1
|
Jang J, Yu H, Oh EB, Park JW, Kim S, Kim T, Sohn J, Jin BR, Chang TS. Targeting NADPH Oxidase with APX-115: Suppression of Platelet Activation and Thrombotic Response. Antioxid Redox Signal 2025. [PMID: 40183134 DOI: 10.1089/ars.2024.0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Aims: NADPH oxidase (NOX)-derived reactive oxygen species (ROS) are critical for platelet activation and thrombus formation. We hypothesized that inhibiting NOX-mediated ROS production with a pan-NOX inhibitor, APX-115, could effectively suppress platelet activation and thrombus formation, potentially serving as a novel antiplatelet therapeutic. This study aimed to explore the effects of APX-115 on human platelet functional responses and ROS-mediated signaling pathways. Results: APX-115 inhibited intracellular and extracellular ROS production in collagen-stimulated platelets, suppressing aggregation, P-selectin exposure, and ATP release. By preserving protein tyrosine phosphatase activity, APX-115 reduced tyrosine phosphorylation-dependent pathways inhibition, including spleen tyrosine kinase, LAT, Vav1, Bruton's tyrosine kinase, and phospholipase Cγ2, leading to decreased PKC activation and calcium mobilization. APX-115 also suppressed collagen-induced integrin αIIbβ3 activation, accompanied by elevated cGMP and vasodilator-stimulated phosphoprotein phosphorylation levels. In addition, APX-115 reduced p38 MAPK and ERK5 activation, leading to diminished phospholipase A2 phosphorylation, thromboxane production, and the exposure of procoagulant phosphatidylserine. These inhibitory effects extended to thrombus development caused by platelet adherence under shear and arterial thrombosis without prolonging bleeding time in murine models. Innovation: This study is the first to demonstrate that APX-115 inhibits NOX-mediated ROS production, platelet activation, and thrombus formation. By uncovering its effects on collagen receptor glycoprotein VI-mediated pathways, the work highlights the promise of APX-115 as an antiplatelet and antithrombotic agent. Conclusion: Our findings highlight the therapeutic potential of APX-115 in treating thrombotic and cardiovascular disorders by targeting NOX-mediated ROS production to mitigate platelet hyperreactivity and thrombus formation. Antioxid. Redox Signal. 00, 000-000. [Figure: see text].
Collapse
Affiliation(s)
- Joara Jang
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyunseong Yu
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun Bee Oh
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Park
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Solee Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Taeryeong Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jisue Sohn
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Bo-Ram Jin
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tong-Shin Chang
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Oh EB, Shin HJ, Yu H, Jang J, Park JW, Chang TS. NADPH oxidase 1/4 dual inhibitor setanaxib suppresses platelet activation and thrombus formation. Life Sci 2024; 357:123061. [PMID: 39293714 DOI: 10.1016/j.lfs.2024.123061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
AIMS The production of reactive oxygen species (ROS) by NADPH oxidase (NOX) is able to induce platelet activation, making NOX a promising target for antiplatelet therapy. In this study, we examined the effects of setanaxib, a dual NOX1/4 inhibitor, on human platelet function and ROS-related signaling pathways. MATERIALS AND METHODS In collagen-stimulated human platelets, aggregometry, assessment of ROS and Ca2+, immunoblotting, ELISA, flow cytometry, platelet adhesion assay, and assessment of mouse arterial thrombosis were performed in this study. KEY FINDINGS Setanaxib inhibited both intracellular and extracellular ROS production in collagen-activated platelets. Additionally, setanaxib significantly inhibited collagen-induced platelet aggregation, P-selectin exposure from α-granule release, and ATP release from dense granules. Setanaxib blocked the specific tyrosine phosphorylation-mediated activation of Syk, LAT, Vav1, and Btk within collagen receptor signaling pathways, leading to reduced activation of PLCγ2, PKC, and Ca2+ mobilization. Setanaxib also inhibited collagen-induced activation of integrin αIIbβ3, which is linked to increased cGMP levels and VASP phosphorylation. Furthermore, setanaxib suppressed collagen-induced p38 MAPK activation, resulting in decreased phosphorylation of cytosolic PLA2 and reduced TXA2 generation. Setanaxib also inhibited ERK5 activation, affecting the exposure of procoagulant phosphatidylserine. Setanaxib reduced thrombus formation under shear conditions by preventing platelet adhesion to collagen. Finally, in vivo administration of setanaxib in animal models led to the inhibition of arterial thrombosis. SIGNIFICANCE This study is the first to show that setanaxib suppresses ROS generation, platelet activation, and collagen-induced thrombus formation, suggesting its potential use in treating thrombotic or cardiovascular diseases.
Collapse
Affiliation(s)
- Eun Bee Oh
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hye Ji Shin
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyunseong Yu
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Joara Jang
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ji Won Park
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Tong-Shin Chang
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Zhang L, Hu W, Li J, Li Y, Liu F, Xiao W, Jiang N, Xiao Z, Han L, Zhou W. Targeting NRP1 axis as a strategy for treating energy metabolism impairment induced by SARS-CoV-2 spike. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2277-2279. [PMID: 38902449 DOI: 10.1007/s11427-023-2568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/15/2024] [Indexed: 06/22/2024]
Affiliation(s)
- Lihui Zhang
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wanting Hu
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
| | - Jingxuan Li
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
| | - Yuehan Li
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
| | - Feng Liu
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
| | - Wenyi Xiao
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
| | - Zhiyong Xiao
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China
| | - Lu Han
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China.
| | - Wenxia Zhou
- Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, China.
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
4
|
Hart M, Isuri RK, Ramos D, Osharovich SA, Rodriguez AE, Harmsen S, Dudek GC, Huck JL, Holt DE, Popov AV, Singhal S, Delikatny EJ. Non-Small Cell Lung Cancer Imaging Using a Phospholipase A2 Activatable Fluorophore. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:490-500. [PMID: 39056064 PMCID: PMC11267604 DOI: 10.1021/cbmi.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 07/28/2024]
Abstract
Lung cancer, the most common cause of cancer-related death in the United States, requires advanced intraoperative detection methods to improve evaluation of surgical margins. In this study we employed DDAO-arachidonate (DDAO-A), a phospholipase A2 (PLA2) activatable fluorophore, designed for the specific optical identification of lung cancers in real-time during surgery. The in vitro fluorescence activation of DDAO-A by porcine sPLA2 was tested in various liposomal formulations, with 100 nm extruded EggPC showing the best overall characteristics. Extruded EggPC liposomes containing DDAO-A were tested for their stability under various storage conditions, demonstrating excellent stability for up to 4 weeks when stored at -20 °C or below. Cell studies using KLN 205 and LLC1 lung cancer cell lines showed DDAO-A activation was proportional to cell number. DDAO-A showed preferential activation by human recombinant cPLA2, an isoform highly specific to arachidonic acid-containing lipids, when compared to a control probe, DDAO palmitate (DDAO-P). In vivo studies with DBA/2 mice bearing KLN 205 lung tumors recapitulated these results, with preferential activation of DDAO-A relative to DDAO-P following intratumoral injection. Topical application of DDAO-A-containing liposomes to human (n = 10) and canine (n = 3) lung cancers ex vivo demonstrated the preferential activation of DDAO-A in tumor tissue relative to adjacent normal lung tissue, with fluorescent tumor-to-normal ratios (TNR) of up to 5.2:1. The combined results highlight DDAO-A as a promising candidate for clinical applications, showcasing its potential utility in intraoperative and back-table imaging and topical administration during lung cancer surgeries. By addressing the challenge of residual microscopic disease at resection margins and offering stability in liposomal formulations, DDAO-A emerges as a potentially valuable tool for advancing precision lung cancer surgery and improving curative resection rates.
Collapse
Affiliation(s)
- Michael
C. Hart
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ritesh K. Isuri
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Drew Ramos
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sofya A. Osharovich
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrea E. Rodriguez
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Stefan Harmsen
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Grace C. Dudek
- Department
of Biology, University of Pennsylvania, 102 Leidy Laboratories 433 S University
Ave, Philadelphia, Pennsylvania 19104, United States
| | - Jennifer L. Huck
- Department
of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David E. Holt
- Department
of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoliy V. Popov
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sunil Singhal
- Department
of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Edward J. Delikatny
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Dai Y, Xu R, Chen J, Fang J, Zhang H, Li H, Chen W. Thromboxane A2/thromboxane A2 receptor axis facilitates hepatic insulin resistance and steatosis through endoplasmic reticulum stress in non-alcoholic fatty liver disease. Br J Pharmacol 2024; 181:967-986. [PMID: 37940413 DOI: 10.1111/bph.16238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Defective insulin signalling and dysfunction of the endoplasmic reticulum (ER), driven by excessive lipid accumulation in the liver, is a characteristic feature in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Thromboxane A2 (TXA2 ), an arachidonic acid metabolite, is significantly elevated in obesity and plays a crucial role in hepatic gluconeogenesis and adipose tissue macrophage polarization. However, the role of liver TXA2 /TP receptors in insulin resistance and lipid metabolism is largely unknown. EXPERIMENTAL APPROACH TP receptor knockout (TP-/- ) mice were generated and fed a high-fat diet for 16 weeks. Insulin sensitivity, ER stress responses and hepatic lipid accumulation were assessed. Furthermore, we used primary hepatocytes to dissect the mechanisms by which the TXA2 /TP receptor axis regulates insulin signalling and hepatocyte lipogenesis. KEY RESULTS TXA2 was increased in diet-induced obese mice, and depletion of TP receptors in adult mice improved systemic insulin resistance and hepatic steatosis. Mechanistically, we found that the TXA2 /TP receptor axis disrupts insulin signalling by activating the Ca2+ /calcium calmodulin-dependent kinase II γ (CaMKIIγ)-protein kinase RNA-like endoplasmic reticulum kinase (PERK)-C/EBP homologous protein (Chop)-tribbles-like protein 3 (TRB3) axis in hepatocytes. In addition, our results revealed that the TXA2 /TP receptor axis directly promoted lipogenesis in primary hepatocytes and contributed to Kupffer cell inflammation. CONCLUSIONS AND IMPLICATIONS The TXA2 /TP receptor axis facilitates insulin resistance through Ca2+ /CaMKIIγ to activate PERK-Chop-TRB3 signalling. Inhibition of hepatocyte TP receptors improved hepatic steatosis and inflammation. The TP receptor is a new therapeutic target for NAFLD and metabolic syndrome.
Collapse
Affiliation(s)
- Yufeng Dai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruijie Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinxiang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jialong Fang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Meyer Zu Vilsendorf I, Einerhand J, Mulac D, Langer K, Lehr M. 1-Benzylindoles as inhibitors of cytosolic phospholipase A 2α: synthesis, biological activity, aqueous solubility, and cell permeability. RSC Med Chem 2024; 15:641-659. [PMID: 38389890 PMCID: PMC10880929 DOI: 10.1039/d3md00590a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/12/2023] [Indexed: 02/24/2024] Open
Abstract
Cytosolic phospholipase A2α (cPLA2α) is considered an interesting target for the development of new anti-inflammatory drugs, as it is significantly involved in the formation of pro-inflammatory lipid mediators. Recently, in a ligand-based virtual screening approach, 2,4-dichlorobenzyl-substituted 4-[2-(indol-3-ylmethylene)hydrazineyl]benzoic acid 7 was found to be an inhibitor of cPLA2α with micromolar activity. This compound has now been systematically varied to increase inhibitory potency. The studies performed led to 5-(1-benzylindol-3-ylmethyl)-2H-tetrazol-2-yl)pentanoic acid derivatives that exhibited submicromolar activity against the enzyme. The most potent compounds were also tested for their water solubility and for permeability in a Caco-2 model. Among other things, it was found that in Caco-2 cells, the pentanoic acid chain of the molecules can be metabolised to a considerable extent to propionic acid by β-oxidation.
