1
|
Yong LK, Keino I, Kanna Y, Noguchi M, Fujisawa M, Kodama Y. Functional comparison of phototropin from the liverworts Apopellia endiviifolia and Marchantia polymorpha. Photochem Photobiol 2024; 100:782-792. [PMID: 37882095 DOI: 10.1111/php.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Phototropin (phot) is a blue light (BL) receptor and thermosensor that mediates chloroplast movements in plants. Liverworts, as early-diverging plant species, have a single copy of PHOT gene, and the phot protein in each liverwort activates the signaling pathway adapted to its specific growing environment. In this study, we functionally compared phot from two different liverworts species: Apopellia endiviifolia (Aephot) and Marchantia polymorpha (Mpphot). The BL-dependent photochemical activity of Aephot was similar to that of Mpphot, whereas the thermochemical activity of Aephot was lower than that of Mpphot. Therefore, the phot-mediated signaling pathways of the two plant species may differ more in response to temperature than to BL. Furthermore, we analyzed the functional compatibility of Aephot and Mpphot in chloroplast movements by transiently expressing AePHOT or MpPHOT. The transient expression of AePHOT did not mediate chloroplast movement in M. polymorpha, showing the incompatibility of Aephot with the signaling pathway of M. polymorpha. By contrast, the transient expression of MpPHOT mediated chloroplast movement in A. endiviifolia, indicating the compatibility of Mpphot with the signaling pathway of A. endiviifolia. Our findings reveal both functional similarities and differences between Aephot and Mpphot proteins from the closely related liverworts.
Collapse
Affiliation(s)
- Lee-Kien Yong
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Issei Keino
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi, Japan
| | - Yui Kanna
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi, Japan
| | - Minoru Noguchi
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi, Japan
| | - Mami Fujisawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi, Japan
| |
Collapse
|
2
|
Chen JP, Gong JS, Su C, Li H, Xu ZH, Shi JS. Improving the soluble expression of difficult-to-express proteins in prokaryotic expression system via protein engineering and synthetic biology strategies. Metab Eng 2023; 78:99-114. [PMID: 37244368 DOI: 10.1016/j.ymben.2023.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Solubility and folding stability are key concerns for difficult-to-express proteins (DEPs) restricted by amino acid sequences and superarchitecture, resolved by the precise distribution of amino acids and molecular interactions as well as the assistance of the expression system. Therefore, an increasing number of tools are available to achieve efficient expression of DEPs, including directed evolution, solubilization partners, chaperones, and affluent expression hosts, among others. Furthermore, genome editing tools, such as transposons and CRISPR Cas9/dCas9, have been developed and expanded to construct engineered expression hosts capable of efficient expression ability of soluble proteins. Accounting for the accumulated knowledge of the pivotal factors in the solubility and folding stability of proteins, this review focuses on advanced technologies and tools of protein engineering, protein quality control systems, and the redesign of expression platforms in prokaryotic expression systems, as well as advances of the cell-free expression technologies for membrane proteins production.
Collapse
Affiliation(s)
- Jin-Ping Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China.
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| |
Collapse
|
3
|
Gomes D, Correia M, Romão M, Passarinha L, Sousa A. Integrated approaches for the separation and purification of recombinant HPV16 E6 protein from Escherichia coli crude extracts. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Coyote-Maestas W, Nedrud D, Suma A, He Y, Matreyek KA, Fowler DM, Carnevale V, Myers CL, Schmidt D. Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling. Nat Commun 2021; 12:7114. [PMID: 34880224 PMCID: PMC8654947 DOI: 10.1038/s41467-021-27342-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Protein domains are the basic units of protein structure and function. Comparative analysis of genomes and proteomes showed that domain recombination is a main driver of multidomain protein functional diversification and some of the constraining genomic mechanisms are known. Much less is known about biophysical mechanisms that determine whether protein domains can be combined into viable protein folds. Here, we use massively parallel insertional mutagenesis to determine compatibility of over 300,000 domain recombination variants of the Inward Rectifier K+ channel Kir2.1 with channel surface expression. Our data suggest that genomic and biophysical mechanisms acted in concert to favor gain of large, structured domain at protein termini during ion channel evolution. We use machine learning to build a quantitative biophysical model of domain compatibility in Kir2.1 that allows us to derive rudimentary rules for designing domain insertion variants that fold and traffic to the cell surface. Positional Kir2.1 responses to motif insertion clusters into distinct groups that correspond to contiguous structural regions of the channel with distinct biophysical properties tuned towards providing either folding stability or gating transitions. This suggests that insertional profiling is a high-throughput method to annotate function of ion channel structural regions.
Collapse
Affiliation(s)
- Willow Coyote-Maestas
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - David Nedrud
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - Antonio Suma
- grid.264727.20000 0001 2248 3398Department of Chemistry, Temple University, Philadelphia, PA 19122 USA
| | - Yungui He
- grid.17635.360000000419368657Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kenneth A. Matreyek
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Douglas M. Fowler
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA 98115 USA ,grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA 98115 USA
| | - Vincenzo Carnevale
- grid.264727.20000 0001 2248 3398Department of Chemistry, Temple University, Philadelphia, PA 19122 USA
| | - Chad L. Myers
- grid.17635.360000000419368657Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Nowrouzi B, Rios-Solis L. Redox metabolism for improving whole-cell P450-catalysed terpenoid biosynthesis. Crit Rev Biotechnol 2021; 42:1213-1237. [PMID: 34749553 DOI: 10.1080/07388551.2021.1990210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The growing preference for producing cytochrome P450-mediated natural products in microbial systems stems from the challenging nature of the organic chemistry approaches. The P450 enzymes are redox-dependent proteins, through which they source electrons from reducing cofactors to drive their activities. Widely researched in biochemistry, most of the previous studies have extensively utilised expensive cell-free assays to reveal mechanistic insights into P450 functionalities in presence of commercial redox partners. However, in the context of microbial bioproduction, the synergic activity of P450- reductase proteins in microbial systems have not been largely investigated. This is mainly due to limited knowledge about their mutual interactions in the context of complex systems. Hence, manipulating the redox potential for natural product synthesis in microbial chassis has been limited. As the potential of redox state as crucial regulator of P450 biocatalysis has been greatly underestimated by the scientific community, in this review, we re-emphasize their pivotal role in modulating the in vivo P450 activity through affecting the product profile and yield. Particularly, we discuss the applications of widely used in vivo redox engineering methodologies for natural product synthesis to provide further suggestions for patterning on P450-based terpenoids production in microbial platforms.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Kato S, Takahashi Y, Fujii Y, Sasaki K, Hirano S, Okajima K, Kodama Y. The photo-thermochemical properties and functions of Marchantia phototropin encoded by an unduplicated gene in land plant evolution. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112305. [PMID: 34562831 DOI: 10.1016/j.jphotobiol.2021.112305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Phototropin (phot) is a blue light photoreceptor in plants and possesses two photosensory light‑oxygen-voltage (LOV1 and LOV2) domains with different photo-thermochemical properties. While liverworts contain a single copy of PHOT (e.g., MpPHOT in Marchantia polymorpha), many land plant species contain multicopy PHOT genes (e.g., AtPHOT1 and 2 in Arabidopsis thaliana) due to evolutionary gene duplication. The LOV domains of duplicated phot proteins have been studied in detail, but those of single-copy phot proteins remain to be characterized. As phot has not been duplicated in liverworts, we hypothesized that Mpphot may retain the ancestral function and photo-thermochemical properties. To learn more about the unduplicated phot proteins, we analyzed chloroplast relocation movement and the photo-thermochemical properties of LOV1 and LOV2 in Mpphot (Mpphot-LOV1 and Mpphot-LOV2, respectively). The function of Mpphot-LOV1, which induced a response to move chloroplasts to weak light (the accumulation response) in the absence of photoactive LOV2, differed from that of LOV1 of the duplicated phot proteins of A. thaliana (e.g., Atphot1-LOV1 preventing the accumulation response). On the other hand, the function of Mpphot-LOV2 was similar to that of LOV2 of the duplicated phots. The photo-thermochemical properties of Mpphot were a hybrid of those of the duplicated phots; the photochemical and thermochemical reactions of Mpphot were similar to those of the phot2- and phot1-type proteins, respectively. Our findings reveal conservation and diversification among LOV domains during phot duplication events in land plant evolution.
