1
|
Kethom W, Taylor PWJ, Mongkolporn O. Expression of Genes Involved in Anthracnose Resistance in Chili ( Capsicum baccatum) 'PBC80'-Derived Recombinant Inbred Lines. Pathogens 2023; 12:1306. [PMID: 38003772 PMCID: PMC10675817 DOI: 10.3390/pathogens12111306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Chili anthracnose has long been a threat to chili production worldwide. Capsicum baccatum 'PBC80' has been identified as a source of resistance to anthracnose. Recently, a QTL for ripe fruit resistance from 'PBC80'-derived RILs was located on chromosome 4 (123 Mb) and contained over 80 defense-related genes. To identify the genes most related to anthracnose resistance, a fine map of the QTL region was developed using single-marker analysis. Nine genes were selected from the new QTL (1.12 Mb) to study their expression after being challenged with Colletotrichum scovillei 'MJ5' in two different RIL genotypes (Resistance/Resistance or R/R and Susceptible/Susceptible or S/S) at 0, 6 and 12 h. Of the nine genes, LYM2, CQW23_09597, CLF, NFXL1, and PR-14 were significantly up-regulated, compared to the control, in the R/R genotype. ERF was up-regulated in both chili genotypes. However, the expression was relatively and constantly low in the S/S genotype. Most up-regulated genes reached the highest peak (2.3-4.5 fold) at 6 h, except for ERF, which had the highest peak at 12 h (6.4 fold). The earliest and highest expressed gene was a pathogen receptor, LYM2.
Collapse
Affiliation(s)
- Wassana Kethom
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Paul W. J. Taylor
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Orarat Mongkolporn
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| |
Collapse
|
2
|
Melnikova DN, Finkina EI, Bogdanov IV, Tagaev AA, Ovchinnikova TV. Features and Possible Applications of Plant Lipid-Binding and Transfer Proteins. MEMBRANES 2022; 13:2. [PMID: 36676809 PMCID: PMC9866449 DOI: 10.3390/membranes13010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In plants, lipid trafficking within and inside the cell is carried out by lipid-binding and transfer proteins. Ligands for these proteins are building and signaling lipid molecules, secondary metabolites with different biological activities due to which they perform diverse functions in plants. Many different classes of such lipid-binding and transfer proteins have been found, but the most common and represented in plants are lipid transfer proteins (LTPs), pathogenesis-related class 10 (PR-10) proteins, acyl-CoA-binding proteins (ACBPs), and puroindolines (PINs). A low degree of amino acid sequence homology but similar spatial structures containing an internal hydrophobic cavity are common features of these classes of proteins. In this review, we summarize the latest known data on the features of these protein classes with particular focus on their ability to bind and transfer lipid ligands. We analyzed the structural features of these proteins, the diversity of their possible ligands, the key amino acids participating in ligand binding, the currently known mechanisms of ligand binding and transferring, as well as prospects for possible application.
Collapse
Affiliation(s)
- Daria N. Melnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Ekaterina I. Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Ivan V. Bogdanov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Andrey A. Tagaev
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| |
Collapse
|
3
|
Isolation and Characterization of Antimicrobial Peptides Isolated from Fagonia bruguieri. Appl Biochem Biotechnol 2022; 194:4319-4332. [PMID: 35041129 DOI: 10.1007/s12010-022-03818-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 01/08/2023]
Abstract
The majority of pathogenic microorganisms have developed resistance to commercial antibiotics. It causes the risk of illness relapse with current antimicrobial therapy regimens; additional and/or different antibacterial drugs are needed to treat diseases caused by these pathogenic microorganisms. The applied analysis in the present study was purification and characterization of plant peptides isolated from the leaves of Fagonia bruguieri as well as their antibacterial activities against Gram-positive bacteria, Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, and methicillin-resistant Staphylococcus aureus, in addition to Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa. The minimum inhibitory concentration for the isolated peptide ranges from 25 to 62.5 mg/mL. The methanolic solvent was used for the extraction followed by reversed-phase high-performance liquid chromatography for purification of peptides. Eventually, the peptide characterization and identification were also determined by MALDI-TOF/TOF and SEM analysis. This study paves a way to the effective antimicrobials from the plant resources.
Collapse
|
4
|
Ben Hsouna A, Ben Saad R, Dhifi W, Mnif W, Brini F. Novel non-specific lipid-transfer protein (TdLTP4) isolated from durum wheat: Antimicrobial activities and anti-inflammatory properties in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Microb Pathog 2021; 154:104869. [PMID: 33774106 DOI: 10.1016/j.micpath.2021.104869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/19/2021] [Accepted: 03/15/2021] [Indexed: 01/02/2023]
Abstract
Lipid transfer proteins (LTP) are members of the family of pathogenesis-related proteins (PR-14) that play a key role in plant defense mechanisms. In this study, a novel gene TdLTP4 encoding an antifungal protein from wheat (cv. Om Rabiaa) was cloned, overexpressed in Escherichia coli BL-21 (DE3) and enriched using ammonium sulfate fractionation. The TdLTP4 fusion protein was then tested against a panel of pathogens, food-borne and spoilage bacteria and fungi in order to evaluate the antimicrobial properties. TdLTP4 was applied to 0.5 μg/mL LPS-induced RAW 264.7 macrophages in vitro at different concentrations (5, 10, 20, 50 and 100 μg/mL). Levels of nitric oxide (NO), pro-inflammatory cytokines interleukin (IL)-1β (IL-1 β), interleukin (IL)-6 (IL-6), tumor necrosis factor (TNF-α) and anti-inflammatory cytokine IL-10 in the supernatant fraction were measured using enzyme-linked immunosorbent assay (ELISA). Expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were detected via Western blot. The inhibition zones and minimal inhibitory concentration (MIC) values of bacterial strains were in the range of 14-26 mm and 62.5-250 μg/mL, respectively. Moreover, a remarkable activity against several fungal strains was revealed. TdLTP4 (5-100 μg/mL) decreased the production of NO (IC50 = 4.32 μg/mL), IL-6 (IC50 = 11.52 μg/mL), IL-1β (IC50 = 7.87 μg/mL) and TNF-α (IC50 = 8.66 μg/mL) by lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. TdLTP4 could modulate the macrophages inflammatory mode by causing reduction in iNOS and COX-2. According to these findings, TdLTP4 fusion protein could be used as natural anti-inflammatory and antimicrobial agent in food preservation and human health.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Tunisia; Department of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, 2112, Gafsa, Tunisia.
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Tunisia
| | - Wissal Dhifi
- LR17-ES03 Physiopathology, Food and Biomolecules, Higher Institute of Biotechnology of Sidi Thabet, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, P.O. BOX 199, Bisha, 61922, Saudi Arabia; University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Tunisia
| |
Collapse
|
5
|
Almasia NI, Nahirñak V, Hopp HE, Vazquez-Rovere C. Potato Snakin-1: an antimicrobial player of the trade-off between host defense and development. PLANT CELL REPORTS 2020; 39:839-849. [PMID: 32529484 DOI: 10.1007/s00299-020-02557-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Snakin-1 (SN1) from potato is a cysteine-rich antimicrobial peptide with high evolutionary conservation. It has 63 amino acid residues, 12 of which are cysteines capable of forming six disulfide bonds. SN1 localizes in the plasma membrane, and it is present mainly in tissues associated with active growth and cell division. SN1 is active in vitro against bacteria, fungus, yeasts, and even animal/human pathogens. It was demonstrated that it also confers in vivo protection against commercially relevant pathogens in overexpressing potato, wheat, and lettuce plants. Although researchers have demonstrated SN1 can disrupt the membranes of E. coli, its integral antimicrobial mechanism remains unknown. It is likely that broad-spectrum antimicrobial activity is a combined outcome of membrane disruption and inhibition of intracellular functions. Besides, in potato, partial SN1 silencing affects cell division, leaf metabolism, and cell wall composition, thus revealing additional roles in growth and development. Its silencing also affects reactive oxygen species (ROS) and ROS scavenger levels. This finding indicates its participation in redox balance. Moreover, SN1 alters hormone levels, suggesting its involvement in the complex hormonal crosstalk. Altogether, SN1 has the potential to integrate development and defense signals directly and/or indirectly by modulating protein activity, modifying hormone balance and/or participating in redox regulation. Evidence supports a paramount role to SN1 in the mechanism underlying growth and immunity balance. Furthermore, SN1 may be a promising candidate in preservation, and pharmaceutical or agricultural biotechnology applications.
