1
|
O’Donovan CJ, Tan LT, Abidin MAZ, Roderick MR, Grammatikos A, Bernatoniene J. Diagnosis of Chronic Granulomatous Disease: Strengths and Challenges in the Genomic Era. J Clin Med 2024; 13:4435. [PMID: 39124702 PMCID: PMC11313294 DOI: 10.3390/jcm13154435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic granulomatous disease (CGD) is a group of rare primary inborn errors of immunity characterised by a defect in the phagocyte respiratory burst, which leads to severe and life-threatening infective and inflammatory complications. Despite recent advances in our understanding of the genetic and molecular pathophysiology of X-linked and autosomal recessive CGD, and growth in the availability of functional and genetic testing, there remain significant barriers to early and accurate diagnosis. In the current review, we provide an up-to-date summary of CGD pathophysiology, underpinning current methods of diagnostic testing for CGD and closely related disorders. We present an overview of the benefits of early diagnosis and when to suspect and test for CGD. We discuss current and historical methods for functional testing of NADPH oxidase activity, as well as assays for measuring protein expression of NADPH oxidase subunits. Lastly, we focus on genetic and genomic methods employed to diagnose CGD, including gene-targeted panels, comprehensive genomic testing and ancillary methods. Throughout, we highlight general limitations of testing, and caveats specific to interpretation of results in the context of CGD and related disorders, and provide an outlook for newborn screening and the future.
Collapse
Affiliation(s)
- Conor J. O’Donovan
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Lay Teng Tan
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- Department of Paediatrics, University Malaya Medical Center, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| | - Mohd A. Z. Abidin
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Marion R. Roderick
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Alexandros Grammatikos
- Department of Immunology, Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK
| | - Jolanta Bernatoniene
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
2
|
Lehman HK, Segal BH. The role of neutrophils in host defense and disease. J Allergy Clin Immunol 2020; 145:1535-1544. [PMID: 32283205 DOI: 10.1016/j.jaci.2020.02.038] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/15/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
Neutrophils, the most abundant circulating leukocyte, are critical for host defense. Granulopoiesis is under the control of transcriptional factors and culminates in mature neutrophils with a broad armamentarium of antimicrobial pathways. These pathways include nicotinamide adenine dinucleotide phosphate oxidase, which generates microbicidal reactive oxidants, and nonoxidant pathways that target microbes through several mechanisms. Activated neutrophils can cause or worsen tissue injury, underscoring the need for calibration of activation and resolution of inflammation when infection has been cleared. Acquired neutrophil disorders are typically caused by cytotoxic chemotherapy or immunosuppressive agents. Primary neutrophil disorders typically result from disabling mutations of individual genes that result in impaired neutrophil number or function, and provide insight into basic mechanisms of neutrophil biology. Neutrophils can also be activated by noninfectious causes, including trauma and cellular injury, and can have off-target effects in which pathways that typically defend against infection exacerbate injury and disease. These off-target effects include acute organ injury, autoimmunity, and variable effects on the tumor microenvironment that can limit or worsen tumor progression. A greater understanding of neutrophil plasticity in these conditions is likely to pave the way to new therapeutic approaches.
Collapse
Affiliation(s)
- Heather K Lehman
- Division of Allergy/Immunology & Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Brahm H Segal
- Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY.
| |
Collapse
|
3
|
Buchan KD, Foster SJ, Renshaw SA. Staphylococcus aureus: setting its sights on the human innate immune system. MICROBIOLOGY-SGM 2019; 165:367-385. [PMID: 30625113 DOI: 10.1099/mic.0.000759] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus has colonized humans for at least 10 000 years, and today inhabits roughly a third of the population. In addition, S. aureus is a major pathogen that is responsible for a significant disease burden, ranging in severity from mild skin and soft-tissue infections to life-threatening endocarditis and necrotizing pneumonia, with treatment often hampered by resistance to commonly available antibiotics. Underpinning its versatility as a pathogen is its ability to evade the innate immune system. S. aureus specifically targets innate immunity to establish and sustain infection, utilizing a large repertoire of virulence factors to do so. Using these factors, S. aureus can resist phagosomal killing, impair complement activity, disrupt cytokine signalling and target phagocytes directly using proteolytic enzymes and cytolytic toxins. Although most of these virulence factors are well characterized, their importance during infection is less clear, as many display species-specific activity against humans or against animal hosts, including cows, horses and chickens. Several staphylococcal virulence factors display species specificity for components of the human innate immune system, with as few as two amino acid changes reducing binding affinity by as much as 100-fold. This represents a major issue for studying their roles during infection, which cannot be examined without the use of humanized infection models. This review summarizes the major factors S. aureus uses to impair the innate immune system, and provides an in-depth look into the host specificity of S. aureus and how this problem is being approached.
Collapse
Affiliation(s)
- Kyle D Buchan
- 1The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Simon J Foster
- 2Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Stephen A Renshaw
- 1The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
4
|
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen derivatives. Initially, they were considered as metabolic by-products (of mitochondria in particular), which consistently lead to aging and disease. Over the last decades, however, it became increasingly apparent that virtually all eukaryotic cells possess specifically ROS-producing enzymes, namely, NOX NADPH oxidases. In most mammals, there are seven NOX isoforms: three closely related isoforms, NOX1, 2, 3, which are activated by cytoplasmic subunits; NOX4, which appears to be constitutively active; and the EF-hand-containing Ca2+-activated isoforms NOX5 and DUOX1 and 2. Loss-of-function mutations in NOX genes can lead to serious human disease. NOX2 deficiency leads to primary immune deficiency, while DUOX2 deficiency presents as congenital hypothyroidism. Nox-deficient mice provide important tools to explore the physiological functions of various NADPH oxidases as a loss of function in Nox2, Nox3, and Duox2 leads to a spontaneous phenotype. The genetic absence of Nox1, Nox4, and Duox1 does not result in an obvious mouse phenotype (the NOX5 gene is absent in rodents and can therefore not be studied using knockout mice). Since the discovery of the NOX family at the turn of the millennium, much progress in understanding the biochemistry and the physiology of NOX has been made; however many questions remain unanswered to date. This chapter is an overview of our present knowledge on mammalian NOX/DUOX enzymes.
