1
|
Yi L, Bandak B, Wang X, Bertram R, Roper MG. Dual Detection System for Simultaneous Measurement of Intracellular Fluorescent Markers and Cellular Secretion. Anal Chem 2016; 88:10368-10373. [PMID: 27712062 DOI: 10.1021/acs.analchem.6b02404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucose-stimulated insulin secretion from pancreatic β-cells within islets of Langerhans plays a critical role in maintaining glucose homeostasis. Although this process is essential for maintaining euglycemia, the underlying intracellular mechanisms that control it are still unclear. To allow simultaneous correlation between intracellular signal transduction events and extracellular secretion, an analytical system was developed that integrates fluorescence imaging of intracellular probes with high-speed automated insulin immunoassays. As a demonstration of the system, intracellular [Ca2+] ([Ca2+]i) was measured by imaging Fura-2 fluorescence simultaneously with insulin secretion from islets exposed to elevated glucose levels. Both [Ca2+]i and insulin were oscillatory during application of 10 mM glucose with temporal and quantitative profiles similar to what has been observed elsewhere. In previous work, sinusoidal glucose levels have been used to test the entrainment of islets while monitoring either [Ca2+]i or insulin levels; using this newly developed system, we show unambiguously that oscillations of both [Ca2+]i and insulin release are entrained to oscillatory glucose levels and that the temporal correlation of these are maintained throughout the experiment. It is expected that the developed analytical system can be expanded to investigate a number of other intracellular messengers in islets or other stimulus-secretion pathways in different cells.
Collapse
Affiliation(s)
- Lian Yi
- Department of Chemistry and Biochemistry, Florida State University , 95 Chieftain Way, Dittmer Building, Tallahassee, Florida 32306, United States
| | - Basel Bandak
- Department of Chemistry and Biochemistry, Florida State University , 95 Chieftain Way, Dittmer Building, Tallahassee, Florida 32306, United States
| | - Xue Wang
- Department of Chemistry and Biochemistry, Florida State University , 95 Chieftain Way, Dittmer Building, Tallahassee, Florida 32306, United States
| | - Richard Bertram
- Department of Mathematics and Program in Neuroscience, Florida State University , Tallahassee, Florida 32306, United States.,Program in Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| | - Michael G Roper
- Department of Chemistry and Biochemistry, Florida State University , 95 Chieftain Way, Dittmer Building, Tallahassee, Florida 32306, United States.,Program in Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
2
|
Disruption and stabilization of β-cell actin microfilaments differently influence insulin secretion triggered by intracellular Ca2+ mobilization or store-operated Ca2+ entry. FEBS Lett 2011; 586:89-95. [PMID: 22154597 DOI: 10.1016/j.febslet.2011.11.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/08/2011] [Accepted: 11/26/2011] [Indexed: 02/05/2023]
Abstract
Latrunculin depolymerizes and jasplakinolide polymerizes β-cell actin microfilaments. Both increase insulin secretion when Ca(2+) enters β-cells during depolarization by glucose, sulfonylureas or potassium. Mouse islets were held hyperpolarized with diazoxide, and stimulated with acetylcholine to test the role of microfilaments in insulin secretion triggered by intracellular Ca(2+) mobilization and store-operated Ca(2+) entry (SOCE). Jasplakinolide slightly attenuated Ca(2+) mobilization and did not affect SOCE, but consistently inhibited the attending insulin secretion. Latrunculin did not affect Ca(2+) changes induced by acetylcholine, but consistently increased insulin secretion, its effect being larger in response to Ca(2+) entry than to Ca(2+) mobilization. Microfilaments have thus a distinct impact on exocytosis of insulin granules depending on the source of triggering Ca(2+).
