1
|
Marinov GK, Ramalingam V, Greenleaf WJ, Kundaje A. An updated compendium and reevaluation of the evidence for nuclear transcription factor occupancy over the mitochondrial genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597442. [PMID: 38895386 PMCID: PMC11185660 DOI: 10.1101/2024.06.04.597442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In most eukaryotes, mitochondrial organelles contain their own genome, usually circular, which is the remnant of the genome of the ancestral bacterial endosymbiont that gave rise to modern mitochondria. Mitochondrial genomes are dramatically reduced in their gene content due to the process of endosymbiotic gene transfer to the nucleus; as a result most mitochondrial proteins are encoded in the nucleus and imported into mitochondria. This includes the components of the dedicated mitochondrial transcription and replication systems and regulatory factors, which are entirely distinct from the information processing systems in the nucleus. However, since the 1990s several nuclear transcription factors have been reported to act in mitochondria, and previously we identified 8 human and 3 mouse transcription factors (TFs) with strong localized enrichment over the mitochondrial genome using ChIP-seq (Chromatin Immunoprecipitation) datasets from the second phase of the ENCODE (Encyclopedia of DNA Elements) Project Consortium. Here, we analyze the greatly expanded in the intervening decade ENCODE compendium of TF ChIP-seq datasets (a total of 6,153 ChIP experiments for 942 proteins, of which 763 are sequence-specific TFs) combined with interpretative deep learning models of TF occupancy to create a comprehensive compendium of nuclear TFs that show evidence of association with the mitochondrial genome. We find some evidence for chrM occupancy for 50 nuclear TFs and two other proteins, with bZIP TFs emerging as most likely to be playing a role in mitochondria. However, we also observe that in cases where the same TF has been assayed with multiple antibodies and ChIP protocols, evidence for its chrM occupancy is not always reproducible. In the light of these findings, we discuss the evidential criteria for establishing chrM occupancy and reevaluate the overall compendium of putative mitochondrial-acting nuclear TFs.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Pelletier F, Durand E, Chaiyut J, Bronstein C, Pessemesse L, Vaysse L, Liengprayoon S, Gaillet S, Brioche T, Bertrand-Gaday C, Coudray C, Sultan A, Feillet-Coudray C, Casas F. Furan fatty acid extracted from Hevea brasiliensis latex increases muscle mass in mice. Biomed Pharmacother 2023; 166:115330. [PMID: 37595430 DOI: 10.1016/j.biopha.2023.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023] Open
Abstract
Skeletal muscle is essential for locomotion and plays a crucial role in energy homeostasis. It is regulated by nutrition, genetic factors, physical activity and hormones. Furan fatty acids (FuFAs) are minor fatty acids present in small quantities in food from plants and animals origin. Recently, we showed that a preventive nutritional supplementation with furan fatty acid in a DIO mouse model reduces metabolic disorders. The present study was designed to determine the influence of FuFA-F2 extracted from Hevea brasiliensis latex on skeletal muscle phenotype. In C2C12 myotubes we found that FuFA-F2 whatever the concentration used increased protein content. We revealed that in C2C12 myotubes FuFA-F2 (10 µM) increases protein synthesis as shown by the stimulation of mTOR phosphorylation. Next, to confirm in vivo our results C57Bl6 mice were supplemented by oral gavage with vehicle or FuFA-F2 (20 mg/kg) for 3 and a half weeks. We found that mice supplemented with FuFA-F2 had a greater lean mass than the control mice. In line with this observation, we revealed that FuFA-F2 increased muscle mass and promoted more oxidative muscle metabolism in mice as attested by cytochrome c oxidase activity. In conclusion, we demonstrated that FuFA-F2 stimulates muscle anabolism in mice in vitro and in vivo, mimicking in part physical activity. This study highlights that in vivo FuFA-F2 may have health benefits by increasing muscle mass and oxidative metabolism.
Collapse
Affiliation(s)
| | - Erwann Durand
- CIRAD, UMR Qualisud, 34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jatuporn Chaiyut
- Kasetsart Agricultural and Agro-industrial Product Improvement Institute, Kasetsart University, Bangkok, Thaïland
| | | | | | - Laurent Vaysse
- CIRAD, UPR BioWooEB, 34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Siriluck Liengprayoon
- Kasetsart Agricultural and Agro-industrial Product Improvement Institute, Kasetsart University, Bangkok, Thaïland
| | | | | | | | | | - Ariane Sultan
- Département d'Endocrinologie, Diabète, Nutrition Inserm 1411, CHU de Montpellier, Univ Montpellier, Montpellier, France
| | | | | |
Collapse
|
3
|
Mitochondrial biogenesis in organismal senescence and neurodegeneration. Mech Ageing Dev 2020; 191:111345. [DOI: 10.1016/j.mad.2020.111345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
|
4
|
Bertrand-Gaday C, Letheule M, Blanchet E, Vernus B, Pessemesse L, Bonnet-Garnier A, Bonnieu A, Casas F. Transient Changes of Metabolism at the Pronuclear Stage in Mice Influences Skeletal Muscle Phenotype in Adulthood. Int J Mol Sci 2020; 21:E7203. [PMID: 33003470 PMCID: PMC7582979 DOI: 10.3390/ijms21197203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle has a remarkable plasticity, and its phenotype is strongly influenced by hormones, transcription factors, and physical activity. However, whether skeletal phenotype can be oriented or not during early embryonic stages has never been investigated. Here, we report that pyruvate as the only source of carbohydrate in the culture medium of mouse one cell stage embryo influenced the establishment of the muscular phenotype in adulthood. We found that pyruvate alone induced changes in the contractile phenotype of the skeletal muscle in a sexually dependent manner. For male mice, a switch to a more glycolytic phenotype was recorded, whereas, in females, the pyruvate induced a switch to a more oxidative phenotype. In addition, the influence of pyruvate on the contractile phenotypes was confirmed in two mouse models of muscle hypertrophy: the well-known myostatin deficient mouse (Mstn-/-) and a mouse carrying a specific deletion of p43, a mitochondrial triiodothyronine receptor. Finally, to understand the link between these adult phenotypes and the early embryonic period, we assessed the levels of two histone H3 post-translational modifications in presence of pyruvate alone just after the wave of chromatin reprogramming specific of the first cell cycle. We showed that H3K4 acetylation level was decreased in Mstn-/- 2-cell embryos, whereas no difference was found for H3K27 trimethylation level, whatever the genotype. These findings demonstrate for the first time that changes in the access of energy substrate during the very first embryonic stage can induce a precocious orientation of skeletal muscle phenotype in adulthood.
Collapse
Affiliation(s)
- Christelle Bertrand-Gaday
- DMEM, Univ. Montpellier, INRAE, 34060 Montpellier, France; (C.B.-G.); (E.B.); (B.V.); (L.P.); (A.B.)
| | - Martine Letheule
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (M.L.); (A.B.-G.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Emilie Blanchet
- DMEM, Univ. Montpellier, INRAE, 34060 Montpellier, France; (C.B.-G.); (E.B.); (B.V.); (L.P.); (A.B.)
| | - Barbara Vernus
- DMEM, Univ. Montpellier, INRAE, 34060 Montpellier, France; (C.B.-G.); (E.B.); (B.V.); (L.P.); (A.B.)
| | - Laurence Pessemesse
- DMEM, Univ. Montpellier, INRAE, 34060 Montpellier, France; (C.B.-G.); (E.B.); (B.V.); (L.P.); (A.B.)
| | - Amélie Bonnet-Garnier
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (M.L.); (A.B.-G.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Anne Bonnieu
- DMEM, Univ. Montpellier, INRAE, 34060 Montpellier, France; (C.B.-G.); (E.B.); (B.V.); (L.P.); (A.B.)
| | - François Casas
- DMEM, Univ. Montpellier, INRAE, 34060 Montpellier, France; (C.B.-G.); (E.B.); (B.V.); (L.P.); (A.B.)
| |
Collapse
|
5
|
Mitochondria, Oxytocin, and Vasopressin: Unfolding the Inflammatory Protein Response. Neurotox Res 2018; 36:239-256. [PMID: 30259418 DOI: 10.1007/s12640-018-9962-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
Neuroendocrine and immune signaling pathways are activated following insults such as stress, injury, and infection, in a systemic response aimed at restoring homeostasis. Mitochondrial metabolism and function have been implicated in the control of immune responses. Commonly studied along with mitochondrial function, reactive oxygen species (ROS) are closely linked to cellular inflammatory responses. It is also accepted that cells experiencing mitochondrial or endoplasmic reticulum (ER) stress induce response pathways in order to cope with protein-folding dysregulation, in homeostatic responses referred to as the unfolded protein responses (UPRs). Recent reports indicate that the UPRs may play an important role in immune responses. Notably, the homeostasis-regulating hormones oxytocin (OXT) and vasopressin (AVP) are also associated with the regulation of inflammatory responses and immune function. Intriguingly, OXT and AVP have been linked with ER unfolded protein responses (UPRER), and can impact ROS production and mitochondrial function. Here, we will review the evidence for interactions between these various factors and how these neuropeptides might influence mitochondrial processes.