Collapse
Affiliation(s)
- Imke Meyer Zu Vilsendorf
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster Corrensstrasse 48 48149 Münster Germany
| | - Judith Einerhand
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster Corrensstrasse 48 48149 Münster Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster Corrensstrasse 48 48149 Münster Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster Corrensstrasse 48 48149 Münster Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster Corrensstrasse 48 48149 Münster Germany
| |
Collapse
|
7
|
Lin CY, Xu WB, Li BZ, Shu MA, Zhang YM. Identification and functional analysis of cytosolic phospholipase A2 (cPLA2) from the red swamp crayfish Procambarus clarkii: The first evidence of cPLA2 involved in immunity in invertebrates. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108944. [PMID: 37451527 DOI: 10.1016/j.fsi.2023.108944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Cytosolic phospholipase A2 (cPLA2) specifically liberates the arachidonic acids from the phospholipid substrates. In mammals, cPLA2 serves as a key control point in inflammatory responses due to its diverse downstream products. However, the role of cPLA2 in animals lower than mammals largely remains unknown. In the current research, a homolog of cPLA2 was first identified and characterized in the red swamp crayfish Procambarus clarkii. The full-length cDNA of PccPLA2 was 4432 bp in length with a 3036 bp-long open reading frame, encoding a putative protein of 1011 amino acids that contained a protein kinase C conserved region 2 and a catalytic subunit of cPLA2. PccPLA2 was ubiquitously expressed in all examined tissues with the highest expression in the hepatopancreas, and the expression in hemocytes as well as hepatopancreas was induced upon the immune challenges of WSSV and Aeromonas hydrophila. After the co-treatment of RNA interference and bacterial infection, the decline of bacteria clearance capability was observed in the hemolymph, and the expression of some antimicrobial peptides (AMPs) was significantly suppressed. Additionally, the phagocytosis of A. hydrophila by primary hemocytes decreased when treated with the specific inhibitor CAY10650 of cPLA2. These results indicated the participation of PccPLA2 in both cellular and humoral immune responses in the crayfish, which provided an insight into the role that cPLA2 played in the innate immunity of crustaceans, and even in invertebrates.
Collapse
Affiliation(s)
- Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Nadalin S, Zatković L, Peitl V, Karlović D, Vidrih B, Puljić A, Pavlić SD, Buretić-Tomljanović A. Association between PLA2 gene polymorphisms and treatment response to antipsychotic medications: A study of antipsychotic-naïve first-episode psychosis patients and nonadherent chronic psychosis patients. Prostaglandins Leukot Essent Fatty Acids 2023; 194:102578. [PMID: 37290257 DOI: 10.1016/j.plefa.2023.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Here we investigated whether antipsychotic treatment was influenced by three polymorphisms: rs10798059 (BanI) in the phospholipase A2 (PLA2)G4A gene, rs4375 in PLA2G6, and rs1549637 in PLA2G4C. A total of 186 antipsychotic-naïve first-episode psychosis patients or nonadherent chronic psychosis individuals (99 males and 87 females) were genotyped by polymerase chain reaction analysis/restriction fragment length polymorphism. At baseline, and after 8 weeks of treatment with various antipsychotic medications, we assessed patients' Positive and Negative Syndrome Scale (PANSS) scores, PANSS factors, and metabolic syndrome-related parameters (fasting plasma lipid and glucose levels, and body mass index). We found that PLA2G4A polymorphism influenced changes in PANSS psychopathology, and PLA2G6 polymorphism influenced changes in PANSS psychopathology and metabolic parameters. PLA2G4C polymorphism did not show any impact on PANSS psychopathology or metabolic parameters. The polymorphisms' effect sizes were estimated as moderate to strong, with contributions ranging from around 6.2-15.7%. Furthermore, the polymorphisms' effects manifested in a gender-specific manner.
Collapse
Affiliation(s)
- Sergej Nadalin
- Department of Psychiatry, General Hospital "Dr. Josip Benčević", Slavonski Brod, Croatia; School of Medicine, Catholic University of Croatia, Zagreb, Croatia.
| | - Lena Zatković
- Hospital pharmacy, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Branka Vidrih
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Antonia Puljić
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Sanja Dević Pavlić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Alena Buretić-Tomljanović
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
9
|
Boi R, Ebefors K, Henricsson M, Borén J, Nyström J. Modified lipid metabolism and cytosolic phospholipase A2 activation in mesangial cells under pro-inflammatory conditions. Sci Rep 2022; 12:7322. [PMID: 35513427 PMCID: PMC9072365 DOI: 10.1038/s41598-022-10907-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease is a consequence of hyperglycemia and other complex events driven by early glomerular hemodynamic changes and a progressive expansion of the mesangium. The molecular mechanisms behind the pathophysiological alterations of the mesangium are yet to be elucidated. This study aimed at investigating whether lipid signaling might be the missing link. Stimulation of human mesangial cells with high glucose primed the inflammasome-driven interleukin 1 beta (IL-1β) secretion, which in turn stimulated platelet-derived growth factor (PDGF-BB) release. Finally, PDGF-BB increased IL-1β secretion synergistically. Both IL-1β and PDGF-BB stimulation triggered the formation of phosphorylated sphingoid bases, as shown by lipidomics, and activated cytosolic phospholipase cPLA2, sphingosine kinase 1, cyclooxygenase 2, and autotaxin. This led to the release of arachidonic acid and lysophosphatidylcholine, activating the secretion of vasodilatory prostaglandins and proliferative lysophosphatidic acids. Blocking cPLA2 release of arachidonic acid reduced mesangial cells proliferation and prostaglandin secretion. Validation was performed in silico using the Nephroseq database and a glomerular transcriptomic database. In conclusion, hyperglycemia primes glomerular inflammatory and proliferative stimuli triggering lipid metabolism modifications in human mesangial cells. The upregulation of cPLA2 was critical in this setting. Its inhibition reduced mesangial secretion of prostaglandins and proliferation, making it a potential therapeutical target.
Collapse
Affiliation(s)
- Roberto Boi
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530, Gothenburg, Sweden
| | - Kerstin Ebefors
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530, Gothenburg, Sweden
| | - Marcus Henricsson
- Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jenny Nyström
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530, Gothenburg, Sweden.
| |
Collapse
|
10
|
Emre C, Do KV, Jun B, Hjorth E, Alcalde SG, Kautzmann MAI, Gordon WC, Nilsson P, Bazan NG, Schultzberg M. Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:116. [PMID: 34187579 PMCID: PMC8244172 DOI: 10.1186/s40478-021-01216-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Sustained brain chronic inflammation in Alzheimer’s disease (AD) includes glial cell activation, an increase in cytokines and chemokines, and lipid mediators (LMs), concomitant with decreased pro-homeostatic mediators. The inflammatory response at the onset of pathology engages activation of pro-resolving, pro-homeostatic LMs followed by a gradual decrease. We used an APP knock-in (App KI) AD mouse that accumulates β-amyloid (Aβ) and presents cognitive deficits (at 2 and 6 months of age, respectively) to investigate LMs, their precursors, biosynthetic enzymes and receptors, glial activation, and inflammatory proteins in the cerebral cortex and hippocampus at 2-, 4-, 8- and 18-month-old in comparison with wild-type (WT) mice. We used LC-mass-spectrometry and MALDI molecular imaging to analyze LMs and phospholipids, and immunochemistry for proteins. Our results revealed an age-specific lipid and cytokine profile, and glial activation in the App KI mice. Despite an early onset of Aβ pathology, pro-inflammatory and pro-resolving LMs were prominently increased only in the oldest age group. Furthermore, the LM biosynthetic enzymes increased, and their receptor expression decreased in the aged App KI mice. Arachidonic acid (AA)-containing phospholipid molecular species were elevated, correlating with decreased cPLA2 activity. MALDI molecular imaging depicted differential distribution of phospholipids according to genotype in hippocampal layers. Brain histology disclosed increased microglia proliferation starting from young age in the App KI mice, while astrocyte numbers were enhanced in older ages. Our results demonstrate that the brain lipidome is modified preferentially during aging as compared to amyloid pathology in the model studied here. However, alterations in phospholipids signal early pathological changes in membrane composition.
Collapse
|
11
|
The Role of Glutamine in the Prevention of Ultraviolet-C-Induced Platelet Activation. Biochem Res Int 2020. [DOI: 10.1155/2020/8853696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives. The primary function of platelets is to prevent bleeding. The use of UV-C light in the treatment of platelets has become a valuable method for preserving the efficacy of platelet concentrates in blood banks. However, its deleterious effect remains, such as the activation of platelets, thus causing the platelets to lose their physiological function. In this study, we intended to demonstrate the impact of UV-C on platelets and how the use of glutamine could mitigate the loss of physiological function of the platelets caused by UV-C. Materials and Methods. This study was conducted using mouse platelets. We assessed calcium signaling using Fura-2 AM incubation and dense granule secretion of the platelets using luminescence assay by measuring ATP. At the molecular level, the activation of integrin using PAC-1 antibody was analyzed. Phosphorylation of immune-precipitated cPLA2 was assessed using a specific antibody. All the experiments were carried out with or without glutamine in the presence of UV-C. Positive and negative controls were used in all experiments to validate the findings. Results. We have demonstrated that physiological and biochemical damage arises as a result of the exposure of platelet concentrate to UV-C and that the use of glutamine could alleviate this damage. Various experiments, thrombus formation, integrin activation, and phosphorylation of cPLA2 were preserved using 50 mM of glutamine in the presence of UV-C, which reduces 50% of platelet viability. Conclusions. Our study demonstrates that the storage of platelet concentrates under the UV-C activates their physiological process and renders them to the thrombus formation, hence decreasing their viability. The presence of a moderate amount of glutamine can alleviate the toxic effect of UV-C, and platelet concentrates could be kept viable for a long time.
Collapse
|
12
|
Interface of Phospholipase Activity, Immune Cell Function, and Atherosclerosis. Biomolecules 2020; 10:biom10101449. [PMID: 33076403 PMCID: PMC7602611 DOI: 10.3390/biom10101449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Phospholipases are a family of lipid-altering enzymes that can either reduce or increase bioactive lipid levels. Bioactive lipids elicit signaling responses, activate transcription factors, promote G-coupled-protein activity, and modulate membrane fluidity, which mediates cellular function. Phospholipases and the bioactive lipids they produce are important regulators of immune cell activity, dictating both pro-inflammatory and pro-resolving activity. During atherosclerosis, pro-inflammatory and pro-resolving activities govern atherosclerosis progression and regression, respectively. This review will look at the interface of phospholipase activity, immune cell function, and atherosclerosis.