Collapse
|
3
|
Coupling of metabolic, second messenger pathways and insulin granule dynamics in pancreatic beta-cells: a computational analysis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:293-303. [PMID: 21920379 DOI: 10.1016/j.pbiomolbio.2011.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/26/2011] [Accepted: 09/01/2011] [Indexed: 12/26/2022]
Abstract
Insulin secretory responses to nutrient stimuli and hormonal modulators in pancreatic beta-cells are controlled by a variety of secondary messengers. We have analyzed numerous mechanisms responsible for regulated exocytosis in these cells and present an integrated mathematical model of cytosolic Ca²⁺, cAMP and granule dynamics. The insulin-containing granules in the beta-cell were divided into four classes: a large "reserve" granule pool, a smaller pool of the morphologically docked granules that is chemically 'primed' for release or the "readily releasable pool", and a pool of "restless newcomer granules" that undergoes preferential exocytosis. The model incorporates glucose and other aspects of metabolism, the cAMP amplifying pathway, insulin granule dynamics and the exocyst concept for granule binding. The values of most of the model parameters were inferred from available experimental data. The model can generate both the fast first phase and slow biphasic insulin secretion found experimentally in response to a step increase of membrane potential or of glucose. The numerical simulations have also reproduced a variety of experimental conditions, such as periodic stimulation by high K⁺ and the potentiation induced in islets by pre-incubation with cAMP pathway activators. The explicit incorporation of Ca²⁺ channels, Ca²⁺ and cAMP dynamics allows the model to be further connected to current models for calcium and metabolic dynamics and provides an interpretation of the roles of the triggering and amplifying pathways of glucose-stimulated insulin secretion. The model may be important in the identification of pharmacological targets for improving insulin secretion in type 2 diabetes.
Collapse
|
4
|
Bertram R, Sherman A, Satin LS. Electrical bursting, calcium oscillations, and synchronization of pancreatic islets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:261-79. [PMID: 20217502 DOI: 10.1007/978-90-481-3271-3_12] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Oscillations are an integral part of insulin secretion and are ultimately due to oscillations in the electrical activity of pancreatic beta-cells, called bursting. In this chapter we discuss islet bursting oscillations and a unified biophysical model for this multi-scale behavior. We describe how electrical bursting is related to oscillations in the intracellular Ca(2+) concentration within beta-cells and the role played by metabolic oscillations. Finally, we discuss two potential mechanisms for the synchronization of islets within the pancreas. Some degree of synchronization must occur, since distinct oscillations in insulin levels have been observed in hepatic portal blood and in peripheral blood sampling of rats, dogs, and humans. Our central hypothesis, supported by several lines of evidence, is that insulin oscillations are crucial to normal glucose homeostasis. Disturbance of oscillations, either at the level of the individual islet or at the level of islet synchronization, is detrimental and can play a major role in type 2 diabetes.
Collapse
Affiliation(s)
- Richard Bertram
- Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA.
| | | | | |
Collapse
|
5
|
Henquin JC. Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 2009; 52:739-51. [PMID: 19288076 DOI: 10.1007/s00125-009-1314-y] [Citation(s) in RCA: 350] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/05/2009] [Indexed: 12/14/2022]
Abstract
The consensus model of stimulus-secretion coupling in beta cells attributes glucose-induced insulin secretion to a sequence of events involving acceleration of metabolism, closure of ATP-sensitive K(+) channels, depolarisation, influx of Ca(2+) and a rise in cytosolic free Ca(2+) concentration ([Ca(2+)](c)). This triggering pathway is essential, but would not be very efficient if glucose did not also activate a metabolic amplifying pathway that does not raise [Ca(2+)](c) further but augments the action of triggering Ca(2+) on exocytosis. This review discusses how both pathways interact to achieve temporal control and amplitude modulation of biphasic insulin secretion. First-phase insulin secretion is triggered by the rise in [Ca(2+)](c) that occurs synchronously in all beta cells of every islet in response to a sudden increase in the glucose concentration. Its time course and duration are shaped by those of the Ca(2+) signal, and its amplitude is modulated by the magnitude of the [Ca(2+)](c) rise and, substantially, by amplifying mechanisms. During the second phase, synchronous [Ca(2+)](c) oscillations in all beta cells of an individual islet induce pulsatile insulin secretion, but these features of the signal and response are dampened in groups of intrinsically asynchronous islets. Glucose has hardly any influence on the amplitude of [Ca(2+)](c) oscillations and mainly controls the time course of triggering signal. Amplitude modulation of insulin secretion pulses largely depends on the amplifying pathway. There are more similarities than differences between the two phases of glucose-induced insulin secretion. Both are subject to the same dual, hierarchical control over time and amplitude by triggering and amplifying pathways, suggesting that the second phase is a sequence of iterations of the first phase.