Collapse
Affiliation(s)
- Shota Kato
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Yamato Takahashi
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan; Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi 321-8505, Japan
| | - Yuta Fujii
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Kotoko Sasaki
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan; Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi 321-8505, Japan
| | - Satoyuki Hirano
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan; Faculty of Agriculture, Utsunomiya University, Tochigi 321-8505, Japan
| | - Koji Okajima
- Department of Physics, Keio University, Kanagawa 223-8522, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan; Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi 321-8505, Japan.
| |
Collapse
|
7
|
Reginald SS, Etzerodt M, Fapyane D, Chang IS. Functional Expression of a Mo-Cu-Dependent Carbon Monoxide Dehydrogenase (CODH) and Its Use as a Dissolved CO Bio-microsensor. ACS Sens 2021; 6:2772-2782. [PMID: 34253013 DOI: 10.1021/acssensors.1c01243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report the heterologous expression in Escherichia coli of a Mo-Cu-containing carbon monoxide dehydrogenase (Mo-Cu CODH) from Hydrogenophaga pseudoflava, which resulted in an active protein catalyzing CO oxidation to CO2. By supplying the E. coli growth medium with Na2MoO4 (Mo) and CuSO4 (Cu), the Mo-Cu CODH metal cofactors precursors, the expressed L-subunit was found to have CO-oxidation activity even without the M- and S- subunits. This successful expression of CO-oxidizing-capable single L-subunit provides direct evidence of its role as the catalytic center of Mo-Cu CODH that has not been discovered and studied before. Subsequently, we used the expressed protein to construct a CO bio-microsensor based on a newly developed fast and sensitive Clark-type CO2 transducer using an aprotic solvent/ionic liquid electrolyte. The CO bio-microsensor exhibited a linear response to CO concentration in the 0-9 μM range, with a limit of detection (LOD) of 15 nM CO. The sensor uses a mixture of Mo-Cu CODH's L-subunit/Mo, Cu cofactors/methylene blue, confined in the enzyme chamber that is placed in front of a CO2 transducer. The optimized sensor's sensitivity and performance were retained to levels of at least 80% for 1 week of continuous polarization and operation in an aqueous medium. We have also demonstrated the use of an alkaline front-trap solution to make a completely O2/CO2 interference-free microsensor. The CO bio-microsensor developed in this study is potentially useful as an analytical tool for the detection of trace CO in dissolved form for monitoring dissolved CO concentration dynamics in natural or synthetic systems.
Collapse
Affiliation(s)
- Stacy Simai Reginald
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Michael Etzerodt
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Deby Fapyane
- Aarhus University Centre of Water Technology (WATEC), Department of Bioscience, Aarhus University, Ny Munkegade 116, Aarhus 8000, Denmark
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
8
|
Bozóki B, Mótyán JA, Hoffka G, Waugh DS, Tőzsér J. Specificity Studies of the Venezuelan Equine Encephalitis Virus Non-Structural Protein 2 Protease Using Recombinant Fluorescent Substrates. Int J Mol Sci 2020; 21:E7686. [PMID: 33081394 PMCID: PMC7593941 DOI: 10.3390/ijms21207686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
The non-structural protein 2 (nsP2) of alphavirus Venezuelan equine encephalitis virus (VEEV) is a cysteine protease that is responsible for processing of the viral non-structural polyprotein and is an important drug target owing to the clinical relevance of VEEV. In this study we designed two recombinant VEEV nsP2 constructs to study the effects of an N-terminal extension on the protease activity and to investigate the specificity of the elongated enzyme in vitro. The N-terminal extension was found to have no substantial effect on the protease activity. The amino acid preferences of the VEEV nsP2 protease were investigated on substrates representing wild-type and P5, P4, P2, P1, P1', and P2' variants of Semliki forest virus nsP1/nsP2 cleavage site, using a His6-MBP-mEYFP recombinant substrate-based protease assay which has been adapted for a 96-well plate-based format. The structural basis of enzyme specificity was also investigated in silico by analyzing a modeled structure of VEEV nsP2 complexed with oligopeptide substrate. To our knowledge, in vitro screening of P1' amino acid preferences of VEEV nsP2 protease remains undetermined to date, thus, our results may provide valuable information for studies and inhibitor design of different alphaviruses or other Group IV viruses.
Collapse
Affiliation(s)
- Beáta Bozóki
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
| | - Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA;
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
| |
Collapse
|
9
|
Panda P, Kovacs L, Dzhindzhev N, Fatalska A, Persico V, Geymonat M, Riparbelli MG, Callaini G, Glover DM. Tissue specific requirement of Drosophila Rcd4 for centriole duplication and ciliogenesis. J Cell Biol 2020; 219:151861. [PMID: 32543652 PMCID: PMC7401805 DOI: 10.1083/jcb.201912154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/01/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
Rcd4 is a poorly characterized Drosophila centriole component whose mammalian counterpart, PPP1R35, is suggested to function in centriole elongation and conversion to centrosomes. Here, we show that rcd4 mutants exhibit fewer centrioles, aberrant mitoses, and reduced basal bodies in sensory organs. Rcd4 interacts with the C-terminal part of Ana3, which loads onto the procentriole during interphase, ahead of Rcd4 and before mitosis. Accordingly, depletion of Ana3 prevents Rcd4 recruitment but not vice versa. We find that neither Ana3 nor Rcd4 participates directly in the mitotic conversion of centrioles to centrosomes, but both are required to load Ana1, which is essential for such conversion. Whereas ana3 mutants are male sterile, reflecting a requirement for Ana3 for centriole development in the male germ line, rcd4 mutants are fertile and have male germ line centrioles of normal length. Thus, Rcd4 is essential in somatic cells but is not absolutely required in spermatogenesis, indicating tissue-specific roles in centriole and basal body formation.
Collapse
Affiliation(s)
- Pallavi Panda
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Levente Kovacs
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Agnieszka Fatalska
- Department of Genetics, University of Cambridge, Cambridge, UK.,Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Veronica Persico
- Department of Genetics, University of Cambridge, Cambridge, UK.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Marco Geymonat
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | - David M Glover
- Department of Genetics, University of Cambridge, Cambridge, UK.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
10
|
Anjo SI, Simões I, Castanheira P, Grãos M, Manadas B. Use of recombinant proteins as a simple and robust normalization method for untargeted proteomics screening: exhaustive performance assessment. Talanta 2019; 205:120163. [DOI: 10.1016/j.talanta.2019.120163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 01/13/2023]
|
11
|
Song W, Yan S, Li Y, Feng S, Zhang JJ, Li JR. Functional characterization of squalene epoxidase and NADPH-cytochrome P450 reductase in Dioscorea zingiberensis. Biochem Biophys Res Commun 2019; 509:822-827. [PMID: 30638657 DOI: 10.1016/j.bbrc.2019.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Dioscorea zingiberensis is a perennial medicinal herb rich in a variety of pharmaceutical steroidal saponins. Squalene epoxidase (SE) is the key enzyme in the biosynthesis pathways of triterpenoids and sterols, and catalyzes the epoxidation of squalene in coordination with NADPH-cytochrome P450 reductase (CPR). In this study, we cloned DzSE and DzCPR gene sequences from D. zingiberensis leaves, encoding proteins with 514 and 692 amino acids, respectively. Recombinant proteins were successfully expressed in vitro, and enzymatic analysis indicated that, when SE and CPR were incubated with the substrates squalene and NADPH, 2,3-oxidosqualene was formed as the product. Subcellular localization revealed that both the DzSE and DzCPR proteins are localized to the endoplasmic reticulum. The changes in transcription of DzSE and DzCPR were similar in several tissues. DzSE expression was enhanced in a time-dependent manner after methyl jasmonate (MeJA) treatments, while DzCPR expression was not inducible.
