1
|
Che LP, Ruan J, Xin Q, Zhang L, Gao F, Cai L, Zhang J, Chen S, Zhang H, Rochaix JD, Peng L. RESISTANCE TO PHYTOPHTHORA1 promotes cytochrome b559 formation during early photosystem II biogenesis in Arabidopsis. THE PLANT CELL 2024; 36:4143-4167. [PMID: 38963884 PMCID: PMC11449094 DOI: 10.1093/plcell/koae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
As an essential intrinsic component of photosystem II (PSII) in all oxygenic photosynthetic organisms, heme-bridged heterodimer cytochrome b559 (Cyt b559) plays critical roles in the protection and assembly of PSII. However, the underlying mechanisms of Cyt b559 assembly are largely unclear. Here, we characterized the Arabidopsis (Arabidopsis thaliana) rph1 (resistance to Phytophthora1) mutant, which was previously shown to be susceptible to the oomycete pathogen Phytophthora brassicae. Loss of RPH1 leads to a drastic reduction in PSII accumulation, which can be primarily attributed to the defective formation of Cyt b559. Spectroscopic analyses showed that the heme level in PSII supercomplexes isolated from rph1 is significantly reduced, suggesting that RPH1 facilitates proper heme assembly in Cyt b559. Due to the loss of RPH1-mediated processes, a covalently bound PsbE-PsbF heterodimer is formed during the biogenesis of PSII. In addition, rph1 is highly photosensitive and accumulates elevated levels of reactive oxygen species under photoinhibitory-light conditions. RPH1 is a conserved intrinsic thylakoid protein present in green algae and terrestrial plants, but absent in Synechocystis, and it directly interacts with the subunits of Cyt b559. Thus, our data demonstrate that RPH1 represents a chloroplast acquisition specifically promoting the efficient assembly of Cyt b559, probably by mediating proper heme insertion into the apo-Cyt b559 during the initial phase of PSII biogenesis.
Collapse
Affiliation(s)
- Li-Ping Che
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Junxiang Ruan
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qiang Xin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lin Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Fudan Gao
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lujuan Cai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jianing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shiwei Chen
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hui Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, Geneva 1211, Switzerland
| | - Lianwei Peng
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
2
|
Zhang L, Ruan J, Gao F, Xin Q, Che LP, Cai L, Liu Z, Kong M, Rochaix JD, Mi H, Peng L. Thylakoid protein FPB1 synergistically cooperates with PAM68 to promote CP47 biogenesis and Photosystem II assembly. Nat Commun 2024; 15:3122. [PMID: 38600073 PMCID: PMC11006888 DOI: 10.1038/s41467-024-46863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
In chloroplasts, insertion of proteins with multiple transmembrane domains (TMDs) into thylakoid membranes usually occurs in a co-translational manner. Here, we have characterized a thylakoid protein designated FPB1 (Facilitator of PsbB biogenesis1) which together with a previously reported factor PAM68 (Photosynthesis Affected Mutant68) is involved in assisting the biogenesis of CP47, a subunit of the Photosystem II (PSII) core. Analysis by ribosome profiling reveals increased ribosome stalling when the last TMD segment of CP47 emerges from the ribosomal tunnel in fpb1 and pam68. FPB1 interacts with PAM68 and both proteins coimmunoprecipitate with SecY/E and Alb3 as well as with some ribosomal components. Thus, our data indicate that, in coordination with the SecY/E translocon and the Alb3 integrase, FPB1 synergistically cooperates with PAM68 to facilitate the co-translational integration of the last two CP47 TMDs and the large loop between them into thylakoids and the PSII core complex.
Collapse
Affiliation(s)
- Lin Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Junxiang Ruan
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Fudan Gao
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiang Xin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Li-Ping Che
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Lujuan Cai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zekun Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Mengmeng Kong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, China
| | - Lianwei Peng
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
3
|
Toriu M, Horie M, Kumaki Y, Yoneyama T, Kore-Eda S, Mitsuyama S, Yoshida K, Hisabori T, Nishiyama Y. Chloroplast translation factor EF-Tu of Arabidopsis thaliana can be inactivated via oxidation of a specific cysteine residue. Biochem J 2023; 480:307-318. [PMID: 36825659 DOI: 10.1042/bcj20220609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
Translational elongation factor EF-Tu, which delivers aminoacyl-tRNA to the ribosome, is susceptible to inactivation by reactive oxygen species (ROS) in the cyanobacterium Synechocystis sp. PCC 6803. However, the sensitivity to ROS of chloroplast-localized EF-Tu (cpEF-Tu) of plants remains to be elucidated. In the present study, we generated a recombinant cpEF-Tu protein of Arabidopsis thaliana and examined its sensitivity to ROS in vitro. In cpEF-Tu that lacked a bound nucleotide, one of the two cysteine residues, Cys149 and Cys451, in the mature protein was sensitive to oxidation by H2O2, with the resultant formation of sulfenic acid. The translational activity of cpEF-Tu, as determined with an in vitro translation system, derived from Escherichia coli, that had been reconstituted without EF-Tu, decreased with the oxidation of a cysteine residue. Replacement of Cys149 with an alanine residue rendered cpEF-Tu insensitive to inactivation by H2O2, indicating that Cys149 might be the target of oxidation. In contrast, cpEF-Tu that had bound either GDP or GTP was less sensitive to oxidation by H2O2 than nucleotide-free cpEF-Tu. The addition of thioredoxin f1, a major thioredoxin in the Arabidopsis chloroplast, to oxidized cpEF-Tu allowed the reduction of Cys149 and the reactivation of cpEF-Tu, suggesting that the oxidation of cpEF-Tu might be a reversible regulatory mechanism that suppresses the chloroplast translation system in a redox-dependent manner.
Collapse
Affiliation(s)
- Machi Toriu
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Momoka Horie
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yuka Kumaki
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Taku Yoneyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Shin Kore-Eda
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Susumu Mitsuyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
- Green Bioscience Research Area, Strategic Research Center, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
4
|
Pandey J, Devadasu E, Saini D, Dhokne K, Marriboina S, Raghavendra AS, Subramanyam R. Reversible changes in structure and function of photosynthetic apparatus of pea (Pisum sativum) leaves under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:60-74. [PMID: 36377283 DOI: 10.1111/tpj.16034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The effects of drought on photosynthesis have been extensively studied, whereas those on thylakoid organization are limited. We observed a significant decline in gas exchange parameters of pea (Pisum sativum) leaves under progressive drought stress. Chl a fluorescence kinetics revealed the reduction of photochemical efficiency of photosystem (PS)II and PSI. The non-photochemical quenching (NPQ) and the levels of PSII subunit PSBS increased. Furthermore, the light-harvesting complexes (LHCs) and some of the PSI and PSII core proteins were disassembled in drought conditions, whereas these complexes were reassociated during recovery. By contrast, the abundance of supercomplexes of PSII-LHCII and PSII dimer were reduced, whereas LHCII monomers increased following the change in the macro-organization of thylakoids. The stacks of thylakoids were loosely arranged in drought-affected plants, which could be attributed to changes in the supercomplexes of thylakoids. Severe drought stress caused a reduction of both LHCI and LHCII and a few reaction center proteins of PSI and PSII, indicating significant disorganization of the photosynthetic machinery. After 7 days of rewatering, plants recovered well, with restored chloroplast thylakoid structure and photosynthetic efficiency. The correlation of structural changes with leaf reactive oxygen species levels indicated that these changes were associated with the production of reactive oxygen species.
Collapse
Affiliation(s)
- Jayendra Pandey
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepak Saini
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kunal Dhokne
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sureshbabu Marriboina
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
5
|
Inagaki N. Processing of D1 Protein: A Mysterious Process Carried Out in Thylakoid Lumen. Int J Mol Sci 2022; 23:2520. [PMID: 35269663 PMCID: PMC8909930 DOI: 10.3390/ijms23052520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
In oxygenic photosynthetic organisms, D1 protein, a core subunit of photosystem II (PSII), displays a rapid turnover in the light, in which D1 proteins are distinctively damaged and immediately removed from the PSII. In parallel, as a repair process, D1 proteins are synthesized and simultaneously assembled into the PSII. On this flow, the D1 protein is synthesized as a precursor with a carboxyl-terminal extension, and the D1 processing is defined as a step for proteolytic removal of the extension by a specific protease, CtpA. The D1 processing plays a crucial role in appearance of water-oxidizing capacity of PSII, because the main chain carboxyl group at carboxyl-terminus of the D1 protein, exposed by the D1 processing, ligates a manganese and a calcium atom in the Mn4CaO5-cluster, a special equipment for water-oxidizing chemistry of PSII. This review focuses on the D1 processing and discusses it from four angles: (i) Discovery of the D1 processing and recognition of its importance: (ii) Enzyme involved in the D1 processing: (iii) Efforts for understanding significance of the D1 processing: (iv) Remaining mysteries in the D1 processing. Through the review, I summarize the current status of our knowledge on and around the D1 processing.