Collapse
|
13
|
Non-del(5q) myelodysplastic syndromes-associated loci detected by SNP-array genome-wide association meta-analysis. Blood Adv 2020; 3:3579-3589. [PMID: 31738830 DOI: 10.1182/bloodadvances.2019000922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic stem cell malignancies. Known predisposing factors to adult MDS include rare germline mutations, cytotoxic therapy, age-related clonal hematopoiesis, and autoimmune or chronic inflammatory disorders. To date, no published studies characterizing MDS-associated germline susceptibility polymorphisms exist. We performed a genome-wide association study of 2 sample sets (555 MDS cases vs 2964 control subjects; 352 MDS cases vs 2640 control subjects) in non-del(5q) MDS cases of European genomic ancestry. Meta-analysis identified 8 MDS-associated loci at 1q31.1 (PLA2G4A), 3p14.1 (FAM19A4), 5q21.3 (EFNA5), 6p21.33, 10q23.1 (GRID1), 12q24.32, 15q26.1, and 20q13.12 (EYA2) that approached genome-wide significance. Gene expression for 5 loci that mapped within or near genes was significantly upregulated in MDS bone marrow cells compared with those of control subjects (P < .01). Higher PLA2G4A expression and lower EYA2 expression were associated with poorer overall survival (P = .039 and P = .037, respectively). Higher PLA2G4A expression is associated with mutations in NRAS (P < .001), RUNX1 (P = .012), ASXL1 (P = .007), and EZH2 (P = .038), all of which are known to contribute to MDS development. EYA2 expression was an independently favorable risk factor irrespective of age, sex, and Revised International Scoring System score (relative risk, 0.67; P = .048). Notably, these genes have regulatory roles in innate immunity, a critical driver of MDS pathogenesis. EYA2 overexpression induced innate immune activation, whereas EYA2 inhibition restored colony-forming potential in primary MDS cells indicative of hematopoietic restoration and possible clinical relevance. In conclusion, among 8 suggestive MDS-associated loci, 5 map to genes upregulated in MDS with functional roles in innate immunity and potential biological relevance to MDS.
Collapse
|
14
|
Monge P, Garrido A, Rubio JM, Magrioti V, Kokotos G, Balboa MA, Balsinde J. The Contribution of Cytosolic Group IVA and Calcium-Independent Group VIA Phospholipase A 2s to Adrenic Acid Mobilization in Murine Macrophages. Biomolecules 2020; 10:biom10040542. [PMID: 32260121 PMCID: PMC7226511 DOI: 10.3390/biom10040542] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Adrenic acid (AA), the 2-carbon elongation product of arachidonic acid, is present at significant levels in membrane phospholipids of mouse peritoneal macrophages. Despite its abundance and structural similarity to arachidonic acid, very little is known about the molecular mechanisms governing adrenic acid mobilization in cells of the innate immune system. This contrasts with the wide availability of data on arachidonic acid mobilization. In this work, we used mass-spectrometry-based lipidomic procedures to define the profiles of macrophage phospholipids that contain adrenic acid and their behavior during receptor activation. We identified the phospholipid sources from which adrenic acid is mobilized, and compared the data with arachidonic acid mobilization. Taking advantage of the use of selective inhibitors, we also showed that cytosolic group IVA phospholipase A2 is involved in the release of both adrenic and arachidonic acids. Importantly, calcium independent group VIA phospholipase A2 spared arachidonate-containing phospholipids and hydrolyzed only those that contain adrenic acid. These results identify separate mechanisms for regulating the utilization of adrenic and arachidonic acids, and suggest that the two fatty acids may serve non-redundant functions in cells.
Collapse
Affiliation(s)
- Patricia Monge
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (P.M.); (A.G.); (J.M.R.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Alvaro Garrido
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (P.M.); (A.G.); (J.M.R.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Julio M. Rubio
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (P.M.); (A.G.); (J.M.R.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Victoria Magrioti
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece; (V.M.); (G.K.)
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece; (V.M.); (G.K.)
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (P.M.); (A.G.); (J.M.R.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (P.M.); (A.G.); (J.M.R.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-983-423-062
| |
Collapse
|
15
|
Filkin SY, Lipkin AV, Fedorov AN. Phospholipase Superfamily: Structure, Functions, and Biotechnological Applications. BIOCHEMISTRY (MOSCOW) 2020; 85:S177-S195. [DOI: 10.1134/s0006297920140096] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Md Abdullah AB, Lee DW, Jung J, Kim Y. Deletion mutant of sPLA 2 using CRISPR/Cas9 exhibits immunosuppression, developmental retardation, and failure of oocyte development in legume pod borer, Maruca vitrata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103500. [PMID: 31589887 DOI: 10.1016/j.dci.2019.103500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Phospholipase A2 (PLA2) catalyzes release of free fatty acids linked to phospholipids at sn-2 position. Some of these released free fatty acids are used to synthesize eicosanoids that mediate various physiological processes in insects. Although a large number of PLA2s form a superfamily consisting of at least 16 groups, few PLA2s have been identified and characterized in insects. Furthermore, physiological functions of insect PLA2s remain unclear. Clustered regularly interspaced short parlindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) has been a useful research tool to validate gene function. This study identified and characterized a secretory PLA2 (sPLA2) from legume pod borer, Maruca vitrata (Lepidoptera: Crambidae), and validated its physiological functions using CRISPR/Cas9. An open reading frame of M. vitrata sPLA2 (Mv-sPLA2) encoding 192 amino acids contained signal peptide, calcium-binding domain, and catalytic site. Phylogenetic analysis indicated that Mv-sPLA2 was related to other Group III sPLA2s. Mv-sPLA2 was expressed in both larval and adult stages. It was inducible by immune challenge. RNA interference (RNAi) of Mv-sPLA2 significantly suppressed cellular immunity and impaired larval development. Furthermore, RNAi treatment in female adults prevented oocyte development. These physiological alterations were also observed in a mutant line of M. vitrata with Mv-sPLA2 deleted by using CRISPR/Cas9. Mv-sPLA2 was not detected in the mutant line from western blot analysis. Addition of an eicosanoid, PGE2, significantly rescued oocyte development of females of the mutant line. These results suggest that Mv-sPLA2 plays crucial role in immune, developmental, and reproductive processes of M. vitrata.
Collapse
Affiliation(s)
- Al Baki Md Abdullah
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Dae-Weon Lee
- School of Chemistry and Life Sciences, Kyungsung University, Busan, 48434, South Korea
| | - Jinkyo Jung
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16429, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
17
|
Tunset HM, Feuerherm AJ, Selvik LKM, Johansen B, Moestue SA. Cytosolic Phospholipase A2 Alpha Regulates TLR Signaling and Migration in Metastatic 4T1 Cells. Int J Mol Sci 2019; 20:ijms20194800. [PMID: 31569627 PMCID: PMC6801560 DOI: 10.3390/ijms20194800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 12/02/2022] Open
Abstract
Metastatic disease is the leading cause of death in breast cancer patients. Disrupting the cancer cell’s ability to migrate may be a strategy for hindering metastasis. Cytosolic phospholipase A2 α (cPLA2α), along with downstream proinflammatory and promigratory metabolites, has been implicated in several aspects of tumorigenesis, as well as metastasis, in various types of cancer. In this study, we aim to characterize the response to reduced cPLA2α activity in metastatic versus non-metastatic cells. We employ an isogenic murine cell line pair displaying metastatic (4T1) and non-metastatic (67NR) phenotype to investigate the role of cPLA2α on migration. Furthermore, we elucidate the effect of reduced cPLA2α activity on global gene expression in the metastatic cell line. Enzyme inhibition is achieved by using a competitive pharmacological inhibitor, cPLA2α inhibitor X (CIX). Our data show that 4T1 expresses significantly higher cPLA2α levels as compared to 67NR, and the two cell lines show different sensitivity to the CIX treatment with regards to metabolism and proliferation. Inhibition of cPLA2α at nontoxic concentrations attenuates migration of highly metastatic 4T1 cells, but not non-metastatic 67NR cells. Gene expression analysis indicates that processes such as interferon type I (IFN-I) signaling and cell cycle regulation are key processes regulated by cPLA2a in metastatic 4T1 cells, supporting the findings from the biological assays. This study demonstrates that two isogenic cancer cell lines with different metastatic potential respond differently to reduced cPLA2α activity. In conclusion, we argue that cPLA2α is a potential therapeutic target in cancer and that enzyme inhibition may inhibit metastasis through an anti-migratory mechanism, possibly involving Toll-like receptor signaling and type I interferons.
Collapse
Affiliation(s)
- Hanna Maja Tunset
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway.
| | - Astrid Jullumstrø Feuerherm
- Center for Oral Health Services and Research (TkMidt), 7030 Trondheim, Norway.
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway.
| | - Linn-Karina Myrland Selvik
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway.
| | - Berit Johansen
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway.
| | - Siver Andreas Moestue
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway.
- Department of Health Sciences, Nord University, P.O. Box 1490, 8049 Bodø, Norway.
| |
Collapse
|
18
|
Nadalin S, Rebić J, Šendula Jengić V, Peitl V, Karlović D, Buretić-Tomljanović A. Association between PLA2G6 gene polymorphism for calcium-independent phospholipase A2 and nicotine dependence among males with schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2019; 148:9-15. [PMID: 31492433 DOI: 10.1016/j.plefa.2019.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/03/2019] [Accepted: 07/02/2019] [Indexed: 01/08/2023]
Abstract
We investigated the relationship between the rs10798059 (BanI) and rs4375 polymorphisms in the phospholipase A2 (PLA2)G4A and PLA2G6 genes and the risk of nicotine dependence in 263 Croatian patients with schizophrenia. We also examined whether interactions between these polymorphisms and smoking contributed to schizophrenia onset and Positive and Negative Syndrome Scale (PANSS) psychopathology. We found no significant differences in the distribution of PLA2G4A genotypes and alleles according to smoking status, and no effect of the PLA2G4A genotype-smoking interaction on disease onset or PANSS. The PLA2G6-TT homozygous genotype was significantly overrepresented in male smokers compared to nonsmokers (34.7% vs. 17.1%, p < 0.05). These patients had ∼2.6-fold higher risk of becoming smokers than males with heterozygous PLA2G6-CT and homozygous PLA2G6-CC genotypes. In addition, male smokers without the PLA2G6-C allele (PLA2G6-TT homozygous) experienced earlier onset than nonsmoking homozygous PLA2G6-TT males. Thus, the PLA2G6 polymorphism affected the risk of nicotine dependence in male patients and the PLA2G6 genotype-smoking interaction was linked to the age of disease onset.