Collapse
Affiliation(s)
- Natalia Inés Almasia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina.
| | - Vanesa Nahirñak
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
| | - H Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
| | - Cecilia Vazquez-Rovere
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
| |
Collapse
|
6
|
Antifungal and antimicrobial proteins and peptides of potato (Solanum tuberosum L.) tubers and their applications. Appl Microbiol Biotechnol 2019; 103:5533-5547. [PMID: 31144014 DOI: 10.1007/s00253-019-09887-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 01/13/2023]
Abstract
Potato proteins are well known for their nutritional, emulsifying, foaming, gel forming or antioxidant properties that all make from them valuable protein source for food industry. Antifungal, antimicrobial and also antiviral properties, described for potato proteins in the review, enrich the possibilities of potato protein usage. Potato proteins were divided into patatin, protease inhibitors and fraction of other proteins that also included, besides others, proteins involved in potato defence physiology. All these proteins groups provide proteins and peptides with antifungal and/or antimicrobial actions. Patatins, obtained from cultivars with resistance to Phytophthora infestans, were able to inhibit spore germination of this pathogen. Protease inhibitors represent the structurally heterogeneous group with broad range of antifungal and antimicrobial activities. Potato protease inhibitors I and II reduced the growth of Phytophthora infestans, Rhizoctonia solani and Botrytis cinerea or of the fungi of Fusarium genus. Members of Kunitz family (proteins Potide-G, AFP-J, Potamin-1 or PG-2) were able to inhibit serious pathogens such as Staphylococcus aureus, Listeria monocytogenes, Escherichia coli or Candida albicans. Potato snakins, defensins and pseudothionins are discussed for their ability to inhibit serious potato fungi as well as bacterial pathogens. Potato proteins with the ability to inhibit growth of pathogens were used for developing of pathogen-resistant transgenic plants for crop improvement. Incorporation of potato antifungal and antimicrobial proteins in feed and food products or food packages for elimination of hygienically risk pathogens brings new possibility of potato protein usage.
Collapse
|
7
|
Melnikova DN, Finkina EI, Bogdanov IV, Ovchinnikova TV. Plant Pathogenesis-Related Proteins Binding Lipids and Other Hydrophobic Ligands. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162018060055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Shenkarev ZO, Melnikova DN, Finkina EI, Sukhanov SV, Boldyrev IA, Gizatullina AK, Mineev KS, Arseniev AS, Ovchinnikova TV. Ligand Binding Properties of the Lentil Lipid Transfer Protein: Molecular Insight into the Possible Mechanism of Lipid Uptake. Biochemistry 2017; 56:1785-1796. [DOI: 10.1021/acs.biochem.6b01079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zakhar O. Shenkarev
- M. M. Shemyakin and Yu. A.
Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street, 16/10, 117997 Moscow, Russia
| | - Daria N. Melnikova
- M. M. Shemyakin and Yu. A.
Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street, 16/10, 117997 Moscow, Russia
| | - Ekaterina I. Finkina
- M. M. Shemyakin and Yu. A.
Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street, 16/10, 117997 Moscow, Russia
| | - Stanislav V. Sukhanov
- M. M. Shemyakin and Yu. A.
Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street, 16/10, 117997 Moscow, Russia
| | - Ivan A. Boldyrev
- M. M. Shemyakin and Yu. A.
Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street, 16/10, 117997 Moscow, Russia
| | - Albina K. Gizatullina
- M. M. Shemyakin and Yu. A.
Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street, 16/10, 117997 Moscow, Russia
| | - Konstantin S. Mineev
- M. M. Shemyakin and Yu. A.
Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street, 16/10, 117997 Moscow, Russia
| | - Alexander S. Arseniev
- M. M. Shemyakin and Yu. A.
Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street, 16/10, 117997 Moscow, Russia
| | - Tatiana V. Ovchinnikova
- M. M. Shemyakin and Yu. A.
Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street, 16/10, 117997 Moscow, Russia
| |
Collapse
|
9
|
Yeung H, Squire CJ, Yosaatmadja Y, Panjikar S, López G, Molina A, Baker EN, Harris PWR, Brimble MA. Radiation Damage and Racemic Protein Crystallography Reveal the Unique Structure of the GASA/Snakin Protein Superfamily. Angew Chem Int Ed Engl 2016; 55:7930-3. [DOI: 10.1002/anie.201602719] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Ho Yeung
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
| | - Christopher J. Squire
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| | - Yuliana Yosaatmadja
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
| | - Santosh Panjikar
- Australian Synchrotron; 800 Blackburn Road Clayton Victoria 3168 Australia
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA); Universidad Politécnica de Madrid (UPM); Campus Montegancedo, M-40 (Km 38) 28223-Pozuelo de Alarcón Madrid Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA); Universidad Politécnica de Madrid (UPM); Campus Montegancedo, M-40 (Km 38) 28223-Pozuelo de Alarcón Madrid Spain
| | - Edward N. Baker
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| | - Paul W. R. Harris
- School of Chemical Sciences; The University of Auckland; 23 Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland; 23 Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| |
Collapse
|
10
|
Yeung H, Squire CJ, Yosaatmadja Y, Panjikar S, López G, Molina A, Baker EN, Harris PWR, Brimble MA. Radiation Damage and Racemic Protein Crystallography Reveal the Unique Structure of the GASA/Snakin Protein Superfamily. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ho Yeung
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
| | - Christopher J. Squire
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| | - Yuliana Yosaatmadja
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
| | - Santosh Panjikar
- Australian Synchrotron; 800 Blackburn Road Clayton Victoria 3168 Australia
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA); Universidad Politécnica de Madrid (UPM); Campus Montegancedo, M-40 (Km 38) 28223-Pozuelo de Alarcón Madrid Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA); Universidad Politécnica de Madrid (UPM); Campus Montegancedo, M-40 (Km 38) 28223-Pozuelo de Alarcón Madrid Spain
| | - Edward N. Baker
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| | - Paul W. R. Harris
- School of Chemical Sciences; The University of Auckland; 23 Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland; 23 Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| |
Collapse
|
11
|
Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5663-81. [PMID: 26139823 DOI: 10.1093/jxb/erv313] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant non-specific lipid-transfer proteins (nsLTPs) are small, basic proteins present in abundance in higher plants. They are involved in key processes of plant cytology, such as the stablization of membranes, cell wall organization, and signal transduction. nsLTPs are also known to play important roles in resistance to biotic and abiotic stress, and in plant growth and development, such as sexual reproduction, seed development and germination. The structures of plant nsLTPs contain an eight-cysteine residue conserved motif, linked by four disulfide bonds, and an internal hydrophobic cavity, which comprises the lipid-binding site. This structure endows stability and increases the ability to bind and/or carry hydrophobic molecules. There is growing interest in nsLTPs, due to their critical roles, resulting in the need for a comprehensive review of their form and function. Relevant topics include: nsLTP structure and biochemical features, their classification, identification, and characterization across species, sub-cellular localization, lipid binding and transfer ability, expression profiling, functionality, and evolution. We present advances, as well as limitations and trends, relating to the different topics of the nsLTP gene family. This review collates a large body of research pertaining to the role of nsLTPs across the plant kingdom, which has been integrated as an in depth functional analysis of this group of proteins as a whole, and their activities across multiple biochemical pathways, based on a large number of reports. This review will enhance our understanding of nsLTP activity in planta, prompting further work and insights into the roles of this multifaceted protein family in plants.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaobo Zhang
- Life Science and Technology Center, China National Seed Group Co. Ltd., Wuhan 430206, China
| | - Changming Lu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinhua Zeng
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yunjing Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghui Fu
- The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
12
|
Safi H, Saibi W, Alaoui MM, Hmyene A, Masmoudi K, Hanin M, Brini F. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 89:64-75. [PMID: 25703105 DOI: 10.1016/j.plaphy.2015.02.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/13/2015] [Indexed: 05/10/2023]
Abstract
Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, we report the isolation and characterization of a novel gene TdLTP4 encoding an LTP protein from durum wheat [Triticum turgidum L. subsp. Durum Desf.]. Molecular Phylogeny analyses of wheat TdLTP4 gene showed a high identity to other plant LTPs. Predicted three-dimensional structural model revealed the presence of six helices and nine loop turns. Expression analysis in two local durum wheat varieties with marked differences in salt and drought tolerance, revealed a higher transcript accumulation of TdLTP4 under different stress conditions in the tolerant variety, compared to the sensitive one. The overexpression of TdLTP4 in Arabidopsis resulted in a promoted plant growth under various stress conditions including NaCl, ABA, JA and H2O2 treatments. Moreover, the LTP-overexpressing lines exhibit less sensitivity to jasmonate than wild-type plants. Furthermore, detached leaves from transgenic Arabidopsis expressing TdLTP4 gene showed enhanced fungal resistance against Alternaria solani and Botrytis cinerea. Together, these data provide the evidence for the involvement of TdLTP4 gene in the tolerance to both abiotic and biotic stresses in crop plants.