Collapse
Affiliation(s)
- J C Henquin
- Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
6
|
Ravier MA, Nenquin M, Miki T, Seino S, Henquin JC. Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking adenosine triphosphate-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology 2009; 150:33-45. [PMID: 18787024 DOI: 10.1210/en.2008-0617] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucose-induced insulin secretion is classically attributed to the cooperation of an ATP-sensitive potassium (K ATP) channel-dependent Ca2+ influx with a subsequent increase of the cytosolic free Ca2+ concentration ([Ca2+]c) (triggering pathway) and a K ATP channel-independent augmentation of secretion without further increase of [Ca2+]c (amplifying pathway). Here, we characterized the effects of glucose in beta-cells lacking K ATP channels because of a knockout (KO) of the pore-forming subunit Kir6.2. Islets from 1-yr and 2-wk-old Kir6.2KO mice were used freshly after isolation and after 18 h culture to measure glucose effects on [Ca2+]c and insulin secretion. Kir6.2KO islets were insensitive to diazoxide and tolbutamide. In fresh adult Kir6.2KO islets, basal [Ca2+]c and insulin secretion were marginally elevated, and high glucose increased [Ca2+]c only transiently, so that the secretory response was minimal (10% of controls) despite a functioning amplifying pathway (evidenced in 30 mm KCl). Culture in 10 mm glucose increased basal secretion and considerably improved glucose-induced insulin secretion (200% of controls), unexpectedly because of an increase in [Ca2+]c with modulation of [Ca2+]c oscillations. Similar results were obtained in 2-wk-old Kir6.2KO islets. Under selected conditions, high glucose evoked biphasic increases in [Ca2+]c and insulin secretion, by inducing K ATP channel-independent depolarization and Ca2+ influx via voltage-dependent Ca2+ channels. In conclusion, Kir6.2KO beta-cells down-regulate insulin secretion by maintaining low [Ca2+]c, but culture reveals a glucose-responsive phenotype mainly by increasing [Ca2+]c. The results support models implicating a K ATP channel-independent amplifying pathway in glucose-induced insulin secretion, and show that K ATP channels are not the only possible transducers of metabolic effects on the triggering Ca2+ signal.
Collapse
Affiliation(s)
- Magalie A Ravier
- Unit of Endocrinology and Metabolism, University of Louvain, Faculty of Medicine, Brussels, Belgium
| | | | | | | | | |
Collapse
|
7
|
Ravier MA, Tsuboi T, Rutter GA. Imaging a target of Ca2+ signalling: dense core granule exocytosis viewed by total internal reflection fluorescence microscopy. Methods 2008; 46:233-8. [PMID: 18854212 PMCID: PMC2597054 DOI: 10.1016/j.ymeth.2008.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Accepted: 09/12/2008] [Indexed: 12/20/2022] Open
Abstract
Ca2+ ions are the most ubiquitous second messenger found in all cells, and play a significant role in controlling regulated secretion from neurons, endocrine, neuroendocrine and exocrine cells. Here, we describe microscopic techniques to image regulated secretion, a target of Ca2+ signalling. The first of these, total internal reflection fluorescence (TIRF), is well suited for optical sectioning at cell–substrate regions with an unusually thin region of fluorescence excitation (<150 nm). It is thus particularly useful for studies of regulated hormone secretion. A brief summary of this approach is provided, as well as a description of the physical basis for the technique and the tools to implement TIRF using a standard fluorescence microscope. We also detail the different fluorescent probes which can be used to detect secretion and how to analyze the data obtained. A comparison between TIRF and other imaging modalities including confocal and multiphoton microscopy is also included.