Collapse
Affiliation(s)
- Noritoshi Inagaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| |
Collapse
|
6
|
Shi Y, Che Y, Wang Y, Luan S, Hou X. Loss of mature D1 leads to compromised CP43 assembly in Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:106. [PMID: 33610179 PMCID: PMC7896377 DOI: 10.1186/s12870-021-02888-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/11/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Photosystem II (PSII) is a highly conserved integral-membrane multi-subunit pigment-protein complex. The proteins, pigments, lipids, and ions in PSII need to be assembled precisely to ensure a proper PSII biogenesis. D1 is the main subunit of PSII core reaction center (RC), and is usually synthesized as a precursor D1. D1 maturation by the C-terminal processing protease CtpA is essential for PSII assembly. However, the detailed mechanism about how D1 maturation affects PSII assembly is not clearly elucidated so far. In this study, Arabidopsis thaliana CtpA mutant (atctpa: SALK_056011), which lacks the D1 mature process, was used to investigate the function of this process on PSII assembly in more details. RESULTS Without the C-terminal processing of precursor D1, PSII assembly, including PSII monomer, dimer, especially PSII supercomplexes (PSII SCs), was largely compromised as reported previously. Western blotting following the BN-2D-SDS PAGE revealed that although the assembly of PSII core proteins D2, CP43 and CP47 was affected by the loss of D1 mature process, the incorporation of CP43 was affected the most, indicated by its most reduced assembly efficiency into PSII SCs. Furthermore, the slower growth of yeast cells which were co-transformed with pD1 and CP43, when compared with the ones co-transformed with mature D1 and CP43, approved the existence of D1 C-terminal tail hindered the interaction efficiency between D1 and CP43, indicating the physiological importance of D1 mature process on the PSII assembly and the healthy growth of the organisms. CONCLUSIONS The knockout Arabidopsis atctpa mutant is a good material to study the unexpected link between D1 maturation and PSII SCs assembly. The loss of D1 maturation mainly affects the incorporation of PSII core protein CP43, an inner antenna binding protein, which functions in the association of LHCII complexes to PSII dimers during the formation of PSII SCs. Our findings here provide detailed supports of the role of D1 maturation during PSII SCs assembly in higher plants.
Collapse
Affiliation(s)
- Yafei Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yufen Che
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Yukun Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Affiliation(s)
- Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| |
Collapse
|
8
|
Huang S, Zuo T, Ni W. Important roles of glycinebetaine in stabilizing the structure and function of the photosystem II complex under abiotic stresses. PLANTA 2020; 251:36. [PMID: 31903497 DOI: 10.1007/s00425-019-03330-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/14/2019] [Indexed: 05/08/2023]
Abstract
The molecular and physiological mechanisms of glycinebetaine stabilizing photosystem II complex under abiotic stresses are discussed, helping to address food shortage problems threatening the survival of growing population. In the backdrop of climate change, the frequency, dimensions and duration of extreme events have increased sharply, which may have unintended consequences for agricultural. The acclimation of plants to a constantly changing environment involves the accumulation of compatible solutes. Various compatible solutes enable plants to tolerate abiotic stresses, and glycinebetaine (GB) is one of the most-studied. The biosynthesis and accumulation of GB appear in numerous plant species, especially under environmental stresses. The exogenous application of GB and GB-accumulating transgenic plants have been proven to further promote plant development under stresses. Early research on GB focused on the maintenance of osmotic potential in plants. Subsequent experimental evidence demonstrated that it also protects proteins including the photosystem II complex (PSII) from denaturation and deactivation. As reviewed here, multiple experimental evidences have indicated considerable progress in the roles of GB in stabilizing PSII under abiotic stresses. Based on these advances, we've concluded two effects of GB on PSII: (1) it stabilizes the structure of PSII by protecting extrinsic proteins from dissociation or by promoting protein synthesize; (2) it enhances the oxygen-evolving activity of PSII or promotes the repair of the photosynthetic damage of PSII.
Collapse
Affiliation(s)
- Shan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China
| | - Ting Zuo
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China
| | - Wuzhong Ni
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Ma J, Wang W, Liu X, Wang Z, Gao G, Wu H, Li X, Xu J. Zinc toxicity alters the photosynthetic response of red alga Pyropia yezoensis to ocean acidification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3202-3212. [PMID: 31838674 DOI: 10.1007/s11356-019-06872-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
The globally changing environmental climate, ocean acidification, and heavy metal pollution are of increasing concern. However, studies investigating the combined effects of ocean acidification and zinc (Zn) exposure on macroalgae are very scarce. In this study, the photosynthetic performance of the red alga Pyropia yezoensis was examined under three different concentrations of Zn (control, 25 (medium), and 100 (high) μg L-1) and pCO2 (400 (ambient) and 1000 (high) μatm). The results showed that higher Zn concentrations resulted in increased toxicity for P. yezoensis, while ocean acidification alleviated this negative effect. Ocean acidification increased the relative growth rate of thalli under both medium and high Zn concentrations. The net photosynthetic rate and respiratory rate of thalli also significantly increased in response under ocean acidification, when thalli were cultured under both medium and high Zn concentrations. Malondialdehyde levels decreased under ocean acidification, compared to ambient CO2 conditions and either medium or high Zn concentrations. The activity of superoxide dismutase increased in response to high Zn concentrations, which was particularly apparent at high Zn concentration and ocean acidification. Immunoblotting tests showed that ocean acidification increased D1 removal, with increasing expression levels of the PSII reaction center proteins D2, CP47, and RbcL. These results suggested that ocean acidification could alleviate the damage caused by Zn exposure, thus providing a theoretical basis for a better prediction of the impact of global climate change and heavy metal contamination on marine primary productivity in the form of seaweeds.
Collapse
Affiliation(s)
- Jing Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China
| | - Wen Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China
| | - Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China
| | - Hailong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China
| | - Xinshu Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China.
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, No. 59 Cangwu Road, Lianyungang, 222005, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Wessendorf RL, Lu Y. Introducing an Arabidopsis thaliana Thylakoid Thiol/Disulfide-Modulating Protein Into Synechocystis Increases the Efficiency of Photosystem II Photochemistry. FRONTIERS IN PLANT SCIENCE 2019; 10:1284. [PMID: 31681379 PMCID: PMC6805722 DOI: 10.3389/fpls.2019.01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Photosynthetic species are subjected to a variety of environmental stresses, including suboptimal irradiance. In oxygenic photosynthetic organisms, a major effect of high light exposure is damage to the Photosystem II (PSII) reaction-center protein D1. This process even happens under low or moderate light. To cope with photodamage to D1, photosynthetic organisms evolved an intricate PSII repair and reassembly cycle, which requires the participation of different auxiliary proteins, including thiol/disulfide-modulating proteins. Most of these auxiliary proteins exist ubiquitously in oxygenic photosynthetic organisms. Due to differences in mobility and environmental conditions, land plants are subject to more extensive high light stress than algae and cyanobacteria. Therefore, land plants evolved additional thiol/disulfide-modulating proteins, such as Low Quantum Yield of PSII 1 (LQY1), to aid in the repair and reassembly cycle of PSII. In this study, we introduced an Arabidopsis thaliana homolog of LQY1 (AtLQY1) into the cyanobacterium Synechocystis sp. PCC6803 and performed a series of biochemical and physiological assays on AtLQY1-expressing Synechocystis. At a moderate growth light intensity (50 µmol photons m-2 s-1), AtLQY1-expressing Synechocystis was found to have significantly higher F v /F m , and lower nonphotochemical quenching and reactive oxygen species levels than the empty-vector control, which is opposite from the loss-of-function Atlqy1 mutant phenotype. Light response curve analysis of PSII operating efficiency and electron transport rate showed that AtLQY1-expressing Synechocystis also outperform the empty-vector control under higher light intensities. The increases in F v /F m , PSII operating efficiency, and PSII electron transport rate in AtLQY1-expressing Synechocystis under such growth conditions most likely come from an increased amount of PSII, because the level of D1 protein was found to be higher in AtLQY1-expressing Synechocystis. These results suggest that introducing AtLQY1 is beneficial to Synechocystis.
Collapse
Affiliation(s)
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
11
|
Adamiec M, Misztal L, Kosicka E, Paluch-Lubawa E, Luciński R. Arabidopsis thaliana egy2 mutants display altered expression level of genes encoding crucial photosystem II proteins. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:155-167. [PMID: 30268696 DOI: 10.1016/j.jplph.2018.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
EGY2 is a zinc-containing, intramembrane protease located in the thylakoid membrane. It is considered to be involved in the regulated intramembrane proteolysis - a mechanism leading to activation of membrane-anchored transcription factors through proteolytic cleavage, which causes them to be released from the membrane. The physiological functions of EGY2 in chloroplasts remains poorly understood. To answer the question of what the significance is of EGY2 in chloroplast functioning, two T-DNA insertion lines devoid of EGY2 protein were obtained and the mutant phenotype and photosystem II parameters were analyzed. Chlorophyll fluorescence measurements revealed that the lack of EGY2 protease caused changes in non-photochemical quenching (NPQ) and minimum fluorescence yield (F0) as well as a higher sensitivity of photosystem II (PSII) to photoinhibition. Further immunoblot analysis revealed significant changes in the accumulation levels of the three chloroplast-encoded PSII core apoproteins: PsbA (D1) and PsbD (D2) forming the PSII reaction center and PsbC - a protein component of CP43, a part of the inner PSII antenna. The accumulation levels of nuclear-encoded proteins,Lhcb1-3, components of the major light-harvesting complex II (LHCII) as well as proteins forming minor peripheral antennae complexes, namely Lhcb4 (CP29), Lhcb5 (CP26), and Lhcb6 (CP24) remain, however, unchanged. The lack of EGY2 led to a significant increase in the level of PsbA (D1) with a simultaneous decrease in the accumulation levels of PsbC (CP43) and PsbD (D2). To test the hypothesis that the observed changes in the abundance of chloroplast-encoded proteins are a consequence of changes in gene expression levels, real-time PCR was performed. The results obtained show that egy2 mutants display an increased expression of PSBA and a reduction in the PSBD and PSBC genes. Simultaneously pTAC10, pTAC16 and FLN1 proteins were found to accumulate in thylakoid membranes of analyzed mutant lines. These proteins interact with the core complex of plastid-encoded RNA polymerase and may be involved in the regulation of chloroplast gene expression.