Collapse
Affiliation(s)
- Wei Song
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shan Yan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shan Feng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jia-Jiao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jia-Ru Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
12
|
Bernier SC, Cantin L, Salesse C. Systematic analysis of the expression, solubility and purification of a passenger protein in fusion with different tags. Protein Expr Purif 2018; 152:92-106. [DOI: 10.1016/j.pep.2018.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022]
|
13
|
Pronier E, Cifani P, Merlinsky TR, Berman KB, Somasundara AVH, Rampal RK, LaCava J, Wei KE, Pastore F, Maag JL, Park J, Koche R, Kentsis A, Levine RL. Targeting the CALR interactome in myeloproliferative neoplasms. JCI Insight 2018; 3:122703. [PMID: 30429377 DOI: 10.1172/jci.insight.122703] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
Mutations in the ER chaperone calreticulin (CALR) are common in myeloproliferative neoplasm (MPN) patients, activate the thrombopoietin receptor (MPL), and mediate constitutive JAK/STAT signaling. The mechanisms by which CALR mutations cause myeloid transformation are incompletely defined. We used mass spectrometry proteomics to identify CALR-mutant interacting proteins. Mutant CALR caused mislocalization of binding partners and increased recruitment of FLI1, ERP57, and CALR to the MPL promoter to enhance transcription. Consistent with a critical role for CALR-mediated JAK/STAT activation, we confirmed the efficacy of JAK2 inhibition on CALR-mutant cells in vitro and in vivo. Due to the altered interactome induced by CALR mutations, we hypothesized that CALR-mutant MPNs may be vulnerable to disruption of aberrant CALR protein complexes. A synthetic peptide designed to competitively inhibit the carboxy terminal of CALR specifically abrogated MPL/JAK/STAT signaling in cell lines and primary samples and improved the efficacy of JAK kinase inhibitors. These findings reveal what to our knowledge is a novel potential therapeutic approach for patients with CALR-mutant MPN.
Collapse
Affiliation(s)
- Elodie Pronier
- Human Oncology and Pathogenesis Program.,Center for Epigenetics Research, and
| | - Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Tiffany R Merlinsky
- Human Oncology and Pathogenesis Program.,Center for Epigenetics Research, and
| | | | | | - Raajit K Rampal
- Human Oncology and Pathogenesis Program.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Karen E Wei
- Human Oncology and Pathogenesis Program.,Center for Epigenetics Research, and
| | - Friederike Pastore
- Human Oncology and Pathogenesis Program.,Center for Epigenetics Research, and
| | | | - Jane Park
- Center for Epigenetics Research, and
| | | | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA.,Department of Pediatrics, Weill Cornell Medical College of Cornell University and Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program.,Center for Epigenetics Research, and.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
14
|
Hanazono Y, Takeda K, Miki K. Co-translational folding of α-helical proteins: structural studies of intermediate-length variants of the λ repressor. FEBS Open Bio 2018; 8:1312-1321. [PMID: 30087834 PMCID: PMC6070647 DOI: 10.1002/2211-5463.12480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/17/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022] Open
Abstract
Nascent polypeptide chains fold cotranslationally, but the atomic‐level details of this process remain unknown. Here, we report crystallographic, de novo modeling, and spectroscopic studies of intermediate‐length variants of the λ repressor N‐terminal domain. Although the ranges of helical regions of the half‐length variant were almost identical to those of the full‐length protein, the relative orientations of these helices in the intermediate‐length variants differed. Our results suggest that cotranslational folding of the λ repressor initially forms a helical structure with a transient conformation, as in the case of a molten globule state. This conformation subsequently matures during the course of protein synthesis. Database Structural data are available in the PDB under the accession numbers http://www.rcsb.org/pdb/search/structidSearch.do?structureId=5ZCA and http://www.rcsb.org/pdb/search/structidSearch.do?structureId=3WOA.
Collapse
Affiliation(s)
- Yuya Hanazono
- Department of Chemistry Graduate School of Science Kyoto University Japan.,Present address: Graduate School of Information Sciences Tohoku University Aoba-ku, Sendai 980-8579 Japan
| | - Kazuki Takeda
- Department of Chemistry Graduate School of Science Kyoto University Japan
| | - Kunio Miki
- Department of Chemistry Graduate School of Science Kyoto University Japan
| |
Collapse
|
15
|
Skiba MA, Maloney FP, Dan Q, Fraley AE, Aldrich CC, Smith JL, Brown WC. PKS-NRPS Enzymology and Structural Biology: Considerations in Protein Production. Methods Enzymol 2018; 604:45-88. [PMID: 29779664 PMCID: PMC5992914 DOI: 10.1016/bs.mie.2018.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structural diversity and complexity of marine natural products have made them a rich and productive source of new bioactive molecules for drug development. The identification of these new compounds has led to extensive study of the protein constituents of the biosynthetic pathways from the producing microbes. Essential processes in the dissection of biosynthesis have been the elucidation of catalytic functions and the determination of 3D structures for enzymes of the polyketide synthases and nonribosomal peptide synthetases that carry out individual reactions. The size and complexity of these proteins present numerous difficulties in the process of going from gene to structure. Here, we review the problems that may be encountered at the various steps of this process and discuss some of the solutions devised in our and other labs for the cloning, production, purification, and structure solution of complex proteins using Escherichia coli as a heterologous host.
Collapse
Affiliation(s)
| | | | - Qingyun Dan
- University of Michigan, Ann Arbor, MI, United States
| | - Amy E Fraley
- University of Michigan, Ann Arbor, MI, United States
| | | | - Janet L Smith
- University of Michigan, Ann Arbor, MI, United States.
| | - W Clay Brown
- University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
16
|
Pinheiro AM, Carreira A, Ferreira RB, Monteiro S. Fusion proteins towards fungi and bacteria in plant protection. MICROBIOLOGY (READING, ENGLAND) 2018; 164:11-19. [PMID: 29239714 PMCID: PMC5892777 DOI: 10.1099/mic.0.000592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
In agriculture, although fungi are considered the foremost problem, infections by bacteria also cause significant economical losses. The presence of different diseases in crops often leads to a misuse of the proper therapeutic, or the combination of different diseases forces the use of more than one pesticide. This work concerns the development of a 'super-Blad': a chimeric protein consisting of Blad polypeptide, the active ingredient of a biological fungicide already on the market, and two selected peptides, SP10-5 and Sub5, proven to possess biological potential as antibacterial agents. The resulting chimeric protein obtained from the fusion of Blad with SP10-5 not only maintained strong antibacterial activity, especially against Xanthomonas spp. and Pseudomonas syringae, but was also able to retain the ability to inhibit the growth of both yeast and filamentous fungi. However, the antibacterial activity of Sub5 was considerably diminished when fused with Blad, which seems to indicate that not all fusion proteins behave equally. These newly designed drugs can be considered promising compounds for use in plant protection. A deeper and focused development of an appropriate formulation may result in a potent biopesticide that can replace, per se, two conventional chemistries with less impact on the environment.