Collapse
|
6
|
Hedrington MS, Davis SN. Peroxisome proliferator-activated receptor alpha-mediated drug toxicity in the liver. Expert Opin Drug Metab Toxicol 2018; 14:671-677. [PMID: 29847748 DOI: 10.1080/17425255.2018.1483337] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Drug-induced hepatic injury is the most common cause of acute liver failure in the United States. Peroxisome proliferator-activated receptor alpha (PPARα)-mediated drugs are included among the approximately 900 natural and synthetic substances, which have shown hepatotoxicity. Areas covered: This review will focus on fibrates - PPARα agonists and their implication in causing liver injury. Expert opinion: Compelling evidence for fibrate-induced hepatotoxicity is not available. Results have been varying because several large randomized clinical trials have reported similar elevations of plasma transaminase levels in fibrate or placebo treated groups. On the other hand, one meta-analysis has reported an increased risk of hepatotoxicity when fibrates are combined with statins. Fibrate induced clinically apparent liver damage has been demonstrated in case reports. However, there is a wide spectrum of clinical phenotypic presentations of these cases (onset of injury, pattern of enzyme elevation and resolution of the symptoms), which reduces the ability to identify specific cause and effect of any putative fibrate-induced hepatotoxicity. Thus, the current recommendations for using fibrates include monitoring of aminotransferase levels especially if combined with statins and discontinuation of the treatment only if the levels persist above three times the upper limit of normal.
Collapse
Affiliation(s)
- Maka S Hedrington
- a Department of Medicine , University of Maryland School of Medicine , Baltimore , Maryland , USA
| | - Stephen N Davis
- a Department of Medicine , University of Maryland School of Medicine , Baltimore , Maryland , USA
| |
Collapse
|
7
|
Chang JS, Ha K. A truncated PPAR gamma 2 localizes to mitochondria and regulates mitochondrial respiration in brown adipocytes. PLoS One 2018; 13:e0195007. [PMID: 29566074 PMCID: PMC5864067 DOI: 10.1371/journal.pone.0195007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of brown adipocyte differentiation and thermogenesis. The PPARγ gene produces two isoforms, PPARγ1 and PPARγ2. PPARγ2 is identical to PPARγ1 except for additional 30 amino acids present in the N-terminus of PPARγ2. Here we report that the C-terminally truncated form of PPARγ2 is predominantly present in the mitochondrial matrix of brown adipocytes and that it binds to the D-loop region of mitochondrial DNA (mtDNA), which contains the promoter for mitochondrial electron transport chain (ETC) genes. Expression of mitochondrially targeted MLS-PPARγ2 in brown adipocytes increases mtDNA-encoded ETC gene expression concomitant with enhanced mitochondrial respiration. These results suggest that direct regulation of mitochondrially encoded ETC gene expression by mitochondrial PPARγ2, in part, underlies the isoform-specific role for PPARγ2 in brown adipocytes.
Collapse
Affiliation(s)
- Ji Suk Chang
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
- * E-mail:
| | - Kyoungsoo Ha
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
8
|
Wrutniak-Cabello C, Casas F, Cabello G. Thyroid Hormone Action: The p43 Mitochondrial Pathway. Methods Mol Biol 2018; 1801:163-181. [PMID: 29892824 DOI: 10.1007/978-1-4939-7902-8_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The possibility that several pathways are involved in the multiplicity of thyroid hormone physiological influences led to searches for the occurrence of T3 extra nuclear receptors. The existence of a direct T3 mitochondrial pathway is now well established. The demonstration that TRα1 mRNA encodes not only a nuclear thyroid hormone receptor but also two proteins imported into mitochondria with molecular masses of 43 and 28 kDa has provided new clues to understand the pleiotropic influence of iodinated hormones.The use of a T3 photo affinity label derivative (T3-PAL) allowed detecting two mitochondrial T3 binding proteins. In association with western blots using antibodies raised against the T3 nuclear receptor TRα1, mitochondrial T3 receptors were identified as truncated TRα1 forms. Import and in organello transcription experiments performed in isolated mitochondria led to the conclusion that p43 is a transcription factor of the mitochondrial genome, inducing changes in the mitochondrial/nuclear crosstalk. In vitro experiments indicated that this T3 mitochondrial pathway affects cell differentiation, apoptosis, and transformation. Generation of transgenic mice demonstrated the involvement of this mitochondrial pathway in the determination of muscle phenotype, glucose metabolism, and thermogenesis.
Collapse
|
9
|
Wrutniak-Cabello C, Casas F, Cabello G. Mitochondrial T3 receptor and targets. Mol Cell Endocrinol 2017; 458:112-120. [PMID: 28167126 DOI: 10.1016/j.mce.2017.01.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/28/2017] [Accepted: 01/31/2017] [Indexed: 12/25/2022]
Abstract
The demonstration that TRα1 mRNA encodes a nuclear thyroid hormone receptor and two proteins imported into mitochondria with molecular masses of 43 and 28 kDa has brought new clues to better understand the pleiotropic influence of iodinated hormones. If p28 activity remains unknown, p43 binds to T3 responsive elements occurring in the organelle genome, and, in the T3 presence, stimulates mitochondrial transcription and the subsequent synthesis of mitochondrial encoded proteins. This influence increases mitochondrial activity and through changes in the mitochondrial/nuclear cross talk affects important nuclear target genes regulating cell proliferation and differentiation, oncogenesis, or apoptosis. In addition, this pathway influences muscle metabolic and contractile phenotype, as well as glycaemia regulation. Interestingly, according to the process considered, p43 exerts opposite or cooperative effects with the well-known T3 pathway, thus allowing a fine tuning of the physiological influence of this hormone.
Collapse
Affiliation(s)
- Chantal Wrutniak-Cabello
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France; Université de Montpellier, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France.
| | - François Casas
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France; Université de Montpellier, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France
| | - Gérard Cabello
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France; Université de Montpellier, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France
| |
Collapse
|
10
|
Weinhouse C. Mitochondrial-epigenetic crosstalk in environmental toxicology. Toxicology 2017; 391:5-17. [PMID: 28855114 DOI: 10.1016/j.tox.2017.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022]
Abstract
Crosstalk between the nuclear epigenome and mitochondria, both in normal physiological function and in responses to environmental toxicant exposures, is a developing sub-field of interest in environmental and molecular toxicology. The majority (∼99%) of mitochondrial proteins are encoded in the nuclear genome, so programmed communication among nuclear, cytoplasmic, and mitochondrial compartments is essential for maintaining cellular health. In this review, we will focus on correlative and mechanistic evidence for direct impacts of each system on the other, discuss demonstrated or potential crosstalk in the context of chemical insult, and highlight biological research questions for future study. We will first review the two main signaling systems: nuclear signaling to the mitochondria [anterograde signaling], best described in regulation of oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis in response to environmental signals received by the nucleus, and mitochondrial signals to the nucleus [retrograde signaling]. Both signaling systems can communicate intracellular energy needs or a need to compensate for dysfunction to maintain homeostasis, but both can also relay inappropriate signals in the presence of dysfunction in either system and contribute to adverse health outcomes. We will first review these two signaling systems and highlight known or biologically feasible epigenetic contributions to both, then briefly discuss the emerging field of epigenetic regulation of the mitochondrial genome, and finally discuss putative "crosstalk phenotypes", including biological phenomena, such as caloric restriction, maintenance of stemness, and circadian rhythm, and states of disease or loss of function, such as cancer and aging, in which both the nuclear epigenome and mitochondria are strongly implicated.