Collapse
Affiliation(s)
- Hélène Buvelot
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Yu JE, Azar AE, Chong HJ, Jongco AM, Prince BT. Considerations in the Diagnosis of Chronic Granulomatous Disease. J Pediatric Infect Dis Soc 2018; 7:S6-S11. [PMID: 29746674 PMCID: PMC5946934 DOI: 10.1093/jpids/piy007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic granulomatous disease (CGD) is a rare primary immunodeficiency that is caused by defects in the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. The disease presents in most patients initially with infection, especially of the lymph nodes, lung, liver, bone, and skin. Patients with CGD are susceptible to a narrow spectrum of pathogens, and Staphylococcus aureus, Burkholderia cepacia complex, Serratia marcescens, Nocardia species, and Aspergillus species are the most common organisms implicated in North America. Granuloma formation, most frequently in the gastrointestinal and genitourinary systems, is a common complication of CGD and can be seen even before diagnosis. An increased incidence of autoimmune disease has also been described in patients with CGD and X-linked female carriers. In patients who present with signs and symptoms consistent with CGD, a flow cytometric dihydrorhodamine neutrophil respiratory burst assay is a quick and cost-effective way to evaluate NADPH oxidase function. The purpose of this review is to highlight considerations for and challenges in the diagnosis of CGD.
Collapse
Affiliation(s)
- Joyce E Yu
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Antoine E Azar
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hey J Chong
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pennsylvania
| | - Artemio M Jongco
- Division of Allergy and Immunology, Department of Medicine and Pediatrics, Cohen Children’s Medical Center of New York, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Merinoff Center for Patient-Oriented Research, Feinstein Institute for Medical Research, Great Neck
| | - Benjamin T Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus,Correspondence: B. T. Prince, MD, MSci, Nationwide Children’s Hospital, Division of Allergy and Immunology, 700 Children’s Dr, Columbus, OH 43215 ()
| |
Collapse
|
6
|
Rider NL, Jameson MB, Creech CB. Chronic Granulomatous Disease: Epidemiology, Pathophysiology, and Genetic Basis of Disease. J Pediatric Infect Dis Soc 2018; 7:S2-S5. [PMID: 29746675 PMCID: PMC5946813 DOI: 10.1093/jpids/piy008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic Granulomatous Disease is one of the classic primary immunodeficiencies of childhood. While the incidence and severity of bacterial and fungal infections have been greatly reduced in this patient population, much remains to be learned about the pathophysiology of the disease, particularly for autoinflammatory manifestations. In this review, we examine the epidemiology, pathophysiology, and genetic basis for CGD.
Collapse
Affiliation(s)
- N L Rider
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston
| | - M B Jameson
- Vanderbilt Vaccine Research Program and Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine and Medical Center, Nashville, Tennessee
| | - C B Creech
- Vanderbilt Vaccine Research Program and Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine and Medical Center, Nashville, Tennessee,Correspondence: C. Buddy Creech, MD, MPH, FPIDS, Associate Professor of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center and Children’s Hospital, Nashville, TN ()
| |
Collapse
|
7
|
Buvelot H, Posfay-Barbe KM, Linder P, Schrenzel J, Krause KH. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease. FEMS Microbiol Rev 2017; 41:139-157. [PMID: 27965320 DOI: 10.1093/femsre/fuw042] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2016] [Indexed: 11/14/2022] Open
Abstract
Dysfunction of phagocytes is a relevant risk factor for staphylococcal infection. The most common hereditary phagocyte dysfunction is chronic granulomatous disease (CGD), characterized by impaired generation of reactive oxygen species (ROS) due to loss of function mutations within the phagocyte NADPH oxidase NOX2. Phagocytes ROS generation is fundamental to eliminate pathogens and to regulate the inflammatory response to infection. CGD is characterized by recurrent and severe bacterial and fungal infections, with Staphylococcus aureus as the most frequent pathogen, and skin and lung abscesses as the most common clinical entities. Staphylococcus aureus infection may occur in virtually any human host, presumably because of the many virulence factors of the bacterium. However, in the presence of functional NOX2, staphylococcal infections remain rare and are mainly linked to breaches of the skin barrier. In contrast, in patients with CGD, S. aureus readily survives and frequently causes clinically apparent disease. Astonishingly, little is known why S. aureus, which possesses a wide range of antioxidant enzymes (e.g. catalase, SOD), is particularly sensitive to control through NOX2. In this review, we will evaluate the discovery of CGD and our present knowledge of the role of NOX2 in S. aureus infection.
Collapse
Affiliation(s)
- Helene Buvelot
- Division of General Internal Medicine, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland
| | - Klara M Posfay-Barbe
- Paediatric Infectious Diseases Unit, Department of Paediatrics, University Hospitals of Geneva, 1205 Geneva and Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Jacques Schrenzel
- Divisions of Infectious Diseases and Laboratory Medicine, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland
| | - Karl-Heinz Krause
- Divisions of Infectious Diseases and Laboratory Medicine, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| |
Collapse
|
8
|
Wang L, Liu Z, Dai S, Yan J, Wise MJ. The Sit-and-Wait Hypothesis in Bacterial Pathogens: A Theoretical Study of Durability and Virulence. Front Microbiol 2017; 8:2167. [PMID: 29209284 PMCID: PMC5701638 DOI: 10.3389/fmicb.2017.02167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald's (2004) review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/-) and durability (+/-) phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++), vector-borne pathogens (+-), obligate-intracellular bacteria (--), and free-living bacteria (-+). After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher host-mortality are significantly more durable in the external environment. The results of bioinformatics analysis correspond well with epidemiological data, that is, non-vector-borne pathogens with sit-and-wait potentials have higher number of virulence and durability genes compared with other bacterial groups. However, the conclusions are constrained by the relatively small bacterial sample size and non-standardized experimental data.
