess the functional role of this subunit, we used Scn8a med mice that are deficient for NaV1.6 subunits but still display prominent Na+ channel aggregation at the AIS. In CA1 pyramidal cells from Scn8a med mice, we found a depolarizing shift in the voltage dependence of activation of the transient Na+ current ( INaT), indicating that NaV1.6 subunits activate at more negative voltages than other NaV subunits. Additionally, persistent and resurgent Na+ currents were significantly reduced. Current-clamp recordings revealed a significant elevation of spike threshold in Scn8a med mice as well as a shortening of the estimated delay between spike initiation at the AIS and its arrival at the soma. In combination with simulations using a realistic computer model of a CA1 pyramidal cell, our results imply that a hyperpolarized voltage dependence of activation of AIS NaV1.6 channels is important both in determining spike threshold and localizing spike initiation to the AIS. In addition to altered spike initiation, Scn8a med mice also showed a strongly reduced spike gain as expected with combined changes in persistent and resurgent currents and spike threshold. These results suggest that NaV1.6 subunits at the AIS contribute significantly to its role as spike trigger zone and shape repetitive discharge properties of CA1 neurons.
Collapse
|
18
|
Ohsawa I, Nishimaki K, Murakami Y, Suzuki Y, Ishikawa M, Ohta S. Age-dependent neurodegeneration accompanying memory loss in transgenic mice defective in mitochondrial aldehyde dehydrogenase 2 activity. J Neurosci 2008; 28:6239-49. [PMID: 18550766 PMCID: PMC6670537 DOI: 10.1523/jneurosci.4956-07.2008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 05/02/2008] [Accepted: 05/04/2008] [Indexed: 01/22/2023] Open
Abstract
Oxidative stress may underlie age-dependent memory loss and cognitive decline. Toxic aldehydes, including 4-hydroxy-2-nonenal (HNE), an end product of lipid peroxides, are known to accumulate in the brain in neurodegenerative disease. We have previously shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) detoxifies HNE by oxidizing its aldehyde group. To investigate the role of such toxic aldehydes, we produced transgenic mice, which expressed a dominant-negative form of ALDH2 in the brain. The mice had decreased ability to detoxify HNE in their cortical neurons and accelerated accumulation of HNE in the brain. Consequently, their lifespan was shortened and age-dependent neurodegeneration and hyperphosphorylation of tau were observed. Object recognition and Morris water maze tests revealed that the onset of cognitive impairment correlated with the degeneration, which was further accelerated by APOE (apolipoprotein E) knock-out; therefore, the accumulation of toxic aldehydes is by itself critical in the progression of neurodegenerative disease, which could be suppressed by ALDH2.
Collapse
Affiliation(s)
- Ikuroh Ohsawa
- Department of Biochemistry and Cell Biology and
- The Center of Molecular Hydrogen Medicine, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Kawasaki 211-8533, Japan
| | | | | | - Yuko Suzuki
- Department of Biochemistry and Cell Biology and
| | | | - Shigeo Ohta
- Department of Biochemistry and Cell Biology and
| |
Collapse
|
19
|
Grounds MD, Radley HG, Lynch GS, Nagaraju K, De Luca A. Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy. Neurobiol Dis 2008; 31:1-19. [PMID: 18499465 DOI: 10.1016/j.nbd.2008.03.008] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/20/2008] [Accepted: 03/24/2008] [Indexed: 11/19/2022] Open
Abstract
This review discusses various issues to consider when developing standard operating procedures for pre-clinical studies in the mdx mouse model of Duchenne muscular dystrophy (DMD). The review describes and evaluates a wide range of techniques used to measure parameters of muscle pathology in mdx mice and identifies some basic techniques that might comprise standardised approaches for evaluation. While the central aim is to provide a basis for the development of standardised procedures to evaluate efficacy of a drug or a therapeutic strategy, a further aim is to gain insight into pathophysiological mechanisms in order to identify other therapeutic targets. The desired outcome is to enable easier and more rigorous comparison of pre-clinical data from different laboratories around the world, in order to accelerate identification of the best pre-clinical therapies in the mdx mouse that will fast-track translation into effective clinical treatments for DMD.