Collapse
Affiliation(s)
- Caren Weinhouse
- Duke Global Health Institute, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
11
|
Bertrand-Gaday C, Pessemesse L, Cabello G, Wrutniak-Cabello C, Casas F. Temperature homeostasis in mice lacking the p43 mitochondrial T3 receptor. FEBS Lett 2016; 590:982-91. [DOI: 10.1002/1873-3468.12129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 11/06/2022]
Affiliation(s)
| | - Laurence Pessemesse
- INRA; UMR866 Dynamique Musculaire et Métabolisme; Université Montpellier; France
| | - Gérard Cabello
- INRA; UMR866 Dynamique Musculaire et Métabolisme; Université Montpellier; France
| | | | - François Casas
- INRA; UMR866 Dynamique Musculaire et Métabolisme; Université Montpellier; France
| |
Collapse
|
12
|
Evidence for site-specific occupancy of the mitochondrial genome by nuclear transcription factors. PLoS One 2014; 9:e84713. [PMID: 24465428 PMCID: PMC3896368 DOI: 10.1371/journal.pone.0084713] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/18/2013] [Indexed: 11/19/2022] Open
Abstract
Mitochondria contain their own circular genome, with mitochondria-specific transcription and replication systems and corresponding regulatory proteins. All of these proteins are encoded in the nuclear genome and are post-translationally imported into mitochondria. In addition, several nuclear transcription factors have been reported to act in mitochondria, but there has been no comprehensive mapping of their occupancy patterns and it is not clear how many other factors may also be found in mitochondria. Here we address these questions by using ChIP-seq data from the ENCODE, mouseENCODE and modENCODE consortia for 151 human, 31 mouse and 35 C. elegans factors. We identified 8 human and 3 mouse transcription factors with strong localized enrichment over the mitochondrial genome that was usually associated with the corresponding recognition sequence motif. Notably, these sites of occupancy are often the sites with highest ChIP-seq signal intensity within both the nuclear and mitochondrial genomes and are thus best explained as true binding events to mitochondrial DNA, which exist in high copy number in each cell. We corroborated these findings by immunocytochemical staining evidence for mitochondrial localization. However, we were unable to find clear evidence for mitochondrial binding in ENCODE and other publicly available ChIP-seq data for most factors previously reported to localize there. As the first global analysis of nuclear transcription factors binding in mitochondria, this work opens the door to future studies that probe the functional significance of the phenomenon.
Collapse
|
13
|
Puzianowska-Kuznicka M, Pawlik-Pachucka E, Owczarz M, Budzińska M, Polosak J. Small-molecule hormones: molecular mechanisms of action. Int J Endocrinol 2013; 2013:601246. [PMID: 23533406 PMCID: PMC3603355 DOI: 10.1155/2013/601246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/30/2012] [Accepted: 01/17/2013] [Indexed: 01/01/2023] Open
Abstract
Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30-60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes.
Collapse
Affiliation(s)
- Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
- *Monika Puzianowska-Kuznicka:
| | - Eliza Pawlik-Pachucka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Magdalena Owczarz
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Monika Budzińska
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Jacek Polosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
14
|
Carazo A, Levin J, Casas F, Seyer P, Grandemange S, Busson M, Pessemesse L, Wrutniak-Cabello C, Cabello G. Protein sequences involved in the mitochondrial import of the 3,5,3′-L-triiodothyronine receptor p43. J Cell Physiol 2012; 227:3768-77. [DOI: 10.1002/jcp.24085] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Choi YS, Hoon Jeong J, Min HK, Jung HJ, Hwang D, Lee SW, Kim Pak Y. Shot-gun proteomic analysis of mitochondrial D-loop DNA binding proteins: identification of mitochondrial histones. MOLECULAR BIOSYSTEMS 2011; 7:1523-36. [DOI: 10.1039/c0mb00277a] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Abstract
Nuclear transcription factors have been detected in mammalian mitochondria and may directly regulate mitochondrial gene expression. Emerging genomics techniques may overcome outstanding challenges in this field.
Collapse
Affiliation(s)
- Sarah Leigh-Brown
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | | | | |
Collapse
|
17
|
Holley AK, Dhar SK, St Clair DK. Manganese superoxide dismutase vs. p53: regulation of mitochondrial ROS. Mitochondrion 2010; 10:649-61. [PMID: 20601193 DOI: 10.1016/j.mito.2010.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 06/18/2010] [Accepted: 06/22/2010] [Indexed: 01/10/2023]
Abstract
Coordination of mitochondrial and nuclear activities is vital for cellular homeostasis, and many signaling molecules and transcription factors are regulated by mitochondria-derived reactive oxygen species (ROS) to carry out this interorganellar communication. The tumor suppressor p53 regulates myriad cellular functions through transcription-dependent and -independent mechanisms at both the nucleus and mitochondria. p53 affect mitochondrial ROS production, in part, by regulating the expression of the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD). Recent evidence suggests mitochondrial regulation of p53 activity through mechanisms that affect ROS production, and a breakdown of communication amongst mitochondria, p53, and the nucleus can have broad implications in disease development.
Collapse
Affiliation(s)
- Aaron K Holley
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, United States
| | | | | |
Collapse
|
18
|
Shutt TE, Shadel GS. A compendium of human mitochondrial gene expression machinery with links to disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:360-79. [PMID: 20544879 PMCID: PMC2886302 DOI: 10.1002/em.20571] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Mammalian mitochondrial DNA encodes 37 essential genes required for ATP production via oxidative phosphorylation, instability or misregulation of which is associated with human diseases and aging. Other than the mtDNA-encoded RNA species (13 mRNAs, 12S and 16S rRNAs, and 22 tRNAs), the remaining factors needed for mitochondrial gene expression (i.e., transcription, RNA processing/modification, and translation), including a dedicated set of mitochondrial ribosomal proteins, are products of nuclear genes that are imported into the mitochondrial matrix. Herein, we inventory the human mitochondrial gene expression machinery, and, while doing so, we highlight specific associations of these regulatory factors with human disease. Major new breakthroughs have been made recently in this burgeoning area that set the stage for exciting future studies on the key outstanding issue of how mitochondrial gene expression is regulated differentially in vivo. This should promote a greater understanding of why mtDNA mutations and dysfunction cause the complex and tissue-specific pathology characteristic of mitochondrial disease states and how mitochondrial dysfunction contributes to more common human pathology and aging.
Collapse
Affiliation(s)
- Timothy E. Shutt
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, New haven, CT 06520-8005
- corresponding author: Department of Pathology, Yale University School of Medicine, P.O. Box 208023, New Haven, CT 06520-8023 phone: (203) 785-2475 FAX: (203) 785-2628
| |
Collapse
|
19
|
|
20
|
Perfluorooctanoic acid stimulated mitochondrial biogenesis and gene transcription in rats. Toxicology 2009; 264:10-5. [DOI: 10.1016/j.tox.2009.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 11/17/2022]
|
21
|
Abstract
p53 has been referred to as the 'guardian of the genome' because of its role in protecting the cell from DNA damage. p53 performs its duties by regulating cell-cycle progression and DNA repair and, in cases of irreparable DNA damage, by executing programmed cell death. Mitochondria are an important target of transcription-dependent and -independent actions of p53 to carry out the apoptotic function. However, increasing evidence suggests that p53 activity is regulated by mitochondria. Cellular insults that alter mitochondrial function can have important consequences on p53 activity. In light of these new findings, the following review focuses on p53/mitochondria connections, in particular how reactive oxygen species generated at mitochondria regulate p53 activity. A better understanding of the mechanisms by which mitochondria regulate p53 may have an impact on our understanding of the development and progression of many diseases, especially cancer.
Collapse
Affiliation(s)
- Aaron K Holley
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
22
|
Casas F, Pessemesse L, Grandemange S, Seyer P, Gueguen N, Baris O, Lepourry L, Cabello G, Wrutniak-Cabello C. Overexpression of the mitochondrial T3 receptor p43 induces a shift in skeletal muscle fiber types. PLoS One 2008; 3:e2501. [PMID: 18575627 PMCID: PMC2430615 DOI: 10.1371/journal.pone.0002501] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 05/15/2008] [Indexed: 11/23/2022] Open
Abstract
In previous studies, we have characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43) acting as a mitochondrial transcription factor and consequently stimulating mitochondrial activity and mitochondrial biogenesis. We have established the involvement of this T3 pathway in the regulation of in vitro myoblast differentiation. We have generated mice overexpressing p43 under control of the human alpha-skeletal actin promoter. In agreement with the previous characterization of this promoter, northern-blot and western-blot experiments confirmed that after birth p43 was specifically overexpressed in skeletal muscle. As expected from in vitro studies, in 2-month old mice, p43 overexpression increased mitochondrial genes expression and mitochondrial biogenesis as attested by the increase of mitochondrial mass and mt-DNA copy number. In addition, transgenic mice had a body temperature 0.8 degrees C higher than control ones and displayed lower plasma triiodothyronine levels. Skeletal muscles of transgenic mice were redder than wild-type animals suggesting an increased oxidative metabolism. In line with this observation, in gastrocnemius, we recorded a strong increase in cytochrome oxidase activity and in mitochondrial respiration. Moreover, we observed that p43 drives the formation of oxidative fibers: in soleus muscle, where MyHC IIa fibers were partly replaced by type I fibers; in gastrocnemius muscle, we found an increase in MyHC IIa and IIx expression associated with a reduction in the number of glycolytic fibers type IIb. In addition, we found that PGC-1alpha and PPARdelta, two major regulators of muscle phenotype were up regulated in p43 transgenic mice suggesting that these proteins could be downstream targets of mitochondrial activity. These data indicate that the direct mitochondrial T3 pathway is deeply involved in the acquisition of contractile and metabolic features of muscle fibers in particular by regulating PGC-1alpha and PPARdelta.