Collapse
Affiliation(s)
- Liang Wang
- School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| | - Zhanzhong Liu
- Department of Clinical Pharmacology, Xuzhou Infectious Diseases Hospital, Xuzhou, China
| | - Shiyun Dai
- School of Anaesthesia, Xuzhou Medical University, Xuzhou, China
| | - Jiawei Yan
- Clinical Laboratory of Tuberculosis, Xuzhou Infectious Diseases Hospital, Xuzhou, China
| | - Michael J. Wise
- School of Computer Science and Software Engineering, University of Western Australia, Perth, WA, Australia
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
Laub K, Kristóf K, Tirczka T, Tóthpál A, Kardos S, Kovács E, Sahin-Tóth J, Horváth A, Dobay O. First description of a catalase-negative Staphylococcus aureus from a healthy carrier, with a novel nonsense mutation in the katA gene. Int J Med Microbiol 2017; 307:431-434. [PMID: 29089242 DOI: 10.1016/j.ijmm.2017.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022] Open
Abstract
We have screened 2568 healthy individuals (mostly children) for Staphylococcus aureus and Streptococcus pneumoniae nasal carriage between 2010 and 2012. Out of the isolated 751 S. aureus strains, we found one methicillin-sensitive catalase-negative S. aureus (CNSA). Our CNSA isolate possessed a novel nonsense point mutation in the katA gene leading to early truncation of the protein product. The strain was resistant to penicillin and erythromycin, but sensitive to all other tested antibiotics and carried the enterotoxin A gene. It belonged to sequence type 5 (ST5), which is a successful, worldwide spread, usually MRSA clone. Catalase has been described as a virulence factor strictly required for nasal colonisation, and this is the first case contradicting this theory, as all previous CNSA isolates derived from infections. This is the first report of a CNSA from a symptomless carrier as well as the first occurrence in Hungary.
Collapse
Affiliation(s)
- Krisztina Laub
- Institute of Medical Microbiology, Semmelweis University, H-1089 Budapest, Hungary.
| | - Katalin Kristóf
- Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| | - Tamás Tirczka
- Department 1 of Bacteriology, National Public Health Institute, Budapest, Hungary.
| | - Adrienn Tóthpál
- Institute of Medical Microbiology, Semmelweis University, H-1089 Budapest, Hungary.
| | - Szilvia Kardos
- Institute of Medical Microbiology, Semmelweis University, H-1089 Budapest, Hungary.
| | - Eszter Kovács
- Institute of Medical Microbiology, Semmelweis University, H-1089 Budapest, Hungary.
| | - Judit Sahin-Tóth
- Institute of Medical Microbiology, Semmelweis University, H-1089 Budapest, Hungary.
| | - Andrea Horváth
- Institute of Medical Microbiology, Semmelweis University, H-1089 Budapest, Hungary.
| | - Orsolya Dobay
- Institute of Medical Microbiology, Semmelweis University, H-1089 Budapest, Hungary.
| |
Collapse
|
10
|
The NADPH Oxidase and Microbial Killing by Neutrophils, With a Particular Emphasis on the Proposed Antimicrobial Role of Myeloperoxidase within the Phagocytic Vacuole. Microbiol Spectr 2017; 4. [PMID: 27726789 DOI: 10.1128/microbiolspec.mchd-0018-2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This review is devoted to a consideration of the way in which the NADPH oxidase of neutrophils, NOX2, functions to enable the efficient killing of bacteria and fungi. It includes a critical examination of the current dogma that its primary purpose is the generation of hydrogen peroxide as substrate for myeloperoxidase-catalyzed generation of hypochlorite. Instead, it is demonstrated that NADPH oxidase functions to optimize the ionic and pH conditions within the vacuole for the solubilization and optimal activity of the proteins released into this compartment from the cytoplasmic granules, which kill and digest the microbes. The general role of other NOX systems as electrochemical generators to alter the pH and ionic composition in compartments on either side of a membrane in plants and animals will also be examined.
Collapse
|
11
|
Molecular Characterization of a Catalase-Negative Staphylococcus aureus Blood Culture Isolate. J Clin Microbiol 2015; 53:3699-701. [PMID: 26354811 DOI: 10.1128/jcm.01271-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/01/2015] [Indexed: 11/20/2022] Open
Abstract
Here we report a catalase-negative methicillin-sensitive Staphylococcus aureus isolate collected from a blood culture. Sequencing through the gene encoding catalase, katA, demonstrated a 2-bp insertion. The resulting frameshift mutation generates a protein that has lost 26 amino acids (aa) at its C-terminal domain.
Collapse
|
12
|
Abstract
UNLABELLED Neutrophils engulf and kill bacteria using oxidative and nonoxidative mechanisms. Despite robust antimicrobial activity, neutrophils are impaired in directing Salmonella clearance and harbor viable intracellular bacteria during early stages of infection that can subsequently escape to more-permissive cell types. The mechanisms accounting for this immune impairment are not understood. We report that Salmonella limits exposure to oxidative damage elicited by D-amino acid oxidase (DAO) in neutrophils by expressing an ABC importer specific for D-alanine, a DAO substrate found in peptidoglycan stem peptides. A Salmonella dalS mutant defective for D-alanine import was more susceptible to killing by DAO through exposure to greater oxidative stress during infection. This fitness defect was reversed by selective depletion of neutrophils or by inhibition of DAO in vivo with a small-molecule inhibitor. DalS-mediated subversion of neutrophil DAO is a novel host-pathogen interaction that enhances Salmonella survival during systemic infection. IMPORTANCE Neutrophils engulf Salmonella during early stages of infection, but bacterial killing is incomplete. Very little is known about how Salmonella survives in neutrophils to gain access to other cell types during infection. In this study, we show that D-amino acid oxidase (DAO) in neutrophils consumes D-alanine and that importing this substrate protects Salmonella from oxidative killing by neutrophil DAO. Loss of this importer results in increased bacterial killing in vitro, in neutrophils, and in a mouse model of infection, all phenotypes that are lost upon inhibition of DAO. These findings add mechanistic insight into a novel host-pathogen interaction that has consequences on infection outcome.