Collapse
Affiliation(s)
- Ana Margarida Pinheiro
- LEAF – Linking Landscape, Environment, Agriculture and Food Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Alexandra Carreira
- CEV, SA, Parque Industrial de Cantanhede/Biocant-Park, lote 120, 3060-197 Cantanhede, Portugal
| | - Ricardo B. Ferreira
- LEAF – Linking Landscape, Environment, Agriculture and Food Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Sara Monteiro
- LEAF – Linking Landscape, Environment, Agriculture and Food Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
- CEV, SA, Parque Industrial de Cantanhede/Biocant-Park, lote 120, 3060-197 Cantanhede, Portugal
| |
Collapse
|
17
|
Bozóki B, Gazda L, Tóth F, Miczi M, Mótyán JA, Tőzsér J. A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening. Anal Biochem 2017; 540-541:52-63. [PMID: 29122614 DOI: 10.1016/j.ab.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 11/25/2022]
Abstract
In connection with the intensive investigation of proteases, several methods have been developed for analysis of the substrate specificity. Due to the great number of proteases and the expected target molecules to be analyzed, time- and cost-efficient high-throughput screening (HTS) methods are preferred. Here we describe the development and application of a separation-based HTS-compatible fluorescent protease assay, which is based on the use of recombinant fusion proteins as substrates of proteases. The protein substrates used in this assay consists of N-terminal (hexahistidine and maltose binding protein) fusion tags, cleavage sequences of the tobacco etch virus (TEV) and HIV-1 proteases, and a C-terminal fluorescent protein (mApple or mTurquoise2). The assay is based on the fluorimetric detection of the fluorescent proteins, which are released from the magnetic bead-attached substrates by the proteolytic cleavage. The protease assay has been applied for activity measurements of TEV and HIV-1 proteases to test the suitability of the system for enzyme kinetic measurements, inhibition studies, and determination of pH optimum. We also found that denatured fluorescent proteins can be renatured after SDS-PAGE of denaturing conditions, but showed differences in their renaturation abilities. After in-gel renaturation both substrates and cleavage products can be identified by in-gel UV detection.
Collapse
Affiliation(s)
- Beáta Bozóki
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Biotechnological Analytical Department, Gedeon Richter Plc, 19-21, Gyömrői Rd., Budapest H-1103, Hungary.
| | - Lívia Gazda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Ferenc Tóth
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Márió Miczi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
18
|
Rand JM, Pisithkul T, Clark RL, Thiede JM, Mehrer CR, Agnew DE, Campbell CE, Markley AL, Price MN, Ray J, Wetmore KM, Suh Y, Arkin AP, Deutschbauer AM, Amador-Noguez D, Pfleger BF. A metabolic pathway for catabolizing levulinic acid in bacteria. Nat Microbiol 2017; 2:1624-1634. [PMID: 28947739 PMCID: PMC5705400 DOI: 10.1038/s41564-017-0028-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterization of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. This discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.
Collapse
Affiliation(s)
- Jacqueline M Rand
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tippapha Pisithkul
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ryan L Clark
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Joshua M Thiede
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christopher R Mehrer
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel E Agnew
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Candace E Campbell
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Andrew L Markley
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jayashree Ray
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kelly M Wetmore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yumi Suh
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Daniel Amador-Noguez
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
19
|
Phototropin perceives temperature based on the lifetime of its photoactivated state. Proc Natl Acad Sci U S A 2017; 114:9206-9211. [PMID: 28784810 DOI: 10.1073/pnas.1704462114] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Living organisms detect changes in temperature using thermosensory molecules. However, these molecules and/or their mechanisms for sensing temperature differ among organisms. To identify thermosensory molecules in plants, we investigated chloroplast positioning in response to temperature changes and identified a blue-light photoreceptor, phototropin, that is an essential regulator of chloroplast positioning. Based on the biochemical properties of phototropin during the cellular response to light and temperature changes, we found that phototropin perceives temperature based on the temperature-dependent lifetime of the photoactivated chromophore. Our findings indicate that phototropin perceives both blue light and temperature and uses this information to arrange the chloroplasts for optimal photosynthesis. Because the photoactivated chromophore of many photoreceptors has a temperature-dependent lifetime, a similar temperature-sensing mechanism likely exists in other organisms. Thus, photoreceptors may have the potential to function as thermoreceptors.
Collapse
|
20
|
Shah V, Pierre B, Kirtadze T, Shin S, Kim JR. Stabilization of Bacillus circulans xylanase by combinatorial insertional fusion to a thermophilic host protein. Protein Eng Des Sel 2017; 30:281-290. [PMID: 28100651 DOI: 10.1093/protein/gzw081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/21/2016] [Indexed: 11/15/2022] Open
Abstract
High thermostability of an enzyme is critical for its industrial application. While many engineering approaches such as mutagenesis have enhanced enzyme thermostability, they often suffer from reduced enzymatic activity. A thermally stabilized enzyme with unchanged amino acids is preferable for subsequent functional evolution necessary to address other important industrial needs. In the research presented here, we applied insertional fusion to a thermophilic maltodextrin-binding protein from Pyrococcus furiosus (PfMBP) in order to improve the thermal stability of Bacillus circulans xylanase (BCX). Specifically, we used an engineered transposon to construct a combinatorial library of randomly inserted BCX into PfMBP. The library was then subjected to functional screening to identify successful PfMBP-BCX insertion complexes, PfMBP-BCX161 and PfMBP-BCX165, displaying substantially improved kinetic stability at elevated temperatures compared to unfused BCX and other controls. Results from subsequent characterizations were consistent with the view that lowered aggregation of BCX and reduced conformational flexibility at the termini was responsible for increased thermal stability. Our stabilizing approach neither sacrificed xylanase activity nor required changes in the BCX amino acid sequence. Overall, the current study demonstrated the benefit of combinatorial insertional fusion to PfMBP as a systematic tool for the creation of enzymatically active and thermostable BCX variants.
Collapse
Affiliation(s)
- Vandan Shah
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | - Brennal Pierre
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | - Tamari Kirtadze
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | - Seung Shin
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | - Jin Ryoun Kim
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA
| |
Collapse
|
21
|
Abstract
Rapid advances in bioengineering and biotechnology over the past three decades have greatly facilitated the production of recombinant proteins in Escherichia coli. Affinity-based methods that employ protein or peptide based tags for protein purification have been instrumental in this progress. Yet insolubility of recombinant proteins in E. coli remains a persistent problem. One way around this problem is to fuse an aggregation-prone protein to a highly soluble partner. E. coli maltose-binding protein (MBP) is widely acknowledged as a highly effective solubilizing agent. In this chapter, we describe how to construct either a His6- or a dual His6-MBP tagged fusion protein by Gateway® recombinational cloning and how to evaluate their yield and solubility. We also describe a simple and rapid procedure to test the solubility of proteins after removing their N-terminal fusion tags by tobacco etch virus (TEV) protease digestion. The choice of whether to use a His6 tag or a His6-MBP tag can be made on the basis of this solubility test.
Collapse
|
22
|
Kosobokova EN, Skrypnik KA, Kosorukov VS. Overview of Fusion Tags for Recombinant Proteins. BIOCHEMISTRY (MOSCOW) 2017; 81:187-200. [PMID: 27262188 DOI: 10.1134/s0006297916030019] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Virtually all recombinant proteins are now prepared using fusion domains also known as "tags". The use of tags helps to solve some serious problems: to simplify procedures of protein isolation, to increase expression and solubility of the desired protein, to simplify protein refolding and increase its efficiency, and to prevent proteolysis. In this review, advantages and disadvantages of such fusion tags are analyzed and data on both well-known and new tags are generalized. The authors own data are also presented.
Collapse
Affiliation(s)
- E N Kosobokova
- Blokhin Russian Cancer Research Center, Moscow, 115478, Russia.
| | | | | |
Collapse
|
23
|
Optimizing Expression and Solubility of Proteins in E. coli Using Modified Media and Induction Parameters. Methods Mol Biol 2017; 1586:65-82. [PMID: 28470599 DOI: 10.1007/978-1-4939-6887-9_5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major goal of any protein expression experiment is to combine the maximum production per cell of soluble protein with the highest possible cell density to most efficiently obtain high yields of protein. A large number of parameters can be optimized in these experiments, but one of the most interesting parameters that have a strong effect on both per cell productivity and cell density is the cellular growth media coupled to the expression induction process. Using specialized media and testing multiple induction conditions, it is possible to significantly enhance the production of heterologous proteins from E. coli.