Collapse
Affiliation(s)
- Małgorzata Adamiec
- Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Lucyna Misztal
- Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Ewa Kosicka
- Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Cell Biology, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Ewelina Paluch-Lubawa
- Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Robert Luciński
- Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
12
|
Jeong J, Baek K, Kirst H, Melis A, Jin E. Loss of CpSRP54 function leads to a truncated light-harvesting antenna size in Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:45-55. [DOI: 10.1016/j.bbabio.2016.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
|
13
|
Chandrasekar S, Sweredoski MJ, Sohn CH, Hess S, Shan SO. Co-evolution of Two GTPases Enables Efficient Protein Targeting in an RNA-less Chloroplast Signal Recognition Particle Pathway. J Biol Chem 2016; 292:386-396. [PMID: 27895118 DOI: 10.1074/jbc.m116.752931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/17/2016] [Indexed: 11/06/2022] Open
Abstract
The signal recognition particle (SRP) is an essential ribonucleoprotein particle that mediates the co-translational targeting of newly synthesized proteins to cellular membranes. The SRP RNA is a universally conserved component of SRP that mediates key interactions between two GTPases in SRP and its receptor, thus enabling rapid delivery of cargo to the target membrane. Notably, this essential RNA is bypassed in the chloroplast (cp) SRP of green plants. Previously, we showed that the cpSRP and cpSRP receptor GTPases (cpSRP54 and cpFtsY, respectively) interact efficiently by themselves without the SRP RNA. Here, we explore the molecular mechanism by which this is accomplished. Fluorescence analyses showed that, in the absence of SRP RNA, the M-domain of cpSRP54 both accelerates and stabilizes complex assembly between cpSRP54 and cpFtsY. Cross-linking coupled with mass spectrometry and mutational analyses identified a new interaction between complementarily charged residues on the cpFtsY G-domain and the vicinity of the cpSRP54 M-domain. These residues are specifically conserved in plastids, and their evolution coincides with the loss of SRP RNA in green plants. These results provide an example of how proteins replace the functions of RNA during evolution.
Collapse
Affiliation(s)
| | - Michael J Sweredoski
- the Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Chang Ho Sohn
- From the Division of Chemistry and Chemical Engineering and
| | - Sonja Hess
- the Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Shu-Ou Shan
- From the Division of Chemistry and Chemical Engineering and
| |
Collapse
|
14
|
Abstract
The interaction of biological macromolecules is a fundamental attribute of cellular life. Proteins, in particular, often form stable complexes with one another. Although the importance of protein complexes is widely recognized, we still have only a very limited understanding of the mechanisms underlying their assembly within cells. In this article, we review the available evidence for one such mechanism, namely the coupling of protein complex assembly to translation at the polysome. We discuss research showing that co-translational assembly can occur in both prokaryotic and eukaryotic organisms and can have important implications for the correct functioning of the complexes that result. Co-translational assembly can occur for both homomeric and heteromeric protein complexes and for both proteins that are translated directly into the cytoplasm and those that are translated into or across membranes. Finally, we discuss the properties of proteins that are most likely to be associated with co-translational assembly.
Collapse
|
15
|
Bao H, Burnap RL. Photoactivation: The Light-Driven Assembly of the Water Oxidation Complex of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:578. [PMID: 27200051 PMCID: PMC4853684 DOI: 10.3389/fpls.2016.00578] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/14/2016] [Indexed: 05/10/2023]
Abstract
Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II. The assembly of the Mn4O5Ca requires light and involves a sequential process called photoactivation. This process harnesses the charge-separation of the photochemical reaction center and the coordination environment provided by the amino acid side chains of the protein to oxidize and organize the incoming manganese ions to form the oxo-bridged metal cluster capable of H2O-oxidation. Although most aspects of this assembly process remain poorly understood, recent advances in the elucidation of the crystal structure of the fully assembled cyanobacterial PSII complex help in the interpretation of the rich history of experiments designed to understand this process. Moreover, recent insights on the structure and stability of the constituent ions of the Mn4CaO5 cluster may guide future experiments. Here we consider the literature and suggest possible models of assembly including one involving single Mn(2+) oxidation site for all Mn but requiring ion relocation.
Collapse
Affiliation(s)
| | - Robert L. Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State UniversityStillwater, OK, USA
| |
Collapse
|
16
|
Nakamura M, Hibi Y, Okamoto T, Sugiura M. Cooperation between the chloroplast psbA 5'-untranslated region and coding region is important for translational initiation: the chloroplast translation machinery cannot read a human viral gene coding region. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:772-80. [PMID: 26931095 DOI: 10.1111/tpj.13150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
Chloroplast mRNA translation is regulated by the 5'-untranslated region (5'-UTR). Chloroplast 5'-UTRs also support translation of the coding regions of heterologous genes. Using an in vitro translation system from tobacco chloroplasts, we detected no translation from a human immunodeficiency virus tat coding region fused directly to the tobacco chloroplast psbA 5'-UTR. This lack of apparent translation could have been due to rapid degradation of mRNA templates or synthesized protein products. Replacing the psbA 5'-UTR with the E. coli phage T7 gene 10 5'-UTR, a highly active 5'-UTR, and substituting synonymous codons led to some translation of the tat coding region. The Tat protein thus synthesized was stable during translation reactions. No significant degradation of the added tat mRNAs was observed after translation reactions. These results excluded the above two possibilities and confirmed that the tat coding region prevented its own translation. The tat coding region was then fused to the psbA 5'-UTR with a cognate 5'-coding segment. Significant translation was detected from the tat coding region when fused after 10 or more codons. That is, translation could be initiated from the tat coding region once translation had started, indicating that the tat coding region inhibits translational initiation but not elongation. Hence, cooperation/compatibility between the 5'-UTR and its coding region is important for translational initiation.
Collapse
Affiliation(s)
- Masayuki Nakamura
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho-ku, Nagoya, 467-8501, Japan
| | - Yurina Hibi
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Masahiro Sugiura
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho-ku, Nagoya, 467-8501, Japan
| |
Collapse
|
17
|
Trösch R, Töpel M, Flores-Pérez Ú, Jarvis P. Genetic and Physical Interaction Studies Reveal Functional Similarities between ALBINO3 and ALBINO4 in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:1292-306. [PMID: 26265777 PMCID: PMC4587442 DOI: 10.1104/pp.15.00376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/06/2015] [Indexed: 05/20/2023]
Abstract
ALBINO3 (ALB3) is a well-known component of a thylakoid protein-targeting complex that interacts with the chloroplast signal recognition particle (cpSRP) and the cpSRP receptor, chloroplast filamentous temperature-sensitive Y (cpFtsY). Its protein-inserting function has been established mainly for light-harvesting complex proteins, which first interact with the unique chloroplast cpSRP43 component and then are delivered to the ALB3 integrase by a GTP-dependent cpSRP-cpFtsY interaction. In Arabidopsis (Arabidopsis thaliana), a subsequently discovered ALB3 homolog, ALB4, has been proposed to be involved not in light-harvesting complex protein targeting, but instead in the stabilization of the ATP synthase complex. Here, however, we show that ALB3 and ALB4 share significant functional overlap, and that both proteins are required for the efficient insertion of cytochrome f and potentially other subunits of pigment-bearing protein complexes. Genetic and physical interactions between ALB4 and ALB3, and physical interactions between ALB4 and cpSRP, suggest that the two ALB proteins may engage similar sets of interactors for their specific functions. We propose that ALB4 optimizes the insertion of thylakoid proteins by participating in the ALB3-cpSRP pathway for certain substrates (e.g. cytochrome f and the Rieske protein). Although ALB4 has clearly diverged from ALB3 in relation to the partner-recruiting C-terminal domain, our analysis suggests that one putative cpSRP-binding motif has not been entirely lost.
Collapse
Affiliation(s)
- Raphael Trösch
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom (R.T., M.T., P.J.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., P.J.)
| | - Mats Töpel
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom (R.T., M.T., P.J.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., P.J.)
| | - Úrsula Flores-Pérez
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom (R.T., M.T., P.J.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., P.J.)
| | - Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom (R.T., M.T., P.J.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., P.J.)
| |
Collapse
|
18
|
Segovia M, Mata T, Palma A, García-Gómez C, Lorenzo R, Rivera A, Figueroa FL. Dunaliella tertiolecta(Chlorophyta) Avoids Cell Death Under Ultraviolet Radiation By Triggering Alternative Photoprotective Mechanisms. Photochem Photobiol 2015. [DOI: 10.1111/php.12502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- María Segovia
- Department of Ecology; Faculty of Sciences; University of Málaga; Málaga Spain
| | - Teresa Mata
- Department of Ecology; Faculty of Sciences; University of Málaga; Málaga Spain
| | - Armando Palma
- Department of Ecology; Faculty of Sciences; University of Málaga; Málaga Spain
| | | | - Rosario Lorenzo
- Department of Ecology; Faculty of Sciences; University of Málaga; Málaga Spain
| | - Alicia Rivera
- Department of Cell Biology; Faculty of Sciences; University of Málaga; Málaga Spain
| | - Félix L. Figueroa
- Department of Ecology; Faculty of Sciences; University of Málaga; Málaga Spain
| |
Collapse
|
19
|
Sun Y, Zerges W. Translational regulation in chloroplasts for development and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:809-20. [PMID: 25988717 DOI: 10.1016/j.bbabio.2015.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/13/2015] [Accepted: 05/10/2015] [Indexed: 11/16/2022]
Abstract
Chloroplast genomes encode 100-200 proteins which function in photosynthesis, the organellar genetic system, and other pathways and processes. These proteins are synthesized by a complete translation system within the chloroplast, with bacterial-type ribosomes and translation factors. Here, we review translational regulation in chloroplasts, focusing on changes in translation rates which occur in response to requirements for proteins encoded by the chloroplast genome for development and homeostasis. In addition, we delineate the developmental and physiological contexts and model organisms in which translational regulation in chloroplasts has been studied. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
Affiliation(s)
- Yi Sun
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada
| | - William Zerges
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada.