Collapse
Affiliation(s)
- François Casas
- INRA, UMR866 Différenciation cellulaire et croissance, Montpellier, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Receptors for glucocorticoids, estrogens, androgens, and thyroid hormones have been detected in mitochondria of various cell types by Western blotting, immunofluorescence labeling, confocal microscopy, and immunogold electron microscopy. A role of these receptors in mitochondrial transcription, OXPHOS biosynthesis, and apoptosis is now being revealed. Steroid and thyroid hormones regulate energy production, inducing nuclear and mitochondrial OXPHOS genes by way of cognate receptors. In addition to the action of the nuclearly localized receptors on nuclear OXPHOS gene transcription, a parallel direct action of the mitochondrially localized receptors on mitochondrial transcription has been demonstrated. The coordination of transcription activation in nuclei and mitochondria by the respective receptors is in part realized by their binding to common trans acting elements in the two genomes. Recent evidence points to a role of the mitochondrial receptors in cell survival and apoptosis, exerted by genomic and nongenomic mechanisms. The identification of additional receptors of the superfamily of nuclear receptors and of other nuclear transcription factors in mitochondria increases their arsenal of regulatory molecules and further underlines the central role of these organelles in the integration of growth, metabolic, and cell survival signals.
Collapse
Affiliation(s)
- Anna-Maria G Psarra
- Biomedical Research Foundation, Academy of Athens, Center for Basic Research, Athens, Greece
| | | |
Collapse
|
24
|
Wrutniak-Cabello C, Carazo A, Casas F, Cabello G. Les récepteurs mitochondriaux de la triiodothyronine : import et mécanismes d'action. ACTA ACUST UNITED AC 2008; 202:83-92. [DOI: 10.1051/jbio:2008010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
25
|
Wallace KB. Mitochondrial off targets of drug therapy. Trends Pharmacol Sci 2008; 29:361-6. [PMID: 18501972 DOI: 10.1016/j.tips.2008.04.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 02/07/2023]
Abstract
The bioenergetic features of mitochondria have long been exploited in the design of pharmacological agents suited to accomplish a desired physiological effect; uncoupling of oxidative phosphorylation to induce weight loss, for example. However, more recent experience demonstrates mitochondria to be unintended off targets of other drug therapies and responsible, at least in part, for the dose-limiting adverse events associated with a large array of pharmaceuticals. Review of the fundamentals of mitochondrial molecular biology and bioenergetics reveals a multiplicity of off targets that can be invoked to explain drug-induced mitochondrial failure. It is this redundancy of mitochondrial off targets that complicates identification of discrete mechanisms of toxicity and confounds QSAR-based design of new small molecules devoid of this potential for mitochondrial toxicity. The present review article briefly reviews the molecular biology and biophysics of mitochondrial bioenergetics, which then serves as a platform for identifying the various potential off targets for drug-induced mitochondrial toxicity.
Collapse
Affiliation(s)
- Kendall B Wallace
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, MN 55812, USA.
| |
Collapse
|
26
|
Lee J, Sharma S, Kim J, Ferrante RJ, Ryu H. Mitochondrial nuclear receptors and transcription factors: who's minding the cell? J Neurosci Res 2008; 86:961-71. [PMID: 18041090 DOI: 10.1002/jnr.21564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mitochondria are power organelles generating biochemical energy, ATP, in the cell. Mitochondria play a variety of roles, including integrating extracellular signals and executing critical intracellular events, such as neuronal cell survival and death. Increasing evidence suggests that a cross-talk mechanism between mitochondria and the nucleus is closely related to neuronal function and activity. Nuclear receptors (estrogen receptors, thyroid (T3) hormone receptor, peroxisome proliferators-activated receptor gamma2) and transcription factors (cAMP response binding protein, p53) have been found to target mitochondria and exert prosurvival and prodeath pathways. In this context, the regulation of mitochondrial function via the translocation of nuclear receptors and transcription factors may underlie some of the mechanisms involved in neuronal survival and death. Understanding the function of nuclear receptors and transcription factors in the mitochondria may provide important pharmacological utility in the treatment of neurodegenerative conditions. Thus, the modulation of signaling pathways via mitochondria-targeting nuclear receptors and transcription factors is rapidly emerging as a novel therapeutic target.
Collapse
Affiliation(s)
- Junghee Lee
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
27
|
De Paul AL, Mukdsi JH, Pellizas CG, Montesinos M, Gutiérrez S, Susperreguy S, Del Río A, Maldonado CA, Torres AI. Thyroid hormone receptor alpha 1-beta 1 expression in epididymal epithelium from euthyroid and hypothyroid rats. Histochem Cell Biol 2008; 129:631-42. [PMID: 18299881 DOI: 10.1007/s00418-008-0397-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2008] [Indexed: 11/26/2022]
Abstract
The objectives of the present work were to assess whether epithelial cells from the different segments of epididymis express TR alpha 1-beta 1 isoforms, to depict its subcellular immunolocalization and to evaluate changes in their expression in rats experimentally submitted to a hypothyroid state by injection of 131I. In euthyroid and hypothyroid groups, TR protein was expressed in epididymal epithelial cells, mainly in the cytoplasmic compartment while only a few one showed a staining in the nucleus as well. A similar TR immunostaining pattern was detected in the different segments of the epididymis. In hypothyroid rats, the number of TR-immunoreactive epithelial cells as well as the intensity of the cytoplasmic staining significantly increased in all sections analyzed. In consonance to the immunocytochemical analysis, the expression of TR alpha 1-beta 1 isoforms, assessed by Western blot revealed significantly higher levels of TR in cytosol compared to the nuclear fractions. Furthermore, TR expression of both alpha 1 and beta 1 isoforms and their mRNA levels were increased by the hypothyroid state. The immuno-electron-microscopy showed specific reaction for TR in principal cells associated with eucromatin, cytosolic matrix and mitochondria. The differences in expression levels assessed in control and thyroidectomized rats ascertain a specific function of TH on this organ.
Collapse
Affiliation(s)
- Ana Lucía De Paul
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen JQ, Brown TR, Yager JD. Mechanisms of hormone carcinogenesis: evolution of views, role of mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [PMID: 18637481 DOI: 10.1007/978-0-387-78818-0_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CumuIative and excessive exposure to estrogens is associated with increased breast cancer risk. The traditional mechanism explaining this association is that estrogens affect the rate of cell division and apoptosis and thus manifest their effect on the risk of breast cancer by affecting the growth of breast epithelial tissues. Highly proliferative cells are susceptible to genetic errors during DNA replication. The action of estrogen metabolites offers a complementary genotoxic pathway mediated by the generation of reactive estrogen quinone metabolites that can form adducts with DNA and generate reactive oxygen species through redox cycling. In this chapter, we discussed a novel mitochondrial pathway mediated by estrogens and their cognate estrogen receptors (ERs) and its potential implications in estrogen-dependent carcinogenesis. Several lines of evidence are presented to show: (1) mitochondrial localization of ERs in human breast cancer cells and other cell types; (2) a functional role for the mitochondrial ERs in regulation of the mitochondrial respiratory chain (MRC) proteins and (3) potential implications of the mitochondrial ER-mediated pathway in stimulation of cell proliferation, inhibition of apoptosis and oxidative damage to mitochondrial DNA. The possible involvement of estrogens and ERs in deregulation of mitochondrial bioenergetics, an important hallmark of cancer cells, is also described. An evolutionary view is presented to suggest that persistent stimulation by estrogens through ER signaling pathways of MRC proteins and energy metabolic pathways leads to the alterations in mitochondrial bioenergetics and contributes to the development of estrogen-related cancers.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908-0546, USA.
| | | | | |
Collapse
|
29
|
Psarra AMG, Sekeris CE. Nuclear receptors and other nuclear transcription factors in mitochondria: regulatory molecules in a new environment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:1-11. [PMID: 18062929 DOI: 10.1016/j.bbamcr.2007.10.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 10/27/2007] [Accepted: 10/29/2007] [Indexed: 12/25/2022]
Abstract
The mitochondrion is the major energy generating organelle of the cell and the site of other basic processes, including apoptosis. The mitochondrial functions are performed in concert with other cell compartments and are regulated by various extracellular and intracellular signals. Several nuclear receptors and other nuclear transcription factors, such as NF-kappa B, AP-1, CREB and p53, involved in growth, metabolic and developmental processes, have been detected in mitochondria. This finding raises the question as to the role of these regulatory molecules in their "new" environment. Experimental evidence supports the action of the mitochondrially localized transcription factors on mitochondrial transcription, energy yield and apoptosis, extending the known nuclear role of these molecules outside the nucleus. A principle of coordination of nuclear and mitochondrial gene transcription has been ascertained as regards the regulatory action of steroid and thyroid hormones on energy yield. Accordingly, the same nuclear receptors, localized in the two compartments-nuclei and mitochondria-regulate transcription of genes serving a common function by way of interaction with common binding sites in the two genomes. This principle is now expanding to encompass other nuclearly and mitochondrially localized transcription factors.