Collapse
Affiliation(s)
- Sergej Nadalin
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia.
| | - Jelena Rebić
- Psychiatry Clinic, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | - Vjekoslav Peitl
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center and Catholic University of Croatia, Zagreb, Croatia
| | - Dalibor Karlović
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center and Catholic University of Croatia, Zagreb, Croatia
| | - Alena Buretić-Tomljanović
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
| |
Collapse
|
19
|
Sajjadian SM, Vatanparast M, Kim Y. Toll/IMD signal pathways mediate cellular immune responses via induction of intracellular PLA 2 expression. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21559. [PMID: 31062425 DOI: 10.1002/arch.21559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Phospholipase A2 (PLA2 ) hydrolyzes fatty acids from phospholipids at the sn-2 position. Two intracellular PLA2 s, iPLA2 A and iPLA2 B, have been found in Spodoptera exigua. Both are calcium-independent cellular PLA2 . Their orthologs have been found in other insects. These two iPLA2 s are different in ankyrin motif of N terminal region. The objective of this study was to determine whether Toll/immune deficiency (IMD) signal pathways could mediate cellular immune responses via induction of iPLA2 expression. Both iPLA 2 s were expressed in all developmental stages of S. exigua, showing the highest expression in the adult stage. During larval stage, hemocyte is the main tissue showing expression of these iPLA2 s. Both iPLA2 s exhibited similar expression patterns after immune challenge with different microbial pathogens such as virus, bacteria, and fungi. Promoter component analysis of orthologs encoded in S. frugiperda indicated nuclear factor-κB- and Relish-responsible elements on their promoters, suggesting their expression in S. exigua under Toll/IMD immune signaling pathways. RNA interference (RNAi) of MyD88 or Pelle under Toll pathway suppressed inducible expression levels of both iPLA2 s in response to Gram-positive bacteria containing Lys-type peptidoglycan or fungal infection. In contrast, RNAi against Relish under IMD pathway suppressed both iPLA2 s in response to infection with Gram-negative bacteria. Under RNAi conditions, hemocytes significantly lost cellular immune response measured by nodule formation. However, addition of arachidonic acid (a catalytic product of PLA2 ) rescued such immunosuppression. These results suggest that Toll/IMD signal pathways can mediate cellular immune responses via eicosanoid signaling by inducing iPLA2 expression.
Collapse
Affiliation(s)
- Seyede Minoo Sajjadian
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
| | - Mohammad Vatanparast
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
| |
Collapse
|
20
|
Prasher P, Mudila H, Sharma M, Khati B. Developmental perspectives of the drugs targeting enzyme-instigated inflammation: a mini review. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02315-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Vatanparast M, Ahmed S, Herrero S, Kim Y. A non-venomous sPLA 2 of a lepidopteran insect: Its physiological functions in development and immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:83-92. [PMID: 30107251 DOI: 10.1016/j.dci.2018.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Eicosanoids are oxygenated C20 polyunsaturated fatty acids that mediate various physiological processes in insects. Eicosanoid biosynthesis begins with a C20 precursor, arachidonic acid (5,8,11,14-eicosatetraenoic acid: AA). AA is usually released from phospholipids at sn-2 position by catalytic activity of phospholipase A2 (PLA2). Although various PLA2s classified into 16 gene families (= Groups) are known in various biological systems, few PLA2s are known in insects. Only two PLA2s involved in intracellular calcium independent PLA2 (iPLA2) group have been identified in lepidopteran insects with well known eicosanoid physiology. This study reports the first secretory PLA2 (sPLA2) in lepidopteran insects. A partial open reading frame (ORF) of PLA2 was obtained by interrogating Spodoptera exigua transcriptome. Subsequent 3'-RACE resulted in a full ORF (Se-sPLA2A) encoding 194 amino acid sequence containing signal peptide, calcium-binding domain, and catalytic site. Phylogenetic analysis indicated that Se-sPLA2A was clustered with other Group III sPLA2s. Se-sPLA2A was expressed in most larval instars except late last instar. Its expression was inducible by immune challenge and juvenile hormone analog injection. RNA interference of Se-sPLA2A significantly suppressed cellular immunity and impaired larval development. These results suggest that non-venomous sPLA2 plays a crucial role in immune and developmental processes in S. exigua, a lepidopteran insect.
Collapse
Affiliation(s)
- Mohammad Vatanparast
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Shabbir Ahmed
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Salvador Herrero
- Department of Genetics, Universitat de València, Dr Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
22
|
Nadalin S, Buretić-Tomljanović A. An association between the BanI polymorphism of the PLA2G4A gene for calcium-dependent phospholipase A2 and plasma glucose levels among females with schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2018; 135:39-41. [PMID: 30103930 DOI: 10.1016/j.plefa.2018.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/21/2022]
Abstract
Abnormal glucose and lipid metabolism may be associated with altered cytosolic Ca2+-dependent phospholipase A2 (cPLA2) signaling in patients with schizophrenia. The relationship between schizophrenia and the functional BanI polymorphism (rs10798059 variant, A/G polymorphism) of the PLA2G4A gene for cPLA2 has been extensively investigated. We previously reported that it can influence several clinical features of schizophrenia, and it was shown to contribute to schizophrenia risk in several population studies. We performed PCR/RFLP genotyping of 263 Croatian patients (males/females: 139/124) to investigate the relationship between the BanI polymorphism and fasting plasma glucose and lipid levels in patients with schizophrenia. Our results indicate that the BanI polymorphic variant contributes significantly to plasma glucose levels in female patients. Females carrying the PLA2G4A-G allele (PLA2G4A-GG homozygous and PLA2G4A-AG heterozygous) presented with lower glucose levels than PLA2G4A-AA homozygous carriers, and the PLA2G4A genotype contributed approximately 6% of plasma glucose level variability in this group of patients.
Collapse
Affiliation(s)
- Sergej Nadalin
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Braće Branchetta 20, 51 000 Rijeka, Croatia.
| | - Alena Buretić-Tomljanović
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Braće Branchetta 20, 51 000 Rijeka, Croatia
| |
Collapse
|
23
|
Selectivity of phospholipid hydrolysis by phospholipase A 2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:772-783. [PMID: 30010011 DOI: 10.1016/j.bbalip.2018.07.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
Abstract
Phospholipase A2s are enzymes that hydrolyze the fatty acid at the sn-2 position of the glycerol backbone of membrane glycerophospholipids. Given the asymmetric distribution of fatty acids within phospholipids, where saturated fatty acids tend to be present at the sn-1 position, and polyunsaturated fatty acids such as those of the omega-3 and omega-6 series overwhelmingly localize in the sn-2 position, the phospholipase A2 reaction is of utmost importance as a regulatory checkpoint for the mobilization of these fatty acids and the subsequent synthesis of proinflammatory omega-6-derived eicosanoids on one hand, and omega-3-derived specialized pro-resolving mediators on the other. The great variety of phospholipase A2s, their differential substrate selectivity under a variety of pathophysiological conditions, as well as the different compartmentalization of each enzyme and accessibility to substrate, render this class of enzymes also key to membrane phospholipid remodeling reactions, and the generation of specific lipid mediators not related with canonical metabolites of omega-6 or omega-3 fatty acids. This review highlights novel findings regarding the selective hydrolysis of phospholipids by phospholipase A2s and the influence this may have on the ability of these enzymes to generate distinct lipid mediators with essential functions in biological processes. This brings a new understanding of the cellular roles of these enzymes depending upon activation conditions.
Collapse
|
24
|
Wilson SK, Knoll LJ. Patatin-like phospholipases in microbial infections with emerging roles in fatty acid metabolism and immune regulation by Apicomplexa. Mol Microbiol 2017; 107:34-46. [PMID: 29090840 DOI: 10.1111/mmi.13871] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022]
Abstract
Emerging lipidomic technologies have enabled researchers to dissect the complex roles of phospholipases in lipid metabolism, cellular signaling and immune regulation. Host phospholipase products are involved in stimulating and resolving the inflammatory response to pathogens. While many pathogen-derived phospholipases also manipulate the immune response, they have recently been shown to be involved in lipid remodeling and scavenging during replication. Animal and plant hosts as well as many pathogens contain a family of patatin-like phospholipases, which have been shown to have phospholipase A2 activity. Proteins containing patatin-like phospholipase domains have been identified in protozoan parasites within the Apicomplexa phylum. These parasites are the causative agents of some of the most widespread human diseases. Malaria, caused by Plasmodium spp., kills nearly half a million people worldwide each year. Toxoplasma and Cryptosporidium infect millions of people each year with lethal consequences in immunocompromised populations. Parasite-derived patatin-like phospholipases are likely effective drug targets and progress in the tools available to the Apicomplexan field will allow for a closer look at the interplay of lipid metabolism and immune regulation during host infection.
Collapse
Affiliation(s)
- Sarah K Wilson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
25
|
Cytosolic Phospholipase A 2α Promotes Pulmonary Inflammation and Systemic Disease during Streptococcus pneumoniae Infection. Infect Immun 2017; 85:IAI.00280-17. [PMID: 28808157 DOI: 10.1128/iai.00280-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023] Open
Abstract
Pulmonary infection by Streptococcus pneumoniae is characterized by a robust alveolar infiltration of neutrophils (polymorphonuclear cells [PMNs]) that can promote systemic spread of the infection if not resolved. We previously showed that 12-lipoxygenase (12-LOX), which is required to generate the PMN chemoattractant hepoxilin A3 (HXA3) from arachidonic acid (AA), promotes acute pulmonary inflammation and systemic infection after lung challenge with S. pneumoniae As phospholipase A2 (PLA2) promotes the release of AA, we investigated the role of PLA2 in local and systemic disease during S. pneumoniae infection. The group IVA cytosolic isoform of PLA2 (cPLA2α) was activated upon S. pneumoniae infection of cultured lung epithelial cells and was critical for AA release from membrane phospholipids. Pharmacological inhibition of this enzyme blocked S. pneumoniae-induced PMN transepithelial migration in vitro Genetic ablation of the cPLA2 isoform cPLA2α dramatically reduced lung inflammation in mice upon high-dose pulmonary challenge with S. pneumoniae The cPLA2α-deficient mice also suffered no bacteremia and survived a pulmonary challenge that was lethal to wild-type mice. Our data suggest that cPLA2α plays a crucial role in eliciting pulmonary inflammation during pneumococcal infection and is required for lethal systemic infection following S. pneumoniae lung challenge.
Collapse
|
26
|
Bronia DH, Pereira BMI, Luján HD, Fretes RE, Fernández A, Paglini PA. Ganglioside treatment of acuteTrypanosoma cruziinfection in mice promotes long-term survival and parasitological cure. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1999.11813430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Yao M, Xie C, Kiang MY, Teng Y, Harman D, Tiffen J, Wang Q, Sved P, Bao S, Witting P, Holst J, Dong Q. Targeting of cytosolic phospholipase A2α impedes cell cycle re-entry of quiescent prostate cancer cells. Oncotarget 2016; 6:34458-74. [PMID: 26416244 PMCID: PMC4741466 DOI: 10.18632/oncotarget.5277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/14/2015] [Indexed: 11/25/2022] Open
Abstract
Cell cycle re-entry of quiescent cancer cells has been proposed to be involved in cancer progression and recurrence. Cytosolic phospholipase A2α (cPLA2α) is an enzyme that hydrolyzes membrane glycerophospholipids to release arachidonic acid and lysophospholipids that are implicated in cancer cell proliferation. The aim of this study was to determine the role of cPLA2α in cell cycle re-entry of quiescent prostate cancer cells. When PC-3 and LNCaP cells were rendered to a quiescent state, the active form of cPLA2α with a phosphorylation at Ser505 was lower compared to their proliferating state. Conversely, the phospho-cPLA2α levels were resurgent during the induction of cell cycle re-entry. Pharmacological inhibition of cPLA2α with Efipladib upon induction of cell cycle re-entry inhibited the re-entry process, as manifested by refrained DNA synthesis, persistent high proportion of cells in G0/G1 and low percentage of cells in S and G2/M phases, together with a stagnant recovery of Ki-67 expression. Simultaneously, Efipladib prohibited the emergence of Skp2 while maintained p27 at a high level in the nuclear compartment during cell cycle re-entry. Inhibition of cPLA2α also prevented an accumulation of cyclin D1/CDK4, cyclin E/CDK2, phospho-pRb, pre-replicative complex proteins CDC6, MCM7, ORC6 and DNA synthesis-related protein PCNA during induction of cell cycle re-entry. Moreover, a pre-treatment of the prostate cancer cells with Efipladib during induction of cell cycle re-entry subsequently compromised their tumorigenic capacity in vivo. Hence, cPLA2α plays an important role in cell cycle re-entry by quiescent prostate cancer cells.