Collapse
MESH Headings
- Abscisic Acid/metabolism
- Adaptation, Physiological/genetics
- Antigens, Plant/genetics
- Antigens, Plant/metabolism
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cyclopentanes/metabolism
- Disease Resistance/genetics
- Droughts
- Fungi
- Genes, Plant
- Hydrogen Peroxide/metabolism
- Models, Molecular
- Molecular Structure
- Oxylipins/metabolism
- Phylogeny
- Plant Diseases/microbiology
- Plant Leaves/microbiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Salt Tolerance
- Sodium Chloride/metabolism
- Stress, Physiological/genetics
- Transcription, Genetic
- Triticum/genetics
Collapse
Affiliation(s)
- Hela Safi
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax/ University of Sfax, BP "1177", 3018 Sfax, Tunisia
| | - Walid Saibi
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax/ University of Sfax, BP "1177", 3018 Sfax, Tunisia
| | - Meryem Mrani Alaoui
- Laboratoire de biochimie, environnement et agroalimentaire, Université Hassan II-Mohammedia, Faculté des Sciences et techniques, BP 146, Mohammedia 20650, Maroc
| | - Abdelaziz Hmyene
- Laboratoire de biochimie, environnement et agroalimentaire, Université Hassan II-Mohammedia, Faculté des Sciences et techniques, BP 146, Mohammedia 20650, Maroc
| | - Khaled Masmoudi
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax/ University of Sfax, BP "1177", 3018 Sfax, Tunisia
| | - Moez Hanin
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax/ University of Sfax, BP "1177", 3018 Sfax, Tunisia
| | - Faïçal Brini
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax/ University of Sfax, BP "1177", 3018 Sfax, Tunisia.
| |
Collapse
|
13
|
Ben Khaled S, Postma J, Robatzek S. A moving view: subcellular trafficking processes in pattern recognition receptor-triggered plant immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:379-402. [PMID: 26243727 DOI: 10.1146/annurev-phyto-080614-120347] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A significant challenge for plants is to induce localized defense responses at sites of pathogen attack. Therefore, host subcellular trafficking processes enable accumulation and exchange of defense compounds, which contributes to the plant on-site defenses in response to pathogen perception. This review summarizes our current understanding of the transport processes that facilitate immunity, the significance of which is highlighted by pathogens reprogramming membrane trafficking through host cell translocated effectors. Prominent immune-related cargos of plant trafficking pathways are the pattern recognition receptors (PRRs), which must be present at the plasma membrane to sense microbes in the apoplast. We focus on the dynamic localization of the FLS2 receptor and discuss the pathways that regulate receptor transport within the cell and their link to FLS2-mediated immunity. One emerging theme is that ligand-induced late endocytic trafficking is conserved across different PRR protein families as well as across different plant species.
Collapse
Affiliation(s)
- Sara Ben Khaled
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | | | | |
Collapse
|
14
|
Meiyalaghan S, Latimer JM, Kralicek AV, Shaw ML, Lewis JG, Conner AJ, Barrell PJ. Expression and purification of the antimicrobial peptide GSL1 in bacteria for raising antibodies. BMC Res Notes 2014; 7:777. [PMID: 25367168 PMCID: PMC4228058 DOI: 10.1186/1756-0500-7-777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022] Open
Abstract
Background The Gibberellin Stimulated-Like (GSL) or Snakin peptides from higher plants are cysteine-rich, with broad spectrum activity against a range of bacterial and fungal pathogens. To detect GSL peptides in applications such as western blot analysis and enzyme-linked immunosorbent assays (ELISA), specific antibodies that recognise GSL peptides are required. However, the intrinsic antimicrobial activity of these peptides is likely to prevent their expression alone in bacterial or yeast expression systems for subsequent antibody production in animal hosts. Results To overcome this issue we developed an Escherichia coli expression strategy based on the expression of the GSL1 peptide as a His-tagged thioredoxin fusion protein. The DNA sequence for the mature GSL1 peptide from potato (Solanum tuberosum L.) was cloned into the pET-32a expression vector to produce a construct encoding N-terminally tagged his6-thioredoxin-GSL1. The fusion protein was overexpressed in E. coli to produce soluble non-toxic protein. The GSL1 fusion protein could be easily purified by using affinity chromatography to yield ~1.3 mg of his6-thioredoxin-GSL1 per L of culture. The fusion protein was then injected into rabbits for antibody production. Western blot analysis showed that the antibodies obtained from rabbit sera specifically recognised the GSL1 peptide that had been expressed in a wheat germ cell-free expression system. Conclusion We present here the first report of a GSL1 peptide expressed as a fusion protein with thioredoxin that has resulted in milligram quantities of soluble protein to be produced. We have also demonstrated that a wheat germ system can be used to successfully express small quantities of GSL1 peptide useful as positive control in western blot analysis. To our knowledge this is the first report of antibodies being produced against GSL1 peptide. The antibodies will be useful for analysis of GSL1peptides in western blot, localization by immunohistochemistry (IHC) and quantitation by ELISA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Philippa J Barrell
- The New Zealand Institute for Plant & Food Research Ltd, Private Bag 4704, Christchurch, New Zealand.
| |
Collapse
|
15
|
Yu G, Hou W, Du X, Wang L, Wu H, Zhao L, Kong L, Wang H. Identification of wheat non-specific lipid transfer proteins involved in chilling tolerance. PLANT CELL REPORTS 2014; 33:1757-66. [PMID: 25037996 DOI: 10.1007/s00299-014-1655-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/25/2014] [Accepted: 07/04/2014] [Indexed: 05/05/2023]
Abstract
Three TaLTPs were found to enhance chilling tolerance of transgenic Arabidopsis, which were characterized by analyzes of promoter-GUS activity, subcellular localization, chromosomal location and transcriptional profile. Non-specific lipid transfer proteins (nsLTP) are abundantly expressed in plants, however, their functions are still unclear. In this study, we primarily characterized the functions of 3 type I TaLTP genes that were localized on chromosomes 3A, 3B, and 5D, respectively. The transcripts of TaLTPIb.1 and TaLTPIb.5 were induced under chilling, wound, and drought conditions, while TaLTPId.1 was only up-regulated by dark treatment. All the 3 TaLTP genes could be stimulated by the in vitro treatment of salicylic acid, while TaLTPId.1 was also positively regulated by methyljasmonic acid. Furthermore, the promoter-reporter assay of TaLTPIb.1 in the transgenic brachypodium showed a typical epidermis-specific expression pattern of this gene cluster. When fused with EGFP, all the 3 proteins were shown to localize on the plasma membrane in transgenic tobacco, although a signal in chloroplasts was also observed for TaLTPId.1. Heterogeneous overexpression of each of the TaLTP genes in Arabidopsis resulted in longer root length compared with wild type plants under chilling condition. These results suggest that type I TaLTPs may have a conserved functionality in chilling tolerance by lipid permeation in the plasma membrane of epidermal cells. On the other hand, the type I TaLTPs may exert functional divergence mainly through regulatory subfunctionalization.
Collapse
Affiliation(s)
- Guanghui Yu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Meiyalaghan S, Thomson SJ, Fiers MWEJ, Barrell PJ, Latimer JM, Mohan S, Jones EE, Conner AJ, Jacobs JME. Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status. BMC Genomics 2014; 15:2. [PMID: 24382166 PMCID: PMC3890649 DOI: 10.1186/1471-2164-15-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/23/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND GSL1 and GSL2, Gibberellin Stimulated-Like proteins (also known as Snakin-1 and Snakin-2), are cysteine-rich peptides from potato (Solanum tuberosum L.) with antimicrobial properties. Similar peptides in other species have been implicated in diverse biological processes and are hypothesised to play a role in several aspects of plant development, plant responses to biotic or abiotic stress through their participation in hormone crosstalk, and redox homeostasis. To help resolve the biological roles of GSL1 and GSL2 peptides we have undertaken an in depth analysis of the structure and expression of these genes in potato. RESULTS We have characterised the full length genes for both GSL1 (chromosome 4) and GSL2 (chromosome 1) from diploid and tetraploid potato using the reference genome sequence of potato, coupled with further next generation sequencing of four highly heterozygous tetraploid cultivars. The frequency of SNPs in GSL1 and GSL2 were very low with only one SNP every 67 and 53 nucleotides in exon regions of GSL1 and GSL2, respectively. Analysis of comprehensive RNA-seq data substantiated the role of specific promoter motifs in transcriptional control of gene expression. Expression analysis based on the frequency of next generation sequence reads established that GSL2 was expressed at a higher level than GSL1 in 30 out of 32 tissue and treatment libraries. Furthermore, both the GSL1 and GSL2 genes exhibited constitutive expression that was not up regulated in response to biotic or abiotic stresses, hormone treatments or wounding. Potato transformation with antisense knock-down expression cassettes failed to recover viable plants. CONCLUSIONS The potato GSL1 and GSL2 genes are very highly conserved suggesting they contribute to an important biological function. The known antimicrobial activity of the GSL proteins, coupled with the FPKM analysis from RNA-seq data, implies that both genes contribute to the constitutive defence barriers in potatoes. The lethality of antisense knock-down expression of GSL1 and GSL2, coupled with the rare incidence of SNPs in these genes, suggests an essential role for this gene family. These features are consistent with the GSL protein family playing a role in several aspects of plant development in addition to plant defence against biotic stresses.