| |
Collapse
|
20
|
Photosystem II repair in plant chloroplasts--Regulation, assisting proteins and shared components with photosystem II biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:900-9. [PMID: 25615587 DOI: 10.1016/j.bbabio.2015.01.006] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/07/2015] [Accepted: 01/15/2015] [Indexed: 01/30/2023]
Abstract
Photosystem (PS) II is a multisubunit thylakoid membrane pigment-protein complex responsible for light-driven oxidation of water and reduction of plastoquinone. Currently more than 40 proteins are known to associate with PSII, either stably or transiently. The inherent feature of the PSII complex is its vulnerability in light, with the damage mainly targeted to one of its core proteins, the D1 protein. The repair of the damaged D1 protein, i.e. the repair cycle of PSII, initiates in the grana stacks where the damage generally takes place, but subsequently continues in non-appressed thylakoid domains, where many steps are common for both the repair and de novo assembly of PSII. The sequence of the (re)assembly steps of genuine PSII subunits is relatively well-characterized in higher plants. A number of novel findings have shed light into the regulation mechanisms of lateral migration of PSII subcomplexes and the repair as well as the (re)assembly of the complex. Besides the utmost importance of the PSII repair cycle for the maintenance of PSII functionality, recent research has pointed out that the maintenance of PSI is closely dependent on regulation of the PSII repair cycle. This review focuses on the current knowledge of regulation of the repair cycle of PSII in higher plant chloroplasts. Particular emphasis is paid on sequential assembly steps of PSII and the function of the number of PSII auxiliary proteins involved both in the biogenesis and repair of PSII. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
21
|
Piro A, Marín-Guirao L, Serra IA, Spadafora A, Sandoval-Gil JM, Bernardeau-Esteller J, Fernandez JMR, Mazzuca S. The modulation of leaf metabolism plays a role in salt tolerance of Cymodocea nodosa exposed to hypersaline stress in mesocosms. FRONTIERS IN PLANT SCIENCE 2015; 6:464. [PMID: 26167167 PMCID: PMC4482034 DOI: 10.3389/fpls.2015.00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/11/2015] [Indexed: 05/03/2023]
Abstract
Applying proteomics, we tested the physiological responses of the euryhaline seagrass Cymodocea nodosa to deliberate manipulation of salinity in a mesocosm system. Plants were subjected to a chronic hypersaline condition (43 psu) to compare protein expression and plant photochemistry responses after 15 and 30 days of exposure with those of plants cultured under normal/ambient saline conditions (37 psu). Results showed a general decline in the expression level of leaf proteins in hypersaline stressed plants, with more intense reductions after long-lasting exposure. Specifically, the carbon-fixing enzyme RuBisCo displayed a lower accumulation level in stressed plants relative to controls. In contrast, the key enzymes involved in the regulation of glycolysis, cytosolic glyceraldehyde-3-phosphate dehydrogenase, enolase 2 and triose-phosphate isomerase, showed significantly higher accumulation levels. These responses suggested a shift in carbon metabolism in stressed plants. Hypersaline stress also induced a significant alteration of the photosynthetic physiology of C. nodosa by means of a down-regulation in structural proteins and enzymes of both PSII and PSI. However we found an over-expression of the cytochrome b559 alpha subunit of the PSII initial complex, which is a receptor for the PSII core proteins involved in biogenesis or repair processes and therefore potentially involved in the absence of effects at the photochemical level of stressed plants. As expected hypersalinity also affects vacuolar metabolism by increasing the leaf cell turgor pressure and enhancing the up-take of Na(+) by over-accumulating the tonoplast specific intrinsic protein pyrophosphate-energized inorganic pyrophosphatase (H(+)-PPase) coupled to the Na(+)/H(+)-antiporter. The modulation of carbon metabolism and the enhancement of vacuole capacity in Na(+) sequestration and osmolarity changes are discussed in relation to salt tolerance of C. nodosa.
Collapse
Affiliation(s)
- Amalia Piro
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaRende, Italy
| | - Lázaro Marín-Guirao
- Spanish Institute of Oceanography, Oceanographic Centre of MurciaMurcia, Spain
| | - Ilia A. Serra
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaRende, Italy
| | - Antonia Spadafora
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaRende, Italy
| | | | | | | | - Silvia Mazzuca
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaRende, Italy
- *Correspondence: Silvia Mazzuca, Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Bucci 12C, 87036 Rende, Italy,
| |
Collapse
|
22
|
Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol 2014; 98:8777-96. [PMID: 25139449 DOI: 10.1007/s00253-014-6020-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022]
Abstract
When photosynthetic organisms are exposed to abiotic stress, their photosynthetic activity is significantly depressed. In particular, photosystem II (PSII) in the photosynthetic machinery is readily inactivated under strong light and this phenomenon is referred to as photoinhibition of PSII. Other types of abiotic stress act synergistically with light stress to accelerate photoinhibition. Recent studies of photoinhibition have revealed that light stress damages PSII directly, whereas other abiotic stresses act exclusively to inhibit the repair of PSII after light-induced damage (photodamage). Such inhibition of repair is associated with suppression, by reactive oxygen species (ROS), of the synthesis of proteins de novo and, in particular, of the D1 protein, and also with the reduced efficiency of repair under stress conditions. Gene-technological improvements in the tolerance of photosynthetic organisms to various abiotic stresses have been achieved via protection of the repair system from ROS and, also, by enhancing the efficiency of repair via facilitation of the turnover of the D1 protein in PSII. In this review, we summarize the current status of research on photoinhibition as it relates to the effects of abiotic stress and we discuss successful strategies that enhance the activity of the repair machinery. In addition, we propose several potential methods for activating the repair system by gene-technological methods.
Collapse
|
23
|
Tomizioli M, Lazar C, Brugière S, Burger T, Salvi D, Gatto L, Moyet L, Breckels LM, Hesse AM, Lilley KS, Seigneurin-Berny D, Finazzi G, Rolland N, Ferro M. Deciphering thylakoid sub-compartments using a mass spectrometry-based approach. Mol Cell Proteomics 2014; 13:2147-67. [PMID: 24872594 DOI: 10.1074/mcp.m114.040923] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Photosynthesis has shaped atmospheric and ocean chemistries and probably changed the climate as well, as oxygen is released from water as part of the photosynthetic process. In photosynthetic eukaryotes, this process occurs in the chloroplast, an organelle containing the most abundant biological membrane, the thylakoids. The thylakoids of plants and some green algae are structurally inhomogeneous, consisting of two main domains: the grana, which are piles of membranes gathered by stacking forces, and the stroma-lamellae, which are unstacked thylakoids connecting the grana. The major photosynthetic complexes are unevenly distributed within these compartments because of steric and electrostatic constraints. Although proteomic analysis of thylakoids has been instrumental to define its protein components, no extensive proteomic study of subthylakoid localization of proteins in the BBY (grana) and the stroma-lamellae fractions has been achieved so far. To fill this gap, we performed a complete survey of the protein composition of these thylakoid subcompartments using thylakoid membrane fractionations. We employed semiquantitative proteomics coupled with a data analysis pipeline and manual annotation to differentiate genuine BBY and stroma-lamellae proteins from possible contaminants. About 300 thylakoid (or potentially thylakoid) proteins were shown to be enriched in either the BBY or the stroma-lamellae fractions. Overall, present findings corroborate previous observations obtained for photosynthetic proteins that used nonproteomic approaches. The originality of the present proteomic relies in the identification of photosynthetic proteins whose differential distribution in the thylakoid subcompartments might explain already observed phenomenon such as LHCII docking. Besides, from the present localization results we can suggest new molecular actors for photosynthesis-linked activities. For instance, most PsbP-like subunits being differently localized in stroma-lamellae, these proteins could be linked to the PSI-NDH complex in the context of cyclic electron flow around PSI. In addition, we could identify about a hundred new likely minor thylakoid (or chloroplast) proteins, some of them being potential regulators of the chloroplast physiology.