Collapse
Affiliation(s)
- Mu Yao
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.,Central Clinical School and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chanlu Xie
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.,Central Clinical School and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Biomedical and Health Sciences, University of Western Sydney, Parramatta, NSW 2751, Australia
| | - Mei-Yee Kiang
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.,Central Clinical School and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ying Teng
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.,Central Clinical School and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - David Harman
- Molecular Medicine Research Group, University of Western Sydney, Parramatta, NSW 2751, Australia
| | - Jessamy Tiffen
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW 2050, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Qian Wang
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW 2050, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul Sved
- Department of Urology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Shisan Bao
- Department of Pathology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul Witting
- Department of Pathology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jeff Holst
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW 2050, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Qihan Dong
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.,Central Clinical School and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Biomedical and Health Sciences, University of Western Sydney, Parramatta, NSW 2751, Australia
| |
Collapse
|
28
|
Abstract
The molecular and cellular basis of inflammation has become a topic of great interest of late because of the association between mechanisms of inflammation and risk for cancer. Inflammatory-mediated events, such as the production of reactive oxygen species (ROS), the activation of growth factors (for wound repair), and the altering of signal-transduction processes to activate cell-proliferation (to replace necrotic/apoptotic tissue cells), events that also can occur independently of inflammation, are all considered to be components of risk for a variety of cancers. Using scar cancer of the lung as an example, mechanisms of inflammation associated with recurring infections with Mycobacterium tuberculosisare discussed in the context that they may, in fact, be the major or sole cause of a cancer. Production of ROS, prostaglandins, leukotrienes, and cytokines in pulmonary tissues is greatly enhanced due to a cell-mediated immune response against macrophages infected with M. tuberculosis. These responses lead to the extensive fibrosis associated with recurring infections, possibly leading to decreased clearance of lymph and lymph-associated particles from the infected region. They also will enhance rates of cell division by inhibiting synthesis of P21, leading to enhanced progression from G0 arrest to G1 phase, from G1 to Sphase, and from G2 to M phase of the cell cycle. By increasing rates of oxidative DNA damage and inhibiting apoptosis by enhancing synthesis of BCL-2, mutagenesis of progeny cells is enhanced, and these effects coupled with enhanced angiogenesis stimulated by COX-2 products lead to an environment that is highly conducive to tumorigenesis. Based on the evidence, it appears that but for an inflammatory response to recurring infections, some cases of scar cancer would not exist. By making appropriate lifestyle and dietary changes, a variety of anti-inflammatory effects can be produced, which should attenuate inflammation-induced risk for cancer.
Collapse
|
29
|
Farooqui AA, Ong WY, Horrocks LA, Farooqui T. Brain Cytosolic Phospholipase A2: Localization, Role, and Involvement in Neurological Diseases. Neuroscientist 2016. [DOI: 10.1177/107385840000600308] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytosolic phospholipase A2 (cPLA2) hydrolyzes the arachidonoyl group from the sn-2 position of glycerophospholipids generating arachidonic acid and lysophospholipids. The products of the cPLA2-catalyzed reaction act as second messengers themselves or further metabolize to eicosanoids, platelet activating factor, and lysophosphatidic acid. cPLA2 has not been purified from brain tissue. Immunocytochemical studies have indicated that cPLA2 is expressed in neurons and astrocytes. The hindbrain and spinal cord contain dense immunoreactivity for cPLA2. Activity and immunoreactivity of cPLA2 are markedly increased in ischemia, Alzheimer’s disease, and kainic acid neurotoxicity. This increase in cPLA2 activity and immunoreactivity is accompanied by marked alterations in neural membrane phospholipid composition and the accumulation of lipid peroxides and eicosanoids. At present, it is not known whether the increased activity and immunoreactivity of cPLA2 in neural trauma (e.g., in ischemia) and neurodegenerative disease (Alzheimer’s disease) is the cause or effect of neurodegeneration. Recent studies on the role of this enzyme in brain tissue suggest that cPLA2 may be involved in synaptic plasticity, generation of second messengers, axon regeneration, and neurodegeneration.
Collapse
Affiliation(s)
- Akhlaq A. Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio
| | - Wei Yi Ong
- Department of Anatomy, National University of Singapore, Singapore
| | - Lloyd A. Horrocks
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio,
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
30
|
Smani T, Domínguez-Rodriguez A, Callejo-García P, Rosado JA, Avila-Medina J. Phospholipase A2 as a Molecular Determinant of Store-Operated Calcium Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:111-31. [PMID: 27161227 DOI: 10.1007/978-3-319-26974-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activation of phospholipases A2 (PLA2) leads to the generation of biologically active lipid products that can affect numerous cellular events. Ca(2+)-independent PLA2 (iPLA2), also called group VI phospholipase A2, is one of the main types forming the superfamily of PLA2. Beside of its role in phospholipid remodeling, iPLA2 has been involved in intracellular Ca(2+) homeostasis regulation. Several studies proposed iPLA2 as an essential molecular player of store operated Ca(2+) entry (SOCE) in a large number of excitable and non-excitable cells. iPLA2 activation releases lysophosphatidyl products, which were suggested as agonists of store operated calcium channels (SOCC) and other TRP channels. Herein, we will review the important role of iPLA2 on the intracellular Ca(2+) handling focusing on its role in SOCE regulation and its implication in physiological and/or pathological processes.
Collapse
Affiliation(s)
- Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain.
| | - Alejandro Domínguez-Rodriguez
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Paula Callejo-García
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain
| | - Javier Avila-Medina
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| |
Collapse
|
31
|
Park Y, Kumar S, Kanumuri R, Stanley D, Kim Y. A novel calcium-independent cellular PLA2 acts in insect immunity and larval growth. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:13-23. [PMID: 26429672 DOI: 10.1016/j.ibmb.2015.09.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
Phospholipase A2 (PLA2) catalyzes the position-specific hydrolysis of fatty acids linked to the sn-2 position of phospholipids (PLs). PLA2s make up a very large superfamily, with more than known 15 groups, classified into secretory PLA2 (sPLA2), Ca(2+)-dependent cellular PLA2 (sPLA2) and Ca(2+)-independent cellular PLA2 (iPLA2). Only a few insect sPLA2s, expressed in venom glands and immune tissues, have been characterized at the molecular level. This study aimed to test our hypothesis that insects express iPLA2, using the beet armyworm, Spodoptera exigua, our model insect. Substantial PLA2 activities under calcium-free condition were recorded in several larval tissue preparations. The PLA2 activity was significantly reduced in reactions conducted in the presence of a specific iPLA2 inhibitor, bromoenol lactone (BEL). Analysis of a S. exigua hemocyte transcriptome identified a candidate iPLA2 gene (SeiPLA2-A). The open reading frame encoded 816 amino acid residues with a predicted molecular weight of 90.5 kDa and 6.15 pI value. Our phylogenetic analysis clustered SeiPLA2-A with the other vertebrate iPLA2s. SeiPLA2-A was expressed in all tissues we examined, including hemocytes, fat body, midgut, salivary glands, Malpighian tubules and epidermis. Heterologous expression in Sf9 cells indicated that SeiPLA2-A was localized in cytoplasm and exhibited significant PLA2 activity, which was independent of Ca(2+) and inhibited by BEL. RNA interference (RNAi) of SeiPLA2-A using its specific dsRNA in the fifth instar larvae significantly suppressed iPLA2 expression and enzyme activity. dsSeiPLA2-A-treated larvae exhibited significant loss of cellular immune response, measured as nodule formation in response to bacterial challenge, and extended larval-to-pupal developmental time. These results support our hypothesis, showing that SeiPLA2-A predicted from the transcriptome analysis catalyzes hydrolysis of fatty acids from cellular PLs and plays crucial physiological roles in insect immunity and larval growth.
Collapse
Affiliation(s)
- Youngjin Park
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - Sunil Kumar
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - Rahul Kanumuri
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - David Stanley
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, 1503 Providence Rd., Columbia, MO 65203, USA
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea.
| |
Collapse
|
32
|
Mruwat R, Kivity S, Landsberg R, Yedgar S, Langier S. Phospholipase A2-dependent Release of Inflammatory Cytokines by Superantigen-Stimulated Nasal Polyps of Patients with Chronic Rhinosinusitis. Am J Rhinol Allergy 2015; 29:e122-8. [DOI: 10.2500/ajra.2015.29.4224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Chronic rhinosinusitis (CRS) is an inflammatory/allergic disease with unclear pathophysiology, but it has been linked to an imbalance in the production of eicosanoids, which are metabolites of arachidonic acid, and results from phospholipids hydrolysis by phospholipase A2 (PLA2). As of yet, the role of PLA2 in CRS has hardly been studied, except for a report that group II PLA2 expression is elevated in interleukin (IL) 1β or tumor necrosis factor α-stimulated CRS nasal tissues with and without polyps. The PLA2 families include extracellular (secretory) and intracellular isoforms, which are involved in the regulation of inflammatory processes in different ways. Here we comprehensively investigated the expression of PLA2s, particularly those reported to be involved in respiratory disorders, in superantigen (SAE)-stimulated nasal polyps from patients with CRS with polyps, and determined their role in inflammatory cytokine production by inhibition of PLA2 expression. Methods The release of IL-5, IL-13, IL-17, and interferon γ by nasal polyps dispersed cells (NPDC) was determined concomitantly with PLA2 messenger RNA expression, under SAE stimulation, with or without dexamethasone, as a regulator of PLA2 expression. Results Stimulation of NPDCs by SAE-induced cytokine secretion with enhanced expression of several secretory PLA2 and Ca2+-independent PLA2, while suppressing cytosolic PLA2 expression. All these were reverted to the level of unstimulated NPDCs on treatment with dexamethasone. Conclusion This study further supports the key role of secretory PLA2 in the pathophysiology of respiratory disorders and presents secretory PLA2 inhibition as a therapeutic strategy for the treatment of CRS and airway pathologies in general.