Collapse
|
24
|
Structural studies of the N-terminal fragments of the WW domain: Insights into co-translational folding of a beta-sheet protein. Sci Rep 2016; 6:34654. [PMID: 27698466 PMCID: PMC5048162 DOI: 10.1038/srep34654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022] Open
Abstract
Nascent proteins fold co-translationally because the folding speed and folding pathways are limited by the rate of ribosome biosynthesis in the living cell. In addition, though full-length proteins can fold all their residues during the folding process, nascent proteins initially fold only with the N-terminal residues. However, the transient structure and the co-translational folding pathway are not well understood. Here we report the atomic structures of a series of N-terminal fragments of the WW domain with increasing amino acid length. Unexpectedly, the structures indicate that the intermediate-length fragments take helical conformations even though the full-length protein has no helical regions. The circular dichroism spectra and theoretical calculations also support the crystallographic results. This suggests that the short-range interactions are more decisive in the structure formation than the long-range interactions for short nascent proteins. In the course of the peptide extension, the helical structure change to the structure mediated by the long-range interactions at a particular polypeptide length. Our results will provide unique information for elucidating the nature of co-translational folding.
Collapse
|
25
|
Raran-Kurussi S, Waugh DS. A dual protease approach for expression and affinity purification of recombinant proteins. Anal Biochem 2016; 504:30-7. [PMID: 27105777 PMCID: PMC4877217 DOI: 10.1016/j.ab.2016.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 11/29/2022]
Abstract
We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification.
Collapse
Affiliation(s)
- Sreejith Raran-Kurussi
- Protein Engineering Section, Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - David S Waugh
- Protein Engineering Section, Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
26
|
High-level expression of prolyl endopeptidase in Pichia pastoris using PLA 2 as a fusion partner. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
de Almeida Ramos D, Miani M, Pandolfi R, Tondo L, Colli ML, Rosado Spilki F, Rovaris Gardinali N, Alves Pinto M, Kreutz LC, Frandoloso R. Production and characterization of a Brazilian candidate antigen for Hepatitis E Virus genotype 3 diagnosis. FEMS Microbiol Lett 2016; 363:fnw021. [PMID: 26832642 DOI: 10.1093/femsle/fnw021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatitis E, caused by hepatitis E virus (HEV), is a viral infectious pathology of great importance in the public health. Hepatitis E outbreaks were registered in developing countries with poor or no sanitation, where drinking water was contaminated with fecal material, but also in many industrialized countries probably due to consumption of HEV-positive swine meat. In this study, we present the development and characterization of a recombinant antigen from ORF2 HEV genotype 3. Viral RNA was extracted from swine feces infected with the native virus. A total of 267 residues from the C-terminal ORF2((394-661)) coding sequence were cloned into the pET20a vector and expressed in Escherichia coli ER2566. Recombinant protein was purified by liquid chromatography and the fragment obtained a 98% homology against other human or swine HEV genotype 3 ORF2 sequences. Wistar rats were inoculated with ORF2p, developing antibodies able to recognize both the homologous antigen and the native HEV genotype 3 ORF2 present in infected stool. In parallel, HEV-negative swine were experimentally challenged with HEV genotype 3. ORF2 was detected by PCR 14 days post-inoculation in three-fourth piglets' feces and one week later by dot blot. In conclusion, this study proved the immunogenic and antigenic properties of the recombinant protein ORF2p.
Collapse
Affiliation(s)
- Denise de Almeida Ramos
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, 99052-900, Brazil
| | - Michela Miani
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, 99052-900, Brazil
| | - Rafael Pandolfi
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, 99052-900, Brazil
| | - Luis Tondo
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, 99052-900, Brazil
| | - Maikel L Colli
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, 99052-900, Brazil
| | - Fernando Rosado Spilki
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo, RS, 93525-075, Brazil
| | - Noemi Rovaris Gardinali
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute Foundation, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Marcelo Alves Pinto
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute Foundation, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Luiz C Kreutz
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, 99052-900, Brazil
| | - Rafael Frandoloso
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, 99052-900, Brazil
| |
Collapse
|
28
|
Wei Y, Li B, Prakash D, Ferry JG, Elliott SJ, Stubbe J. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase. Biochemistry 2015; 54:7019-28. [PMID: 26536144 PMCID: PMC4697749 DOI: 10.1021/acs.biochem.5b01092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRs reflects the diversity of electron carriers used in anaerobic metabolism.
Collapse
Affiliation(s)
| | - Bin Li
- Department of Chemistry, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Divya Prakash
- Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - James G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Sean J Elliott
- Department of Chemistry, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | | |
Collapse
|
29
|
Pierre B, Labonte JW, Xiong T, Aoraha E, Williams A, Shah V, Chau E, Helal KY, Gray JJ, Kim JR. Molecular Determinants for Protein Stabilization by Insertional Fusion to a Thermophilic Host Protein. Chembiochem 2015; 16:2392-402. [DOI: 10.1002/cbic.201500310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Brennal Pierre
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Jason W. Labonte
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Tina Xiong
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Edwin Aoraha
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Asher Williams
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Vandan Shah
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Edward Chau
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Kazi Yasin Helal
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Jin Ryoun Kim
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| |
Collapse
|
30
|
Van de Mark D, Kong D, Loncarek J, Stearns T. MDM1 is a microtubule-binding protein that negatively regulates centriole duplication. Mol Biol Cell 2015; 26:3788-802. [PMID: 26337392 PMCID: PMC4626064 DOI: 10.1091/mbc.e15-04-0235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/28/2015] [Indexed: 12/03/2022] Open
Abstract
MDM1 is a microtubule-binding protein that localizes to centrioles. 3D-SIM microscopy shows MDM1 to be closely associated with the centriole barrel, likely residing in the centriole lumen. MDM1 overexpression and depletion experiments suggest that MDM1 is a negative regulator of centriole duplication. Mouse double-minute 1 (Mdm1) was originally identified as a gene amplified in transformed mouse cells and more recently as being highly up-regulated during differentiation of multiciliated epithelial cells, a specialized cell type having hundreds of centrioles and motile cilia. Here we show that the MDM1 protein localizes to centrioles of dividing cells and differentiating multiciliated cells. 3D-SIM microscopy showed that MDM1 is closely associated with the centriole barrel, likely residing in the centriole lumen. Overexpression of MDM1 suppressed centriole duplication, whereas depletion of MDM1 resulted in an increase in granular material that likely represents early intermediates in centriole formation. We show that MDM1 binds microtubules in vivo and in vitro. We identified a repeat motif in MDM1 that is required for efficient microtubule binding and found that these repeats are also present in CCSAP, another microtubule-binding protein. We propose that MDM1 is a negative regulator of centriole duplication and that its function is mediated through microtubule binding.
Collapse
Affiliation(s)
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research-Frederick, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research-Frederick, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305 Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| |
Collapse
|
31
|
Chen A, Akhshi TK, Lavoie BD, Wilde A. Importin β2 Mediates the Spatio-temporal Regulation of Anillin through a Noncanonical Nuclear Localization Signal. J Biol Chem 2015; 290:13500-9. [PMID: 25829492 DOI: 10.1074/jbc.m115.649160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 11/06/2022] Open
Abstract
The compartmentalization of cell cycle regulators is a common mechanism to ensure the precise temporal control of key cell cycle events. For instance, many mitotic spindle assembly factors are known to be sequestered in the nucleus prior to mitotic onset. Similarly, the essential cytokinetic factor anillin, which functions at the cell membrane to promote the physical separation of daughter cells at the end of mitosis, is sequestered in the nucleus during interphase. To address the mechanism and role of anillin targeting to the nucleus in interphase, we identified the nuclear targeting motif. Here, we show that anillin is targeted to the nucleus by importin β2 in a Ran-dependent manner through an atypical basic patch PY nuclear localization signal motif. We show that although importin β2 binding does not regulate anillin's function in mitosis, it is required to prevent the cytosolic accumulation of anillin, which disrupts cellular architecture during interphase. The nuclear sequestration of anillin during interphase serves to restrict anillin's function at the cell membrane to mitosis and allows anillin to be rapidly available when the nuclear envelope breaks down to remodel the cellular architecture necessary for successful cell division.