Collapse
Affiliation(s)
- Sathiyamoorthy Meiyalaghan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Susan J Thomson
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Mark WEJ Fiers
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
- Current address: VIB Center for the Biology of Disease, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Philippa J Barrell
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Julie M Latimer
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Sara Mohan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Canterbury 7647, New Zealand
| | - E Eirian Jones
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Canterbury 7647, New Zealand
| | - Anthony J Conner
- AgResearch Ltd, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Jeanne ME Jacobs
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| |
Collapse
|
17
|
Membrane binding and insertion of the predicted transmembrane domain of human scramblase 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:388-97. [PMID: 24099740 DOI: 10.1016/j.bbamem.2013.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
Abstract
Human phospholipid scramblase 1 (SCR) was originally described as an intrinsic membrane protein catalyzing transbilayer phospholipid transfer in the absence of ATP. More recently, a role as a nuclear transcription factor has been proposed for SCR, either in addition or alternatively to its capacity to facilitate phospholipid flip-flop. Uncertainties exist as well from the structural point of view. A predicted α-helix (aa residues 288-306) located near the C-terminus has been alternatively proposed as a transmembrane domain, or as a protein core structural element. This paper explores the possibilities of the above helical segment as a transmembrane domain. To this aim two peptides were synthesized, one corresponding to the 19 α-helical residues, and one containing both the helix and the subsequent 12-residues constituting the C-end of the protein. The interaction of these peptides with lipid monolayers and bilayers was tested with Langmuir balance surface pressure measurements, proteoliposome reconstitution and analysis, differential scanning calorimetry, tests of bilayer permeability, and fluorescence confocal microscopy. Bilayers of 28 different lipid compositions were examined in which lipid electric charge, bilayer fluidity and lateral heterogeneity (domain formation) were varied. All the results concur in supporting the idea that the 288-306 peptide of SCR becomes membrane inserted in the presence of lipid bilayers. Thus, the data are in agreement with the possibility of SCR as an integral membrane protein, without rejecting alternative cell locations.
Collapse
Key Words
- 1,1,1,3,3,3-hexafluoro-2-propanol
- 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indodicarbocyanine
- 8-aminonaphtalene-1,3,6-trisulfonic acid sodium salt
- ANTS
- DID
- DPX
- GUVs
- HFIP
- LUVs
- Lipid phases
- MLVs
- PC
- PE
- PG
- PI
- PLSCR1
- PS
- SCR
- SCR 288–306 peptide
- SCR 288–318 peptide
- Scramblase
- TM
- TM19
- TM31C
- Transbilayer
- Transmembrane helix
- giant unilamellar vesicles
- human phospholipid scramblase 1, or hPLSCR1
- large unilamellar vesicles
- multilamellar vesicles
- p-xylene-bis(pyridinium) bromide
- pSM
- palmitoyl sphingomyelin
- phosphatidylcholine
- phosphatidylethanolamine
- phosphatidylglycerol
- phosphatidylinositol
- phosphatidylserine
- transmembrane
Collapse
|
18
|
Porto WF, Franco OL. Theoretical structural insights into the snakin/GASA family. Peptides 2013; 44:163-7. [PMID: 23578978 DOI: 10.1016/j.peptides.2013.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 11/20/2022]
Abstract
Among the main classes of cysteine-stabilized antimicrobial peptides, the snakin/GASA family has not yet had any structural characterization. Through the combination of ab initio and comparative modeling with a disulfide bond predictor, the three-dimensional structure prediction of snakin-1 is reported here. The structure was composed of two long α-helices with a disulfide pattern of Cys(I)-Cys(IX), Cys(II)-Cys(VII), Cys(III)-Cys(IV), Cys(V)-Cys(XI), Cys(VI)-Cys(XII) and Cys(VIII)-Cys(X). The overall structure was maintained throughout molecular dynamics simulation. Snakin-1 showed a small degree of structural similarity with thionins and α-helical hairpins. This is the first report of snakin-1 structural characterization, shedding some light on the snakin/GASA family.
Collapse
Affiliation(s)
- William F Porto
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | | |
Collapse
|
19
|
Hegedüs N, Marx F. Antifungal proteins: More than antimicrobials? FUNGAL BIOL REV 2013; 26:132-145. [PMID: 23412850 PMCID: PMC3569713 DOI: 10.1016/j.fbr.2012.07.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 01/01/2023]
Abstract
Antimicrobial proteins (AMPs) are widely distributed in nature. In higher eukaryotes, AMPs provide the host with an important defence mechanism against invading pathogens. AMPs of lower eukaryotes and prokaryotes may support successful competition for nutrients with other microorganisms of the same ecological niche. AMPs show a vast variety in structure, function, antimicrobial spectrum and mechanism of action. Most interestingly, there is growing evidence that AMPs also fulfil important biological functions other than antimicrobial activity. The present review focuses on the mechanistic function of small, cationic, cysteine-rich AMPs of mammals, insects, plants and fungi with antifungal activity and specifically aims at summarizing current knowledge concerning additional biological properties which opens novel aspects for their future use in medicine, agriculture and biotechnology.
Collapse
Affiliation(s)
| | - Florentine Marx
- Corresponding author. Tel.: +43 512 9003 70207; fax: +43 512 9003 73100.
| |
Collapse
|
20
|
|
21
|
Rio-Alvarez I, Rodríguez-Herva JJ, Cuartas-Lanza R, Toth I, Pritchard L, Rodríguez-Palenzuela P, López-Solanilla E. Genome-wide analysis of the response of Dickeya dadantii 3937 to plant antimicrobial peptides. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:523-533. [PMID: 22204647 DOI: 10.1094/mpmi-09-11-0247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Antimicrobial peptides constitute an important factor in the defense of plants against pathogens, and bacterial resistance to these peptides have previously been shown to be an important virulence factor in Dickeya dadantii, the causal agent of soft-rot disease of vegetables. In order to understand the bacterial response to antimicrobial peptides, a transcriptional microarray analysis was performed upon treatment with sub-lethal concentration of thionins, a widespread plant peptide. In all, 36 genes were found to be overexpressed, and were classified according to their deduced function as i) transcriptional regulators, ii) transport, and iii) modification of the bacterial membrane. One gene encoding a uricase was found to be repressed. The majority of these genes are known to be under the control of the PhoP/PhoQ system. Five genes representing the different functions induced were selected for further analysis. The results obtained indicate that the presence of antimicrobial peptides induces a complex response which includes peptide-specific elements and general stress-response elements contributing differentially to the virulence in different hosts.
Collapse
Affiliation(s)
- Isabel Rio-Alvarez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Rahnamaeian M. Antimicrobial peptides: modes of mechanism, modulation of defense responses. PLANT SIGNALING & BEHAVIOR 2011; 6:1325-32. [PMID: 21847025 PMCID: PMC3258061 DOI: 10.4161/psb.6.9.16319] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/21/2011] [Accepted: 05/23/2011] [Indexed: 05/20/2023]
Abstract
Complicated schemes of classical breeding and their drawbacks, environmental risks imposed by agrochemicals, decrease of arable land, and coincident escalating damages of pests and pathogens have accentuated the necessity for highly efficient measures to improve crop protection. During co-evolution of host-microbe interactions, antimicrobial peptides (AMPs) have exhibited a brilliant history in protecting host organisms against devastation by invading pathogens. Since the 1980s, a plethora of AMPs has been isolated from and characterized in different organisms. Nevertheless the AMPs expressed in plants render them more resistant to diverse pathogens, a more orchestrated approach based on knowledge of their mechanisms of action and cellular targets, structural toxic principle, and possible impact on immune system of corresponding transgenic plants will considerably improve crop protection strategies against harmful plant diseases. This review outlines the current knowledge on different modes of action of AMPs and then argues the waves of AMPs’ ectopic expression on transgenic plants’ immune system.