Collapse
Affiliation(s)
- Rufayda Mruwat
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Roee Landsberg
- Ear Nose and Throat Department, Tel Aviv Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, lsrael
| | - Saul Yedgar
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
33
|
Tan CSH, Ng YK, Ong WY. Epigenetic Regulation of Cytosolic Phospholipase A2 in SH-SY5Y Human Neuroblastoma Cells. Mol Neurobiol 2015; 53:3854-3872. [PMID: 26162318 DOI: 10.1007/s12035-015-9314-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/23/2015] [Indexed: 12/19/2022]
Abstract
Group IVA cytosolic phospholipase A2 (cPLA2 or PLA2G4A) is a key enzyme that contributes to inflammation via the generation of arachidonic acid and eicosanoids. While much is known about regulation of cPLA2 by posttranslational modification such as phosphorylation, little is known about its epigenetic regulation. In this study, treatment with histone deacetylase (HDAC) inhibitors, trichostatin A (TSA), valproic acid, tubacin and the class I HDAC inhibitor, MS-275, were found to increase cPLA2α messenger RNA (mRNA) expression in SH-SY5Y human neuroblastoma cells. Co-treatment of the histone acetyltransferase (HAT) inhibitor, anacardic acid, modulated upregulation of cPLA2α induced by TSA. Specific involvement of class I HDACs and HAT in cPLA2α regulation was further shown, and a Tip60-specific HAT inhibitor, NU9056, modulated the upregulation of cPLA2α induced by MS-275. In addition, co-treatment of with histone methyltransferase (HMT) inhibitor, 5'-deoxy-5'-methylthioadenosine (MTA) suppressed TSA-induced cPLA2α upregulation. The above changes in cPLA2 mRNA expression were reflected at the protein level by Western blots and immunocytochemistry. Chromatin immunoprecipitation (ChIP) showed TSA increased binding of trimethylated H3K4 to the proximal promoter region of the cPLA2α gene. Cell injury after TSA treatment as indicated by lactate dehydrogenase (LDH) release was modulated by anacardic acid, and a role of cPLA2 in mediating TSA-induced injury shown, after co-incubation with the cPLA2 selective inhibitor, arachidonoyl trifluoromethyl ketone (AACOCF3). Together, results indicate epigenetic regulation of cPLA2 and the potential of such regulation for treatment of chronic inflammation.
Collapse
Affiliation(s)
- Charlene Siew-Hon Tan
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Yee-Kong Ng
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore. .,Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
34
|
Lê QH, El Alaoui M, Véricel E, Ségrestin B, Soulère L, Guichardant M, Lagarde M, Moulin P, Calzada C. Glycoxidized HDL, HDL enriched with oxidized phospholipids and HDL from diabetic patients inhibit platelet function. J Clin Endocrinol Metab 2015; 100:2006-14. [PMID: 25794249 PMCID: PMC4803888 DOI: 10.1210/jc.2014-4214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CONTEXT High-density lipoproteins (HDL) possess atheroprotective properties including anti-thrombotic and antioxidant effects. Very few studies relate to the functional effects of oxidized HDL on platelets in type 2 diabetes (T2D). OBJECTIVE The objective of our study was to investigate the effects of in vitro glycoxidized HDL and HDL from patients with T2D on platelet aggregation and arachidonic acid signaling cascade. At the same time, the contents of hydroxylated fatty acids were assessed in HDL. RESULTS Compared with control HDL, in vitro glycoxidized HDL had decreased proportions of linoleic (LA) and arachidonic (AA) acids in phospholipids and cholesteryl esters, and increased concentrations of hydroxy-octadecadienoic acids (9-HODE and 13-HODE) and 15-hydroxy-eicosatetraenoic acid (15-HETE), derived from LA and AA respectively, especially hydroxy derivatives esterified in phospholipids. Glycoxidized HDL dose-dependently decreased collagen-induced platelet aggregation by binding to scavenger receptor BI (SR-BI). Glycoxidized HDL prevented collagen-induced increased phosphorylation of platelet p38 MAPK and cytosolic phospholipase A2, as well as intracellular calcium mobilization. HDL enriched with oxidized phosphatidylcholine (PC), namely PC(16:0/13-HODE) dose-dependently inhibited platelet aggregation. Increased concentrations of 9-HODE, 13-HODE, and 15-HETE in phospholipids (2.1-, 2.1-, and 2.4-fold increase, respectively) were found in HDL from patients with T2D, and these HDL also inhibited platelet aggregation via SR-BI. CONCLUSIONS Our results suggest that in vitro glycoxidized HDL as well as HDL from patients with T2D inhibit platelet aggregation, and suggest that oxidized LA-containing phospholipids may contribute to the anti-aggregatory effects of glycoxidized HDL and HDL from patients with T2D.
Collapse
Affiliation(s)
- Quang Huy Lê
- CARMEN, Laboratoire de recherche en cardiovasculaire, métabolisme, diabétologie et nutrition
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonInstitut national de la recherche agronomique (INRA)INSERMHospices Civils de LyonFaculté de Médecine Lyon Sud - BP 12 - 165 Chemin du Grand Revoyet - 69921 Oullins cedex INSA, Bâtiment. IMBL, La Doua - 11 Avenue Jean Capelle - 69621 Villeurbanne Cedex
| | - Meddy El Alaoui
- ICBMS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonÉcole Supérieure Chimie Physique Électronique de LyonCentre National de la Recherche ScientifiqueBâtiment CPE 43 Boulvard du 11 Novembre 1918 69622 Villeurbanne Cedex
| | - Evelyne Véricel
- CARMEN, Laboratoire de recherche en cardiovasculaire, métabolisme, diabétologie et nutrition
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonInstitut national de la recherche agronomique (INRA)INSERMHospices Civils de LyonFaculté de Médecine Lyon Sud - BP 12 - 165 Chemin du Grand Revoyet - 69921 Oullins cedex INSA, Bâtiment. IMBL, La Doua - 11 Avenue Jean Capelle - 69621 Villeurbanne Cedex
| | | | - Laurent Soulère
- ICBMS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonÉcole Supérieure Chimie Physique Électronique de LyonCentre National de la Recherche ScientifiqueBâtiment CPE 43 Boulvard du 11 Novembre 1918 69622 Villeurbanne Cedex
| | - Michel Guichardant
- CARMEN, Laboratoire de recherche en cardiovasculaire, métabolisme, diabétologie et nutrition
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonInstitut national de la recherche agronomique (INRA)INSERMHospices Civils de LyonFaculté de Médecine Lyon Sud - BP 12 - 165 Chemin du Grand Revoyet - 69921 Oullins cedex INSA, Bâtiment. IMBL, La Doua - 11 Avenue Jean Capelle - 69621 Villeurbanne Cedex
| | - Michel Lagarde
- CARMEN, Laboratoire de recherche en cardiovasculaire, métabolisme, diabétologie et nutrition
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonInstitut national de la recherche agronomique (INRA)INSERMHospices Civils de LyonFaculté de Médecine Lyon Sud - BP 12 - 165 Chemin du Grand Revoyet - 69921 Oullins cedex INSA, Bâtiment. IMBL, La Doua - 11 Avenue Jean Capelle - 69621 Villeurbanne Cedex
| | - Philippe Moulin
- CARMEN, Laboratoire de recherche en cardiovasculaire, métabolisme, diabétologie et nutrition
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonInstitut national de la recherche agronomique (INRA)INSERMHospices Civils de LyonFaculté de Médecine Lyon Sud - BP 12 - 165 Chemin du Grand Revoyet - 69921 Oullins cedex INSA, Bâtiment. IMBL, La Doua - 11 Avenue Jean Capelle - 69621 Villeurbanne Cedex
- Fédération d'Endocrinologie
Hospices Civils de Lyon69677 Lyon Bron
| | - Catherine Calzada
- CARMEN, Laboratoire de recherche en cardiovasculaire, métabolisme, diabétologie et nutrition
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonInstitut national de la recherche agronomique (INRA)INSERMHospices Civils de LyonFaculté de Médecine Lyon Sud - BP 12 - 165 Chemin du Grand Revoyet - 69921 Oullins cedex INSA, Bâtiment. IMBL, La Doua - 11 Avenue Jean Capelle - 69621 Villeurbanne Cedex
- * Correspondence should be addressed to Catherine Calzada
| |
Collapse
|
35
|
Grandits M, Oostenbrink C. Selectivity of cytosolic phospholipase A2 type IV toward arachidonyl phospholipids. J Mol Recognit 2015; 28:447-57. [PMID: 25703463 DOI: 10.1002/jmr.2462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 11/06/2022]
Abstract
Cytosolic phospholipase A2 (cPLA2 ) is an interesting protein involved in inflammatory processes and various diseases. Its catalytic mechanism as well as its substrate specificity for arachidonyl phospholipids is not typical for other phospolipases. Furthermore, a lid structure, which ensures a hydrophilic surface of the protein without any substrate bound and the movement of this flexible loop to make the hydrophobic active site accessible, is of high interest. Therefore, the focus of this work was to determine the binding mode of cPLA2 with various substrates, such as arachidonic acid, a synthetic inhibitor, a saturated phospholipid, and most importantly an arachidonyl phospholipid. To understand the selectivity of the protein toward the arachidonyl phospholipid and the interaction in a protein-ligand complex, molecular dynamics simulations were performed using the GROMOS suite of simulation programs. The simulations provide insight into the protein and showed that selective binding of arachidonyl phospholipids is because of the shape of the sn-2 tail. The amino acids Asn555 and Ala578 are involved in the strongest interactions observed in the protein-ligand complexes.
Collapse
Affiliation(s)
- Melanie Grandits
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
36
|
Nemenoff R, Gijon M. Inflammation and Lung Cancer: Eicosanoids. INFLAMMATION AND LUNG CANCER 2015:161-189. [DOI: 10.1007/978-1-4939-2724-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
37
|
Cross-talk between p(38)MAPK and G iα in regulating cPLA 2 activity by ET-1 in pulmonary smooth muscle cells. Mol Cell Biochem 2014; 400:107-23. [PMID: 25399298 DOI: 10.1007/s11010-014-2267-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
Endothelin-1 (ET-1) is known as the most potent vasoconstrictor yet described. Infusion of ET-1 into isolated rabbit lung has been shown to cause pulmonary vasoconstriction with the involvement of arachidonic acid metabolites. Given the potency of arachidonic acid metabolites, the activity of phospholipase A2 must be tightly regulated. Herein, we determined the mechanisms by which ET-1 stimulates cPLA2 activity during ET-1 stimulation of bovine pulmonary artery smooth muscle cells. We demonstrated that (i) treatment of bovine pulmonary artery smooth muscle cells with ET-1 stimulates cPLA2 activity in the cell membrane; (ii) ET-1 caused increase in O 2 (·-) production occurs via NADPH oxidase-dependent mechanism; (iii) ET-1-stimulated NADPH oxidase activity is markedly prevented upon pretreatment with PKC-ζ inhibitor, indicating that PKC-ζ plays a prominent role in this scenario; (iv) ET-1-induced NADPH oxidase-derived O 2 (·-) stimulates an aprotinin sensitive protease activity due to prominent increase in [Ca(2+)]i; (v) the aprotinin sensitive protease plays a pivotal role in activating PKC-α, which in turn phosphorylates p(38)MAPK and subsequently Giα leading to the activation of cPLA2. Taken together, we suggest that cross-talk between p(38)MAPK and Giα with the involvement of PKC-ζ, NADPH oxidase-derived O 2 (·-) , [Ca(2+)]i, aprotinin-sensitive protease and PKC-α play a pivotal role for full activation of cPLA2 during ET-1 stimulation of pulmonary artery smooth muscle cells.