Collapse
Affiliation(s)
- Anna-Maria G Psarra
- Biomedical Research Foundation, Academy of Athens, Center for Basic Research, 4 Soranou Efesiou, 11527, Athens, Greece
| | | |
Collapse
|
30
|
Malorni W, Campesi I, Straface E, Vella S, Franconi F. Redox features of the cell: a gender perspective. Antioxid Redox Signal 2007; 9:1779-801. [PMID: 17822369 DOI: 10.1089/ars.2007.1596] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse subcellular activities, including cell proliferation,differentiation and, in some instances, cell injury and death. The implications of reactive species inhuman pathology have also been studied in detail. However, although the role of free radicals in the pathogenesis of human diseases has been extensively analyzed in different systems (i.e., in vitro, ex vivo, and in vivo),it is still far from elucidated. In particular, the possible role of gender 4 differences in human pathophysiology associated with reactive species is a promising new field of investigation. Although the complex scenario this presents is still incomplete, important gender-associated "redox features" of cells have already been described in the literature. Here we summarize the different aspects of redox-associated molecules and enzymes in regard to gender differences in terms of the intracellular production and biochemical activity of reactive species. These are often associated with the pathogenetic mechanisms underlying several human morbidities(e.g., degenerative diseases) and can represent a specific target for new pharmacologic strategies. Gender differences may thus pose an important challenge for future studies aimed at the clinical management of diseases characterized by a redox imbalance.
Collapse
Affiliation(s)
- Walter Malorni
- Department of Drug Research and Evaluation, Istituto Superiore di Sanita', Rome, Italy.
| | | | | | | | | |
Collapse
|
31
|
Berdanier CD. Mitochondrial gene expression: influence of nutrients and hormones. Exp Biol Med (Maywood) 2006; 231:1593-601. [PMID: 17060679 DOI: 10.1177/153537020623101003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial gene transcription research has exploded over the last decade. Nuclear-encoded proteins, nutrients, and hormones all work to regulate the transcription of this genome. To date, very few of the transcription factors have been shown to have negative effects on mitochondrial gene expression, although there are likely conditions where such downregulation may occur.
Collapse
|
32
|
Busson M, Daury L, Seyer P, Grandemange S, Pessemesse L, Casas F, Wrutniak-Cabello C, Cabello G. Avian MyoD and c-Jun coordinately induce transcriptional activity of the 3,5,3'-triiodothyronine nuclear receptor c-ErbAalpha1 in proliferating myoblasts. Endocrinology 2006; 147:3408-18. [PMID: 16556763 DOI: 10.1210/en.2006-0101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although physical interactions with other receptors have been reported, heterodimeric complexes of T(3) nuclear receptors (TR) with retinoid X receptors (RXRs) are considered as major regulators of T(3) target gene expression. However, despite the potent T(3) influence in proliferating myoblasts, RXR isoforms are not expressed during proliferation, raising the question of the nature of the complex involved in TRalpha transcriptional activity. We have previously established that c-Jun induces TRalpha1 transcriptional activity in proliferating myoblasts not expressing RXR. This regulation is specific to the muscle lineage, suggesting the involvement of a muscle-specific factor. In this study, we found that MyoD expression in HeLa cells stimulates TRalpha1 activity, an influence potentiated by c-Jun coexpression. Similarly, in the absence of RXR, MyoD or c-Jun overexpression in myoblasts induces TRalpha1 transcriptional activity through a direct repeat 4 or an inverted palindrome 6 thyroid hormone response element. The highest rate of activity was recorded when c-Jun and MyoD were coexpressed. Using c-Jun-negative dominants, we established that MyoD influence on TRalpha1 activity needs c-Jun functionality. Furthermore, we demonstrated that TRalpha1 and MyoD physically interact in the hinge region of the receptor and the transactivation and basic helix loop helix domains of MyoD. RXR expression (spontaneously occurring at the onset of myoblast differentiation) in proliferating myoblasts abrogates these interactions. These data suggest that in the absence of RXR, TRalpha1 transcriptional activity in myoblasts is mediated through a complex including MyoD and c-Jun.
Collapse
Affiliation(s)
- Muriel Busson
- Unité d'Endocrinologie Cellulaire, Unité Mixte de Recherche Différenciation Cellulaire et Croissance, Institut National de la Recherche Agronomique, 2 place Viala, 34060 Montpellier Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Masubuchi Y, Kano S, Horie T. Mitochondrial permeability transition as a potential determinant of hepatotoxicity of antidiabetic thiazolidinediones. Toxicology 2006; 222:233-9. [PMID: 16621215 DOI: 10.1016/j.tox.2006.02.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 02/24/2006] [Accepted: 02/24/2006] [Indexed: 11/22/2022]
Abstract
Troglitazone, a thiazolidinedione class of antidiabetic agent, causes serious idiosyncratic hepatotoxicity. Troglitazone is metabolized to a reactive metabolite that covalently binds to cellular macromolecules, but the role of the covalent adduct in the hepatotoxicity is controversial. Because troglitazone has been found to cause cytotoxicity to hepatocytes along with mitochondrial dysfunction, we investigated the effects of troglitazone and other thiazolidinediones on mitochondrial function by using liver mitochondria fraction isolated from male CD-1 mice. Incubation of energized mitochondria with succinate in the presence of Ca2+ and troglitazone induced mitochondrial swelling, and the swelling was partially inhibited by cyclosporin A. Troglitazone also induced decreases in mitochondrial membrane potential and mitochondrial Ca2+ accumulation. These results demonstrate that troglitazone induces mitochondrial permeability transition (MPT). Similar results were obtained for ciglitazone, whereas rosiglitazone and pioglitazone, which are less hepatotoxic than troglitazone, had little effect on these mitochondria functions. It is therefore possible that the troglitazone-induced opening of MPT pore, which is not induced by rosiglitazone or pioglitazone, may contribute to the hepatotoxicity induced specifically by troglitazone.
Collapse
Affiliation(s)
- Yasuhiro Masubuchi
- Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | | | | |
Collapse
|
34
|
Silvestri E, Schiavo L, Lombardi A, Goglia F. Thyroid hormones as molecular determinants of thermogenesis. ACTA ACUST UNITED AC 2006; 184:265-83. [PMID: 16026419 DOI: 10.1111/j.1365-201x.2005.01463.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thyroid hormones (TH) are major modulators of energy metabolism and thermogenesis. It is generally believed that 3,5,3'-triiodo-l-thyronine (T3) is the only active form of TH, and that most of its effects are mediated by nuclear T3 receptors, which chiefly affect the transcription of target genes. Some of these genes encode for the proteins involved in energy metabolism. However, a growing volume of evidence now indicates that other iodothyronines may be biologically active. Several mechanisms have been proposed to explain the calorigenic effect of TH, but none has received universal acceptance. Cold acclimation/exposure and altered nutritional status are physiological conditions in which a modulation of energy expenditure is particularly important. TH seem to be deeply involved in this modulation, and this article will review some aspects of their possible influence in these conditions.
Collapse
Affiliation(s)
- E Silvestri
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Benevento, Italy
| | | | | | | |
Collapse
|
35
|
Chen JQ, Yager JD, Russo J. Regulation of mitochondrial respiratory chain structure and function by estrogens/estrogen receptors and potential physiological/pathophysiological implications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:1-17. [PMID: 16169101 DOI: 10.1016/j.bbamcr.2005.08.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/03/2005] [Accepted: 08/03/2005] [Indexed: 01/11/2023]
Abstract
It is well known that the biological and carcinogenic effects of 17beta-estradiol (E2) are mediated via nuclear estrogen receptors (ERs) by regulating nuclear gene expression. Several rapid, non-nuclear genomic effects of E2 are mediated via plasma membrane-bound ERs. In addition, there is accumulating evidence suggesting that mitochondria are also important targets for the action of estrogens and ERs. This review summarized the studies on the effects of estrogens via ERs on mitochondrial structure and function. The potential physiological and pathophysiological implications of deficiency and/or overabundance of these E2/ER-mediated mitochondrial effects in stimulation of cell proliferation, inhibition of apoptosis, E2-mediated cardiovascular and neuroprotective effects in target cells are also discussed.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | | | | |
Collapse
|
36
|
Grandemange S, Seyer P, Carazo A, Bécuwe P, Pessemesse L, Busson M, Marsac C, Roger P, Casas F, Cabello G, Wrutniak-Cabello C. Stimulation of mitochondrial activity by p43 overexpression induces human dermal fibroblast transformation. Cancer Res 2005; 65:4282-91. [PMID: 15899820 DOI: 10.1158/0008-5472.can-04-3652] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitochondrial dysfunctions are frequently reported in cancer cells, but their direct involvement in tumorigenesis remains unclear. To understand this relation, we stimulated mitochondrial activity by overexpression of the mitochondrial triiodothyronine receptor (p43) in human dermal fibroblasts. In all clones, this stimulation induced morphologic changes and cell fusion in myotube-like structures associated with the expression of several muscle-specific genes (Myf5, desmin, connectin, myosin, AchRalpha). In addition, these clones displayed all the in vivo and in vitro features of cell transformation. This phenotype was related to an increase in c-Jun and c-Fos expression and extinction of tumor suppressor gene expression (p53, p21WAF1, Rb3). Lastly, reactive oxygen species (ROS) production was increased in positive correlation to the stimulation of mitochondrial activity. The direct involvement of mitochondrial activity in this cell behavior was studied by adding chloramphenicol, an inhibitor of mitochondrial protein synthesis, to the culture medium. This inhibition resulted in partial restoration of the normal phenotype, with the loss of the ability to fuse, a strong decrease in muscle-specific gene expression, and potent inhibition of the transformed phenotype. However, expression of tumor suppressor genes was not restored. Similar results were obtained by using N-acetylcysteine, an inhibitor of ROS production. These data indicate that stimulation of mitochondrial activity in human dermal fibroblasts induces cell transformation through events involving ROS production.