Collapse
Affiliation(s)
- Magalie A Ravier
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, UCL 55.30 Avenue Hippocrate 55, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
8
|
Identifying the targets of the amplifying pathway for insulin secretion in pancreatic beta-cells by kinetic modeling of granule exocytosis. Biophys J 2008; 95:2226-41. [PMID: 18515381 DOI: 10.1529/biophysj.107.124990] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A kinetic model for insulin secretion in pancreatic beta-cells is adapted from a model for fast exocytosis in chromaffin cells. The fusion of primed granules with the plasma membrane is assumed to occur only in the "microdomain" near voltage-sensitive L-type Ca(2+)-channels, where [Ca(2+)] can reach micromolar levels. In contrast, resupply and priming of granules are assumed to depend on the cytosolic [Ca(2+)]. Adding a two-compartment model to handle the temporal distribution of Ca(2+) between the microdomain and the cytosol, we obtain a unified model that can generate both the fast granule fusion and the slow insulin secretion found experimentally in response to a step of membrane potential. The model can simulate the potentiation induced in islets by preincubation with glucose and the reduction in second-phase insulin secretion induced by blocking R-type Ca(2+)-channels (Ca(V)2.3). The model indicates that increased second-phase insulin secretion induced by the amplifying signal is controlled by the "resupply" step of the exocytosis cascade. In contrast, enhancement of priming is a good candidate for amplification of first-phase secretion by glucose, cyclic adenosine 3':5'-cyclic monophosphate, and protein kinase C. Finally, insulin secretion is enhanced when the amplifying signal oscillates in phase with the triggering Ca(2+)-signal.
Collapse
|
9
|
Diraison F, Ravier MA, Richards SK, Smith RM, Shimano H, Rutter GA. SREBP1 is required for the induction by glucose of pancreatic beta-cell genes involved in glucose sensing. J Lipid Res 2008; 49:814-22. [PMID: 18178930 DOI: 10.1194/jlr.m700533-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have reported both positive and negative effects of culture of islets at high glucose concentrations on regulated insulin secretion. Here, we have reexamined this question in mouse islets and determined the role of changes in lipid synthesis in the effects of glucose. Glucose-stimulated insulin secretion (GSIS) and gene expression were examined in islets from C57BL/6 mice or littermates deleted for sterol-regulatory element binding protein-1 (SREBP1) after 4 days of culture at high glucose concentrations. Culture of control islets at 30 versus 8 mmol/l glucose led to enhanced secretion at both basal (3 mmol/l) and stimulatory (17 mmol/l) glucose concentrations and to enhanced triacylglycerol accumulation. These changes were associated with increases in the expression of genes involved in glucose sensing (glucose transporter 2, glucokinase, sulfonylurea receptor 1, inwardly rectifying K(+) channel 6.2), differentiation (pancreatic duodenal homeobox 1), and lipogenesis (Srebp1, fatty acid synthase, acetyl-coenzyme A carboxylase 1, stearoyl-coenzyme A desaturase 1). When cultured at either 8 or 30 mmol/l glucose, SREBP1-deficient (SREBP1(-/-)) islets displayed reduced GSIS and triacylglycerol content compared with normal islets. Correspondingly, glucose induction of the above genes in control islets was no longer observed in SREBP1(-/-) mouse islets. We conclude that enhanced lipid synthesis mediated by SREBP1c-dependent genes is required for the adaptive changes in islet gene expression and insulin secretion at high glucose concentrations.
Collapse
Affiliation(s)
- Frederique Diraison
- Department of Cell Biology, Division of Medicine, Faculty of Medicine, Imperial College, London SW72A2, UK
| | | | | | | | | | | |
Collapse
|
10
|
Bertram R, Sherman A, Satin LS. Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion. Am J Physiol Endocrinol Metab 2007; 293:E890-900. [PMID: 17666486 DOI: 10.1152/ajpendo.00359.2007] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impairment of insulin secretion from the beta-cells of the pancreatic islets of Langerhans is central to the development of type 2 diabetes mellitus and has therefore been the subject of much investigation. Great advances have been made in this area, but the mechanisms underlying the pulsatility of insulin secretion remain controversial. The period of these pulses is 4-6 min and reflects oscillations in islet membrane potential and intracellular free Ca(2+). Pulsatile blood insulin levels appear to play an important physiological role in insulin action and are lost in patients with type 2 diabetes and their near relatives. We present evidence for a recently developed beta-cell model, the "dual oscillator model," in which oscillations in activity are due to both electrical and metabolic mechanisms. This model is capable of explaining much of the available data on islet activity and offers possible resolutions of a number of longstanding issues. The model, however, still lacks direct confirmation and raises new issues. In this article, we highlight both the successes of the model and the challenges that it poses for the field.