Collapse
Affiliation(s)
- Martino Tomizioli
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France
| | - Cosmin Lazar
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; **CEA, iRTSV, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France; ‡‡ INSERM, U1038, F-38054 Grenoble, France
| | - Sabine Brugière
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; **CEA, iRTSV, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France; ‡‡ INSERM, U1038, F-38054 Grenoble, France
| | - Thomas Burger
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; **CEA, iRTSV, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France; ‡‡ INSERM, U1038, F-38054 Grenoble, France; §§CNRS, FR3425, F-38054 Grenoble, France
| | - Daniel Salvi
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France
| | - Laurent Gatto
- ¶¶Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1QR, United Kingdom
| | - Lucas Moyet
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France
| | - Lisa M Breckels
- ¶¶Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1QR, United Kingdom
| | - Anne-Marie Hesse
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; **CEA, iRTSV, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France; ‡‡ INSERM, U1038, F-38054 Grenoble, France
| | - Kathryn S Lilley
- ¶¶Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1QR, United Kingdom
| | - Daphné Seigneurin-Berny
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France
| | - Giovanni Finazzi
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France
| | - Norbert Rolland
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; §CNRS, UMR5168, F-38054 Grenoble, France; ¶CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, F-38054 Grenoble, France; ‖INRA, USC 1359, F-38054 Grenoble, France;
| | - Myriam Ferro
- From the ‡Univ. Grenoble Alpes, F-38000 Grenoble, France; **CEA, iRTSV, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France; ‡‡ INSERM, U1038, F-38054 Grenoble, France;
| |
Collapse
|
24
|
The chloroplast signal recognition particle (CpSRP) pathway as a tool to minimize chlorophyll antenna size and maximize photosynthetic productivity. Biotechnol Adv 2014; 32:66-72. [DOI: 10.1016/j.biotechadv.2013.08.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 11/21/2022]
|
25
|
Weis BL, Schleiff E, Zerges W. Protein targeting to subcellular organelles via MRNA localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:260-73. [PMID: 23457718 DOI: 10.1016/j.bbamcr.2012.04.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cells have complex membranous organelles for the compartmentalization and the regulation of most intracellular processes. Organelle biogenesis and maintenance requires newly synthesized proteins, each of which needs to go from the ribosome translating its mRNA to the correct membrane for insertion or transclocation to an a organellar subcompartment. Decades of research have revealed how proteins are targeted to the correct organelle and translocated across one or more organelle membranes ro the compartment where they function. The paradigm examples involve interactions between a peptide sequence in the protein, localization factors, and various membrane embedded translocation machineries. Membrane translocation is either cotranslational or posttranslational depending on the protein and target organelle. Meanwhile research in embryos, neurons and yeast revealed an alternative targeting mechanism in which the mRNA is localized and only then translated to synthesize the protein in the correct location. In these cases, the targeting information is coded by the cis-acting sequences in the mRNA ("Zipcodes") that interact with localization factors and, in many cases, are transported by the molecular motors on the cytoskeletal filaments. Recently, evidence has been found for this "mRNA based" mechanism in organelle protein targeting to endoplasmic reticulum, mitochondria, and the photosynthetic membranes within chloroplasts. Here we review known and potential roles of mRNA localization in protein targeting to and within organelles. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Benjamin L Weis
- Goether University, Cluster of Excellence Macromolecular Complexes, Institute for Molecular Biosciences, Max-von-Laue Str. 9, D-60438 Frankfort, Germany
| | | | | |
Collapse
|
26
|
Gimpel JA, Mayfield SP. Analysis of heterologous regulatory and coding regions in algal chloroplasts. Appl Microbiol Biotechnol 2012. [PMID: 23179624 DOI: 10.1007/s00253-012-4580-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The basic photosynthetic apparatus is highly conserved across all photosynthetic organisms, and this conservation can be seen in both protein composition and amino acid sequence. Conservation of regulatory elements also seems possible in chloroplast genes, as many mRNA untranslated regions (UTRs) appear to have similar structural elements. The D1 protein of Photosystem II (psbA gene) is a highly conserved core reaction center protein that shows very similar regulation from cyanobacteria through higher plants. We engineered full and partial psbA genes from a diverse set of photosynthetic organisms into a psbA deficient strain of Chlamydomonas reinhardtii. Analysis of D1 protein accumulation and photosynthetic growth revealed that coding sequences and promoters are interchangeable even between anciently diverged species. On the other hand functional recognition of 5' UTRs is limited to closely related organisms. Furthermore transformation of heterologous promoters and 5' UTRs from the atpA, tufA and psbD genes conferred psbA mRNA accumulation but not translation. Overall, our results show that heterologous D1 proteins can be expressed and complement Photosystem II function in green algae, while RNA regulatory elements appear to be very specific and function only from closely related species. Nonetheless, there is great potential for the expression of heterologous photosynthetic coding sequences for studying and modifying photosynthesis in C. reinhardtii chloroplasts.
Collapse
Affiliation(s)
- Javier A Gimpel
- San Diego Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0368, USA
| | | |
Collapse
|
27
|
Yao DCI, Brune DC, Vavilin D, Vermaas WFJ. Photosystem II component lifetimes in the cyanobacterium Synechocystis sp. strain PCC 6803: small Cab-like proteins stabilize biosynthesis intermediates and affect early steps in chlorophyll synthesis. J Biol Chem 2011; 287:682-692. [PMID: 22090028 DOI: 10.1074/jbc.m111.320994] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To gain insight in the lifetimes of photosystem II (PSII) chlorophyll and proteins, a combined stable isotope labeling (15N)/mass spectrometry method was used to follow both old and new pigments and proteins. Photosystem I-less Synechocystis cells were grown to exponential or post-exponential phase and then diluted in BG-11 medium with [15N]ammonium and [15N]nitrate. PSII was isolated, and the masses of PSII protein fragments and chlorophyll were determined. Lifetimes of PSII components ranged from 1.5 to 40 h, implying that at least some of the proteins and chlorophyll turned over independently from each other. Also, a significant amount of nascent PSII components accumulated in thylakoids when cells were in post-exponential growth phase. In a mutant lacking small Cab-like proteins (SCPs), most PSII protein lifetimes were unaffected, but the lifetime of chlorophyll and the amount of nascent PSII components that accumulated were decreased. In the absence of SCPs, one of the PSII biosynthesis intermediates, the monomeric PSII complex without CP43, was missing. Therefore, SCPs may stabilize nascent PSII protein complexes. Moreover, upon SCP deletion, the rate of chlorophyll synthesis and the accumulation of early tetrapyrrole precursors were drastically reduced. When [14N]aminolevulinic acid (ALA) was supplemented to 15N-BG-11 cultures, the mutant lacking SCPs incorporated much more exogenous ALA into chlorophyll than the control demonstrating that ALA biosynthesis was impaired in the absence of SCPs. This illustrates the major effects that nonstoichiometric PSII components such as SCPs have on intermediates and assembly but not on the lifetime of PSII proteins.
Collapse
Affiliation(s)
- Danny C I Yao
- School of Life Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-4501
| | - Daniel C Brune
- School of Life Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-4501
| | - Dmitri Vavilin
- School of Life Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-4501
| | - Wim F J Vermaas
- School of Life Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-4501.
| |
Collapse
|
28
|
Tikkanen M, Aro EM. Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:232-8. [PMID: 21605541 DOI: 10.1016/j.bbabio.2011.05.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 05/08/2011] [Accepted: 05/09/2011] [Indexed: 01/22/2023]
Abstract
In higher plants, the photosystem (PS) II core and its several light harvesting antenna (LHCII) proteins undergo reversible phosphorylation cycles according to the light intensity. High light intensity induces strong phosphorylation of the PSII core proteins and suppresses the phosphorylation level of the LHCII proteins. Decrease in light intensity, in turn, suppresses the phosphorylation of PSII core, but strongly induces the phosphorylation of LHCII. Reversible and differential phosphorylation of the PSII-LHCII proteins is dependent on the interplay between the STN7 and STN8 kinases, and the respective phosphatases. The STN7 kinase phosphorylates the LHCII proteins and to a lesser extent also the PSII core proteins D1, D2 and CP43. The STN8 kinase, on the contrary, is rather specific for the PSII core proteins. Mechanistically, the PSII-LHCII protein phosphorylation is required for optimal mobility of the PSII-LHCII protein complexes along the thylakoid membrane. Physiologically, the phosphorylation of LHCII is a prerequisite for sufficient excitation of PSI, enabling the excitation and redox balance between PSII and PSI under low irradiance, when excitation energy transfer from the LHCII antenna to the two photosystems is efficient and thermal dissipation of excitation energy (NPQ) is minimised. The importance of PSII core protein phosphorylation is manifested under highlight when the photodamage of PSII is rapid and phosphorylation is required to facilitate the migration of damaged PSII from grana stacks to stroma lamellae for repair. The importance of thylakoid protein phosphorylation is highlighted under fluctuating intensity of light where the STN7 kinase dependent balancing of electron transfer is a prerequisite for optimal growth and development of the plant. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Mikko Tikkanen
- Department of Biochemistry and Food Chemistry, University of Turku, Finland
| | | |
Collapse
|
29
|
Mulo P, Sakurai I, Aro EM. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:247-57. [PMID: 21565160 DOI: 10.1016/j.bbabio.2011.04.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 11/26/2022]
Abstract
The Photosystem (PS) II of cyanobacteria, green algae and higher plants is prone to light-induced inactivation, the D1 protein being the primary target of such damage. As a consequence, the D1 protein, encoded by the psbA gene, is degraded and re-synthesized in a multistep process called PSII repair cycle. In cyanobacteria, a small gene family codes for the various, functionally distinct D1 isoforms. In these organisms, the regulation of the psbA gene expression occurs mainly at the level of transcription, but the expression is fine-tuned by regulation of translation elongation. In plants and green algae, the D1 protein is encoded by a single psbA gene located in the chloroplast genome. In chloroplasts of Chlamydomonas reinhardtii the psbA gene expression is strongly regulated by mRNA processing, and particularly at the level of translation initiation. In chloroplasts of higher plants, translation elongation is the prevalent mechanism for regulation of the psbA gene expression. The pre-existing pool of psbA transcripts forms translation initiation complexes in plant chloroplasts even in darkness, while the D1 synthesis can be completed only in the light. Replacement of damaged D1 protein requires also the assistance by a number of auxiliary proteins, which are encoded by the nuclear genome in green algae and higher plants. Nevertheless, many of these chaperones are conserved between prokaryotes and eukaryotes. Here, we describe the specific features and fundamental differences of the psbA gene expression and the regeneration of the PSII reaction center protein D1 in cyanobacteria, green algae and higher plants. This article is part of a Special Issue entitled Photosystem II.
Collapse
Affiliation(s)
- Paula Mulo
- Department of Biochemistry and Food Chemistry, University of Turku, Finland.
| | | | | |
Collapse
|
30
|
Nishiyama Y, Allakhverdiev SI, Murata N. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. PHYSIOLOGIA PLANTARUM 2011; 142:35-46. [PMID: 21320129 DOI: 10.1111/j.1399-3054.2011.01457.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photoinhibition of photosystem II (PSII) occurs when the rate of photodamage to PSII exceeds the rate of the repair of photodamaged PSII. Recent examination of photoinhibition by separate determinations of photodamage and repair has revealed that the rate of photodamage to PSII is directly proportional to the intensity of incident light and that the repair of PSII is particularly sensitive to the inactivation by reactive oxygen species (ROS). The ROS-induced inactivation of repair is attributable to the suppression of the synthesis de novo of proteins, such as the D1 protein, that are required for the repair of PSII at the level of translational elongation. Furthermore, molecular analysis has revealed that the ROS-induced suppression of protein synthesis is associated with the specific inactivation of elongation factor G via the formation of an intramolecular disulfide bond. Impairment of various mechanisms that protect PSII against photoinhibition, including photorespiration, thermal dissipation of excitation energy, and the cyclic transport of electrons, decreases the rate of repair of PSII via the suppression of protein synthesis. In this review, we present a newly established model of the mechanism and the physiological significance of repair in the regulation of the photoinhibition of PSII.