Collapse
|
38
|
Zhao L, Grosser T, Fries S, Kadakia L, Wang H, Zhao J, Falotico R. Lipoxygenase and prostaglandin G/H synthase cascades in cardiovascular disease. Expert Rev Clin Immunol 2014; 2:649-58. [DOI: 10.1586/1744666x.2.4.649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Sisignano M, Bennett DLH, Geisslinger G, Scholich K. TRP-channels as key integrators of lipid pathways in nociceptive neurons. Prog Lipid Res 2013; 53:93-107. [PMID: 24287369 DOI: 10.1016/j.plipres.2013.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 12/22/2022]
Abstract
TRP-channels are the most prominent family of ligand-gated ion channels for pain perception. In sensory neurons, TRPV1-V4, TRPA1 and TRPM8 are expressed and are responsible for the conversion of external stimuli to painful sensations. Under pathophysiological conditions, excessive activity of TRP-channels leads to mechanical allodynia and thermal hyperalgesia. Among the endogenous TRP-channel sensitizers, activators and inhibitors, more than 50 arachidonic acid- and linoleic acid-metabolites from the COX-, LOX- and CYP-pathways, as well as lysophospholipids and isoprenoids can be found. As a consequence, these lipids represent the vast majority of endogenous TRP-channel modulators in sensory neurons. Although the precise mechanisms of TRP-channel modulation by most lipids are still unknown, it became clear that lipids can either bind directly to the target TRP-channel or modulate TRP-channels indirectly by activating G-protein coupled receptors. Thus, TRP-channels seem to be key sensors for lipids, integrating and interpreting incoming signals from the different metabolic lipid pathways. Here, we discuss the specific properties of the currently known endogenous lipid-derived TRP-channel modulators concerning their ability to activate or inhibit TRP-channels, the molecular mechanisms of lipid/TRP-channel interactions and specific TRP-regulatory characteristics of the individual lipid families.
Collapse
Affiliation(s)
- Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of the Goethe-University, D-60590 Frankfurt am Main, Germany
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of the Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of the Goethe-University, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
40
|
Mruwat R, Yedgar S, Lavon I, Ariel A, Krimsky M, Shoseyov D. Phospholipase A2 in experimental allergic bronchitis: a lesson from mouse and rat models. PLoS One 2013; 8:e76641. [PMID: 24204651 PMCID: PMC3812210 DOI: 10.1371/journal.pone.0076641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/21/2013] [Indexed: 11/26/2022] Open
Abstract
Background Phospholipases A2 (PLA2) hydrolyzes phospholipids, initiating the production of inflammatory lipid mediators. We have previously shown that in rats, sPLA2 and cPLA2 play opposing roles in the pathophysiology of ovalbumin (OVA)-induced experimental allergic bronchitis (OVA-EAB), an asthma model: Upon disease induction sPLA2 expression and production of the broncho-constricting CysLTs are elevated, whereas cPLA2 expression and the broncho-dilating PGE2 production are suppressed. These were reversed upon disease amelioration by treatment with an sPLA2 inhibitor. However, studies in mice reported the involvement of both sPLA2 and cPLA2 in EAB induction. Objectives To examine the relevance of mouse and rat models to understanding asthma pathophysiology. Methods OVA-EAB was induced in mice using the same methodology applied in rats. Disease and biochemical markers in mice were compared with those in rats. Results As in rats, EAB in mice was associated with increased mRNA of sPLA2, specifically sPLA2gX, in the lungs, and production of the broncho-constricting eicosanoids CysLTs, PGD2 and TBX2 in bronchoalveolar lavage (BAL). In contrast, EAB in mice was associated also with elevated cPLA2 mRNA and PGE2 production. Yet, treatment with an sPLA2 inhibitor ameliorated the EAB concomitantly with reverting the expression of both cPLA2 and sPLA2, and eicosanoid production. Conclusions In both mice and rats sPLA2 is pivotal in OVA-induced EAB. Yet, amelioration of asthma markers in mouse models, and human tissues, was observed also upon cPLA2 inhibition. It is plausible that airway conditions, involving multiple cell types and organs, require the combined action of more than one, essential, PLA2s.
Collapse
MESH Headings
- Animals
- Arachidonate 5-Lipoxygenase/immunology
- Arachidonate 5-Lipoxygenase/metabolism
- Arginase/genetics
- Arginase/immunology
- Arginase/metabolism
- Asthma/genetics
- Asthma/immunology
- Asthma/metabolism
- Blotting, Western
- Bronchitis/genetics
- Bronchitis/immunology
- Bronchitis/metabolism
- Bronchoalveolar Lavage Fluid/chemistry
- Bronchoalveolar Lavage Fluid/immunology
- Chitinases/genetics
- Chitinases/immunology
- Chitinases/metabolism
- Cysteine/immunology
- Cysteine/metabolism
- Dinoprostone/immunology
- Dinoprostone/metabolism
- Disease Models, Animal
- Female
- Group X Phospholipases A2/genetics
- Group X Phospholipases A2/immunology
- Group X Phospholipases A2/metabolism
- Humans
- Leukotrienes/immunology
- Leukotrienes/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Inbred BALB C
- Ovalbumin/immunology
- Phospholipases A2, Cytosolic/genetics
- Phospholipases A2, Cytosolic/immunology
- Phospholipases A2, Cytosolic/metabolism
- Phospholipases A2, Secretory/genetics
- Phospholipases A2, Secretory/immunology
- Phospholipases A2, Secretory/metabolism
- Prostaglandin D2/immunology
- Prostaglandin D2/metabolism
- Rats
- Receptors, Leukotriene/immunology
- Receptors, Leukotriene/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- T-Box Domain Proteins/immunology
- T-Box Domain Proteins/metabolism
Collapse
Affiliation(s)
- Rufayda Mruwat
- Department of Biochemistry, Hebrew University Medical School, Jerusalem, Israel
| | - Saul Yedgar
- Department of Biochemistry, Hebrew University Medical School, Jerusalem, Israel
- * E-mail:
| | - Iris Lavon
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
| | - Amiram Ariel
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Miron Krimsky
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
- Pediatric Department, Hadassah University Hospital, Jerusalem, Israel
| | - David Shoseyov
- Pediatric Department, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
41
|
Lu Y, Son JK, Chang HW. Saucerneol F, a New Lignan Isolated from Saururus chinensis, Attenuates Degranulation via Phospholipase Cγ 1 Inhibition and Eicosanoid Generation by Suppressing MAP Kinases in Mast Cells. Biomol Ther (Seoul) 2013; 20:526-31. [PMID: 24009845 PMCID: PMC3762291 DOI: 10.4062/biomolther.2012.20.6.526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 09/18/2012] [Accepted: 10/15/2012] [Indexed: 11/10/2022] Open
Abstract
During our on-going studies to identify bioactive compounds in medicinal herbs, we found that saucerneol F (SF), a naturally occurring sesquilignan isolated from Saururus chinensis (S. chinensis), showed in vitro anti-inflammatory activity. In this study, we examined the effects of SF on the generation of 5-lipoxygenase (5-LO) dependent leukotriene C4 (LTC4), cyclooxygenase-2 (COX-2) dependent prostaglandin D2 (PGD2), and on phospholipase Cγ1 (PLCγ1)-mediated degranulation in SCF-induced mouse bone marrow-derived mast cells (BMMCs). SF inhibited eicosanoid (PGD2 and LTC4) generation and degranulation dose-dependently. To identify the molecular mechanisms underlying the inhibition of eicosanoid generation and degranulation by SF, we examined the effects of SF on the phosphorylation of PLCγ1, intracellular Ca2+ influx, the translocation of cytosolic phospholipase A2 (cPLA2) and 5-LO, and on the phosphorylation of MAP kinases (MAPKs). SF was found to reduce intracellular Ca2+ influx by inhibiting PLCγ1 phosphorylation and suppressing the nuclear translocations of cPLA2 and 5-LO via the phosphorylations of MAPKs, including extracellular signal-regulated protein kinase-1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Taken together, these results suggest that SF may be useful for regulating mast cell-mediated inflammatory responses by inhibiting degranulation and eicosanoid generation.
Collapse
Affiliation(s)
- Yue Lu
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | | | | |
Collapse
|
42
|
Young W, Roy NC, Lee J, Lawley B, Otter D, Henderson G, Tannock GW. Bowel microbiota moderate host physiological responses to dietary konjac in weanling rats. J Nutr 2013; 143:1052-60. [PMID: 23700349 DOI: 10.3945/jn.113.174854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diets rich in complex carbohydrates that resist digestion in the small bowel can alter large bowel ecology and microbiota biochemistry because the carbohydrates become substrates for bacterial growth and metabolism. Conventional or germ-free weanling rats were fed a control diet or diets containing 1.25, 2.5, or 5% konjac (KJ), a commonly used ingredient in Asian foods, for 28 d. In the absence of bowel microbiota, 5% KJ elicited a significant increase in colonic goblet cell numbers and increased expression of mast cell protease genes and of genes that were overrepresented in the KEGG pathway "Metabolism of xenobiotics by cytochrome P450" relative to the control diet. In contrast, feeding 5% KJ caused few changes in mucosal gene expression in conventional rats. Analysis of the colonic microbiota of conventional rats fed KJ showed modest increases in the proportions of Actinobacteria and Bacteroidetes relative to rats fed the control diet, with a concomitant reduction in Firmicutes, which included a 50% reduction in Lactobacillus abundance. Colonic concentrations of short-chain fatty acids and colonic crypt lengths were increased by feeding KJ. Goblet cell numbers were greater in conventional rats fed KJ relative to the control diet but were lower compared with germ-free animals. Serum metabolite profiles were different in germ-free and conventional rats. Metabolites that differed in concentration included several phospholipids, a bile acid metabolite, and an intermediate product of tryptophan metabolism. Overall, KJ in the diet was potentially damaging to the bowel mucosa and produced a protective response from the host. This response was reduced by the presence of the bowel microbiota, which therefore ameliorated potentially detrimental effects of dietary KJ.
Collapse
Affiliation(s)
- Wayne Young
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
43
|
Expression of sPLA2-V, estrogen and its target protein in myocardium tissue. Int J Biol Macromol 2013; 58:176-8. [DOI: 10.1016/j.ijbiomac.2013.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/16/2013] [Accepted: 03/29/2013] [Indexed: 11/21/2022]
|
44
|
Mietla JA, Wijesinghe DS, Hoeferlin LA, Shultz MD, Natarajan R, Fowler AA, Chalfant CE. Characterization of eicosanoid synthesis in a genetic ablation model of ceramide kinase. J Lipid Res 2013; 54:1834-47. [PMID: 23576683 DOI: 10.1194/jlr.m035683] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Multiple reports have demonstrated a role for ceramide kinase (CERK) in the production of eicosanoids. To examine the effects of the genetic ablation of CERK on eicosanoid synthesis, primary mouse embryonic fibroblasts (MEFs) and macrophages were isolated from CERK(-/-) and CERK(+/+) mice, and the ceramide-1-phosphate (C1P) and eicosanoid profiles were investigated. Significant decreases were observed in multiple C1P subspecies in CERK-/- cells as compared to CERK(+/+) cells with overall 24% and 48% decreases in total C1P. In baseline experiments, the levels of multiple eicosanoids were significantly lower in the CERK(-/-) cells compared with wild-type cells. Importantly, induction of eicosanoid synthesis by calcium ionophore was significantly reduced in the CERK(-/-) MEFs. Our studies also demonstrate that the CERK(-/-) mouse has adapted to loss of CERK in regards to airway hyper-responsiveness as compared with CERK siRNA treatment. Overall, we demonstrate that there are significant differences in eicosanoid levels in ex vivo CERK(-/-) cells compared with wild-type counterparts, but the effect of the genetic ablation of CERK on eicosanoid synthesis and the serum levels of C1P was not apparent in vivo.