Collapse
Affiliation(s)
- Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | | | | |
Collapse
|
11
|
Geng X, Li L, Bottino R, Balamurugan AN, Bertera S, Densmore E, Su A, Chang Y, Trucco M, Drain P. Antidiabetic sulfonylurea stimulates insulin secretion independently of plasma membrane KATP channels. Am J Physiol Endocrinol Metab 2007; 293:E293-301. [PMID: 17405830 DOI: 10.1152/ajpendo.00016.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Understanding mechanisms by which glibenclamide stimulates insulin release is important, particularly given recent promising treatment by glibenclamide of permanent neonatal diabetic subjects. Antidiabetic sulfonylureas are thought to stimulate insulin secretion solely by inhibiting their high-affinity ATP-sensitive potassium (K(ATP)) channel receptors at the plasma membrane of beta-cells. This normally occurs during glucose stimulation, where ATP inhibition of plasmalemmal K(ATP) channels leads to voltage activation of L-type calcium channels for rapidly switching on and off calcium influx, governing the duration of insulin secretion. However, growing evidence indicates that sulfonylureas, including glibenclamide, have additional K(ATP) channel receptors within beta-cells at insulin granules. We tested nonpermeabilized beta-cells in mouse islets for glibenclamide-stimulated insulin secretion mediated by granule-localized K(ATP) channels by using conditions that bypass glibenclamide action on plasmalemmal K(ATP) channels. High-potassium stimulation evoked a sustained rise in beta-cell calcium level but a transient rise in insulin secretion. With continued high-potassium depolarization, addition of glibenclamide dramatically enhanced insulin secretion without affecting calcium. These findings support the hypothesis that glibenclamide, or an increased ATP/ADP ratio, stimulates insulin secretion in part by binding at granule-localized K(ATP) channels that functionally contribute to sustained second-phase insulin secretion.
Collapse
Affiliation(s)
- Xuehui Geng
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace St., Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Heart E, Yaney G, Corkey R, Schultz V, Luc E, Liu L, Deeney J, Shirihai O, Tornheim K, Smith P, Corkey B. Ca2+, NAD(P)H and membrane potential changes in pancreatic beta-cells by methyl succinate: comparison with glucose. Biochem J 2007; 403:197-205. [PMID: 17181533 PMCID: PMC1828901 DOI: 10.1042/bj20061209] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 12/14/2006] [Accepted: 12/20/2006] [Indexed: 11/17/2022]
Abstract
The present study was undertaken to determine the main metabolic secretory signals generated by the mitochondrial substrate MeS (methyl succinate) compared with glucose in mouse and rat islets and to understand the differences. Glycolysis and mitochondrial metabolism both have key roles in the stimulation of insulin secretion by glucose. Both fuels elicited comparable oscillatory patterns of Ca2+ and changes in plasma and mitochondrial membrane potential in rat islet cells and clonal pancreatic beta-cells (INS-1). Saturation of the Ca2+ signal occurred between 5 and 6 mM MeS, while secretion reached its maximum at 15 mM, suggesting operation of a K(ATP)-channel-independent pathway. Additional responses to MeS and glucose included elevated NAD(P)H autofluorescence in INS-1 cells and islets and increases in assayed NADH and NADPH and the ATP/ADP ratio. Increased NADPH and ATP/ADP ratios occurred more rapidly with MeS, although similar levels were reached after 5 min of exposure to each fuel, whereas NADH increased more with MeS than with glucose. Reversal of MeS-induced cell depolarization by Methylene Blue completely inhibited MeS-stimulated secretion, whereas basal secretion and KCl-induced changes in these parameters were not affected. MeS had no effect on secretion or signals in the mouse islets, in contrast with glucose, possibly due to a lack of malic enzyme. The data are consistent with the common intermediates being pyruvate, cytosolic NADPH or both, and suggest that cytosolic NADPH production could account for the more rapid onset of MeS-induced secretion compared with glucose stimulation.