Collapse
Affiliation(s)
- Anan Chen
- From the Departments of Biochemistry and
| | | | - Brigitte D Lavoie
- Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Andrew Wilde
- From the Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
32
|
Raran-Kurussi S, Keefe K, Waugh DS. Positional effects of fusion partners on the yield and solubility of MBP fusion proteins. Protein Expr Purif 2015; 110:159-64. [PMID: 25782741 DOI: 10.1016/j.pep.2015.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 11/30/2022]
Abstract
Escherichia coli maltose-binding protein (MBP) is exceptionally effective at promoting the solubility of its fusion partners. However, there are conflicting reports in the literature claiming that (1) MBP is an effective solubility enhancer only when it is joined to the N-terminus of an aggregation-prone passenger protein, and (2) MBP is equally effective when fused to either end of the passenger. Here, we endeavor to resolve this controversy by comparing the solubility of a diverse set of MBP fusion proteins that, unlike those analyzed in previous studies, are identical in every way except for the order of the two domains. The results indicate that fusion proteins with an N-terminal MBP provide an excellent solubility advantage along with more robust expression when compared to analogous fusions in which MBP is the C-terminal fusion partner. We find that only intrinsically soluble passenger proteins (i.e., those not requiring a solubility enhancer) are produced as soluble fusions when they precede MBP. We also report that even subtle differences in inter-domain linker sequences can influence the solubility of fusion proteins.
Collapse
Affiliation(s)
- Sreejith Raran-Kurussi
- Protein Engineering Section, Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Karina Keefe
- Protein Engineering Section, Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - David S Waugh
- Protein Engineering Section, Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
33
|
Wang LL, Wei XM, Ye XD, Xu HX, Zhou XP, Liu SS, Wang XW. Expression and functional characterisation of a soluble form of Tomato yellow leaf curl virus coat protein. PEST MANAGEMENT SCIENCE 2014; 70:1624-31. [PMID: 24488592 DOI: 10.1002/ps.3750] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/28/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus within the family Geminiviridae, is an important pathogen of tomato in many tropical, subtropical and temperate regions. TYLCV is exclusively transmitted by the whitefly Bemisia tabaci in a circulative manner. The viral coat protein (CP) has been assumed to play important roles in the entry of TYLCV into the insect midgut cells. RESULTS Testing the hypothesis that CP plays an important role in TYLCV acquisition by B. tabaci, a soluble form of the CP was expressed and purified. The purified recombinant CP made it possible to examine the function of TYLCV CP without other viral proteins. In an in vivo binding assay, specific binding of TYLCV CP to B. tabaci midguts was detected when purified CP was fed to B. tabaci. In addition, real-time polymerase chain reaction analysis of virus titre revealed that B. tabaci fed with purified CP had reduced the level of virus in their midgut compared with those fed with bovine serum albumin or maltose-binding protein. These results suggest that binding of TYLCV CP to the B. tabaci midgut specifically inhibits virus acquisition. CONCLUSIONS The findings that TYLCV CP binds to B. tabaci midguts and decreases virus acquisition provide direct evidence that CP mediates the attachment of TYLCV to receptors on the epithelial cells of the B. tabaci midgut.
Collapse
Affiliation(s)
- Lan-Lan Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Raran-Kurussi S, Waugh DS. Unrelated solubility-enhancing fusion partners MBP and NusA utilize a similar mode of action. Biotechnol Bioeng 2014; 111:2407-11. [PMID: 24942647 DOI: 10.1002/bit.25317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/06/2014] [Accepted: 06/13/2014] [Indexed: 11/10/2022]
Abstract
The tendency of recombinant proteins to accumulate in the form of insoluble aggregates in Escherichia coli is a major hindrance to their overproduction. One of the more effective approaches to circumvent this problem is to use translation fusion partners {solubility-enhancers (SEs)}. E. coli maltose-binding protein (MBP) and N-utilization substance A (NusA) are arguably the most effective solubilizing agents that have been discovered so far. Here, we show that although these two proteins are structurally, functionally, and physicochemically distinct, they influence the solubility and folding of their fusion partners in a very similar manner. These SEs act as "holdases" that prevent the aggregation of their fusion partners. Subsequent folding of the passenger proteins, when it occurs, is either spontaneous or chaperone-mediated.
Collapse
Affiliation(s)
- Sreejith Raran-Kurussi
- Protein Engineering Section, Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | | |
Collapse
|
35
|
Abstract
Insolubility of recombinant proteins in Escherichia coli is a major impediment to their production for structural and functional studies. One way around this problem is to fuse an aggregation-prone protein to a highly soluble partner. E. coli maltose-binding protein (MBP) is widely recognized as a premier solubilizing agent. In this chapter, we describe how to construct dual His6-MBP-tagged fusion proteins by Gateway(®) recombinational cloning and how to predict their yield and solubility. We also describe a simple and rapid procedure to test the ability of a His6-MBP fusion protein to bind to Ni-NTA resin and to be digested by tobacco etch virus (TEV) protease, along with a method to assess the solubility of the target protein after it has been separated from His6-MBP.
Collapse
|
36
|
Hänel K, Möckel L, Brummel M, Peiris K, Hartmann R, Dingley AJ, Willbold D, Loidl-Stahlhofen A. Expression and purification of soluble HIV-2 viral protein R (Vpr) using a sandwich-fusion protein strategy. Protein Expr Purif 2013; 95:156-61. [PMID: 24380802 DOI: 10.1016/j.pep.2013.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 11/16/2022]
Abstract
Viral accessory proteins of the human immunodeficiency virus (HIV), including virus protein R (Vpr), are crucial for the efficient replication of the virus in the host organism. While functional data are available for HIV-1 Vpr, there is a paucity of data describing the function and structure of HIV-2 Vpr. In this report, the construction of a His6-MBP-intein1-Vpr-intein2-Cyt b5-His6 fusion protein is presented. Unlike previous research efforts where only microgram quantities of HIV-1 Vpr could be produced, this construct enabled soluble milligram yields via an Escherichia coli over-expression system. Straightforward protein purification of HIV-2 Vpr was achieved by standard chromatography routines and autocatalytic intein cleavage. Preliminary structural studies by circular dichroism (CD) and NMR spectroscopy revealed that the protein is stable in the presence of micellar concentrations of the detergent DPC and adopts an α-helix secondary structure.
Collapse
Affiliation(s)
- Karen Hänel
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-6), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Luis Möckel
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-6), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Monika Brummel
- Westfälische Hochschule, Molekulare Biologie, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| | - Katja Peiris
- Westfälische Hochschule, Molekulare Biologie, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| | - Rudolf Hartmann
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-6), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Andrew J Dingley
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-6), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Dieter Willbold
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-6), Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
37
|
Several affinity tags commonly used in chromatographic purification. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2013; 2013:581093. [PMID: 24490106 PMCID: PMC3893739 DOI: 10.1155/2013/581093] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/11/2013] [Accepted: 12/02/2013] [Indexed: 02/05/2023]
Abstract
Affinity tags have become powerful tools from basic biological research to structural and functional proteomics. They were widely used to facilitate the purification and detection of proteins of interest, as well as the separation of protein complexes. Here, we mainly discuss the benefits and drawbacks of several affinity or epitope tags frequently used, including hexahistidine tag, FLAG tag, Strep II tag, streptavidin-binding peptide (SBP) tag, calmodulin-binding peptide (CBP), glutathione S-transferase (GST), maltose-binding protein (MBP), S-tag, HA tag, and c-Myc tag. In some cases, a large-size affinity tag, such as GST or MBP, can significantly impact on the structure and biological activity of the fusion partner protein. So it is usually necessary to excise the tag by protease. The most commonly used endopeptidases are enterokinase, factor Xa, thrombin, tobacco etch virus, and human rhinovirus 3C protease. The proteolysis features of these proteases are described in order to provide a general guidance on the proteolytic removal of the affinity tags.