Collapse
Affiliation(s)
- Mohammad Rahnamaeian
- Department of Plant Biotechnology, College of Agriculture, Shahid Bahonar University, Kerman, Iran.
| |
Collapse
|
23
|
Ultra-high resolution crystal structure of a dimeric defensin SPE10. FEBS Lett 2010; 585:300-6. [DOI: 10.1016/j.febslet.2010.12.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 01/26/2023]
|
24
|
Interaction of lipid-transport proteins from Nigella sativa seeds with lipid membranes. Chem Nat Compd 2010. [DOI: 10.1007/s10600-010-9685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Sanchez-Vallet A, Ramos B, Bednarek P, López G, Piślewska-Bednarek M, Schulze-Lefert P, Molina A. Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:115-27. [PMID: 20408997 DOI: 10.1111/j.1365-313x.2010.04224.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A defence pathway contributing to non-host resistance to biotrophic fungi in Arabidopsis involves the synthesis and targeted delivery of the tryptophan (trp)-derived metabolites indol glucosinolates (IGs) and camalexin at pathogen contact sites. We have examined whether these metabolites are also rate-limiting for colonization by necrotrophic fungi. Inoculation of Arabidopsis with adapted or non-adapted isolates of the ascomycete Plectosphaerella cucumerina triggers the accumulation of trp-derived metabolites. We found that their depletion in cyp79B2 cyp79B3 mutants renders Arabidopsis fully susceptible to each of three tested non-adapted P. cucumerina isolates, and super-susceptible to an adapted P. cucumerina isolate. This assigns a key role to trp-derived secondary metabolites in limiting the growth of both non-adapted and adapted necrotrophic fungi. However, 4-methoxy-indol-3-ylmethylglucosinolate, which is generated by the P450 monooxygenase CYP81F2, and hydrolyzed by PEN2 myrosinase, together with the antimicrobial camalexin play a minor role in restricting the growth of the non-adapted necrotrophs. This contrasts with a major role of these two trp-derived phytochemicals in limiting invasive growth of non-adapted biotrophic powdery mildew fungi, thereby implying the existence of other unknown trp-derived metabolites in resistance responses to non-adapted necrotrophic P. cucumerina. Impaired defence to non-adapted P. cucumerina, but not to the non-adapted biotrophic fungus Erysiphe pisi, on cyp79B2 cyp79B3 plants is largely restored in the irx1 background, which shows a constitutive accumulation of antimicrobial peptides. Our findings imply differential contributions of antimicrobials in non-host resistance to necrotrophic and biotrophic pathogens.
Collapse
Affiliation(s)
- Andrea Sanchez-Vallet
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus Montegancedo, E-28223-Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Kim JH, Lee JO, Jung JH, Lee SK, You GY, Park SH, Kim HS. Gaegurin-6 stimulates insulin secretion through calcium influx in pancreatic β Rin5mf cells. ACTA ACUST UNITED AC 2010; 159:123-8. [DOI: 10.1016/j.regpep.2009.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/18/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
|
27
|
Leishmania donovani: Thionins, plant antimicrobial peptides with leishmanicidal activity. Exp Parasitol 2009; 122:247-9. [DOI: 10.1016/j.exppara.2009.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/16/2009] [Accepted: 03/27/2009] [Indexed: 11/24/2022]
|
28
|
Tavares LS, Santos MDO, Viccini LF, Moreira JS, Miller RNG, Franco OL. Biotechnological potential of antimicrobial peptides from flowers. Peptides 2008; 29:1842-51. [PMID: 18602431 DOI: 10.1016/j.peptides.2008.06.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 11/18/2022]
Abstract
Flowers represent a relatively unexplored source of antimicrobial peptides of biotechnological potential. This review focuses on flower-derived defense peptide classes with inhibitory activity towards plant pathogens. Small cationic peptides display diverse activities, including inhibition of digestive enzymes and bacterial and/or fungal inhibition. Considerable research is ongoing in this area, with natural crop plant defense potentially improved through the application of transgenic technologies. In this report, comparisons were made of peptide tertiary structures isolated from diverse flower species. A summary is provided of molecular interactions between flower peptides and pathogens, which include the role of membrane proteins and lipids. Research on these peptides is contributing to our understanding of pathogen resistance mechanisms, which will, given the perspectives for plant genetic modification, contribute long term to plant genetic improvement for increased resistance to diverse pathogens.
Collapse
Affiliation(s)
- Letícia S Tavares
- Departamento de Biologia, Universidade Federal de Juiz de Fora, Campus Universitário, 36036-900 Martelos, Juiz de Fora, MG, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Nimrichter L, Rodrigues ML, Barreto-Bergter E, Travassos LR. Sophisticated Functions for a Simple Molecule: The Role of Glucosylceramides in Fungal Cells. Lipid Insights 2008. [DOI: 10.4137/lpi.s1014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
It is well known that mammalian glycosphingolipids (GSL) play key roles in different physiological and pathophysiological processes. The simplest GSL, glucosylceramide (GlcCer), is formed through the enzymatic transfer of glucose to a ceramide moiety. In mammalian cells this molecule is the building block for the synthesis of lactosylceramides and many other complex GSLs. In fungal cells GlcCer is a major neutral GSL that has been considered during decades merely as a structural component of cell membranes. The recent literature, however, describes the participation of fungal GlcCer in vital processes such as secretion, cell wall assembly, recognition by the immune system and regulation of virulence. In this review we discuss the most recent information regarding fungal GlcCer, including (i) new aspects of GlcCer metabolism, (ii) the involvement of these molecules in virulence mechanisms, (iii) their role as targets of new antifungal drugs and immunotherapeutic agents and, finally, (v) their potential participation on cellular signaling in response to different stimuli.
Collapse
Affiliation(s)
- Leonardo Nimrichter
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-590, Brazil
| | - Marcio L. Rodrigues
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-590, Brazil
| | - Eliana Barreto-Bergter
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-590, Brazil
| | - Luiz R. Travassos
- Unidade de Oncologia Experimental and Disciplina de Biologia Celular, Universidade Federal de São Paulo; São Paulo, SP 04023-062, Brazil
| |
Collapse
|
30
|
Sun JY, Gaudet DA, Lu ZX, Frick M, Puchalski B, Laroche A. Characterization and antifungal properties of wheat nonspecific lipid transfer proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:346-60. [PMID: 18257684 DOI: 10.1094/mpmi-21-3-0346] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This study simultaneously considered the phylogeny, fatty acid binding ability, and fungal toxicity of a large number of monocot nonspecific lipid transfer proteins (ns-LTP). Nine novel full-length wheat ns-LTP1 clones, all possessing coding sequences of 348 bp, isolated from abiotic- and biotic-stressed cDNA libraries from aerial tissues, exhibited highly conserved coding regions with 78 to 99 and 71 to 100% identity at the nucleotide and amino acid levels, respectively. Phylogenetic analyses revealed two major ns-LTP families in wheat. Eight wheat ns-LTP genes from different clades were cloned into the expression vector pPICZalpha and transformed into Pichia pastoris. Sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, and in vitro lipid binding activity assay confirmed that the eight ns-LTP were all successfully expressed and capable of in vitro binding fatty acid molecules. A comparative in vitro study on the toxicity of eight wheat ns-LTP to mycelium growth or spore germination of eight wheat pathogens and three nonwheat pathogens revealed differential toxicities among different ns-LTP. Values indicating 50% inhibition of fungal growth or spore germination of three selected ns-LTP against six fungi ranged from 1 to 7 microM. In vitro lipid-binding activity of ns-LTP was not correlated with their antifungal activity. Using the fluorescent probe SYTOX Green as an indicator of fungal membrane integrity, the in vitro toxicity of wheat ns-LTP was associated with alteration in permeability of fungal membranes.
Collapse
Affiliation(s)
- Jin-Yue Sun
- Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Carvalho ADO, Gomes VM. Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides 2007; 28:1144-53. [PMID: 17418913 DOI: 10.1016/j.peptides.2007.03.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 11/20/2022]
Abstract
Plant lipid transfer proteins (LTP) are cationic peptides, subdivided into two families, which present molecular masses of around 7 and 10 kDa. The peptides were, thus, denominated due to their ability to reversibly bind and transport hydrophobic molecules in vitro. Both subfamilies possess conserved patterns of eight cysteine residues and the three-dimensional structure reveals an internal hydrophobic cavity that comprises the lipid binding site. Based on the growing knowledge regarding structure, gene expression and regulation and in vitro activity, LTPs are likely to play a role in key processes of plant physiology. Although the roles of plant LTPs have not yet been fully determined. This review aims to present comprehensive information of recent topics, cover new additional data, and present new perspectives on these families of peptides.
Collapse
Affiliation(s)
- André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Darcy Ribeiro, Av. Alberto Lamego, 2000 Campos dos Goytacazes, RJ CEP: 28013-600, Brazil
| | | |
Collapse
|
32
|
Salcedo G, Sánchez-Monge R, Barber D, Díaz-Perales A. Plant non-specific lipid transfer proteins: an interface between plant defence and human allergy. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:781-91. [PMID: 17349819 DOI: 10.1016/j.bbalip.2007.01.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 12/18/2006] [Accepted: 01/01/2007] [Indexed: 10/23/2022]
Abstract
Plant non-specific LTPs (lipid transfer proteins) form a protein family of basic polypeptides of 9 kDa ubiquitously distributed throughout the plant kingdom. The members of this family are located extracellularly, usually associated with plant cell walls, and possess a broad lipid-binding specificity closely related to their three-dimensional structure. The nsLTP fold is characterized by a compact domain composed of 4 alpha-helices, firmly held by a network of 4 conserved disulphide bridges. This fold presents a large internal tunnel-like cavity, which can accommodate different types of lipids. nsLTPs are involved in plant defence mechanisms against phytopathogenic bacteria and fungi, and, possibly, in the assembly of hydrophobic protective layers of surface polymers, such as cutin. In addition, several members of the nsLTP family have been identified as relevant allergens in plant foods and pollens. Their high resistance to both heat treatment and digestive proteolytic attack has been related with the induction by these allergens of severe symptoms in many patients. Therefore, they are probably primary sensitizers by the oral route. nsLTP sensitization shows an unexpected pattern throughout Europe, with a high prevalence in the Mediterranean area, but a low incidence in Northern and Central European countries.
