1
|
Kae1 of Saccharomyces cerevisiae KEOPS complex possesses ADP/GDP nucleotidase activity. Biochem J 2022; 479:2433-2447. [PMID: 36416748 DOI: 10.1042/bcj20220290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/24/2022]
Abstract
The KEOPS complex is an evolutionarily conserved protein complex in all three domains of life (Bacteria, Archaea, and Eukarya). In budding yeast Saccharomyces cerevisiae, the KEOPS complex (ScKEOPS) consists of five subunits, which are Kae1, Bud32, Cgi121, Pcc1, and Gon7. The KEOPS complex is an ATPase and is required for tRNA N6-threonylcarbamoyladenosine modification, telomere length maintenance, and efficient DNA repair. Here, recombinant ScKEOPS full complex and Kae1-Pcc1-Gon7 and Bud32-Cgi121 subcomplexes were purified and their biochemical activities were examined. KEOPS was observed to have ATPase and GTPase activities, which are predominantly attributed to the Bud32 subunit, as catalytically dead Bud32, but not catalytically dead Kae1, largely eliminated the ATPase/GTPase activity of KEOPS. In addition, KEOPS could hydrolyze ADP to adenosine or GDP to guanosine, and produce PPi, indicating that KEOPS is an ADP/GDP nucleotidase. Further mutagenesis characterization of Bud32 and Kae1 subunits revealed that Kae1, but not Bud32, is responsible for the ADP/GDP nucleotidase activity. In addition, the Kae1V309D mutant exhibited decreased ADP/GDP nucleotidase activity in vitro and shortened telomeres in vivo, but showed only a limited defect in t6A modification, suggesting that the ADP/GDP nucleotidase activity of KEOPS contributes to telomere length regulation.
Collapse
|
2
|
Molina E, Cataldo VF, Eggers C, Muñoz-Madrid V, Glavic Á. p53 Related Protein Kinase is Required for Arp2/3-Dependent Actin Dynamics of Hemocytes in Drosophila melanogaster. Front Cell Dev Biol 2022; 10:859105. [PMID: 35721516 PMCID: PMC9201722 DOI: 10.3389/fcell.2022.859105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Cells extend membrane protrusions like lamellipodia and filopodia from the leading edge to sense, to move and to form new contacts. The Arp2/3 complex sustains lamellipodia formation, and in conjunction with the actomyosin contractile system, provides mechanical strength to the cell. Drosophila p53-related protein kinase (Prpk), a Tsc5p ortholog, has been described as essential for cell growth and proliferation. In addition, Prpk interacts with proteins associated to actin filament dynamics such as α-spectrin and the Arp2/3 complex subunit Arpc4. Here, we investigated the role of Prpk in cell shape changes, specifically regarding actin filament dynamics and membrane protrusion formation. We found that reductions in Prpk alter cell shape and the structure of lamellipodia, mimicking the phenotypes evoked by Arp2/3 complex deficiencies. Prpk co-localize and co-immunoprecipitates with the Arp2/3 complex subunit Arpc1 and with the small GTPase Rab35. Importantly, expression of Rab35, known by its ability to recruit upstream regulators of the Arp2/3 complex, could rescue the Prpk knockdown phenotypes. Finally, we evaluated the requirement of Prpk in different developmental contexts, where it was shown to be essential for correct Arp2/3 complex distribution and actin dynamics required for hemocytes migration, recruitment, and phagocytosis during immune response.
Collapse
Affiliation(s)
- Emiliano Molina
- FONDAP Center for Genome Regulation, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente F. Cataldo
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristián Eggers
- Department for Chemistry and Biochemistry and Pharmaceutical Sciences, Faculty of Science, University of Bern, Bern, Switzerland
| | - Valentina Muñoz-Madrid
- FONDAP Center for Genome Regulation, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Álvaro Glavic
- FONDAP Center for Genome Regulation, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- *Correspondence: Álvaro Glavic,
| |
Collapse
|
3
|
Beenstock J, Sicheri F. The structural and functional workings of KEOPS. Nucleic Acids Res 2021; 49:10818-10834. [PMID: 34614169 PMCID: PMC8565320 DOI: 10.1093/nar/gkab865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 11/14/2022] Open
Abstract
KEOPS (Kinase, Endopeptidase and Other Proteins of Small size) is a five-subunit protein complex that is highly conserved in eukaryotes and archaea and is essential for the fitness of cells and for animal development. In humans, mutations in KEOPS genes underlie Galloway-Mowat syndrome, which manifests in severe microcephaly and renal dysfunction that lead to childhood death. The Kae1 subunit of KEOPS catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine (t6A), while the auxiliary subunits Cgi121, the kinase/ATPase Bud32, Pcc1 and Gon7 play a supporting role. Kae1 orthologs are also present in bacteria and mitochondria but function in distinct complexes with proteins that are not related in structure or function to the auxiliary subunits of KEOPS. Over the past 15 years since its discovery, extensive study in the KEOPS field has provided many answers towards understanding the roles that KEOPS plays in cells and in human disease and how KEOPS carries out these functions. In this review, we provide an overview into recent advances in the study of KEOPS and illuminate exciting future directions.