Collapse
|
38
|
Using Rice Flour for Purification of Maltose Binding Fusion Proteins Expressed in Escherichia coli. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.4926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
Ausili A, Staiano M, Dattelbaum J, Varriale A, Capo A, D'Auria S. Periplasmic Binding Proteins in Thermophiles: Characterization and Potential Application of an Arginine-Binding Protein from Thermotoga maritima: A Brief Thermo-Story. Life (Basel) 2013; 3:149-60. [PMID: 25371336 PMCID: PMC4187188 DOI: 10.3390/life3010149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/11/2013] [Accepted: 01/29/2013] [Indexed: 01/26/2023] Open
Abstract
Arginine-binding protein from the extremophile Thermotoga maritima is a 27.7 kDa protein possessing the typical two-domain structure of the periplasmic binding proteins family. The protein is characterized by a very high specificity and affinity to bind to arginine, also at high temperatures. Due to its features, this protein could be taken into account as a potential candidate for the design of a biosensor for arginine. It is important to investigate the stability of proteins when they are used for biotechnological applications. In this article, we review the structural and functional features of an arginine-binding protein from the extremophile Thermotoga maritima with a particular eye on its potential biotechnological applications.
Collapse
Affiliation(s)
- Alessio Ausili
- Laboratory for Molecular Sensing, Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111, Napoli, 80131, Italy.
| | - Maria Staiano
- Laboratory for Molecular Sensing, Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111, Napoli, 80131, Italy.
| | | | - Antonio Varriale
- Laboratory for Molecular Sensing, Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111, Napoli, 80131, Italy.
| | - Alessandro Capo
- Laboratory for Molecular Sensing, Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111, Napoli, 80131, Italy.
| | - Sabato D'Auria
- Laboratory for Molecular Sensing, Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111, Napoli, 80131, Italy.
| |
Collapse
|
40
|
Nausch H, Huckauf J, Koslowski R, Meyer U, Broer I, Mikschofsky H. Recombinant production of human interleukin 6 in Escherichia coli. PLoS One 2013; 8:e54933. [PMID: 23372793 PMCID: PMC3553018 DOI: 10.1371/journal.pone.0054933] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/18/2012] [Indexed: 02/02/2023] Open
Abstract
In this study, we compared basic expression approaches for the efficient expression of bioactive recombinant human interleukin-6 (IL6), as an example for a difficult-to-express protein. We tested these approaches in a laboratory scale in order to pioneer the commercial production of this protein in Escherichia coli (E. coli). Among the various strategies, which were tested under Research and Development (R&D) conditions, aggregation-prone IL6 was solubilized most effectively by co-expressing cytoplasmic chaperones. Expression of a Glutathion-S-Transferase (GST) fusion protein was not efficient to increase IL6 solubility. Alteration of the cultivation temperature significantly increased the solubility in both cases, whereas reduced concentrations of IPTG to induce expression of the T7lac-promotor only had a positive effect on chaperone-assisted expression. The biological activity was comparable to that of commercial IL6. Targeting the expressed protein to an oxidizing environment was not effective in the generation of soluble IL6. Taken together, the presence of chaperones and a lowered cultivation temperature seem effective to isolate large quantities of soluble IL6. This approach led to in vivo soluble, functional protein fractions and reduces purification and refolding requirements caused by downstream purification procedures. The final yield of soluble recombinant protein averaged approximately 2.6 mg IL6/liter of cell culture. These findings might be beneficial for the development of the large-scale production of IL6 under the conditions of current good manufacturing practice (cGMP).
Collapse
Affiliation(s)
- Henrik Nausch
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
| | - Jana Huckauf
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
| | | | | | - Inge Broer
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
- * E-mail:
| | - Heike Mikschofsky
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
41
|
Mondal S, Shet D, Prasanna C, Atreya HS. High yield expression of proteins in <i>E. coli</i> for NMR studies. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.46099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Raran-Kurussi S, Waugh DS. The ability to enhance the solubility of its fusion partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated. PLoS One 2012; 7:e49589. [PMID: 23166722 PMCID: PMC3500312 DOI: 10.1371/journal.pone.0049589] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 10/11/2012] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli maltose binding protein (MBP) is commonly used to promote the solubility of its fusion partners. To investigate the mechanism of solubility enhancement by MBP, we compared the properties of MBP fusion proteins refolded in vitro with those of the corresponding fusion proteins purified under native conditions. We fused five aggregation-prone passenger proteins to 3 different N-terminal tags: His6-MBP, His6-GST and His6. After purifying the 15 fusion proteins under denaturing conditions and refolding them by rapid dilution, we recovered far more of the soluble MBP fusion proteins than their GST- or His-tagged counterparts. Hence, we can reproduce the solubilizing activity of MBP in a simple in vitro system, indicating that no additional factors are required to mediate this effect. We assayed both the soluble fusion proteins and their TEV protease digestion products (i.e., with the N-terminal tag removed) for biological activity. Little or no activity was detected for some fusion proteins whereas others were quite active. When the MBP fusions proteins were purified from E. coli under native conditions they were all substantially active. These results indicate that the ability of MBP to promote the solubility of its fusion partners in vitro sometimes, but not always, results in their proper folding. We show that the folding of some passenger proteins is mediated by endogenous chaperones in vivo. Hence, MBP serves as a passive participant in the folding process; passenger proteins either fold spontaneously or with the assistance of chaperones.
Collapse
Affiliation(s)
- Sreejith Raran-Kurussi
- Protein Engineering Section, Macromolecular Crystallography Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David S. Waugh
- Protein Engineering Section, Macromolecular Crystallography Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
43
|
Liao J, Singh S, Hossain MS, Andersen SU, Ross L, Bonetta D, Zhou Y, Sato S, Tabata S, Stougaard J, Szczyglowski K, Parniske M. Negative regulation of CCaMK is essential for symbiotic infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:572-84. [PMID: 22775286 DOI: 10.1111/j.1365-313x.2012.05098.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
One of the earliest responses of legumes to symbiotic signalling is oscillation of the calcium concentration in the nucleoplasm of root epidermal cells. Integration and decoding of the calcium-spiking signal involve a calcium- and calmodulin-dependent protein kinase (CCaMK) and its phosphorylation substrates, such as CYCLOPS. Here we describe the Lotus japonicus ccamk-14 mutant that originated from a har1-1 suppressor screen. The ccamk-14 mutation causes a serine to asparagine substitution at position 337 located within the calmodulin binding site, which we determined to be an in vitro phosphorylation site in CCaMK. We show that ccamk-14 exerts cell-specific effects on symbiosis. The mutant is characterized by an increased frequency of epidermal infections and significantly compromised cortical infections by Mesorhizobium loti and also the arbuscular mycorrhiza fungus Rhizophagus irregularis. The S337 residue is conserved across angiosperm CCaMKs, and testing discrete substitutions at this site showed that it participates in a negative regulation of CCaMK activity, which is required for the cell-type-specific integration of symbiotic signalling.
Collapse
Affiliation(s)
- Jinqiu Liao
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Presence and removal of a contaminating NADH oxidation activity in recombinant maltose-binding protein fusion proteins expressed in Escherichia coli. Biotechniques 2012; 52:247-53. [PMID: 22482440 DOI: 10.2144/0000113822] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/26/2012] [Indexed: 11/23/2022] Open
Abstract
We observed the presence of contaminating NADH oxidation activity in maltose binding protein (MBP) fusion proteins expressed in Escherichia coli and purified using conventional amylose resin-based affinity chromatography. This contaminating NADH oxidation activity was detectable with at least four different enzymes from Cryptosporidium parvum expressed as MBP-fusion proteins (i.e., an enoyl-reductase domain from a type I fatty acid synthase, a fatty acyl-CoA binding protein, the acyl-ligase domain from a polyketide synthase, and a putative thioesterase), regardless of their NADH dependence. However, contaminating NADH oxidation activity was not present when fusion proteins were engineered to contain a His-tag and were purified using a Ni-NTA resin-based protocol. Alternatively, for proteins containing only an MBP-tag, the contaminating activity could be eliminated through the addition of 0.1% Triton X-100 and 2% glycerol to the column buffer during homogenization of bacteria and first column wash, followed by an additional wash and elution with regular column and elution buffers. Removal of the artifactual activity is very valuable in the study of enzymes using NADH as a cofactor, particularly when the native activity is low or the recombinant proteins are inactive.