Collapse
Affiliation(s)
- Miranda D Grounds
- School of Anatomy and Human Biology, the University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
20
|
Richter F, Hamann M, Richter A. Moderate degeneration of nigral neurons after repeated but not after single intrastriatal injections of low doses of 6-hydroxydopamine in mice. Brain Res 2008; 1188:148-56. [DOI: 10.1016/j.brainres.2007.09.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 11/27/2022]
|
21
|
Richter F, Hamann M, Richter A. Chronic rotenone treatment induces behavioral effects but no pathological signs of parkinsonism in mice. J Neurosci Res 2007; 85:681-91. [PMID: 17171705 DOI: 10.1002/jnr.21159] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been hypothesized that exposures to neurotoxic pesticides together with aging and genetic factors increase the risk for developing Parkinson's disease (PD) which is characterized by a progressive degeneration of the nigrostriatal dopaminergic pathway. Chronic treatment with the pesticide rotenone has been reported to induce parkinsonism in rats. Although transgenic mice (but not transgenic rats) are available to investigate the importance of environmental factors in genetically predisposed animals, the effects of chronic rotenone exposure have so far not been examined in intact mice. Therefore, we investigated the effects of chronic exposure to rotenone (2.5 or 4.0-5.0 mg/kg s.c. for 30-45 days) in mice aged 2.5, 5, or 12 months. During the treatment period, the effects on vitality and motor behavior were investigated. Furthermore, the toxicity of rotenone on dopaminergic nigrostriatal neurons and peripheral tissues was examined. In comparison with control mice, rotenone-treated mice had a decreased spontaneous motor activity, but the density of nigral dopaminergic neurons failed to show any significant changes, except for a tendency to decrease in old mice treated with 4 mg/kg. At the tested doses, rotenone caused a moderate hepatic fatty degeneration. The data indicate that rotenone is not able to cause the neuropathological characteristics of PD in mice under these testing paradigms, which were similar to those of the rotenone rat model. Further studies will have to clarify whether genetic mouse models of PD might be more sensitive to the neurotoxic effects of rotenone.
Collapse
Affiliation(s)
- Franziska Richter
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | | |
Collapse
|
22
|
Levin SI, Khaliq ZM, Aman TK, Grieco TM, Kearney JA, Raman IM, Meisler MH. Impaired Motor Function in Mice With Cell-Specific Knockout of Sodium ChannelScn8a(NaV1.6) in Cerebellar Purkinje Neurons and Granule Cells. J Neurophysiol 2006; 96:785-93. [PMID: 16687615 DOI: 10.1152/jn.01193.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Scn8a gene encodes the voltage-gated Na channel α subunit NaV1.6, which is widely expressed throughout the nervous system. Global null mutations that eliminate Scn8a in all cells result in severe motor dysfunction and premature death, precluding analysis of the physiological role of NaV1.6 in different neuronal types. To test the effect of cerebellar NaV1.6 on motor coordination in mice, we used the Cre-lox system to eliminate Scn8a expression exclusively in Purkinje neurons (Purkinje KO) and/or granule neurons (granule KO). Whereas granule KO mice had only minor behavioral defects, adult Purkinje KO mice exhibited ataxia, tremor, and impaired coordination. These disorders were exacerbated in double mutants lacking Scn8a in both Purkinje and granule cells (double KO). In Purkinje cells isolated from adult Purkinje KO and double KO but not granule KO mice, the ratio of resurgent-to-transient tetrodotoxin- (TTX)-sensitive Na current amplitudes decreased from ∼15 to ∼5%. In cerebellar slices, Purkinje cell spontaneous and maximal firing rates were reduced 10-fold and twofold relative to control in Purkinje KO and double KO but not granule KO mice. Additionally, short-term plasticity of high-frequency parallel fiber EPSCs was altered relative to control in Purkinje KO and double KO but not granule KO mice. These data suggest that the specialized kinetics of Purkinje Na channels depend directly on Scn8a expression. The loss of these channels leads to a decrease in Purkinje cell firing rates as well as a modification of the synaptic properties of afferent parallel fibers, with the ultimate consequence of disrupting motor behavior.
Collapse
Affiliation(s)
- Stephen I Levin
- Dept. of Human Genetics, University of Michigan, School of Medicine, Ann Arbor, MI 48109-0618, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Jinnah HA, Hess EJ, Ledoux MS, Sharma N, Baxter MG, Delong MR. Rodent models for dystonia research: Characteristics, evaluation, and utility. Mov Disord 2005; 20:283-92. [PMID: 15641011 DOI: 10.1002/mds.20364] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A large number of different genetic and acquired disorders of the nervous system may be associated with dystonia. To elucidate its pathogenesis and to facilitate the discovery of potential novel treatments, there has been a growing interest in the development of animal models and particularly rodent models. Multiple animal models for dystonia have now been developed and partially characterized. The results obtained from studies of these models often lead in very different directions, in part because the different models target different aspects of a very heterogeneous disorder. A recent workshop addressed four main issues affecting those who conduct dystonia research with animal models, including the different ways in which dystonic disorders can be modeled in rodents, key features that constitute a useful model, methods used in the evaluation of these models, and recommendations for future research. This review summarizes the main outcomes of this conference. 2005 Movement Disorder Society.