Collapse
Affiliation(s)
- Jennifer A Mietla
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Consequences of essential fatty acids. Nutrients 2012; 4:1338-57. [PMID: 23112921 PMCID: PMC3475243 DOI: 10.3390/nu4091338] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/18/2012] [Accepted: 09/13/2012] [Indexed: 12/17/2022] Open
Abstract
Essential fatty acids (EFA) are nutrients that form an amazingly large array of bioactive mediators that act on a large family of selective receptors. Nearly every cell and tissue in the human body expresses at least one of these receptors, allowing EFA-based signaling to influence nearly every aspect of human physiology. In this way, the health consequences of specific gene-environment interactions with these nutrients are more extensive than often recognized. The metabolic transformations have similar competitive dynamics for the n-3 and n-6 homologs when converting dietary EFA from the external environment of foods into the highly unsaturated fatty acid (HUFA) esters that accumulate in the internal environment of cells and tissues. In contrast, the formation and action of bioactive mediators during tissue responses to stimuli tend to selectively create more intense consequences for n-6 than n-3 homologs. Both n-3 and n-6 nutrients have beneficial actions, but many common health disorders are undesired consequences of excessive actions of tissue n-6 HUFA which are preventable. This review considers the possibility of preventing imbalances in dietary n-3 and n-6 nutrients with informed voluntary food choices. That action may prevent the unintended consequences that come from eating imbalanced diets which support excessive chronic actions of n-6 mediators that harm human health. The consequences from preventing n-3 and n-6 nutrient imbalances on a nationwide scale may be very large, and they need careful evaluation and implementation to avoid further harmful consequences for the national economy.
Collapse
|
46
|
Last V, Williams A, Werling D. Inhibition of cytosolic Phospholipase A2 prevents prion peptide-induced neuronal damage and co-localisation with Beta III Tubulin. BMC Neurosci 2012; 13:106. [PMID: 22928663 PMCID: PMC3496594 DOI: 10.1186/1471-2202-13-106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 08/21/2012] [Indexed: 11/10/2022] Open
Abstract
Background Activation of phospholipase A2 (PLA2) and the subsequent metabolism of arachidonic acid (AA) to prostaglandins have been shown to play an important role in neuronal death in neurodegenerative disease. Here we report the effects of the prion peptide fragment HuPrP106-126 on the PLA2 cascade in primary cortical neurons and translocation of cPLA2 to neurites. Results Exposure of primary cortical neurons to HuPrP106-126 increased the levels of phosphorylated cPLA2 and caused phosphorylated cPLA2 to relocate from the cell body to the cellular neurite in a PrP-dependent manner, a previously unreported observation. HuPrP106-126 also induced significant AA release, an indicator of cPLA2 activation; this preceded synapse damage and subsequent cellular death. The novel translocation of p-cPLA2 postulated the potential for exposure to HuPrP106-126 to result in a re-arrangement of the cellular cytoskeleton. However p-cPLA2 did not colocalise significantly with F-actin, intermediate filaments, or microtubule-associated proteins. Conversely, p-cPLA2 did significantly colocalise with the cytoskeletal protein beta III tubulin. Pre-treatment with the PLA2 inhibitor, palmitoyl trifluoromethyl ketone (PACOCF3) reduced cPLA2 activation, AA release and damage to the neuronal synapse. Furthermore, PACOCF3 reduced expression of p-cPLA2 in neurites and inhibited colocalisation with beta III tubulin, resulting in protection against PrP-induced cell death. Conclusions Collectively, these findings suggest that cPLA2 plays a vital role in the action of HuPrP106-126 and that the colocalisation of p-cPLA2 with beta III tubulin could be central to the progress of neurodegeneration caused by prion peptides. Further work is needed to define exactly how PLA2 inhibitors protect neurons from peptide-induced toxicity and how this relates to intracellular structural changes occurring in neurodegeneration.
Collapse
Affiliation(s)
- Victoria Last
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, UK.
| | | | | |
Collapse
|
47
|
Halova I, Draberova L, Draber P. Mast cell chemotaxis - chemoattractants and signaling pathways. Front Immunol 2012; 3:119. [PMID: 22654878 PMCID: PMC3360162 DOI: 10.3389/fimmu.2012.00119] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/24/2012] [Indexed: 01/09/2023] Open
Abstract
Migration of mast cells is essential for their recruitment within target tissues where they play an important role in innate and adaptive immune responses. These processes rely on the ability of mast cells to recognize appropriate chemotactic stimuli and react to them by a chemotactic response. Another level of intercellular communication is attained by production of chemoattractants by activated mast cells, which results in accumulation of mast cells and other hematopoietic cells at the sites of inflammation. Mast cells express numerous surface receptors for various ligands with properties of potent chemoattractants. They include the stem cell factor (SCF) recognized by c-Kit, antigen, which binds to immunoglobulin E (IgE) anchored to the high affinity IgE receptor (FcεRI), highly cytokinergic (HC) IgE recognized by FcεRI, lipid mediator sphingosine-1-phosphate (S1P), which binds to G protein-coupled receptors (GPCRs). Other large groups of chemoattractants are eicosanoids [prostaglandin E2 and D2, leukotriene (LT) B4, LTD4, and LTC4, and others] and chemokines (CC, CXC, C, and CX3C), which also bind to various GPCRs. Further noteworthy chemoattractants are isoforms of transforming growth factor (TGF) β1–3, which are sensitively recognized by TGF-β serine/threonine type I and II β receptors, adenosine, C1q, C3a, and C5a components of the complement, 5-hydroxytryptamine, neuroendocrine peptide catestatin, tumor necrosis factor-α, and others. Here we discuss the major types of chemoattractants recognized by mast cells, their target receptors, as well as signaling pathways they utilize. We also briefly deal with methods used for studies of mast cell chemotaxis and with ways of how these studies profited from the results obtained in other cellular systems.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | | | | |
Collapse
|
48
|
Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling. Proc Natl Acad Sci U S A 2012; 109:8517-22. [PMID: 22586114 DOI: 10.1073/pnas.1200189109] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dietary fish oil containing ω3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), elicit cardioprotective and anti-inflammatory effects through unresolved mechanisms that may involve competition and inhibition at multiple levels. Here, we report the effects of arachidonic acid (AA), EPA, and DHA supplementation on membrane incorporation, phospholipase A(2) catalyzed release, and eicosanoid production in RAW264.7 macrophages. Using a targeted lipidomics approach, we observed that Toll-like receptor 4 and purinergic receptor activation of supplemented cells leads to the release of 22-carbon fatty acids that potently inhibit cyclooxygenase pathways. This inhibition was able to shunt metabolism of AA to lipoxygenase pathways, augmenting leukotriene and other lipoxygenase mediator synthesis. In resident peritoneal macrophages, docosapentaenoic acid (DPA) was responsible for cyclooxygenase inhibition after EPA supplementation, offering fresh insights into how EPA exerts anti-inflammatory effects indirectly through elongation to 22-carbon DPA.
Collapse
|
49
|
Chakraborti S, Roy S, Mandal A, Dey K, Chowdhury A, Shaikh S, Chakraborti T. Role of PKCα-p(38)MAPK-G(i)α axis in NADPH oxidase derived O(2)(·-)-mediated activation of cPLA(2) under U46619 stimulation in pulmonary artery smooth muscle cells. Arch Biochem Biophys 2012; 523:169-80. [PMID: 22568895 DOI: 10.1016/j.abb.2012.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/29/2012] [Accepted: 04/18/2012] [Indexed: 12/30/2022]
Abstract
We have recently reported that treatment of bovine pulmonary artery smooth muscle cells with the thromboxane A(2) mimetic, U46619 stimulated NADPH oxidase derived O(2)(·-) level, which subsequently caused marked increase in [Ca(2+)](i)[17]. Herein, we demonstrated that O(2)(·-)-mediated increase in [Ca(2+)](i) stimulates an aprotinin sensitive proteinase activity, which proteolytically activates PKC-α under U46619 treatment to the cells. The activated PKC-α then phosphorylates p(38)MAPK and that subsequently caused G(i)α phosphorylation leading to stimulation of cPLA(2) activity in the cell membrane.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Biomimetic Materials/pharmacology
- Calcium/metabolism
- Cattle
- Cell Membrane/drug effects
- Cell Membrane/enzymology
- Cell Membrane/metabolism
- Enzyme Activation/drug effects
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- NADPH Oxidases/metabolism
- Phospholipases A2, Cytosolic/metabolism
- Protein Kinase C-alpha/genetics
- Protein Kinase C-alpha/metabolism
- Pulmonary Artery/cytology
- Superoxides/metabolism
- Thromboxane A2/metabolism
- Vasoconstrictor Agents/pharmacology
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | | | | | | | | | | | | |
Collapse
|
50
|
Odell AF, Hollstein M, Ponnambalam S, Walker JH. A VE-cadherin-PAR3-α-catenin complex regulates the Golgi localization and activity of cytosolic phospholipase A(2)α in endothelial cells. Mol Biol Cell 2012; 23:1783-96. [PMID: 22398721 PMCID: PMC3338442 DOI: 10.1091/mbc.e11-08-0694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The rapid regulation of phospholipase A2 activity is essential for vascular function. Evidence is found for a VE-cadherin–α-catenin–PAR3 complex regulating the reversible association of cPLA2α with the Golgi apparatus in confluent endothelial cells. This regulation is important for controlling both cPLA2α activity and angiogenesis. Phospholipase A2 enzymes hydrolyze phospholipids to liberate arachidonic acid for the biosynthesis of prostaglandins and leukotrienes. In the vascular endothelium, group IV phospholipase A2α (cPLA2α) enzyme activity is regulated by reversible association with the Golgi apparatus. Here we provide evidence for a plasma membrane cell adhesion complex that regulates endothelial cell confluence and simultaneously controls cPLA2α localization and enzymatic activity. Confluent endothelial cells display pronounced accumulation of vascular endothelial cadherin (VE-cadherin) at cell–cell junctions, and mechanical wounding of the monolayer stimulates VE-cadherin complex disassembly and cPLA2α release from the Golgi apparatus. VE-cadherin depletion inhibits both recruitment of cPLA2α to the Golgi and formation of tubules by endothelial cells. Perturbing VE-cadherin and increasing the soluble cPLA2α fraction also stimulated arachidonic acid and prostaglandin production. Of importance, reverse genetics shows that α-catenin and δ-catenin, but not β-catenin, regulates cPLA2α Golgi localization linked to cell confluence. Furthermore, cPLA2α Golgi localization also required partitioning defective protein 3 (PAR3) and annexin A1. Disruption of F-actin internalizes VE-cadherin and releases cPLA2α from the adhesion complex and Golgi apparatus. Finally, depletion of either PAR3 or α-catenin promotes cPLA2α-dependent endothelial tubule formation. Thus a VE-cadherin–PAR3–α-catenin adhesion complex regulates cPLA2α recruitment to the Golgi apparatus, with functional consequences for vascular physiology.
Collapse
Affiliation(s)
- Adam F Odell
- Endothelial Cell Biology Unit, Institute for Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | | | | | | |
Collapse
|