Collapse
Affiliation(s)
- Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering and Institute for Environmental Science and Technology, Saitama University, Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.
| | | | | |
Collapse
|
31
|
Dewez D, Park S, García-Cerdán JG, Lindberg P, Melis A. Mechanism of REP27 protein action in the D1 protein turnover and photosystem II repair from photodamage. PLANT PHYSIOLOGY 2009; 151:88-99. [PMID: 19574473 PMCID: PMC2736001 DOI: 10.1104/pp.109.140798] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 06/30/2009] [Indexed: 05/20/2023]
Abstract
The function of the REP27 protein (GenBank accession no. EF127650) in the photosystem II (PSII) repair process was elucidated. REP27 is a nucleus-encoded and chloroplast-targeted protein containing two tetratricopeptide repeat (TPR) motifs, two putative transmembrane domains, and an extended carboxyl (C)-terminal region. Cell fractionation and western-blot analysis localized the REP27 protein in the Chlamydomonas reinhardtii chloroplast thylakoids. A folding model for REP27 suggested chloroplast stroma localization for amino- and C-terminal regions as well as the two TPRs. A REP27 gene knockout strain of Chlamydomonas, termed the rep27 mutant, was employed for complementation studies. The rep27 mutant was aberrant in the PSII-repair process and had substantially lower than wild-type levels of D1 protein. Truncated REP27 cDNA constructs were made for complementation of rep27, whereby TPR1, TPR2, TPR1+TPR2, or the C-terminal domains were deleted. rep27-complemented strains minus the TPR motifs showed elevated levels of D1 in thylakoids, comparable to those in the wild type, but the PSII photochemical efficiency of these strains was not restored, suggesting that the functionality of the PSII reaction center could not be recovered in the absence of the TPR motifs. It is suggested that TPR motifs play a role in the functional activation of the newly integrated D1 protein in the PSII reaction center. rep27-complemented strains missing the C-terminal domain showed low levels of D1 protein in thylakoids as well as low PSII photochemical efficiency, comparable to those in the rep27 mutant. Therefore, the C-terminal domain is needed for a de novo biosynthesis and/or assembly of D1 in the photodamaged PSII template. We conclude that REP27 plays a dual role in the regulation of D1 protein turnover by facilitating cotranslational biosynthesis insertion (C-terminal domain) and activation (TPR motifs) of the nascent D1 during the PSII repair process.
Collapse
Affiliation(s)
- David Dewez
- Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA
| | | | | | | | | |
Collapse
|
32
|
Kojima K, Motohashi K, Morota T, Oshita M, Hisabori T, Hayashi H, Nishiyama Y. Regulation of translation by the redox state of elongation factor G in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2009; 284:18685-91. [PMID: 19447882 PMCID: PMC2707220 DOI: 10.1074/jbc.m109.015131] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/14/2009] [Indexed: 01/17/2023] Open
Abstract
Elongation factor G (EF-G), a key protein in translational elongation, was identified as a primary target of inactivation by reactive oxygen species within the translational machinery of the cyanobacterium Synechocystis sp. PCC 6803 (Kojima, K., Oshita, M., Nanjo, Y., Kasai, K., Tozawa, Y., Hayashi, H., and Nishiyama, Y. (2007) Mol. Microbiol. 65, 936-947). In the present study, we found that inactivation of EF-G (Slr1463) by H(2)O(2) was attributable to the oxidation of two specific cysteine residues and formation of a disulfide bond. Substitution of these cysteine residues by serine residues protected EF-G from inactivation by H(2)O(2) and allowed the EF-G to mediate translation in a translation system in vitro that had been prepared from Synechocystis. The disulfide bond in oxidized EF-G was reduced by thioredoxin, and the resultant reduced form of EF-G regained the activity to mediate translation in vitro. Western blotting analysis showed that levels of the oxidized form of EF-G increased under strong light in a mutant that lacked NADPH-thioredoxin reductase, indicating that EF-G is reduced by thioredoxin in vivo. These observations suggest that the translational machinery is regulated by the redox state of EF-G, which is oxidized by reactive oxygen species and reduced by thioredoxin, a transmitter of reducing signals generated by the photosynthetic transport of electrons.
Collapse
Affiliation(s)
- Kouji Kojima
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
- Venture Business Laboratory, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Ken Motohashi
- the Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and
| | - Takuya Morota
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | | | - Toru Hisabori
- the Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and
| | - Hidenori Hayashi
- the Graduate School of Science and Engineering
- Cell-Free Science and Technology Research Center, and
- Venture Business Laboratory, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Yoshitaka Nishiyama
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
33
|
Chloroplast protein targeting involves localized translation in Chlamydomonas. Proc Natl Acad Sci U S A 2009; 106:1439-44. [PMID: 19164529 DOI: 10.1073/pnas.0811268106] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The compartmentalization of eukaryotic cells requires that newly synthesized proteins be targeted to the compartments in which they function. In chloroplasts, a few thousand proteins function in photosynthesis, expression of the chloroplast genome, and other processes. Most chloroplast proteins are synthesized in the cytoplasm, imported, and then targeted to a specific chloroplast compartment. The remainder are encoded by the chloroplast genome, synthesized within the organelle, and targeted by mechanisms that are only beginning to be elucidated. We used fluorescence confocal microscopy to explore the targeting mechanisms used by several chloroplast proteins in the green alga Chlamydomonas. These include the small subunit of ribulose bisphosphate carboxylase (rubisco) and the light-harvesting complex II (LHCII) subunits, which are imported from the cytoplasm, and 2 proteins synthesized in the chloroplast: the D1 subunit of photosystem II and the rubisco large subunit. We determined whether the targeting of each protein involves localized translation of the mRNA that encodes it. When this was the case, we explored whether the targeting sequence was in the nascent polypeptide or in the mRNA, based on whether the localization was translation-dependent or -independent, respectively. The results reveal 2 novel examples of targeting by localized translation, in LHCII subunit import and the targeting of the rubisco large subunit to the pyrenoid. They also demonstrate examples of each of the three known mechanisms-posttranslational, cotranslational (signal recognition particle-mediated), and mRNA-based-in the targeting of specific chloroplast proteins. Our findings can help guide the exploration of these pathways at the biochemical level.
Collapse
|
34
|
Ingle RA, Collett H, Cooper K, Takahashi Y, Farrant JM, Illing N. Chloroplast biogenesis during rehydration of the resurrection plant Xerophyta humilis: parallels to the etioplast-chloroplast transition. PLANT, CELL & ENVIRONMENT 2008; 31:1813-24. [PMID: 18771571 DOI: 10.1111/j.1365-3040.2008.01887.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
De-etiolation of dark-grown seedlings is a commonly used experimental system to study the mechanisms of chloroplast biogenesis, including the stacking of thylakoid membranes into grana, the response of the nuclear-chloroplast transcriptome to light, and the ordered synthesis and assembly of photosystem II (PSII). Here, we present the xeroplast to chloroplast transition during rehydration of the resurrection plant Xerophyta humilis as a novel system for studying chloroplast biogenesis, and investigate the role of light in this process. Xeroplasts are characterized by the presence of numerous large and small membrane-bound vesicles and the complete absence of thylakoid membranes. While the initial assembly of stromal thylakoid membranes occurs independently of light, the formation of grana is light dependent. Recovery of photosynthetic activity is rapid in plants rehydrated in the light and correlates with the light-dependent synthesis of the D1 protein, but does not require de novo chlorophyll biosynthesis. Light-dependent synthesis of the chlorophyll-binding protein Lhcb2 and digalactosyldiacylglycerol synthase 1 correlated with the formation of grana and with the increased PSII activity. Our results suggest that the molecular mechanisms underlying photomorphogenic development may also function in desiccation tolerance in poikilochlorophyllous resurrection plants.
Collapse
Affiliation(s)
- Robert A Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | | | | | | | | | | |
Collapse
|
35
|
Wegener KM, Welsh EA, Thornton LE, Keren N, Jacobs JM, Hixson KK, Monroe ME, Camp DG, Smith RD, Pakrasi HB. High Sensitivity Proteomics Assisted Discovery of a Novel Operon Involved in the Assembly of Photosystem II, a Membrane Protein Complex. J Biol Chem 2008; 283:27829-27837. [DOI: 10.1074/jbc.m803918200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
36
|
Isolation and purification assay of ex vivo photosystem II D1 protein toward integrated biointeraction analysis. Anal Bioanal Chem 2008; 390:1195-202. [DOI: 10.1007/s00216-007-1781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/23/2007] [Accepted: 11/28/2007] [Indexed: 11/25/2022]
|
37
|
Garmier M, Priault P, Vidal G, Driscoll S, Djebbar R, Boccara M, Mathieu C, Foyer CH, De Paepe R. Light and oxygen are not required for harpin-induced cell death. J Biol Chem 2007; 282:37556-66. [PMID: 17951254 DOI: 10.1074/jbc.m707226200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Nicotiana sylvestris leaves challenged by the bacterial elicitor harpin N(Ea) were used as a model system in which to determine the respective roles of light, oxygen, photosynthesis, and respiration in the programmed cell death response in plants. The appearance of cell death markers, such as membrane damage, nuclear fragmentation, and induction of the stress-responsive element Tnt1, was observed in all conditions. However, the cell death process was delayed in the dark compared with the light, despite a similar accumulation of superoxide and hydrogen peroxide in the chloroplasts. In contrast, harpin-induced cell death was accelerated under very low oxygen (<0.1% O(2)) compared with air. Oxygen deprivation impaired accumulation of chloroplastic reactive oxygen species (ROS) and the induction of cytosolic antioxidant genes in both the light and the dark. It also attenuates the collapse of photosynthetic capacity and the respiratory burst driven by mitochondrial alternative oxidase activity observed in air. Since alternative oxidase is known to limit overreduction of the respiratory chain, these results strongly suggest that mitochondrial ROS accumulate in leaves elicited under low oxygen. We conclude that the harpin-induced cell death does not require ROS accumulation in the apoplast or in the chloroplasts but that mitochondrial ROS could be important in the orchestration of the cell suicide program.