Collapse
Affiliation(s)
- G Salcedo
- Unidad de Bioquímica, Departamento de Biotecnología, E.T.S. Ingenieros Agrónomos, UPM, Ciudad Universitaria, 28040-Madrid, Spain.
| | | | | | | |
Collapse
|
33
|
Wong JH, Zhang XQ, Wang HX, Ng TB. A mitogenic defensin from white cloud beans (Phaseolus vulgaris). Peptides 2006; 27:2075-81. [PMID: 16687191 DOI: 10.1016/j.peptides.2006.03.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Revised: 03/12/2006] [Accepted: 03/13/2006] [Indexed: 11/16/2022]
Abstract
A peptide, with a molecular mass of 7458 Da, was purified from the seeds of white cloud beans (Phaseolus vulgaris cv. 'white cloud bean'). This peptide was isolated using a simple protocol consisting of affinity chromatography on Affi-gel blue gel and gel filtration on Superdex 75. The peptide had both antifungal and antibacterial activities. It reduced the activity of HIV-1 reverse transcriptase and it also inhibited translation in a cell-free rabbit reticulocyte lysate system. Its antifungal activity was retained after incubation with trypsin but was reduced when the ambient ionic strength was raised. The peptide elicited a mitogenic response from mouse splenocytes but did not stimulate nitric oxide production in mouse macrophages.
Collapse
Affiliation(s)
- Jack Ho Wong
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | | |
Collapse
|
34
|
Pelegrini PB, Franco OL. Plant gamma-thionins: novel insights on the mechanism of action of a multi-functional class of defense proteins. Int J Biochem Cell Biol 2005; 37:2239-53. [PMID: 16084753 DOI: 10.1016/j.biocel.2005.06.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 05/13/2005] [Accepted: 01/26/2005] [Indexed: 11/27/2022]
Abstract
This review focuses on the first plant defense protein class described in literature, with growth inhibition activity toward pathogens. These peptides were named gamma-thionins or defensins, which are small proteins that can be classified into four main subtypes according to their specific functions. Gamma-thionins are small cationic peptides with different and special abilities. They are able to inhibit digestive enzymes or act against bacteria and/or fungi. Current research in this area focuses particularly these two last targets, being the natural crop plant defenses improved through the use of transgenic technology. Here, we will compare primary and tertiary structures of gamma-thionins and also will analyze their similarities to scorpion toxins and insect defensins. This last comparison offers some hypothesis for gamma-thionins mechanisms of action against certain pathogens. This specific area has benefited from the recent determination of many gamma-thionin structures. Furthermore, we also summarize molecular interactions between plant gamma-thionins and fungi receptors, which include membrane proteins and lipids, shedding some light over pathogen resistance. Researches on gamma-thionins targets could help on plant genetic improvement for production of increased resistance toward pathogens. Thus, positive results recently obtained for transgenic plants and future prospects in the area are also approached. Finally, gamma-thionins activity has also been studied for future drug development, capable of inhibit tumor cell growth in human beings.
Collapse
Affiliation(s)
- Patrícia B Pelegrini
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN Quadra 916, Módulo B, Av. W5 Norte 70.790-160 Asa Norte Brasília/DF, Brazil
| | | |
Collapse
|
35
|
Regente MC, Giudici AM, Villalaín J, de la Canal L. The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett Appl Microbiol 2005; 40:183-9. [PMID: 15715642 DOI: 10.1111/j.1472-765x.2004.01647.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To determine whether Ha-AP10, a member of the plant lipid transfer proteins (LTPs) family produces a direct cytotoxic effect on fungal cells mediated by membrane permeabilization. LTPs can inhibit fungal growth and are considered members of the ubiquitous class of antimicrobial peptides. However, the way they exert their effects on target cells is not yet understood. METHODS AND RESULTS Viability assays demonstrate that Ha-AP10 acts as a fungicidal compound but no harmful effect is observed on plant cells. Liposome leakage assays show that the protein induces a moderate release of fluorescent probes encapsulated in model membranes, indicating its ability to interact with phospholipids. Using a fluorescent indicator of damage at the membrane level, we demonstrate that Ha-AP10 is able to induce the permeabilization of intact fungal spores in a dose-dependent manner. CONCLUSION The results presented here demonstrate the permeabilization of fungal spores caused by Ha-AP10. SIGNIFICANCE AND IMPACT OF THE STUDY To our knowledge, this is the first demonstration of fungal membrane damage by an LTP, giving a clue to elucidate the basis of its antimicrobial properties.
Collapse
Affiliation(s)
- M C Regente
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| | | | | | | |
Collapse
|
36
|
Vila-Perelló M, Sánchez-Vallet A, García-Olmedo F, Molina A, Andreu D. Structural Dissection of a Highly Knotted Peptide Reveals Minimal Motif with Antimicrobial Activity. J Biol Chem 2005; 280:1661-8. [PMID: 15494403 DOI: 10.1074/jbc.m410577200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increasing occurrence of bacterial resistance to antibiotics is driving a renewed interest on antimicrobial peptides, in the hope that understanding the structural features responsible for their activity will provide leads into new anti-infective drug candidates. Most chemical studies in this field have focused on linear peptides of various eukaryotic origins, rather than on structures with complex folding patterns found also in nature. We have undertaken the structural dissection of a highly knotted, cysteine-rich plant thionin, with the aim of defining a minimal, synthetically accessible, structure that preserves the bioactive properties of the parent peptide. Using efficient strategies for directed disulfide bond formation, we have prepared a substantially simplified (45% size reduction) version with undiminished antimicrobial activity against a representative panel of pathogens. Analysis by circular dichroism shows that the downsized peptide preserves the central double alpha-helix of the parent form as an essential bioactive motif. Membrane permeability and surface plasmon resonance studies confirm that the mechanism of action remains unchanged.
Collapse
Affiliation(s)
- Miquel Vila-Perelló
- Department of Experimental and Health Sciences, Pompeu Fabra University, Dr. Aiguader, 80, E-08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
37
|
Sror HAM, Tischendorf G, Sieg F, Schmitt JM, Hincha DK. Cryoprotectin protects thylakoids during a freeze-thaw cycle by a mechanism involving stable membrane binding. Cryobiology 2004; 47:191-203. [PMID: 14697731 DOI: 10.1016/j.cryobiol.2003.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chloroplast thylakoid membranes of higher plants are damaged by freezing both in vivo and in vitro. The resulting inactivation of photosynthetic electron transport has been related to transient membrane rupture, leading to the loss of soluble electron transport proteins and osmotically active solutes from the thylakoid lumen. We have recently purified and sequenced a protein from cold acclimated cabbage, that protects thylakoids from this freeze-thaw damage. The protein belongs to the WAX9 family of nonspecific lipid transfer proteins, but has no detectable lipid transfer activity. Conversely, other transport-active lipid transfer proteins show no cryoprotective activity. We show here that cryoprotectin binds to thylakoid membranes. Both cryoprotective activity and membrane binding were inhibited in the presence of specific sugars, most effectively by Glc-6-S. The binding of cryoprotectin to thylakoids reduced the fluidity of the membrane lipids close to the membrane/solution interface, but not in the hydrophobic core region. Using immobilized liposomes we could show that cryoprotectin was able to bind to pure lipid membranes.
Collapse
Affiliation(s)
- Hany A M Sror
- Institut für Pflanzenphysiologie und Mikrobiologie, Freie Universität, Königin Luise Str. 12-16, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
38
|
Thevissen K, Ferket KKA, François IEJA, Cammue BPA. Interactions of antifungal plant defensins with fungal membrane components. Peptides 2003; 24:1705-12. [PMID: 15019201 DOI: 10.1016/j.peptides.2003.09.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Accepted: 09/08/2003] [Indexed: 11/21/2022]
Abstract
Plant defensins are small, basic, cysteine-rich peptides that are generally active against a broad spectrum of fungal and yeast species at micromolar concentrations. Some of these defensins interact with fungal-specific lipid components in the plasmamembrane. Structural differences of these membrane components between fungal and plant cells probably account for the selective activity of plant defensins against fungal pathogens and their nonphytotoxic properties. This review will focus on different classes of complex lipids in fungal membranes and on the selective interaction of plant defensins with these complex lipids.