Collapse
|
13
|
Roos D, de Boer M. Molecular diagnosis of chronic granulomatous disease. Clin Exp Immunol 2014; 175:139-49. [PMID: 24016250 DOI: 10.1111/cei.12202] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2013] [Indexed: 01/03/2023] Open
Abstract
Patients with chronic granulomatous disease (CGD) suffer from recurrent, life-threatening bacterial and fungal infections of the skin, the airways, the lymph nodes, liver, brain and bones. Frequently found pathogens are Staphylococcus aureus, Aspergillus species, Klebsiella species, Burkholderia cepacia and Salmonella species. CGD is a rare (∼1:250 000 births) disease caused by mutations in any one of the five components of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in phagocytes. This enzyme generates superoxide and is essential for intracellular killing of pathogens by phagocytes. Molecular diagnosis of CGD involves measuring NADPH oxidase activity in phagocytes, measuring protein expression of NADPH oxidase components and mutation analysis of genes encoding these components. Residual oxidase activity is important to know for estimation of the clinical course and the chance of survival of the patient. Mutation analysis is mandatory for genetic counselling and prenatal diagnosis. This review summarizes the different assays available for the diagnosis of CGD, the precautions to be taken for correct measurements, the flow diagram to be followed, the assays for confirmation of the diagnosis and the determinations for carrier detection and prenatal diagnosis.
Collapse
Affiliation(s)
- D Roos
- Deptartment of Blood Cell Research, Sanquin Blood Supply Organization, Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
14
|
Corrente M, Ventrella G, Greco MF, Martella V, Parisi A, Buonavoglia D. Characterisation of a catalase-negative methicillin-resistant Staphylococcus aureus isolate from a dog. Vet Microbiol 2013; 167:734-6. [DOI: 10.1016/j.vetmic.2013.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 01/27/2023]
|
15
|
Molecular characterization of a catalase-negative methicillin-susceptible Staphylococcus aureus subsp. aureus strain collected from a patient with cutaneous abscess. J Clin Microbiol 2013; 52:344-6. [PMID: 24131694 DOI: 10.1128/jcm.02455-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a cutaneous abscess caused by catalase-negative methicillin-susceptible Staphylococcus aureus subsp. aureus in a patient who was concomitantly colonized with virulent USA300 methicillin-resistant S. aureus (MRSA). Sequencing of the katA gene demonstrated a thymine insertion leading to a frameshift mutation and premature truncation of catalase to 21 amino acids.
Collapse
|
16
|
Dotis J, Pana ZD, Roilides E. Non-Aspergillus fungal infections in chronic granulomatous disease. Mycoses 2013; 56:449-62. [PMID: 23369076 DOI: 10.1111/myc.12049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic granulomatous disease (CGD) is a congenital immunodeficiency, characterised by significant infections due to an inability of phagocyte to kill catalase-positive organisms including certain fungi such as Aspergillus spp. Nevertheless, other more rare fungi can cause significant diseases. This report is a systematic review of all published cases of non-Aspergillus fungal infections in CGD patients. Analysis of 68 cases of non-Aspergillus fungal infections in 65 CGD patients (10 females) published in the English literature. The median age of CGD patients was 15.2 years (range 0.1-69), 60% of whom had the X-linked recessive defect. The most prevalent non-Aspergillus fungal infections were associated with Rhizopus spp. and Trichosporon spp. found in nine cases each (13.2%). The most commonly affected organs were the lungs in 69.9%. In 63.2% of cases first line antifungal treatment was monotherapy, with amphotericin B formulations being the most frequently used antifungal agents in 45.6% of cases. The overall mortality rate was 26.2%. Clinicians should take into account the occurrence of non-Aspergillus infections in this patient group, as well as the possibility of a changing epidemiology in fungal pathogens. Better awareness and knowledge of these pathogens can optimise antifungal treatment and improve outcome in CGD patients.
Collapse
Affiliation(s)
- John Dotis
- 1st Department of Pediatrics, Aristotle University School of Medicine, Hippokration General Hospital, Thessaloniki, Greece
| | | | | |
Collapse
|
17
|
Gaupp R, Ledala N, Somerville GA. Staphylococcal response to oxidative stress. Front Cell Infect Microbiol 2012; 2:33. [PMID: 22919625 PMCID: PMC3417528 DOI: 10.3389/fcimb.2012.00033] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/29/2012] [Indexed: 12/23/2022] Open
Abstract
Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.
Collapse
Affiliation(s)
- Rosmarie Gaupp
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln NE, USA
| | | | | |
Collapse
|
18
|
Hahn I, Klaus A, Janze AK, Steinwede K, Ding N, Bohling J, Brumshagen C, Serrano H, Gauthier F, Paton JC, Welte T, Maus UA. Cathepsin G and neutrophil elastase play critical and nonredundant roles in lung-protective immunity against Streptococcus pneumoniae in mice. Infect Immun 2011; 79:4893-901. [PMID: 21911460 PMCID: PMC3232647 DOI: 10.1128/iai.05593-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/02/2011] [Indexed: 11/20/2022] Open
Abstract
Neutrophil serine proteases cathepsin G (CG), neutrophil elastase (NE), and proteinase 3 (PR3) have recently been shown to contribute to killing of Streptococcus pneumoniae in vitro. However, their relevance in lung-protective immunity against different serotypes of S. pneumoniae in vivo has not been determined so far. Here, we examined the effect of CG and CG/NE deficiency on the lung host defense against S. pneumoniae in mice. Despite similar neutrophil recruitment, both CG knockout (KO) mice and CG/NE double-KO mice infected with focal pneumonia-inducing serotype 19 S. pneumoniae demonstrated a severely impaired bacterial clearance, which was accompanied by lack of CG and NE but not PR3 proteolytic activity in recruited neutrophils, as determined using fluorescence resonance energy transfer (FRET) substrates. Moreover, both CG and CG/NE KO mice but not wild-type mice responded with increased lung permeability to infection with S. pneumoniae, resulting in severe respiratory distress and progressive mortality. Both neutrophil depletion and ablation of hematopoietic CG/NE in bone marrow chimeras abolished intra-alveolar CG and NE immunoreactivity and led to bacterial outgrowth in the lungs of mice, thereby identifying recruited neutrophils as the primary cellular source of intra-alveolar CG and NE. This is the first study showing a contribution of neutrophil-derived neutral serine proteases CG and NE to lung-protective immunity against focal pneumonia-inducing serotype 19 S. pneumoniae in mice. These data may be important for the development of novel intervention strategies to improve lung-protective immune mechanisms in critically ill patients suffering from severe pneumococcal pneumonia.