Collapse
Affiliation(s)
- H A Jinnah
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Buchner DA, Seburn KL, Frankel WN, Meisler MH. Three ENU-induced neurological mutations in the pore loop of sodium channel Scn8a (Na(v)1.6) and a genetically linked retinal mutation, rd13. Mamm Genome 2004; 15:344-51. [PMID: 15170223 DOI: 10.1007/s00335-004-2332-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 12/02/2003] [Indexed: 02/07/2023]
Abstract
The goal of The Jackson Laboratory Neuroscience Mutagenesis Facility is to generate mouse models of human neurological disease. We describe three new models obtained from a three-generation screen for recessive mutations. Homozygous mutant mice from lines nmf2 and nmf5 exhibit hind limb paralysis and juvenile lethality. Homozygous nmf58 mice exhibit a less severe movement disorder that includes sustained dystonic postures. The mutations were mapped to the distal region of mouse Chromosome (Chr) 15. Failure to complement a mutant allele of a positional candidate gene, Scn8a, demonstrated that the mutations are new alleles of Scn8a. Missense mutations of evolutionarily conserved residues of the sodium channel were identified in the three lines, with the predicted amino acid substitutions N1370T, I1392F, and L1404H. These residues are located within the pore loop of domain 3 of sodium channel Na(v)1.6. The lethal phenotypes suggest that the new alleles encode proteins with partial or complete loss of function. Several human disorders are caused by mutation in the pore loop of domain 3 of paralogous sodium channel genes. Line nmf5 contains a second, independent mutation in the rd13 locus that causes a reduction in cell number in the outer nuclear layer of the retina. rd13 was mapped to the distal 4 Mb of Chr 15. No coding or splice site mutations were detected in Pde1b, a candidate gene for rd13. The generation of three independent Scn8a mutations among 1100 tested G3 families demonstrates that the Scn8a locus is highly susceptible to ENU mutagenesis. The new alleles of Scn8a will be valuable for analysis of sodium channel physiology and disease.
Collapse
Affiliation(s)
- David A Buchner
- Department of Human Genetics, University of Michigan, Ann Arbor 48109-0618, USA
| | | | | | | |
Collapse
|
25
|
Abstract
In some central neurons, including cerebellar Purkinje neurons and subthalamic nucleus (STN) neurons, TTX-sensitive sodium channels show unusual gating behavior whereby some channels open transiently during recovery from inactivation. This “resurgent” sodium current is effectively activated immediately after action potential-like waveforms. Earlier work using Purkinje neurons suggested that the great majority of resurgent current originates from Nav1.6 sodium channels. Here we used a mouse mutant lacking Nav1.6 to explore the contribution of these channels to resurgent, transient, and persistent components of TTX-sensitive sodium current in STN neurons. The resurgent current of STN neurons from Nav1.6−/− mice was reduced by 63% relative to wild-type littermates, a less dramatic reduction than that observed in Purkinje neurons recorded under identical conditions. The transient and persistent currents of Nav1.6−/− STN neurons were reduced by ∼40 and 55%, respectively. The resurgent current present in Nav1.6−/− null STN neurons was similar in voltage dependence to that in wild-type STN and Purkinje neurons, differing only in having somewhat slower decay kinetics. These results show that sodium channels other than Nav1.6 can make resurgent sodium current much like that from Nav1.6 channels.
Collapse
Affiliation(s)
- Michael Tri H Do
- Dept. of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
26
|
Levin SI, Meisler MH. Floxed allele for conditional inactivation of the voltage-gated sodium channelScn8a (Nav1.6). Genesis 2004; 39:234-9. [PMID: 15286995 DOI: 10.1002/gene.20050] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sodium channel gene Scn8a encodes the channel NaV1.6, which is widely distributed in the central and peripheral nervous system. NaV1.6 is the major channel at the nodes of Ranvier in myelinated axons. Mutant alleles of mouse Scn8a result in neurological disorders including ataxia, tremor, paralysis, and dystonia. We generated a floxed allele of Scn8a by inserting loxP sites around the first coding exon. The initial targeted allele containing the neo-cassette was a severe hypomorph. In vivo deletion of the neo-cassette by Flp recombinase produced a floxed allele that generates normal expression of NaV1.6 protein. Ubiquitous deletion of the floxed exon by Cre recombinase in ZP3-Cre transgenic mice produced the Scn8a(del) allele. The null phenotype of Scn8a(del) homozygotes confirms the in vivo inactivation of Scn8a. Conditional inactivation of the floxed allele will make it possible to circumvent the lethality that results from complete loss of Scn8a in order to investigate the physiologic role of NaV1.6 in subpopulations of neurons.
Collapse
Affiliation(s)
- Stephen I Levin
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, Michigan 48109-0618, USA
| | | |
Collapse
|