Collapse
Affiliation(s)
- Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium.
| | | | | | | |
Collapse
|
39
|
Karbarz MJ, Kalb SR, Cotter RJ, Raetz CRH. Expression cloning and biochemical characterization of a Rhizobium leguminosarum lipid A 1-phosphatase. J Biol Chem 2003; 278:39269-79. [PMID: 12869541 PMCID: PMC2553562 DOI: 10.1074/jbc.m305830200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lipid A of Rhizobium leguminosarum, a nitrogen-fixing plant endosymbiont, displays several significant structural differences when compared with Escherichia coli. An especially striking feature of R. leguminosarum lipid A is that it lacks both the 1- and 4'-phosphate groups. Distinct lipid A phosphatases that attack either the 1 or the 4' positions have previously been identified in extracts of R. leguminosarum and Rhizobium etli but not Sinorhizobium meliloti or E. coli. Here we describe the identification of a hybrid cosmid (pMJK-1) containing a 25-kb R. leguminosarum 3841 DNA insert that directs the overexpression of the lipid A 1-phosphatase. Transfer of pMJK-1 into S. meliloti 1021 results in heterologous expression of 1-phosphatase activity, which is normally absent in extracts of strain 1021, and confers resistance to polymyxin. Sequencing of a 7-kb DNA fragment derived from the insert of pMJK-1 revealed the presence of a lipid phosphatase ortholog (designated LpxE). Expression of lpxE in E. coli behind the T7lac promoter results in the appearance of robust 1-phosphatase activity, which is normally absent in E. coli membranes. Matrix-assisted laser-desorption/time of flight and radiochemical analysis of the product generated in vitro from the model substrate lipid IVA confirms the selective removal of the 1-phosphate group. These findings show that lpxE is the structural gene for the 1-phosphatase. The availability of lpxE may facilitate the re-engineering of lipid A structures in diverse Gram-negative bacteria and allow assessment of the role of the 1-phosphatase in R. leguminosarum symbiosis with plants. Possible orthologs of LpxE are present in some intracellular human pathogens, including Francisella tularensis, Brucella melitensis, and Legionella pneumophila.
Collapse
Affiliation(s)
- Mark J. Karbarz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Suzanne R. Kalb
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert J. Cotter
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Christian R. H. Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
- To whom correspondence should be addressed: Dept. of Biochemistry, Duke University Medical Center, P.O. Box 3711, Durham, NC 27710. Tel.: 919-684-5326; Fax: 919-684-8885; E-mail:
| |
Collapse
|
40
|
Castro MS, Gerhardt IR, Orrù S, Pucci P, Bloch C. Purification and characterization of a small (7.3 kDa) putative lipid transfer protein from maize seeds. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 794:109-14. [PMID: 12888203 DOI: 10.1016/s1570-0232(03)00423-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study reports, for the first time in literature, the purification and biochemical characterization of a small basic protein from maize seeds similar to plant lipid transfer proteins-2, named mLTP2. The mLTP2 consists of 70 amino acid residues and has an M(r) of 7303.83, determined by electrospray ionization mass spectrometry. The primary structure of mLTP2 was determined by automated Edman degradation of the intact protein and peptides obtained from digestions with trypsin and by C-terminal sequencing using carboxypeptidase Y. The mLTP2 exhibits high sequence similarity (51-44% identical positions) with other plant LTP2s previously described.
Collapse
Affiliation(s)
- Mariana S Castro
- Departamento de Ciências Fisiológicas/IB, Universidade de Brasília, 70.910-900, Brasília/DF, Brazil.
| | | | | | | | | |
Collapse
|
41
|
Coulon A, Mosbah A, Lopez A, Sautereau AM, Schaller G, Urech K, Rougé P, Darbon H. Comparative membrane interaction study of viscotoxins A3, A2 and B from mistletoe (Viscum album) and connections with their structures. Biochem J 2003; 374:71-8. [PMID: 12733989 PMCID: PMC1223566 DOI: 10.1042/bj20030488] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 04/29/2003] [Accepted: 05/06/2003] [Indexed: 11/17/2022]
Abstract
Viscotoxins A2 (VA2) and B (VB) are, together with viscotoxin A3 (VA3), among the most abundant viscotoxin isoforms that occur in mistletoe-derived medicines used in anti-cancer therapy. Although these isoforms have a high degree of amino-acid-sequence similarity, they are strikingly different from each other in their in vitro cytotoxic potency towards tumour cells. First, as VA3 is the only viscotoxin whose three-dimensional (3D) structure has been solved to date, we report the NMR determination of the 3D structures of VA2 and VB. Secondly, to account for the in vitro cytotoxicity discrepancy, we carried out a comparative study of the interaction of the three viscotoxins with model membranes. Although the overall 3D structure is highly conserved among the three isoforms, some discrete structural features and associated surface properties readily account for the different affinity and perturbation of model membranes. VA3 and VA2 interact in a similar way, but the weaker hydrophobic character of VA2 is thought to be mainly responsible for the apparent different affinity towards membranes. VB is much less active than the other two viscotoxins and does not insert into model membranes. This could be related to the occurrence of a single residue (Arg25) protruding outside the hydrophobic plane formed by the two amphipathic alpha-helices, through which viscotoxins are supposed to interact with plasma membranes.
Collapse
Affiliation(s)
- Alexandre Coulon
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique UMR 5089, 205 route de Narbonne, 31077 Toulouse 4, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Giudici M, Pascual R, de la Canal L, Pfüller K, Pfüller U, Villalaín J. Interaction of viscotoxins A3 and B with membrane model systems: implications to their mechanism of action. Biophys J 2003; 85:971-81. [PMID: 12885644 PMCID: PMC1303218 DOI: 10.1016/s0006-3495(03)74536-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Accepted: 02/14/2003] [Indexed: 11/29/2022] Open
Abstract
Viscotoxins are small proteins that are thought to interact with biomembranes, displaying different toxic activities against a varied number of cell types, being viscotoxin A(3) (VtA(3)) the most cytotoxic whereas viscotoxin B (VtB) is the less potent. By using infrared and fluorescence spectroscopies, we have studied the interaction of VtA(3) and VtB, both wild and reduced ones, with model membranes containing negatively charged phospholipids. Both VtA(3) and VtB present a high conformational stability, and a similar conformation both in solution and when bound to membranes. In solution, the infrared spectra of the reduced proteins show an increase in bandwidth compared to the nonreduced ones indicating a greater flexibility. VtA(3) and VtB bind with high affinity to membranes containing negatively charged phospholipids and are motional restricted, their binding being dependent on phospholipid composition. Whereas nonreduced proteins maintain their structure when bound to membranes, reduced ones aggregate. Furthermore, leakage experiments show that wild proteins were capable of disrupting membranes whereas reduced proteins were not. The effect of VtA(3) and VtB on membranes having different phospholipid composition is diverse, affecting the cooperativity and fluidity of the membranes. Viscotoxins interact with membranes in a complex way, most likely organizing themselves at the surface inducing the appearance of defects that lead to the destabilization and disruption of the membrane bilayer.
Collapse
Affiliation(s)
- Marcela Giudici
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Campus de Elche, E-03202 Elche-Alicante, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Vila-Perelló M, Sánchez-Vallet A, García-Olmedo F, Molina A, Andreu D. Synthetic and structural studies on Pyrularia pubera thionin: a single-residue mutation enhances activity against Gram-negative bacteria. FEBS Lett 2003; 536:215-9. [PMID: 12586366 DOI: 10.1016/s0014-5793(03)00053-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The thionin from Pyrularia pubera (Pp-TH), a 47-residue peptide with four internal disulfide bonds, was efficiently produced by chemical synthesis. Its antimicrobial activity in vitro against several representative pathogens (EC(50)=0.3-3.0 microM) was identical to that of natural Pp-TH. This peptide has a unique Asp(32) instead of the consensus Arg found in other thionins of the same family. In order to evaluate the effect of this mutation, the Arg(32) analogue (Pp-TH(D32R)) was also synthesized and showed a significant increase in antibiotic activity against several Gram-negative bacteria, whereas it retained the same activity against other pathogens. The overall structure of Pp-TH(D32R) was maintained, though a slight decrease in the helical content of the peptide was observed.