Collapse
Affiliation(s)
- Ines Hahn
- Department of Experimental Pneumology
| | | | | | | | | | | | | | - Hélène Serrano
- INSERM U618, Proteases et Vectorisation Pulmonaires, Universite Francois Rabelais de Tours, Tours, France
| | - Francis Gauthier
- INSERM U618, Proteases et Vectorisation Pulmonaires, Universite Francois Rabelais de Tours, Tours, France
| | - James C. Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Tobias Welte
- Clinic for Pneumology, Hannover School of Medicine, Hannover, Germany
| | | |
Collapse
|
19
|
Molecular characterization of a catalase-negative Staphylococcus aureus subsp. aureus Strain collected from a patient with mitral valve endocarditis and pericarditis revealed a novel nonsense mutation in the katA gene. J Clin Microbiol 2011; 49:3398-402. [PMID: 21715584 DOI: 10.1128/jcm.00849-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report a case of endocarditis and pericarditis caused by catalase-negative Staphylococcus aureus. Molecular characterization revealed a novel nonsense mutation in the katA gene, leading to a loss of 238 amino acids (47% of the wild-type catalase protein), including the heme-binding site, NADPH-binding region, and Tyr-337, essential for catalysis.
Collapse
|
20
|
Köhler J, Breitbach K, Renner C, Heitsch AK, Bast A, van Rooijen N, Vogelgesang S, Steinmetz I. NADPH-oxidase but not inducible nitric oxide synthase contributes to resistance in a murine Staphylococcus aureus Newman pneumonia model. Microbes Infect 2011; 13:914-22. [PMID: 21635963 DOI: 10.1016/j.micinf.2011.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus is a pathogen that often causes severe nosocomial infections including pneumonia. The present study was designed to examine innate phagocyte mediated immune mechanisms using a previously described murine S. aureus Newman pneumonia model. We found that BALB/c mice represent a more susceptible mouse strain compared to C57BL/6 mice after intranasal S. aureus Newman challenge. Depletion experiments revealed that neutrophils are a crucial determinant for resistance whereas depletion of alveolar macrophages protected mice to some degree from acute pulmonary S. aureus challenge. C57BL/6 mice lacking the subunit gp91phox of the NADPH-oxidase (gp91phox⁻/⁻ mice) proved to be highly susceptible against the pathogen. In contrast, C57BL/6 inducible nitric oxidase synthase deficient (iNOS⁻/⁻) mice did not differ in their clinical outcome after infection. Neither bone marrow macrophages from iNOS-/- nor from gp91phox⁻/⁻ mice were impaired in controlling intracellular persistence of S. aureus. Our data suggest that neutrophil and NADPH-oxidase mediated mechanisms are essential components in protecting the host against pulmonary S. aureus Newman challenge. On contrary, macrophages as well as NO mediated mechanisms do not seem to play a critical role for resistance in this model.
Collapse
Affiliation(s)
- Jens Köhler
- Friedrich Loeffler Institute of Medical Microbiology, Ernst Moritz Arndt University Greifswald, Martin-Luther Str. 6, 17489 Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kang EM, Marciano BE, DeRavin S, Zarember KA, Holland SM, Malech HL. Chronic granulomatous disease: overview and hematopoietic stem cell transplantation. J Allergy Clin Immunol 2011; 127:1319-26; quiz 1327-8. [PMID: 21497887 DOI: 10.1016/j.jaci.2011.03.028] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
Abstract
Chronic granulomatous disease (CGD) still causes significant morbidity and mortality. The difficulty in considering high-risk yet curative treatments, such as allogeneic bone marrow transplantation, lies in the unpredictable courses of both CGD and bone marrow transplantation in different patients. Some patients with CGD can have frequent infections, granulomatous or autoimmune disorders necessitating immunosuppressive therapy, or both but also experience long periods of relative good health. However, the risk of death is clearly higher in patients with CGD of all types, and the complications of CGD short of death can still cause significant morbidity. Therefore, with recent developments and improvements, bone marrow transplantation, previously considered an experimental or high-risk procedure, has emerged as an important option for patients with CGD. We will discuss the complications of CGD that result in significant morbidity and mortality, particularly the most common infections and autoimmune/inflammatory complications, as well as their typical management. We will then discuss the status of bone marrow transplantation.
Collapse
Affiliation(s)
- Elizabeth M Kang
- Laboratory of Host Defenses, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Human leukocytes kill Aspergillus nidulans by reactive oxygen species-independent mechanisms. Infect Immun 2010; 79:767-73. [PMID: 21078850 DOI: 10.1128/iai.00921-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Invasive aspergillosis is a major threat for patients suffering from chronic granulomatous disease (CGD). Although Aspergillus fumigatus is the most commonly encountered Aspergillus species, the presence of A. nidulans appears to be disproportionately high in CGD patients. The purpose of this study was to investigate the involvement of the NADPH oxidase and the resulting reactive oxygen species (ROS) in host defense against fungi and to clarify their relationship toward A. nidulans. Murine CGD alveolar macrophages (AM) and polymorphonuclear leukocytes (PMN) and peripheral blood mononuclear cells (PBMC) from healthy controls and CGD patients were challenged with either A. fumigatus or A. nidulans. Analysis of the antifungal effects of ROS revealed that A. nidulans, in contrast to A. fumigatus, is not susceptible to ROS. In addition, infection with live A. nidulans did not result in any measurable ROS release. Remarkably, human CGD PMN and PBMC and murine CGD AM were at least equipotent at arresting conidial germination compared to healthy controls. Blocking of the NADPH oxidase resulted in significantly reduced damage of A. fumigatus but did not affect A. nidulans hyphae. Furthermore, the microbicidal activity of CGD PMN was maintained toward A. nidulans but not A. fumigatus. In summary, antifungal resistance to A. nidulans is not directly ROS related. The etiology of A. nidulans infections in CGD cannot be explained by the simple absence of the direct microbicidal effect of ROS. In vivo, the NADPH oxidase is a critical regulator of innate immunity whose unraveling will improve our understanding of fungal pathogenesis in CGD.