Collapse
|
45
|
Li WF, Ji J, Wang G, Wang HY, Niu BL, Josine TL. Oxidative stress-resistance assay for screening yeast strains overproducing heterologous proteins. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411090122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Kwon K, Hasseman J, Latham S, Grose C, Do Y, Fleischmann RD, Pieper R, Peterson SN. Recombinant expression and functional analysis of proteases from Streptococcus pneumoniae, Bacillus anthracis, and Yersinia pestis. BMC BIOCHEMISTRY 2011; 12:17. [PMID: 21545736 PMCID: PMC3113736 DOI: 10.1186/1471-2091-12-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/05/2011] [Indexed: 12/17/2022]
Abstract
Background Uncharacterized proteases naturally expressed by bacterial pathogens represents important topic in infectious disease research, because these enzymes may have critical roles in pathogenicity and cell physiology. It has been observed that cloning, expression and purification of proteases often fail due to their catalytic functions which, in turn, cause toxicity in the E. coli heterologous host. Results In order to address this problem systematically, a modified pipeline of our high-throughput protein expression and purification platform was developed. This included the use of a specific E. coli strain, BL21(DE3) pLysS to tightly control the expression of recombinant proteins and various expression vectors encoding fusion proteins to enhance recombinant protein solubility. Proteases fused to large fusion protein domains, maltosebinding protein (MBP), SP-MBP which contains signal peptide at the N-terminus of MBP, disulfide oxidoreductase (DsbA) and Glutathione S-transferase (GST) improved expression and solubility of proteases. Overall, 86.1% of selected protease genes including hypothetical proteins were expressed and purified using a combination of five different expression vectors. To detect novel proteolytic activities, zymography and fluorescence-based assays were performed and the protease activities of more than 46% of purified proteases and 40% of hypothetical proteins that were predicted to be proteases were confirmed. Conclusions Multiple expression vectors, employing distinct fusion tags in a high throughput pipeline increased overall success rates in expression, solubility and purification of proteases. The combinatorial functional analysis of the purified proteases using fluorescence assays and zymography confirmed their function.
Collapse
Affiliation(s)
- Keehwan Kwon
- Pathogen Functional Genomics Resource Center, J, Craig Venter Institute, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sun P, Tropea JE, Waugh DS. Enhancing the solubility of recombinant proteins in Escherichia coli by using hexahistidine-tagged maltose-binding protein as a fusion partner. Methods Mol Biol 2011; 705:259-274. [PMID: 21125392 DOI: 10.1007/978-1-61737-967-3_16] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the field of biotechnology, fusing recombinant proteins to highly soluble partners is a common practice for overcoming aggregation in Escherichia coli. E. coli maltose-binding protein (MBP) has been recognized as one of the most effective solubilizing agents, having frequently been observed to improve the yield, enhance the solubility, and promote the proper folding of its fusion partners. The use of a dual hexahistidine-maltose-binding protein affinity tag (His(6)-MBP) has the additional advantage of allowing the fusion protein to be purified by immobilized metal affinity chromatography (IMAC) instead of or in addition to amylose affinity chromatography. This chapter describes a generic method for the overproduction of combinatorially tagged His(6)-MBP fusion proteins in E. coli, with particular emphasis on the use of recombinational cloning to construct expression vectors. In addition, simple methods for evaluating the solubility of the fusion protein and the passenger protein after it is cleaved from the dual His(6)-MBP tag are presented.
Collapse
Affiliation(s)
- Ping Sun
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | | | | |
Collapse
|
48
|
Luke JM, Carnes AE, Sun P, Hodgson CP, Waugh DS, Williams JA. Thermostable tag (TST) protein expression system: engineering thermotolerant recombinant proteins and vaccines. J Biotechnol 2010; 151:242-50. [PMID: 21168452 DOI: 10.1016/j.jbiotec.2010.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/05/2010] [Accepted: 12/10/2010] [Indexed: 11/26/2022]
Abstract
Methods to increase temperature stability of vaccines and adjuvants are needed to reduce dependence on cold chain storage. We report herein creation and application of pVEX expression vectors to improve vaccine and adjuvant manufacture and thermostability. Defined media fermentation yields of 6g/L thermostable toll-like receptor 5 agonist flagellin were obtained using an IPTG inducible pVEX-flagellin expression vector. Alternative pVEX vectors encoding Pyrococcus furiosus maltodextrin-binding protein (pfMBP) as a fusion partner improved Influenza hemagglutinin antigen vaccine solubility and thermostability. A pfMBP hemagglutinin HA2 domain fusion protein was a potent immunogen. Manufacturing processes that combined up to 5 g/L defined media fermentation yields with rapid, selective, thermostable pfMBP fusion protein purification were developed. The pVEX pfMBP-based thermostable tag (TST) platform is a generic protein engineering approach to enable high yield manufacture of thermostable recombinant protein vaccine components.
Collapse
Affiliation(s)
- Jeremy M Luke
- Nature Technology Corporation, Lincoln, NE 68521, USA
| | | | | | | | | | | |
Collapse
|
49
|
Drosophila Mis12 complex acts as a single functional unit essential for anaphase chromosome movement and a robust spindle assembly checkpoint. Genetics 2010; 187:131-40. [PMID: 20980244 DOI: 10.1534/genetics.110.119628] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The kinetochore is a dynamic multiprotein complex assembled at the centromere in mitosis. Exactly how the structure of the kinetochore changes during mitosis and how its individual components contribute to chromosome segregation is largely unknown. Here we have focused on the contribution of the Mis12 complex to kinetochore assembly and function throughout mitosis in Drosophila. We show that despite the sequential kinetochore recruitment of Mis12 complex subunits Mis12 and Nsl1, the complex acts as a single functional unit. mis12 and nsl1 mutants show strikingly similar developmental and mitotic defects in which chromosomes are able to congress at metaphase, but their anaphase movement is strongly affected. While kinetochore association of Ndc80 absolutely depends on both Mis12 and Nsl1, BubR1 localization shows only partial dependency. In the presence of residual centromeric BubR1 the checkpoint still responds to microtubule depolymerization but is significantly weaker. These observations point to a complexity of the checkpoint response that may reflect subpopulations of BubR1 associated with residual kinetochore components, the core centromere, or elsewhere in the cell. Importantly our results indicate that core structural elements of the inner plate of the kinetochore have a greater contribution to faithful chromosome segregation in anaphase than in earlier stages of mitosis.
Collapse
|
50
|
Asterless is a scaffold for the onset of centriole assembly. Nature 2010; 467:714-8. [PMID: 20852615 DOI: 10.1038/nature09445] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 08/27/2010] [Indexed: 02/04/2023]
Abstract
Centrioles are found in the centrosome core and, as basal bodies, at the base of cilia and flagella. Centriole assembly and duplication is controlled by Polo-like-kinase 4 (Plk4): these processes fail if Plk4 is downregulated and are promoted by Plk4 overexpression. Here we show that the centriolar protein Asterless (Asl; human orthologue CEP152) provides a conserved molecular platform, the amino terminus of which interacts with the cryptic Polo box of Plk4 whereas the carboxy terminus interacts with the centriolar protein Sas-4 (CPAP in humans). Drosophila Asl and human CEP152 are required for the centrosomal loading of Plk4 in Drosophila and CPAP in human cells, respectively. Depletion of Asl or CEP152 caused failure of centrosome duplication; their overexpression led to de novo centriole formation in Drosophila eggs, duplication of free centrosomes in Drosophila embryos, and centrosome amplification in cultured Drosophila and human cells. Overexpression of a Plk4-binding-deficient mutant of Asl prevented centriole duplication in cultured cells and embryos. However, this mutant protein was able to promote microtubule organizing centre (MTOC) formation in both embryos and oocytes. Such MTOCs had pericentriolar material and the centriolar protein Sas-4, but no centrioles at their core. Formation of such acentriolar MTOCs could be phenocopied by overexpression of Sas-4 in oocytes or embryos. Our findings identify independent functions for Asl as a scaffold for Plk4 and Sas-4 that facilitates self-assembly and duplication of the centriole and organization of pericentriolar material.
Collapse
|