Collapse
Affiliation(s)
- Stéphanie Grandemange
- UMR 866, Différenciation Cellulaire et Croissance (INRA-UMII-ENSAM), Unité d'Endocrinologie Cellulaire, Institut National de la Recherche Agronomique, Montpelier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Busson M, Carazo A, Seyer P, Grandemange S, Casas F, Pessemesse L, Rouault JP, Wrutniak-Cabello C, Cabello G. Coactivation of nuclear receptors and myogenic factors induces the major BTG1 influence on muscle differentiation. Oncogene 2005; 24:1698-710. [PMID: 15674337 DOI: 10.1038/sj.onc.1208373] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The btg1 (B-cell translocation gene 1) gene coding sequence was isolated from a translocation break point in a case of B-cell chronic lymphocytic leukaemia. We have already shown that BTG1, considered as an antiproliferative protein, strongly stimulates myoblast differentiation. However, the mechanisms involved in this influence remained unknown. In cultured myoblasts, we found that BTG1 stimulates the transcriptional activity of nuclear receptors (T3 and all-trans retinoic acid receptors but not RXRalpha and PPARgamma), c-Jun and myogenic factors (CMD1, Myf5, myogenin). Immunoprecipitation experiments performed in cells or using in vitro-synthesized proteins and GST pull-down assays established that BTG1 directly interacts with T3 and all-trans retinoic acid receptors and with avian MyoD (CMD1). These interactions are mediated by the transactivation domain of each transcription factor and the A box and C-terminal part of BTG1. NCoR presence induces the ligand dependency of the interaction with nuclear receptors. Lastly, deletion of BTG1 interacting domains abrogates its ability to stimulate nuclear receptors and CMD1 activity, and its myogenic influence. In conclusion, BTG1 is a novel important coactivator involved in the regulation of myoblast differentiation. It not only stimulates the activity of myogenic factors, but also of nuclear receptors already known as positive myogenic regulators.
Collapse
Affiliation(s)
- Muriel Busson
- UMR 866 Différenciation Cellulaire et Croissance, INRA, 2 place Viala, 34060 Montpellier Cedex 1, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Martínez B, Pérez-Castillo A, Santos A. The mitochondrial respiratory complex I is a target for 15-deoxy-delta12,14-prostaglandin J2 action. J Lipid Res 2005; 46:736-43. [PMID: 15654126 DOI: 10.1194/jlr.m400392-jlr200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prostaglandin J2 derivative 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) is a very active compound with important effects on inflammation, apoptosis, and cell growth processes. To exert this broad range of effects, 15d-PGJ2 binds and alters the activity of diverse proteins, which consequently are postulated to be mediators of its action. Among them are the transcription factors peroxisome proliferator-activated receptor gamma and nuclear factor kappaB, which are thought to play an essential role in the antitumorigenic and anti-inflammatory actions of 15d-PGJ2. Here, we show that 15d-PGJ2, at micromolar concentrations, efficiently blocks state 3 oxygen consumption in intact nonsynaptic mitochondria isolated from rat cerebral cortex. This effect is attributable to the inhibition by this prostaglandin of the activity of the enzyme NADH-ubiquinone reductase (complex I) of the mitochondrial respiratory chain. In addition to this, 15d-PGJ2 dramatically increases the rate of reactive oxygen species generation by complex I. The inhibition by 15d-PGJ2 of complex I activity was abolished by dithiothreitol, which raises the possibility that adduct formation with a critical component of complex I accounts for the inhibitory effect of this prostaglandin. These results clearly identified mitochondrial complex I as a new target for 15d-PGJ2 actions.
Collapse
Affiliation(s)
- B Martínez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | | | |
Collapse
|
39
|
Konopleva M, Tsao T, Estrov Z, Lee RM, Wang RY, Jackson CE, McQueen T, Monaco G, Munsell M, Belmont J, Kantarjian H, Sporn MB, Andreeff M. The synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces caspase-dependent and -independent apoptosis in acute myelogenous leukemia. Cancer Res 2004; 64:7927-35. [PMID: 15520199 DOI: 10.1158/0008-5472.can-03-2402] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In acute myeloid leukemia (AML), resistance to chemotherapy is associated with defects in both the extrinsic and intrinsic pathways of apoptosis. Novel agents that activate endogenous apoptosis-inducing mechanisms directly may be potentially useful to overcome chemoresistance in AML. We examined the mechanisms of apoptosis induction by the novel synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) in AML cells. CDDO-induced apoptosis was associated with the loss of mitochondrial inner transmembrane potential, caspases activation, the translocation of apoptosis-inducing factor to the nucleus, and DNA fragmentation in AML cells. Apoptosis was equally evident in cells deficient in caspase-9 or caspase-8 after exposure to CDDO, suggesting caspase-independent cell death. The use of small interfering RNA to reduce the expression of apoptosis-inducing factor partially inhibited CDDO-induced apoptosis in AML cells. Cells overexpressing Bcl-2 were markedly resistant to CDDO-induced apoptosis. Moreover, CDDO promoted the release of cytochrome c from isolated mitochondria, suggesting that CDDO targets the mitochondria directly to trigger the intrinsic pathway of cell death in intact cells. Together, these results suggest that CDDO functions by activating the intrinsic pathway of apoptosis and initiates caspase-dependent and independent cell death. The direct modulation of mitochondrial-mediated, caspase-independent apoptosis by CDDO may be advantageous for overcoming chemoresistance in AML.
Collapse
Affiliation(s)
- Marina Konopleva
- Section of Molecular Hematology and Therapy and the Department of Blood and Marrow Transplantation at The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Boylston WH, Gerstner A, DeFord JH, Madsen M, Flurkey K, Harrison DE, Papaconstantinou J. Altered cholesterologenic and lipogenic transcriptional profile in livers of aging Snell dwarf (Pit1dw/dwJ) mice. Aging Cell 2004; 3:283-96. [PMID: 15379852 DOI: 10.1111/j.1474-9728.2004.00115.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Several murine models demonstrate that mammalian longevity can be increased by single gene mutations affecting endocrine signalling, particularly via the GH/IGF-1 axis. In this study, we identify age-independent patterns of hepatic gene expression characteristic of long-lived Snell (Pit1(dw/dwJ)) dwarf mice. Comparative microarray analysis of young and aged male livers was performed to discover specific genes differentially expressed between Pit1(dw/dwJ) and control mice. Further examination by real-time RT-PCR confirmed that transcripts encoding HMG-CoA synthase-1, HMG-CoA reductase, farnesyl diphosphate synthase, isopentenyl pyrophosphate isomerase, mevalonate decarboxylase, squalene epoxidase, lanosterol demethylase, malic enzyme and apolipoprotein A-IV were significantly decreased in both male and female Pit1(dw/dwJ) livers at 3-5 and 24-28 months of age. In contrast, transcripts encoding the beta(3)-adrenergic receptor, lipoprotein lipase, PPAR gamma and a very low-density lipoprotein receptor homologue were increased significantly in dwarf livers relative to age-matched controls. These studies reveal enduring transcriptional changes characteristic of Pit1(dw/dwJ) dwarf mice that involve genes regulating cholesterol biosynthesis, fatty acid metabolism and lipoprotein homeostasis. Linked to global energy metabolism, this stable shift in hepatic gene expression may contribute to longevity determination by influencing particular metabolic functions often compartmentalized within the mitochondrion and peroxisome; further this metabolic shift may also parallel many transcriptional changes induced by caloric restriction.