Collapse
Affiliation(s)
- Emma Heart
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
- †BioCurrents Research Center, Marine Biological Laboratory, Woods Hole, MA 02543, U.S.A
| | - Gordon C. Yaney
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Richard F. Corkey
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Vera Schultz
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
- ‡Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Esthere Luc
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Lihan Liu
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Jude T. Deeney
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Orian Shirihai
- §Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02118, U.S.A
| | - Keith Tornheim
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
- ‡Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Peter J. S. Smith
- †BioCurrents Research Center, Marine Biological Laboratory, Woods Hole, MA 02543, U.S.A
| | - Barbara E. Corkey
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
- ‡Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, U.S.A
| |
Collapse
|
13
|
Szollosi A, Nenquin M, Henquin JC. Overnight culture unmasks glucose-induced insulin secretion in mouse islets lacking ATP-sensitive K+ channels by improving the triggering Ca2+ signal. J Biol Chem 2007; 282:14768-76. [PMID: 17389589 DOI: 10.1074/jbc.m701382200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A current model ascribes glucose-induced insulin secretion to the interaction of a triggering pathway (K(ATP) channel-dependent Ca(2+) influx and rise in cytosolic [Ca(2+)](c)) and an amplifying pathway (K(ATP) channel-independent augmentation of secretion without further increase of [Ca(2+)](c)). However, several studies of sulfonylurea receptor 1 null mice (Sur1KO) failed to measure significant effects of glucose in their islets lacking K(ATP) channels. We addressed this issue that challenges the model. Compared with controls, fresh Sur1KO islets showed slightly elevated basal [Ca(2+)](c) and insulin secretion. In 15 mm glucose, the absolute rate of secretion was approximately 3-fold lower in Sur1KO than control islets, with only poor increase above base line. Overnight culture of Sur1KO islets in 10 mm glucose (not in 5 mm) augmented basal insulin secretion and considerably improved the response to 15 mm glucose, which reached higher values than in control islets, in which culture had little impact. Glucose stimulation during KCl depolarization showed that the amplifying pathway is functional in fresh and cultured Sur1KO islets. The differences in insulin secretion between fresh and cultured Sur1KO islets and between Sur1KO and control islets were not attributable to differences in insulin content, glucose oxidation rate, or synchronization of [Ca(2+)](c) oscillations. The unmasking of glucose-induced insulin secretion in beta-cells lacking K(ATP) channels is paradoxically due to improvement in the production of a triggering signal (elevated [Ca(2+)](c)). The results show that K(ATP) channels are not the only transducer of glucose effects on [Ca(2+)](c) in beta-cells. They explain controversies in the literature and refute arguments raised against the model implicating an amplifying pathway in glucose-induced insulin secretion.
Collapse
Affiliation(s)
- Andras Szollosi
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, UCL55.30, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
14
|
Henquin JC, Nenquin M, Stiernet P, Ahren B. In vivo and in vitro glucose-induced biphasic insulin secretion in the mouse: pattern and role of cytoplasmic Ca2+ and amplification signals in beta-cells. Diabetes 2006; 55:441-51. [PMID: 16443779 DOI: 10.2337/diabetes.55.02.06.db05-1051] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mechanisms underlying biphasic insulin secretion have not been completely elucidated. We compared the pattern of plasma insulin changes during hyperglycemic clamps in mice to that of glucose-induced insulin secretion and cytosolic calcium concentration ([Ca(2+)](c)) changes in perifused mouse islets. Anesthetized mice were infused with glucose to clamp blood glucose at 8.5 (baseline), 11.1, 16.7, or 30 mmol/l. A first-phase insulin response consistently peaked at 1 min, and a slowly ascending second phase occurred at 16.7 and 30 mmol/l glucose. Glucose-induced insulin secretion in vivo is thus biphasic, with a similarly increasing second phase in the mouse as in humans. In vitro, square-wave stimulation from a baseline of 3 mmol/l glucose induced similar biphasic insulin secretion and [Ca(2+)](c) increases, with sustained and flat second phases. The glucose dependency (3-30 mmol/l) of both changes was sigmoidal with, however, a shift to the right of the relation for insulin secretion compared with that for [Ca(2+)](c). The maximum [Ca(2+)](c) increase was achieved by glucose concentrations, causing half-maximum insulin secretion. Because this was true for both phases, we propose that contrary to current concepts, amplifying signals are also implicated in first-phase glucose-induced insulin secretion. To mimic in vivo conditions, islets were stimulated with high glucose after being initially perifused with 8.5 instead of 3.0 mmol/l glucose. First-phase insulin secretion induced by glucose at 11.1, 16.7, and 30 mmol/l was decreased by approximately 50%, an inhibition that could not be explained by commensurate decreases in [Ca(2+)](c) or in the pool of readily releasable granules. Also unexpected was the gradually ascending pattern of the second phase, now similar to that in vivo. These observations indicated that variations in prestimulatory glucose can secondarily affect the magnitude and pattern of subsequent glucose-induced insulin secretion.