Collapse
|
23
|
Reichenbach J, Lopatin U, Mahlaoui N, Beovic B, Siler U, Zbinden R, Seger RA, Galmiche L, Brousse N, Kayal S, Güngör T, Blanche S, Holland SM. Actinomyces in chronic granulomatous disease: an emerging and unanticipated pathogen. Clin Infect Dis 2010; 49:1703-10. [PMID: 19874205 DOI: 10.1086/647945] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is a rare inherited disease of the phagocyte NADPH oxidase system that causes defective production of toxic oxygen metabolites, impaired bacterial and fungal killing, and recurrent life-threatening infections, mostly by catalase-producing organisms. We report for the first time, to our knowledge, chronic infections with Actinomyces species in 10 patients with CGD. Actinomycosis is a chronic granulomatous condition that commonly manifests as cervicofacial, pulmonary, or abdominal disease, caused by slowly progressive infection with oral and gastrointestinal commensal Actinomyces species. Treatment of actinomycosis is usually simple in immunocompetent individuals, requiring long-term, high-dose intravenous penicillin, but is more complicated in those with CGD because of delayed diagnosis and an increased risk of chronic invasive or debilitating disease. METHODS Actinomyces was identified by culture, staining, 16S ribosomal DNA polymerase chain reaction, and/or a complement fixation test in 10 patients with CGD. RESULTS All 10 patients presented with a history of fever and elevated inflammatory signs without evident focus. Diagnosis was delayed and clinical course severe and protracted despite high-dose intravenous antibiotic therapy and/or surgery. These results suggest an unrecognized and unanticipated susceptibility to weakly pathogenic Actinomyces species in patients with CGD because these are catalase-negative organisms previously thought to be nonpathogenic in CGD. CONCLUSIONS Actinomycosis should be vigorously sought and promptly treated in patients with CGD presenting with uncommon and prolonged clinical signs of infection. Actinomycosis is a catalase-negative infection important to consider in CGD.
Collapse
Affiliation(s)
- Janine Reichenbach
- Division of Immunology, University Children's Hospital, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Papayannopoulos V, Zychlinsky A. NETs: a new strategy for using old weapons. Trends Immunol 2009; 30:513-21. [PMID: 19699684 DOI: 10.1016/j.it.2009.07.011] [Citation(s) in RCA: 458] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/16/2009] [Accepted: 07/21/2009] [Indexed: 02/06/2023]
Abstract
As key players in the host innate immune response, neutrophils are recruited to sites of infection and constitute the first line of defense. They employ three strategies to eliminate invading microbes: microbial uptake, the secretion of antimicrobials, and the recently described release of Neutrophil Extracellular Traps (NETs). Composed of decondensed chromatin and antimicrobial proteins, NETs bind and kill a variety of microbes including bacteria, fungi, and parasites. In addition to using a repertoire of known antimicrobials, NETs incorporate histones into the antimicrobial arsenal. Furthermore, NETs may contribute to microbial containment by forming a physical barrier and a scaffold, to enhance antimicrobial synergy while minimizing damage to host tissues. Their role in innate immunity is only now being uncovered.
Collapse
|
25
|
The function of the NADPH oxidase of phagocytes, and its relationship to other NOXs. Biochem Soc Trans 2007; 35:1100-3. [DOI: 10.1042/bst0351100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The NADPH oxidase of ‘professional’ phagocytic cells transfers electrons across the wall of the phagocytic vacuole, forming superoxide in the lumen. It is generally accepted that this system promotes microbial killing through the generation of reactive oxygen species and through the activity of myeloperoxidase. An alternative scenario exists in which the passage of electrons across the membrane alters the pH and generates a charge that drives ions into, and out of, the vacuole. It is proposed that the primary function of the oxidase is to produce these pH changes and ion fluxes, and the issues surrounding these processes are considered in this review. The neutrophil oxidase is the prototype of a whole family of NOXs (NAPDH oxidases) that exist throughout biology, from plants to humans, which might function, at least in part, in a similar fashion.
Collapse
|
26
|
Segal AW. The function of the NADPH oxidase of phagocytes and its relationship to other NOXs in plants, invertebrates, and mammals. Int J Biochem Cell Biol 2007; 40:604-18. [PMID: 18036868 PMCID: PMC2636181 DOI: 10.1016/j.biocel.2007.10.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/03/2007] [Accepted: 10/03/2007] [Indexed: 01/09/2023]
Abstract
The NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (NOX) of ‘professional’ phagocytic cells transfers electrons across the wall of the phagocytic vacuole, forming superoxide in the lumen. It is generally accepted that this system promotes microbial killing through the generation of reactive oxygen species and through the activity of myeloperoxidase. An alternative scenario exists in which the passage of electrons across the membrane alters the pH and generates a charge that drives ions into, and out of, the vacuole. It is proposed that the primary function of the oxidase is to produce these pH changes and ion fluxes, and the issues surrounding these processes are considered. The neutrophil oxidase is the prototype of a whole family of NOXs that exist throughout biology, from plants to man, which might function, at least in part, in a similar fashion. Some examples of how these other NOXs might influence ion fluxes are examined.
Collapse
Affiliation(s)
- Anthony W Segal
- Centre for Molecular Medicine, University College London, 5 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
27
|
Greenberg DE, Porcella SF, Zelazny AM, Virtaneva K, Sturdevant DE, Kupko JJ, Barbian KD, Babar A, Dorward DW, Holland SM. Genome sequence analysis of the emerging human pathogenic acetic acid bacterium Granulibacter bethesdensis. J Bacteriol 2007; 189:8727-36. [PMID: 17827295 PMCID: PMC2168926 DOI: 10.1128/jb.00793-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chronic granulomatous disease (CGD) is an inherited immune deficiency characterized by increased susceptibility to infection with Staphylococcus, certain gram-negative bacteria, and fungi. Granulibacter bethesdensis, a newly described genus and species within the family Acetobacteraceae, was recently isolated from four CGD patients residing in geographically distinct locales who presented with fever and lymphadenitis. We sequenced the genome of the reference strain of Granulibacter bethesdensis, which was isolated from lymph nodes of the original patient. The genome contains 2,708,355 base pairs in a single circular chromosome, in which 2,437 putative open reading frames (ORFs) were identified, 1,470 of which share sequence similarity with ORFs in the nonpathogenic but related Gluconobacter oxydans genome. Included in the 967 ORFs that are unique to G. bethesdensis are ORFs potentially important for virulence, adherence, DNA uptake, and methanol utilization. GC% values and best BLAST analysis suggested that some of these unique ORFs were recently acquired. Comparison of G. bethesdensis to other known CGD pathogens demonstrated conservation of some putative virulence factors, suggesting possible common mechanisms involved in pathogenesis in CGD. Genotyping of the four patient isolates by use of a custom microarray demonstrated genome-wide variations in regions encoding DNA uptake systems and transcriptional regulators and in hypothetical ORFs. G. bethesdensis is a genetically diverse emerging human pathogen that may have recently acquired virulence factors new to this family of organisms.