Collapse
Affiliation(s)
- Miquel Vila-Perelló
- Department of Experimental and Health Sciences, Pompeu Fabra University, Dr. Aiguader 80, E-08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
44
|
Richard JA, Kelly I, Marion D, Pézolet M, Auger M. Interaction between beta-Purothionin and dimyristoylphosphatidylglycerol: a (31)P-NMR and infrared spectroscopic study. Biophys J 2002; 83:2074-83. [PMID: 12324425 PMCID: PMC1302296 DOI: 10.1016/s0006-3495(02)73968-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The interaction of beta-purothionin, a small basic and antimicrobial protein from the endosperm of wheat seeds, with multilamellar vesicles of dimyristoylphosphatidylglycerol (DMPG) was investigated by (31)P solid-state NMR and infrared spectroscopy. NMR was used to study the organization and dynamics of DMPG in the absence and presence of beta-purothionin. The results indicate that beta-purothionin does not induce the formation of nonlamellar phases in DMPG. Two-dimensional exchange spectroscopy shows that beta-purothionin decreases the lateral diffusion of DMPG in the fluid phase. Infrared spectroscopy was used to investigate the perturbations, induced by beta-purothionin, of the polar and nonpolar regions of the phospholipid bilayers. At low concentration of beta-purothionin, the temperature of the gel-to-fluid phase transition of DMPG increases from 24 degrees C to ~33 degrees C, in agreement with the formation of electrostatic interactions between the cationic protein and the anionic phospholipid. At higher protein concentration, the lipid transition is slightly shifted toward lower temperature and a second transition is observed below 20 degrees C, suggesting an insertion of the protein in the hydrophobic core of the lipid bilayer. The results also suggest that the presence of beta-purothionin significantly modifies the lipid packing at the surface of the bilayer to increase the accessibility of water molecules in the interfacial region. Finally, orientation measurements indicate that the alpha-helices and the beta-sheet of beta-purothionin have tilt angles of ~60 degrees and 30 degrees, respectively, relative to the normal of the ATR crystal.
Collapse
Affiliation(s)
- Julie-Andrée Richard
- Département de Chimie, Centre de Recherche en Sciences et Ingénierie des Macromolécules, Université Laval, Québec G1K 7P4, Canada
| | | | | | | | | |
Collapse
|
45
|
Melo FR, Rigden DJ, Franco OL, Mello LV, Ary MB, Grossi de Sá MF, Bloch C. Inhibition of trypsin by cowpea thionin: characterization, molecular modeling, and docking. Proteins 2002; 48:311-9. [PMID: 12112698 DOI: 10.1002/prot.10142] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Higher plants produce several families of proteins with toxic properties, which act as defense compounds against pests and pathogens. The thionin family represents one family and comprises low molecular mass cysteine-rich proteins, usually basic and distributed in different plant tissues. Here, we report the purification and characterization of a new thionin from cowpea (Vigna unguiculata) with proteinase inhibitory activity. Cowpea thionin inhibits trypsin, but not chymotrypsin, binding with a stoichiometry of 1:1 as shown with the use of mass spectrometry. Previous annotations of thionins as proteinase inhibitors were based on their erroneous identification as homologues of Bowman-Birk family inhibitors. Molecular modeling experiments were used to propose a mode of docking of cowpea thionin with trypsin. Consideration of the dynamic properties of the cowpea thionin was essential to arrive at a model with favorable interface characteristics comparable with structures of trypsin-inhibitor complexes determined by X-ray crystallography. In the final model, Lys11 occupies the S1 specificity pocket of trypsin as part of a canonical style interaction.
Collapse
Affiliation(s)
- Francislete R Melo
- Departamento de Biologia Celular, Universidade de Brasília, Brasília-DF, Brasil.
| | | | | | | | | | | | | |
Collapse
|
46
|
Berrocal-Lobo M, Segura A, Moreno M, López G, García-Olmedo F, Molina A. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. PLANT PHYSIOLOGY 2002; 128:951-61. [PMID: 11891250 PMCID: PMC152207 DOI: 10.1104/pp.010685] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2001] [Revised: 10/18/2001] [Accepted: 11/29/2001] [Indexed: 05/18/2023]
Abstract
The peptide snakin-2 (StSN2) has been isolated from potato (Solanum tuberosum cv Jaerla) tubers and found to be active (EC(50) = 1-20 microM) against fungal and bacterial plant pathogens. It causes a rapid aggregation of both Gram-positive and Gram-negative bacteria. The corresponding StSN2 cDNA encodes a signal sequence followed by a 15-residue acidic sequence that precedes the mature StSN2 peptide, which is basic (isoelectric point = 9.16) and 66 amino acid residues long (molecular weight of 7,025). The StSN2 gene is developmentally expressed in tubers, stems, flowers, shoot apex, and leaves, but not in roots, or stolons, and is locally up-regulated by wounding and by abscisic acid treatment. Expression of this gene is also up-regulated after infection of potato tubers with the compatible fungus Botritys cinerea and down-regulated by the virulent bacteria Ralstonia solanacearum and Erwinia chrysanthemi. These observations are congruent with the hypothesis that the StSN2 is a component of both constitutive and inducible defense barriers.
Collapse
Affiliation(s)
- Marta Berrocal-Lobo
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biotecnología-Universidad Politecnica Madrid, Escuela Tecnica Superior Ingenieros Agrónomos, E-28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Coulon A, Berkane E, Sautereau AM, Urech K, Rouge P, Lopez A. Modes of membrane interaction of a natural cysteine-rich peptide: viscotoxin A3. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1559:145-59. [PMID: 11853681 DOI: 10.1016/s0005-2736(01)00446-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Among the very homologous family of alpha- and beta-thionins, known for their antimicrobial activity, the viscotoxin subfamily differs from other members because it is cytotoxic against tumoral cells but weakly hemolytic. We studied the interactions between the most active of these toxins, viscotoxin A3 (VA3), and model membranes made of phosphatidylcholine and phosphatidylserine (PS), the major zwitterionic and acidic phospholipids found in eukaryotic cells. Monolayer studies showed that electrostatic forces are essential for the interaction and are mainly involved in modulating the embedding of the toxin in the PS head group region. This in turn induces membrane stiffening, as shown by fluorescence polarization assays with 1,6-diphenyl-1,3,5-hexatriene and its derivatives. Moreover, vesicle permeabilization analyses showed that there are two modes of interaction, which are directly related to the stiffening effect and depend on the amount of VA3 bound to the surface of the vesicles. We propose an interaction model in which the embedding of VA3 in the membrane induces membrane defects leading to the gradual release of encapsulated dye. When the surfaces of the vesicles are saturated with the viscotoxin, complete vesicle destabilization is induced which leads to bilayer disruption, all-or-none encapsulated dye release and rearrangement of the vesicles.
Collapse
Affiliation(s)
- Alexandre Coulon
- Institut de Pharmacologie et de Biologie Structurale, UMR-CNRS 5089, Toulouse Cedex 4, France.
| | | | | | | | | | | |
Collapse
|
48
|
Xiao F, Tang X, Zhou JM. Expression of 35S::Pto globally activates defense-related genes in tomato plants. PLANT PHYSIOLOGY 2001; 126:1637-45. [PMID: 11500562 PMCID: PMC117163 DOI: 10.1104/pp.126.4.1637] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Revised: 04/27/2001] [Accepted: 05/14/2001] [Indexed: 05/20/2023]
Abstract
The tomato (Lycopersicon esculentum) resistance gene Pto confers resistance to the bacterial pathogen Pseudomonas syringae pv tomato carrying the avirulent gene avrPto. Overexpressing Pto under the control of the cauliflower mosaic virus 35S promoter constitutively activates defense responses in the absence of pathogen infection and nonspecifically enhances disease resistance. To elucidate the mechanisms underlying this resistance, we isolated cDNAs corresponding to transcripts that accumulated in 35S::Pto plants. By using suppression subtractive hybridization, we isolated 82 unique cDNA clones, most of which corresponded to differentially expressed transcripts. Most of the genes examined were also induced by pathogen inoculation. Sequence analysis showed that a large number of genes encode defense-related proteins, and most had not been previously isolated from tomato. The isolated cDNAs also include those with a putative role in the oxidative burst, proteolysis, the hypersensitive response, signal transduction, and a number of genes with unknown functions. The isolation of these cDNAs of diverse functions will assist in the characterization of defense pathways activated during disease resistance.
Collapse
Affiliation(s)
- F Xiao
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
49
|
Plant antifungal peptides and their use in transgenic food crops. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1874-5334(01)80008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
50
|
Abstract
Eight families of antimicrobial peptides, ranging in size from 2 to 9 kD, have been identified in plants. These are thionins, defensins, so-called lipid transfer proteins, hevein- and knottin-like peptides, MBP1, IbAMP, and the recently reported snakins. All of them have compact structures that are stabilized by 2-6 disulfide bridges. They are part of both permanent and inducible defense barriers. Transgenic overexpression of the corresponding genes leads to enhanced tolerance to pathogens, and peptide-sensitive pathogen mutants have reduced virulence.
Collapse
Affiliation(s)
- F García-Olmedo
- Laboratorio de Bioquímica y Biología Molecular, ETS Ingenieros Agrónomos, Madrid, Spain
| | | | | | | |
Collapse
|