Collapse
Affiliation(s)
- Marie Garmier
- Institut de Biotechnologie des Plantes, Université Paris-Sud 11, UMR-CNRS 8618, Bâtiment 630, 91405, Orsay Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Satoh K, Yamamoto Y. The carboxyl-terminal processing of precursor D1 protein of the photosystem II reaction center. PHOTOSYNTHESIS RESEARCH 2007; 94:203-15. [PMID: 17551844 DOI: 10.1007/s11120-007-9191-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Accepted: 04/26/2007] [Indexed: 05/03/2023]
Abstract
The D1 protein, a key subunit of photosystem II reaction center, is synthesized as a precursor form with a carboxyl-terminal extension, in oxygenic photosynthetic organisms with some exceptions. This part of the protein is removed by the action of an endopeptidase, and the proteolytic processing is indispensable for the manifestation of oxygen-evolving activity in photosynthesis. The carboxyl-terminus of mature D1 protein, which appears upon the cleavage, has recently been demonstrated to be a ligand for a manganese atom in the Mn(4)Ca-cluster, which is responsible for the water oxidation chemistry in photosystem II, based on the isotope-edited Fourier transform infrared spectroscopy and the X-ray crystallography. On the other hand, the structure of a peptidase involved in the cleavage of precursor D1 protein has been resolved at a higher resolution, and the enzyme-substrate interactions have extensively been analyzed both in vivo and in vitro. The present article briefly summarizes the history of research and the present state of our knowledge on the carboxyl-terminal processing of precursor D1 protein in the photosystem II reaction center.
Collapse
|
39
|
Al-Taweel K, Iwaki T, Yabuta Y, Shigeoka S, Murata N, Wadano A. A bacterial transgene for catalase protects translation of d1 protein during exposure of salt-stressed tobacco leaves to strong light. PLANT PHYSIOLOGY 2007; 145:258-65. [PMID: 17660354 PMCID: PMC1976566 DOI: 10.1104/pp.107.101733] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 07/13/2007] [Indexed: 05/16/2023]
Abstract
During photoinhibition of photosystem II (PSII) in cyanobacteria, salt stress inhibits the repair of photodamaged PSII and, in particular, the synthesis of the D1 protein (D1). We investigated the effects of salt stress on the repair of PSII and the synthesis of D1 in wild-type tobacco (Nicotiana tabacum 'Xanthi') and in transformed plants that harbored the katE gene for catalase from Escherichia coli. Salt stress due to NaCl enhanced the photoinhibition of PSII in leaf discs from both wild-type and katE-transformed plants, but the effect of salt stress was less significant in the transformed plants than in wild-type plants. In the presence of lincomycin, which inhibits protein synthesis in chloroplasts, the activity of PSII decreased rapidly and at similar rates in both types of leaf disc during photoinhibition, and the observation suggests that repair of PSII was protected by the transgene-coded enzyme. Incorporation of [(35)S]methionine into D1 during photoinhibition was inhibited by salt stress, and the transformation mitigated this inhibitory effect. Northern blotting revealed that the level of psbA transcripts was not significantly affected by salt stress or by the transformation. Our results suggest that salt stress enhanced photoinhibition by inhibiting repair of PSII and that the katE transgene increased the resistance of the chloroplast's translational machinery to salt stress by scavenging hydrogen peroxide.
Collapse
Affiliation(s)
- Khaled Al-Taweel
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8231, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Kojima K, Oshita M, Nanjo Y, Kasai K, Tozawa Y, Hayashi H, Nishiyama Y. Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II. Mol Microbiol 2007; 65:936-47. [PMID: 17617168 DOI: 10.1111/j.1365-2958.2007.05836.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Oxidative stress inhibits the repair of photodamaged photosystem II (PSII). This inhibition is due initially to the suppression, by reactive oxygen species (ROS), of the synthesis de novo of proteins that are required for the repair of PSII, such as the D1 protein, at the level of translational elongation. To investigate in vitro the mechanisms whereby ROS inhibit translational elongation, we developed a translation system in vitro from the cyanobacterium Synechocystis sp. PCC 6803. The synthesis of the D1 protein in vitro was inhibited by exogenous H2O2. However, the addition of reduced forms of elongation factor G (EF-G), which is known to be particularly sensitive to oxidation, was able to reverse the inhibition of translation. By contrast, the oxidized forms of EF-G failed to restore translational activity. Furthermore, the overexpression of EF-G of Synechocystis in another cyanobacterium Synechococcus sp. PCC 7942 increased the tolerance of cells to H2O2 in terms of protein synthesis. These observations suggest that EF-G might be the primary target, within the translational machinery, of inhibition by ROS.
Collapse
Affiliation(s)
- Kouji Kojima
- Cell-Free Science and Technology Research Center, and Venture Business Laboratory, Ehime University, Bunkyo-cho, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Tzvetkova-Chevolleau T, Hutin C, Noël LD, Goforth R, Carde JP, Caffarri S, Sinning I, Groves M, Teulon JM, Hoffman NE, Henry R, Havaux M, Nussaume L. Canonical signal recognition particle components can be bypassed for posttranslational protein targeting in chloroplasts. THE PLANT CELL 2007; 19:1635-48. [PMID: 17513500 PMCID: PMC1913721 DOI: 10.1105/tpc.106.048959] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The chloroplast signal recognition particle (cpSRP) and its receptor (cpFtsY) target proteins both cotranslationally and posttranslationally to the thylakoids. This dual function enables cpSRP to utilize its posttranslational activities for targeting a family of nucleus-encoded light-harvesting chlorophyll binding proteins (LHCPs), the most abundant membrane proteins in plants. Previous in vitro experiments indicated an absolute requirement for all cpSRP pathway soluble components. In agreement, a cpFtsY mutant in Arabidopsis thaliana exhibits a severe chlorotic phenotype resulting from a massive loss of LHCPs. Surprisingly, a double mutant, cpftsy cpsrp54, recovers to a great extent from the chlorotic cpftsy phenotype. This establishes that in plants, a new alternative pathway exists that can bypass cpSRP posttranslational targeting activities. Using a mutant form of cpSRP43 that is unable to assemble with cpSRP54, we complemented the cpSRP43-deficient mutant and found that this subunit is required for the alternative pathway. Along with the ability of cpSRP43 alone to bind the ALBINO3 translocase required for LHCP integration, our results indicate that cpSRP43 has developed features to function independently of cpSRP54/cpFtsY in targeting LHCPs to the thylakoid membranes.
Collapse
Affiliation(s)
- Tzvetelina Tzvetkova-Chevolleau
- Direction des Sciences du Vivant, Institut de Biologie Environementale et de Biotechnologie, Service de Biologie Végétale et de Microbiologie Environementale, Commissariat à l'Energie Atomique Cadarache, F-13108 Saint-Paul-lez-Durance Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Barra M, Haumann M, Loja P, Krivanek R, Grundmeier A, Dau H. Intermediates in assembly by photoactivation after thermally accelerated disassembly of the manganese complex of photosynthetic water oxidation. Biochemistry 2007; 45:14523-32. [PMID: 17128991 DOI: 10.1021/bi061842z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Mn4Ca complex bound to photosystem II (PSII) is the active site of photosynthetic water oxidation. Its assembly involves binding and light-driven oxidation of manganese, a process denoted as photoactivation. The disassembly of the Mn complex is a thermally activated process involving distinct intermediates. Starting from intermediate states of the disassembly, which was initiated by a temperature jump to 47 degrees C, we photoactivated PSII membrane particles and monitored the activity recovery by O2 polarography and delayed chlorophyll fluorescence measurements. Oxidation state and structural features of the formed intermediates of the Mn complex were assayed by X-ray absorption spectroscopy at the Mn K-edge. The photoactivation time courses, which exhibit a lag phase characteristic of intermediate formation only when starting with the apo-PSII, suggest that within approximately 5 min of photoactivation of apo-PSII, a binuclear Mn complex is formed. It is proposed that a MnIII2(di-mu-oxo) complex is a key intermediate both in the disassembly and in the assembly reaction paths.
Collapse
Affiliation(s)
- Marcos Barra
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Komenda J, Kuviková S, Granvogl B, Eichacker LA, Diner BA, Nixon PJ. Cleavage after residue Ala352 in the C-terminal extension is an early step in the maturation of the D1 subunit of Photosystem II in Synechocystis PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:829-37. [PMID: 17300742 DOI: 10.1016/j.bbabio.2007.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 01/07/2007] [Accepted: 01/08/2007] [Indexed: 12/01/2022]
Abstract
We have investigated the pathway by which the 16 amino-acid C-terminal extension of the D1 subunit of photosystem two is removed in the cyanobacterium Synechocystis sp. PCC 6803 to leave Ala344 as the C-terminal residue. Previous work has suggested a two-step process involving formation of a processing intermediate of D1, termed iD1, of uncertain origin. Here we show by mass spectrometry that a synthetic peptide mimicking the C- terminus of the D1 precursor is cleaved by cellular extracts or purified CtpA processing protease after residue Ala352, making this a likely site for formation of iD1. Characteristics of D1 site-directed mutants with either the Leu353 residue replaced by Pro or with a truncation after Ala352 are in agreement with this assignment. Interestingly, analysis of various CtpA and CtpB null mutants further indicate that the CtpA protease plays a crucial role in forming iD1 but that, surprisingly, low levels of C-terminal processing occur in vivo in the absence of CtpA and CtpB, possibly catalysed by other related proteases. A possible role for two-step maturation of D1 in the assembly of PSII is discussed.