Collapse
Affiliation(s)
- William H Boylston
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77555-0643, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Ibabe A, Grabenbauer M, Baumgart E, Völkl A, Fahimi HD, Cajaraville MP. Expression of peroxisome proliferator-activated receptors in the liver of gray mullet (Mugil cephalus). Acta Histochem 2004; 106:11-9. [PMID: 15032324 DOI: 10.1016/j.acthis.2003.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During the last decade, peroxisome proliferation has emerged as a novel biomarker of exposure to certain organic chemical pollutants in aquatic organisms. Peroxisome proliferation is mediated by nuclear receptors, peroxisome proliferator-activated receptors (PPARs). Three PPAR subtypes have been described in mammals: PPAR alpha, PPAR beta and PPAR gamma. PPARs have also been discovered in several fish species. The aim of the present study was to investigate the expression of PPAR subtypes and their cellular distribution patterns in the liver of gray mullet Mugil cephalus, a fish species widely distributed in estuaries and coastal areas in Europe and used as sentinel of environmental pollution. For this purpose, antibodies were generated against the three subtypes of mouse PPARs and different protocols of antigen retrieval were used. In western blots, main bands were detected of approximately 44 kDa for PPAR alpha, two bands of 44 and 58 kDa for PPAR beta and a single band of 56 kDa for PPAR gamma. Similar results were obtained in mouse liver and may indicate antibody recognition of two forms of the protein in certain cases. PPAR alpha was the subtype most markedly expressed in gray mullet liver, being expressed mainly in melanomacrophages, nuclei of hepatocytes and sinusoidal cells and connective tissue surrounding bile ducts. PPAR beta was expressed in the same cell types but immunolabeling was generally weaker than for PPAR alpha. PPAR gamma showed very weak expression; positivity was mainly found in melanomacrophages and connective tissue surrounding bile ducts. Our results demonstrate that all the three PPAR subtypes are expressed in gray mullet liver but in different intensities. The cellular distribution patterns of PPAR subtypes in gray mullet liver resembled partly those found in mouse liver with PPAR alpha as the main subtype expressed in hepatocytes. The fact that melanomacrophages, cells of the immune system in fish, show strong expression of both PPAR alpha and PPAR beta whereas PPAR gamma expression is almost restricted to this cell type suggest a significant role of PPAR-mediated regulation of cell function in melanomacrophages.
Collapse
Affiliation(s)
- Arantza Ibabe
- Laboratory of Cell Biology and Histology, Department of Zoology and Cell Biology, University of the Basque Country, Bilbo, Basque Country, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Bassett JHD, Harvey CB, Williams GR. Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Mol Cell Endocrinol 2003; 213:1-11. [PMID: 15062569 DOI: 10.1016/j.mce.2003.10.033] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Triiodothyronine (T3) classically regulates gene expression by binding to high-affinity thyroid hormone receptors (TR) that recognize specific response elements in the promoters of T3-target genes and activate or repress transcription in response to hormone. However, a number of thyroid hormone effects occur rapidly and are unaffected by inhibitors of transcription and translation, suggesting that thyroid hormones may also mediate non-genomic actions. Such actions have been described in many tissues and cell types, including brown adipose tissue, the heart and pituitary. The site of non-genomic hormone action has been localized to the plasma membrane, cytoplasm and cellular organelles. These non-genomic actions include the regulation of ion channels, oxidative phosphorylation and mitochondrial gene transcription and involve the generation of intracellular secondary messengers and induction of [Ca(2+)](I), cyclic AMP or protein kinase signalling cascades. These observations have been interpreted to imply the presence of a specific, membrane associated, TR isoform or an unrelated high affinity membrane receptor for thyroid hormone. The recent identification of a progestin membrane receptor and the sub cellular targeted nuclear receptor isoforms ER46, mtRXR, mtPPAR, p28 and p46, has highlighted the potential importance of non-genomic actions of steroid hormones. Here we compare these recently identified receptors with the genomic, non-genomic and mitochondrial actions of thyroid hormones and consider their implications.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Group, Division of Medicine and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
43
|
Casas F, Daury L, Grandemange S, Busson M, Seyer P, Hatier R, Carazo A, Cabello G, Wrutniak-Cabello C. Endocrine regulation of mitochondrial activity: involvement of truncated RXRalpha and c-Erb Aalpha1 proteins. FASEB J 2003; 17:426-36. [PMID: 12631582 DOI: 10.1096/fj.02-0732com] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The importance of mitochondrial activity has recently been extended to the regulation of developmental processes. Numerous pathologies associated with organelle's dysfunctions emphasize their physiological importance. However, regulation of mitochondrial genome transcription, a key element for organelle's function, remains poorly understood. After characterization in the organelle of a truncated form of the triiodothyronine nuclear receptor (p43), a T3-dependent transcription factor of the mitochondrial genome, our purpose was to search for other mitochondrial receptors involved in the regulation of organelle transcription. We show that a 44 kDa protein related to RXRalpha (mt-RXR), another nuclear receptor, is located in the mitochondrial matrix. We found that mt-RXR is produced after cytosolic or intramitochondrial enzymatic cleavage of the RXRalpha nuclear receptor. After mitochondrial import and binding to specific sequences of the organelle genome, mt-RXR induces a ligand-dependent increase in mitochondrial RNA levels. mt-RXR physically interacts with p43 and acts alone or through a heterodimerical complex activated by 9-cis-retinoic acid and T3 to increase RNA levels. These data indicate that hormonal regulation of mitochondrial transcription occurs through pathways similar to those that take place in the nucleus and open a new way to better understand hormone and vitamin action at the cellular level.
Collapse
MESH Headings
- Alitretinoin
- Animals
- Binding Sites
- Calpain/metabolism
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Genome
- Ligands
- Male
- Mitochondria/genetics
- Mitochondria, Liver/genetics
- Mitochondria, Liver/metabolism
- Mitochondria, Liver/ultrastructure
- Models, Biological
- Protein Transport
- RNA/biosynthesis
- RNA, Mitochondrial
- Rats
- Rats, Wistar
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/metabolism
- Receptors, Retinoic Acid/physiology
- Retinoid X Receptors
- Thyroid Hormone Receptors alpha/chemistry
- Thyroid Hormone Receptors alpha/physiology
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic
- Tretinoin/pharmacology
- Triiodothyronine/pharmacology
Collapse
Affiliation(s)
- François Casas
- UMR-866 Différenciation Cellulaire et Croissance (INRA-UMII-ENSAM), Unité d'Endocrinologie Cellulaire, Institut National de la Recherche Agronomique (INRA), 34060 Montpellier Cedex 1, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wrutniak-Cabello C, Casas F, Grandemange S, Seyer P, Busson M, Carazo A, Cabello G. Study of thyroid hormone action on mitochondria opens up a new field of research: mitochondrial endocrinology. ACTA ACUST UNITED AC 2002. [DOI: 10.1097/00060793-200210000-00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Reyes A, Mezzina M, Gadaleta G. Human mitochondrial transcription factor A (mtTFA): gene structure and characterization of related pseudogenes. Gene 2002; 291:223-32. [PMID: 12095695 DOI: 10.1016/s0378-1119(02)00600-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mitochondrial transcription factor A (mtTFA or Tfam) is a 25 kDa protein encoded by a nuclear gene and imported to mitochondria, where it functions as a key regulator of mammalian mitochondrial (mt) DNA transcription and replication. The coding sequence of the human mtTFA gene is reported in the literature and the sizes of few introns are known. In this paper we present the genomic structure of the human mtTFA gene along with the complete sequence of its six intronic regions. Three of the introns (I, III, VI) have been found to be less than 600 bp, while the other three were greater than 1.8 kb. In the course of this work, we discovered that, in addition to the active copy, different homologous sequences identified as processed pseudogenes psi h-mtTFA have been isolated and sequenced. Using an 'in silico' mapping approach we determined their locations on chromosomes 7, 11 and X. psi h-mtTFA locations are different from that of the gene, previously reported on chromosome 10. Transcription analysis by means of reverse transcriptase-polymerase chain reaction has shown that other than the RNA corresponding to the full-length transcript, an isoform lacking 96 bp is also present. Among the three sequenced pseudogenes only one of them located on chromosome 11 has been found to be transcribed in Jurkat cells under these culture conditions, even though transcription initiation and binding sites for different transcription factors have also been found upstream from the other two pseudogenes.