Collapse
|
15
|
Heart E, Corkey RF, Wikstrom JD, Shirihai OS, Corkey BE. Glucose-dependent increase in mitochondrial membrane potential, but not cytoplasmic calcium, correlates with insulin secretion in single islet cells. Am J Physiol Endocrinol Metab 2006; 290:E143-E148. [PMID: 16144817 DOI: 10.1152/ajpendo.00216.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of different physiological concentrations of glucose on cytoplasmic Ca(2+) handling and mitochondrial membrane potential (Deltapsi(m)) and insulin secretion in single mouse islet cells. The threshold for both glucose-induced changes in Ca(2+) and Deltapsi(m) ranged from 6 to 8 mM. Glucose step-jumps resulted in sinusoidal oscillations of cytoplasmic Ca(2+), whereas Deltapsi(m) reached sustained plateaus with oscillations interposed on the top of these plateaus. The amplitude of the Ca(2+) rise (height of the peak) did not vary with glucose concentration, suggesting a "digital" rather than "analog" character of this aspect of the oscillatory Ca(2+) response. The average glucose-dependent elevation of cytoplasmic Ca(2+) concentration during glucose stimulation reached saturation at 8 mM stimulatory glucose, whereas Deltapsi(m) showed a linear glucose dose-response relationship over the range of stimulatory glucose concentrations (4-16 mM). Glucose-dependent increases in insulin secretion correlated well with Deltapsi(m), but not with average Ca(2+) concentration. These data show that an ATP-dependent K(+) channel-independent pathway is operative at the single cell level and suggest mitochondrial metabolism may be a determining factor in explaining graded, glucose concentration-dependent increases in insulin secretion.
Collapse
Affiliation(s)
- Emma Heart
- Department of Medicine, Obesity Research Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
16
|
Ravier MA, Güldenagel M, Charollais A, Gjinovci A, Caille D, Söhl G, Wollheim CB, Willecke K, Henquin JC, Meda P. Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 2005; 54:1798-807. [PMID: 15919802 DOI: 10.2337/diabetes.54.6.1798] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Normal insulin secretion requires the coordinated functioning of beta-cells within pancreatic islets. This coordination depends on a communications network that involves the interaction of beta-cells with extracellular signals and neighboring cells. In particular, adjacent beta-cells are coupled via channels made of connexin36 (Cx36). To assess the function of this protein, we investigated islets of transgenic mice in which the Cx36 gene was disrupted by homologous recombination. We observed that compared with wild-type and heterozygous littermates that expressed Cx36 and behaved as nontransgenic controls, mice homozygous for the Cx36 deletion (Cx36(-/-)) featured beta-cells devoid of gap junctions and failing to exchange microinjected Lucifer yellow. During glucose stimulation, islets of Cx36(-/-) mice did not display the regular oscillations of intracellular calcium concentrations ([Ca(2+)](i)) seen in controls due to the loss of cell-to-cell synchronization of [Ca(2+)](i) changes. The same islets did not release insulin in a pulsatile fashion, even though the overall output of the hormone in response to glucose stimulation was normal. However, under nonstimulatory conditions, islets lacking Cx36 showed increased basal release of insulin. These data show that Cx36-dependent signaling is essential for the proper functioning of beta-cells, particularly for the pulsatility of [Ca(2+)](i) and insulin secretion during glucose stimulation.
Collapse
Affiliation(s)
- Magalie A Ravier
- Department of Cell Physiology and Metabolism, University of Geneva, C.M.U., 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Henquin JC, Ravier MA, Nenquin M, Jonas JC, Gilon P. Hierarchy of the beta-cell signals controlling insulin secretion. Eur J Clin Invest 2003; 33:742-50. [PMID: 12925032 DOI: 10.1046/j.1365-2362.2003.01207.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|