Collapse
Affiliation(s)
- David E Greenberg
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20892-1684, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cosgrove K, Coutts G, Jonsson IM, Tarkowski A, Kokai-Kun JF, Mond JJ, Foster SJ. Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. J Bacteriol 2006; 189:1025-35. [PMID: 17114262 PMCID: PMC1797328 DOI: 10.1128/jb.01524-06] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidative-stress resistance in Staphylococcus aureus is linked to metal ion homeostasis via several interacting regulators. In particular, PerR controls the expression of a regulon of genes, many of which encode antioxidants. Two PerR regulon members, ahpC (alkylhydroperoxide reductase) and katA (catalase), show compensatory regulation, with independent and linked functions. An ahpC mutation leads to increased H2O2 resistance due to greater katA expression via relief of PerR repression. Moreover, AhpC provides residual catalase activity present in a katA mutant. Mutation of both katA and ahpC leads to a severe growth defect under aerobic conditions in defined media (attributable to lack of catalase activity). This results in the inability to scavenge exogenous or endogenously produced H2O2, resulting in accumulation of H2O2 in the medium. This leads to DNA damage, the likely cause of the growth defect. Surprisingly, the katA ahpC mutant is not attenuated in two independent models of infection, which implies reduced oxygen availability during infection. In contrast, both AhpC and KatA are required for environmental persistence (desiccation) and nasal colonization. Thus, oxidative-stress resistance is an important factor in the ability of S. aureus to persist in the hospital environment and so contribute to the spread of human disease.
Collapse
Affiliation(s)
- Kate Cosgrove
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
29
|
Mydel P, Takahashi Y, Yumoto H, Sztukowska M, Kubica M, Gibson FC, Kurtz DM, Travis J, Collins LV, Nguyen KA, Genco CA, Potempa J. Roles of the host oxidative immune response and bacterial antioxidant rubrerythrin during Porphyromonas gingivalis infection. PLoS Pathog 2006; 2:e76. [PMID: 16895445 PMCID: PMC1522038 DOI: 10.1371/journal.ppat.0020076] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 06/21/2006] [Indexed: 12/13/2022] Open
Abstract
The efficient clearance of microbes by neutrophils requires the concerted action of reactive oxygen species and microbicidal components within leukocyte secretory granules. Rubrerythrin (Rbr) is a nonheme iron protein that protects many air-sensitive bacteria against oxidative stress. Using oxidative burst-knockout (NADPH oxidase-null) mice and an rbr gene knockout bacterial strain, we investigated the interplay between the phagocytic oxidative burst of the host and the oxidative stress response of the anaerobic periodontal pathogen Porphyromonas gingivalis. Rbr ensured the proliferation of P. gingivalis in mice that possessed a fully functional oxidative burst response, but not in NADPH oxidase-null mice. Furthermore, the in vivo protection afforded by Rbr was not associated with the oxidative burst responses of isolated neutrophils in vitro. Although the phagocyte-derived oxidative burst response was largely ineffective against P. gingivalis infection, the corresponding oxidative response to the Rbr-positive microbe contributed to host-induced pathology via potent mobilization and systemic activation of neutrophils. It appeared that Rbr also provided protection against reactive nitrogen species, thereby ensuring the survival of P. gingivalis in the infected host. The presence of the rbr gene in P. gingivalis also led to greater oral bone loss upon infection. Collectively, these results indicate that the host oxidative burst paradoxically enhances the survival of P. gingivalis by exacerbating local and systemic inflammation, thereby contributing to the morbidity and mortality associated with infection.
Collapse
Affiliation(s)
- Piotr Mydel
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yusuke Takahashi
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Oral Microbiology, Kanagawa Dental College, Yokosuka, Kanagawa, Japan
| | - Hiromichi Yumoto
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Conservative Dentistry, The University of Tokushima, School of Dentistry, Tokushima, Japan
| | - Maryta Sztukowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Malgorzata Kubica
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Frank C Gibson
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Donald M Kurtz
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia, United States of America
| | - Jim Travis
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - L. Vincent Collins
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg, Sweden
| | - Ky-Anh Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Caroline Attardo Genco
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail: (CAG); (JP)
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail: (CAG); (JP)
| |
Collapse
|
30
|
Yilmaz M, Aygun G, Utku T, Dikmen Y, Ozturk R. First report of catalase-negative methicillin-resistant Staphylococcus aureus sepsis. J Hosp Infect 2005; 60:188-9. [PMID: 15866023 DOI: 10.1016/j.jhin.2004.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Abstract
Neutrophils provide the first line of defense of the innate immune system by phagocytosing, killing, and digesting bacteria and fungi. Killing was previously believed to be accomplished by oxygen free radicals and other reactive oxygen species generated by the NADPH oxidase, and by oxidized halides produced by myeloperoxidase. We now know this is incorrect. The oxidase pumps electrons into the phagocytic vacuole, thereby inducing a charge across the membrane that must be compensated. The movement of compensating ions produces conditions in the vacuole conducive to microbial killing and digestion by enzymes released into the vacuole from the cytoplasmic granules.