Collapse
Affiliation(s)
- Aurelio Reyes
- Centro di Studio sui Mitocondri e Metabolismo Energetico, CNR, via Amendola 165/A, 70126 Bari, Italy
| | | | | |
Collapse
|
46
|
Lanni A, Moreno M, Lombardi A, de Lange P, Goglia F. Control of energy metabolism by iodothyronines. J Endocrinol Invest 2001; 24:897-913. [PMID: 11817716 DOI: 10.1007/bf03343949] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One of the most widely recognized effects of thyroid hormones (TH) in adult mammals is their influence over energy metabolism. In the past, this has received much attention but, possibly because of the complex mode of action of thyroid hormones, no universally accepted mechanism to explain this effect has been put forward so far. Significant advances in our understanding of the biochemical processes involved in the actions of TH have been made in the last three decades and now it seems clear that TH can act through both nuclear-mediated and extranuclear-mediated pathways. TH increase energy expenditure, partly by reducing metabolic efficiency, with control of specific genes at the transcriptional level, being is thought to be the major molecular mechanism. However, both the number and the identity of the thyroid-hormone-controlled genes remain unknown, as do their relative contributions. The recent discovery of uncoupling proteins (UCPs) (in addition to UCP1 in brown adipose tissue) in almost all tissues in animals, including humans, has opened new perspectives on the understanding of the mechanisms involved in the regulation of energy metabolism by thyroid hormones. Other approaches have included the various attempts made to attribute changes in respiratory activity to a direct influence of thyroid hormones over the mitochondrial energy-transduction apparatus. In addition, an increasing number of studies has revealed that TH active in the regulation of energy metabolism include not only T3, but also other iodothyronines present in the biological fluids, such as 3,5-diiodothyronine (3,5-T2). This, in turn, may make it possible to explain some of the effects exerted by TH on energy metabolism that cannot easily be attributed to T3.
Collapse
Affiliation(s)
- A Lanni
- Department of Life Sciences, Second University of Naples, Caserta, Italy
| | | | | | | | | |
Collapse
|
47
|
Qu B, Li QT, Wong KP, Tan TM, Halliwell B. Mechanism of clofibrate hepatotoxicity: mitochondrial damage and oxidative stress in hepatocytes. Free Radic Biol Med 2001; 31:659-69. [PMID: 11522451 DOI: 10.1016/s0891-5849(01)00632-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peroxisome proliferators have been found to induce hepatocarcinogenesis in rodents, and may cause mitochondrial damage. Consistent with this, clofibrate increased hepatic mitochondrial oxidative DNA and protein damage in mice. The present investigation aimed to study the mechanism by which this might occur by examining the effect of clofibrate on freshly isolated mouse liver mitochondria and a cultured hepatocyte cell line, AML-12. Mitochondrial membrane potential (Delta Psi(m)) was determined by using the fluorescent dye 5,5',6,6'-tetrachloro-1,1', 3,3'-tetraethyl-benzimidazolylcarbocyanine iodide (JC-1) and tetramethylrhodamine methyl ester (TMRM). Application of clofibrate at concentrations greater than 0.3 mM rapidly collapsed the Delta Psi(m) both in liver cells and in isolated mitochondria. The loss of Delta Psi(m) occurred prior to cell death and appeared to involve the mitochondrial permeability transition (MPT), as revealed by calcein fluorescence studies and the protective effect of cyclosporin A (CsA) on the decrease in Delta Psi(m). Levels of reactive oxygen species (ROS) were measured with the fluorescent probes 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate (DCFDA) and dihydrorhodamine 123 (DHR123). Treatment of the hepatocytes with clofibrate caused a significant increase in intracellular and mitochondrial ROS. Antioxidants such as vitamin C, deferoxamine, and catalase were able to protect the cells against the clofibrate-induced loss of viability, as was CsA, but to a lesser extent. These results suggest that one action of clofibrate might be to impair mitochondrial function, so stimulating formation of ROS, which eventually contribute to cell death.
Collapse
Affiliation(s)
- B Qu
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
48
|
Bremer J. The biochemistry of hypo- and hyperlipidemic fatty acid derivatives: metabolism and metabolic effects. Prog Lipid Res 2001; 40:231-68. [PMID: 11412891 DOI: 10.1016/s0163-7827(01)00004-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A selection of amphipatic hyper- and hypolipidemic fatty acid derivatives (fibrates, thia- and branched chain fatty acids) are reviewed. They are probably all ligands for the peroxisome proliferation activation receptor (PPARalpha) which has a low selectivity for its ligands. These compounds give hyper- or hypolipidemic responses depending on their ability to inhibit or stimulate mitochondrial fatty acid oxidation in the liver. The hypolipidemic response is explained by the following metabolic effects: Lipoprotein lipase is induced in liver where it is normally not expressed. Apolipoprotein CIII is downregulated. These two effects in liver lead to a facilitated (re)uptake of chylomicrons and VLDL, thus creating a direct transport of fatty acids from the gut to the liver. Fatty acid metabolizing enzymes in the liver (CPT-I and II, peroxisomal and mitochondrial beta-oxidation enzymes, enzymes of ketogenesis, and omega-oxidation enzymes) are induced and create an increased capacity for fatty acid oxidation. The increased oxidation of fatty acids "drains" fatty acids from the body, reduces VLDL formation, and ultimately explains the antiadiposity and improved insulin sensitivity observed after administration of peroxisome proliferators.
Collapse
Affiliation(s)
- J Bremer
- Institute of Medical Biochemistry, University of Oslo, Pb 1112 Blindern, 0317, Oslo, Norway
| |
Collapse
|
49
|
Hood DA. Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol (1985) 2001; 90:1137-57. [PMID: 11181630 DOI: 10.1152/jappl.2001.90.3.1137] [Citation(s) in RCA: 480] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic contractile activity produces mitochondrial biogenesis in muscle. This adaptation results in a significant shift in adenine nucleotide metabolism, with attendant improvements in fatigue resistance. The vast majority of mitochondrial proteins are derived from the nuclear genome, necessitating the transcription of genes, the translation of mRNA into protein, the targeting of the protein to a mitochondrial compartment via the import machinery, and the assembly of multisubunit enzyme complexes in the respiratory chain or matrix. Putative signals involved in initiating this pathway of gene expression in response to contractile activity likely arise from combinations of accelerations in ATP turnover or imbalances between mitochondrial ATP synthesis and cellular ATP demand, and Ca(2+) fluxes. These rapid events are followed by the activation of exercise-responsive kinases, which phosphorylate proteins such as transcription factors, which subsequently bind to upstream regulatory regions in DNA, to alter transcription rates. Contractile activity increases the mRNA levels of nuclear-encoded proteins such as cytochrome c and mitochondrial transcription factor A (Tfam) and mRNA levels of upstream transcription factors like c-jun and nuclear respiratory factor-1 (NRF-1). mRNA level changes are often most evident during the postexercise recovery period, and they can occur as a result of contractile activity-induced increases in transcription or mRNA stability. Tfam is imported into mitochondria and controls the expression of mitochondrial DNA (mtDNA). mtDNA contributes only 13 protein products to the respiratory chain, but they are vital for electron transport and ATP synthesis. Contractile activity increases Tfam expression and accelerates its import into mitochondria, resulting in increased mtDNA transcription and replication. The result of this coordinated expression of the nuclear and the mitochondrial genomes, along with poorly understood changes in phospholipid synthesis, is an expansion of the muscle mitochondrial reticulum. Further understanding of 1) regulation of mtDNA expression, 2) upstream activators of NRF-1 and other transcription factors, 3) the identity of mRNA stabilizing proteins, and 4) potential of contractile activity-induced changes in apoptotic signals are warranted.
Collapse
Affiliation(s)
- D A Hood
- Department of Kinesiology and Health Science, York University, Toronto, Ontario, Canada M3J 1P3.
| |
Collapse
|
50
|
Morgan CJ, Jacques C, Savagner F, Tourmen Y, Mirebeau DP, Malthièry Y, Reynier P. A conserved N-terminal sequence targets human DAP3 to mitochondria. Biochem Biophys Res Commun 2001; 280:177-81. [PMID: 11162496 DOI: 10.1006/bbrc.2000.4119] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human DAP3 (death-associated protein-3) has been identified as an essential positive mediator of programmed cell death. Structure-function studies have shown previously the N-terminal extremity of the protein to be required in apoptosis induction. Analysis of human DAP3 gene structure predicted 13 exons and subsequent targeting prediction by two software packages (MITOPROT and TargetP) gave a high probability for mitochondrial targeting. The predicted N-terminal targeting structure was also found in the mouse, Drosophila, and C. elegans orthologues with a strong sequence homology between mouse and human. Secondary structure analyses identified alpha-helical structures typical of mitochondrial target peptides. To confirm experimentally this targeting we constructed a fusion protein with N-terminal human DAP3 upstream of enhanced green fluorescent protein (EGFP). Confocal analysis of transfected human fibroblasts clearly demonstrated EGFP localization exclusive to mitochondria. The positioning of this key apoptotic factor at the heart of the mitochondrial pathway provides exciting insight into its role in programmed cell death.
Collapse
Affiliation(s)
- C J Morgan
- Laboratoire de Biochimie et Biologie Moléculaire, INSERM EMI-U 00-18, CHU d'Angers, 4 rue Larrey, F-49033 Angers, France.
| | | | | | | | | | | | | |
Collapse
|