Collapse
Affiliation(s)
- Josef Komenda
- Institute of Microbiology, Academy of Sciences, Opatovický mlýn, 37981 Trebon, Czech Republic.
| | | | | | | | | | | |
Collapse
|
44
|
Translation and translational regulation in chloroplasts. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0234] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Chen H, Zhang D, Guo J, Wu H, Jin M, Lu Q, Lu C, Zhang L. A Psb27 homologue in Arabidopsis thaliana is required for efficient repair of photodamaged photosystem II. PLANT MOLECULAR BIOLOGY 2006; 61:567-75. [PMID: 16897475 DOI: 10.1007/s11103-006-0031-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 02/20/2006] [Indexed: 05/03/2023]
Abstract
Psb27 has been identified as a lumenal protein associated with photosystem II (PSII). To gain insight into the function of Psb27, we isolated a mutant Arabidopsis plant with a loss of psb27 function. The quantity of PSII complexes and electron transfer within PSII remained largely unaffected in the psb27 mutant. Our results also showed that under high-light-illumination, PSII activity and the content of the PSII reaction center protein D1 decreased more significantly in the psb27 mutant than in wild-type (WT) plant. Treatment of leaves with a chloroplast protein synthesis inhibitor resulted in similar light-induced PSII inactivation levels and D1 protein degradation rates in the WT and psb27 mutant plants. Recovery of PSII activity after photoinhibition was delayed in the psb27 mutant, suggesting that Psb27 is required for efficient recovery of the photodamaged PSII complex. Overall, these results demonstrated that Psb27 in Arabidopsis is not essential for oxygenic photosynthesis and PSII formation. Instead, our results provide evidence for the involvement of this lumenal protein in the recovery process of PSII.
Collapse
Affiliation(s)
- Hua Chen
- Key Laboratory of Arid and Grassland Ecology, School of Life Sciences, Lanzhou University, 730000 Lanzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Nishiyama Y, Allakhverdiev SI, Murata N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:742-9. [PMID: 16784721 DOI: 10.1016/j.bbabio.2006.05.013] [Citation(s) in RCA: 415] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/02/2006] [Accepted: 05/04/2006] [Indexed: 11/16/2022]
Abstract
Inhibition of the activity of photosystem II (PSII) under strong light is referred to as photoinhibition. This phenomenon is due to the imbalance between the rate of photodamage to PSII and the rate of the repair of damaged PSII. Photodamage is initiated by the direct effects of light on the oxygen-evolving complex and, thus, photodamage to PSII is unavoidable. Studies of the effects of oxidative stress on photodamage and subsequent repair have revealed that reactive oxygen species (ROS) act primarily by inhibiting the repair of photodamaged PSII and not by damaging PSII directly. Thus, strong light has two distinct effects on PSII; it damages PSII directly and it inhibits the repair of PSII via production of ROS. Investigations of the ROS-induced inhibition of repair have demonstrated that ROS suppress the synthesis de novo of proteins and, in particular, of the D1 protein, that are required for the repair of PSII. Moreover, a primary target for inhibition by ROS appears to be the elongation step of translation. Inhibition of the repair of PSII by ROS is accelerated by the deceleration of the Calvin cycle that occurs when the availability of CO(2) is limited. In this review, we present a new paradigm for the action of ROS in photoinhibition.
Collapse
Affiliation(s)
- Yoshitaka Nishiyama
- Cell-Free Science and Technology Research Center and Satellite Venture Business Laboratory, Ehime University, Bunkyo-cho, Matsuyama, Japan.
| | | | | |
Collapse
|
47
|
Peng L, Ma J, Chi W, Guo J, Zhu S, Lu Q, Lu C, Zhang L. LOW PSII ACCUMULATION1 is involved in efficient assembly of photosystem II in Arabidopsis thaliana. THE PLANT CELL 2006; 18:955-69. [PMID: 16531500 PMCID: PMC1425854 DOI: 10.1105/tpc.105.037689] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 01/26/2006] [Accepted: 02/14/2006] [Indexed: 05/07/2023]
Abstract
To gain insight into the processes involved in photosystem II (PSII) biogenesis and maintenance, we characterized the low psii accumulation1 (lpa1) mutant of Arabidopsis thaliana, which generally accumulates lower than wild-type levels of the PSII complex. In vivo protein labeling experiments showed that synthesis of the D1 and D2 proteins was greatly reduced in the lpa1 mutant, while other plastid-encoded proteins were translated at rates similar to the wild type. In addition, turnover rates of the PSII core proteins CP47, CP43, D1, and D2 were higher in lpa1 than in wild-type plants. The newly synthesized PSII proteins were assembled into functional protein complexes, but the assembly was less efficient in the mutant. LPA1 encodes a chloroplast protein that contains two tetratricopeptide repeat domains and is an intrinsic membrane protein but not an integral subunit of PSII. Yeast two-hybrid studies revealed that LPA1 interacts with D1 but not with D2, cytochrome b6, or Alb3. Thus, LPA1 appears to be an integral membrane chaperone that is required for efficient PSII assembly, probably through direct interaction with the PSII reaction center protein D1.
Collapse
Affiliation(s)
- Lianwei Peng
- Photosynthesis Research Center, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Guseynova IM, Suleymanov SY, Aliyev JA. Protein composition and native state of pigments of thylakoid membrane of wheat genotypes differently tolerant to water stress. BIOCHEMISTRY (MOSCOW) 2006; 71:173-7. [PMID: 16489922 DOI: 10.1134/s000629790602009x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein composition and native state of chlorophylls were analyzed in two wheat (Triticum durum L.) genotypes with different tolerance to drought, Barakatli-95 (drought-tolerant) and Garagylchyg-2 (drought-sensitive), during water deficit. It is shown that the plants subjected to water deficit appear to have a slight increase in alpha- and beta-subunits of CF1 ATP-synthase complex (57.5 and 55 kD, respectively) in Barakatli-95 and their lower content in Garagylchyg-2. Steady-state levels of the core antenna of PS II (CP47 and CP43) and light-harvesting Chl a/b-apoproteins (LHC) II in the 29.5-24 kD region remained more or less unchanged in both wheat genotypes. The synthesis of 36 kD protein and content of low-molecular-weight polypeptides (21.5, 16.5, and 14 kD) were noticeably increased in the tolerant genotype Barakatli-95. Drought caused significant changes in the carotenoid region of the spectrum (400-500 nm) in drought-sensitive genotype Garagylchyg-2 (especially in the content of pigments of the violaxanthin cycle). A shift of the main band from 740-742 to 738 nm is observed in the fluorescence spectra (77 K) of chloroplasts from both genotypes under water deficiency, and there is a stimulation of the ratio of fluorescence band intensity F687/F740.
Collapse
Affiliation(s)
- I M Guseynova
- Institute of Botany, National Academy of Sciences, AZ1073 Baku, Azerbaijan
| | | | | |
Collapse
|
49
|
The presence of phosphorylation form of D1 protein in its cross-linked aggregates in high light treated spinach leaves in vivo. CHINESE SCIENCE BULLETIN-CHINESE 2006. [DOI: 10.1007/s11434-005-1529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Murcha MW, Rudhe C, Elhafez D, Adams KL, Daley DO, Whelan J. Adaptations required for mitochondrial import following mitochondrial to nucleus gene transfer of ribosomal protein S10. PLANT PHYSIOLOGY 2005; 138:2134-44. [PMID: 16040655 PMCID: PMC1183401 DOI: 10.1104/pp.105.062745] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The minimal requirements to support protein import into mitochondria were investigated in the context of the phenomenon of ongoing gene transfer from the mitochondrion to the nucleus in plants. Ribosomal protein 10 of the small subunit is encoded in the mitochondrion in soybean and many other angiosperms, whereas in several other species it is nuclear encoded and thus must be imported into the mitochondrial matrix to function. When encoded by the nuclear genome, it has adopted different strategies for mitochondrial targeting and import. In lettuce (Lactuca sativa) and carrot (Daucus carota), Rps10 independently gained different N-terminal extensions from other genes, following transfer to the nucleus. (The designation of Rps10 follows the following convention. The gene is indicated in italics. If encoded in the mitochondrion, it is rps10; if encoded in the nucleus, it is Rps10.) Here, we show that the N-terminal extensions of Rps10 in lettuce and carrot are both essential for mitochondrial import. In maize (Zea mays), Rps10 has not acquired an extension upon transfer but can be readily imported into mitochondria. Deletion analysis located the mitochondrial targeting region to the first 20 amino acids. Using site directed mutagenesis, we changed residues in the first 20 amino acids of the mitochondrial encoded soybean (Glycine max) rps10 to the corresponding amino acids in the nuclear encoded maize Rps10 until import was achieved. Changes were required that altered charge, hydrophobicity, predicted ability to form an amphipathic alpha-helix, and generation of a binding motif for the outer mitochondrial membrane receptor, translocase of the outer membrane 20. In addition to defining the changes required to achieve mitochondrial localization, the results demonstrate that even proteins that do not present barriers to import can require substantial changes to acquire a mitochondrial targeting signal.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia
| | | | | | | | | | | |
Collapse
|