Collapse
Affiliation(s)
- Anthony W Segal
- Center for Molecular Medicine, University College London, London WC1E 6JJ, United Kingdom.
| |
Collapse
|
32
|
Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 2004; 76:760-81. [PMID: 15240752 DOI: 10.1189/jlb.0404216] [Citation(s) in RCA: 345] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophils play an essential role in the body's innate defense against pathogens and are one of the primary mediators of the inflammatory response. To defend the host, neutrophils use a wide range of microbicidal products, such as oxidants, microbicidal peptides, and lytic enzymes. The generation of microbicidal oxidants by neutrophils results from the activation of a multiprotein enzyme complex known as the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which is responsible for transferring electrons from NADPH to O2, resulting in the formation of superoxide anion. During oxidase activation, cytosolic oxidase proteins translocate to the phagosome or plasma membrane, where they assemble around a central membrane-bound component known as flavocytochrome b. This process is highly regulated, involving phosphorylation, translocation, and multiple conformational changes. Originally, it was thought that the NADPH oxidase was restricted to phagocytes and used solely in host defense. However, recent studies indicate that similar NADPH oxidase systems are present in a wide variety of nonphagocytic cells. Although the nature of these nonphagocyte NADPH oxidases is still being defined, it is clear that they are functionally distinct from the phagocyte oxidases. It should be noted, however, that structural features of many nonphagocyte oxidase proteins do seem to be similar to those of their phagocyte counterparts. In this review, key structural and functional features of the neutrophil NADPH oxidase and its protein components are described, including a consideration of transcriptional and post-translational regulatory features. Furthermore, relevant details about structural and functional features of various nonphagocyte oxidase proteins will be included for comparison.
Collapse
Affiliation(s)
- Mark T Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman 59717-3610, USA.
| | | |
Collapse
|
33
|
Cross AR, Segal AW. The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. BIOCHIMICA ET BIOPHYSICA ACTA 2004; 1657:1-22. [PMID: 15238208 PMCID: PMC2636547 DOI: 10.1016/j.bbabio.2004.03.008] [Citation(s) in RCA: 335] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Revised: 03/16/2004] [Accepted: 03/16/2004] [Indexed: 02/06/2023]
Abstract
The NADPH oxidase is an electron transport chain in "professional" phagocytic cells that transfers electrons from NADPH in the cytoplasm, across the wall of the phagocytic vacuole, to form superoxide. The electron transporting flavocytochrome b is activated by the integrated function of four cytoplasmic proteins. The antimicrobial function of this system involves pumping K+ into the vacuole through BKCa channels, the effect of which is to elevate the vacuolar pH and activate neutral proteases. A number of homologous systems have been discovered in plants and lower animals as well as in man. Their function remains to be established.
Collapse
Affiliation(s)
- Andrew R. Cross
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anthony W. Segal
- Centre for Molecular Medicine, Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, UK
| |
Collapse
|
34
|
Reeves EP, Nagl M, Godovac-Zimmermann J, Segal AW. Reassessment of the microbicidal activity of reactive oxygen species and hypochlorous acid with reference to the phagocytic vacuole of the neutrophil granulocyte. J Med Microbiol 2003; 52:643-651. [PMID: 12867557 PMCID: PMC2635949 DOI: 10.1099/jmm.0.05181-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During phagocytosis, neutrophils undergo a burst of respiration in which oxygen is reduced to superoxide (O(-)(2)), which dismutates to form H(2)O(2). Myeloperoxidase (MPO) is discharged from the cytoplasmic granules into the phagosome following particle ingestion. It is thought to utilize H(2)O(2) to oxidize halides, which then react with and kill ingested microbes. Recent studies have provided new information as to the concentration of O(-)(2) and proteins, and the pH, within the vacuole. This study was conducted to examine the antimicrobial effect of O(-)(2), H(2)O(2) and hypochlorous acid under these conditions and it was found that the previously described bactericidal effect of these agents was reversed in the presence of granule proteins or MPO. To establish which cellular proteins were iodinated by MPO, cellular proteins and bacterial proteins, iodinated in neutrophils phagocytosing bacteria in the presence of (125)I, were separated by 2D gel electrophoresis. Iodinated spots were detected by autoradiography and the oxidized proteins were identified by MS. The targets of these iodination reactions were largely those of the host cell rather than those of the engulfed microbe.
Collapse
Affiliation(s)
- Emer P. Reeves
- Centre for Molecular Medicine, University College London, 5 University Street, London WC1E 6JJ, UK
| | - Markus Nagl
- Institute of Hygiene and Social Medicine, Leopold-Franzens-University of Innsbruck, A-6010 Innsbruck, Austria
| | | | - Anthony W. Segal
- Centre for Molecular Medicine, University College London, 5 University Street, London WC1E 6JJ, UK
| |
Collapse
|
35
|
Kottilil S, Malech HL, Gill VJ, Holland SM. Infections with Haemophilus species in chronic granulomatous disease: insights into the interaction of bacterial catalase and H2O2 production. Clin Immunol 2003; 106:226-30. [PMID: 12706409 DOI: 10.1016/s1521-6616(02)00048-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chronic granulomatous disease (CGD) is a rare inherited disorder in which phagocytes are incapable of generating bactericidal-reactive oxygen derivatives. Typically these patients are susceptible to life-threatening infections with catalase-producing organisms. Haemophilus species, particularly H. paraphrophilus, are not associated with CGD infections, because these organisms rarely if ever produce catalase. Haemophilus species are part of the indigenous oral microbial flora and, other than H. influenzae, are rarely recognized as pathogens. They are fastidious and require additional growth factors and capnophilic culture conditions for optimal growth and identification. Here we describe three cases of infection with non-H. influenzae (NHI) Haemophilus species in CGD patients. These organisms were catalase-negative and therefore not expected to be virulent in CGD patients, but they were also H(2)O(2) production-negative, thereby negating the putative loss of virulence of being catalase-negative. These are the first reports of NHI Haemophilus species in CGD and reinforce the critical need for careful microbiologic evaluation of infections in CGD patients.
Collapse
Affiliation(s)
- S Kottilil
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
36
|
Álvarez-Garcíaa P, García-Campelloa M, Pascuala Á, Alemparteb E. Primer caso de pericarditis aguda por Staphylococcus aureus catalasa negativo. Enferm Infecc Microbiol Clin 2003. [DOI: 10.1016/s0213-005x(03)73018-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|