Collapse
Affiliation(s)
- Jonah Beenstock
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Frank Sicheri
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Ontario, M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
4
|
A substrate binding model for the KEOPS tRNA modifying complex. Nat Commun 2020; 11:6233. [PMID: 33277478 PMCID: PMC7718258 DOI: 10.1038/s41467-020-19990-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/02/2020] [Indexed: 11/09/2022] Open
Abstract
The KEOPS complex, which is conserved across archaea and eukaryotes, is composed of four core subunits; Pcc1, Kae1, Bud32 and Cgi121. KEOPS is crucial for the fitness of all organisms examined. In humans, pathogenic mutations in KEOPS genes lead to Galloway-Mowat syndrome, an autosomal-recessive disease causing childhood lethality. Kae1 catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine, but the precise roles of all other KEOPS subunits remain an enigma. Here we show using structure-guided studies that Cgi121 recruits tRNA to KEOPS by binding to its 3' CCA tail. A composite model of KEOPS bound to tRNA reveals that all KEOPS subunits form an extended tRNA-binding surface that we have validated in vitro and in vivo to mediate the interaction with the tRNA substrate and its modification. These findings provide a framework for understanding the inner workings of KEOPS and delineate why all KEOPS subunits are essential.
Collapse
|
5
|
Esser D, Hoffmann L, Pham TK, Bräsen C, Qiu W, Wright PC, Albers SV, Siebers B. Protein phosphorylation and its role in archaeal signal transduction. FEMS Microbiol Rev 2016; 40:625-47. [PMID: 27476079 PMCID: PMC5007285 DOI: 10.1093/femsre/fuw020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2016] [Indexed: 12/23/2022] Open
Abstract
Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. The authors review the current knowledge about protein phosphorylation in Archaea and its impact on signaling in this organism group.
Collapse
Affiliation(s)
- Dominik Esser
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Lena Hoffmann
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Trong Khoa Pham
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Wen Qiu
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Phillip C Wright
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK School of Chemical Engineering and Advanced Materials, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
6
|
Shang X, Wang Y, Chen B. Identifying essential proteins based on dynamic protein-protein interaction networks and RNA-Seq datasets. SCIENCE CHINA INFORMATION SCIENCES 2016; 59:070106. [DOI: 10.1007/s11432-016-5583-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
|
7
|
Rojas-Benítez D, Ibar C, Glavic Á. The Drosophila EKC/KEOPS complex: roles in protein synthesis homeostasis and animal growth. Fly (Austin) 2013; 7:168-72. [PMID: 23823807 PMCID: PMC4049849 DOI: 10.4161/fly.25227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The TOR signaling pathway is crucial in the translation of nutritional inputs into the protein synthesis machinery regulation, allowing animal growth. We recently identified the Bud32 (yeast)/PRPK (human) ortholog in Drosophila, Prpk (p53-related protein kinase), and found that it is required for TOR kinase activity. Bud32/PRPK is an ancient and atypical kinase conserved in evolution from Archeae to humans, being essential for Archeae. It has been linked with p53 stabilization in human cell culture and its absence in yeast causes a slow-growth phenotype. This protein has been associated to KEOPS (kinase, putative endopeptidase and other proteins of small size) complex together with Kae1p (ATPase), Cgi-121 and Pcc1p. This complex has been implicated in telomere maintenance, transcriptional regulation, bud site selection and chemical modification of tRNAs (tRNAs). Bud32p and Kae1p have been related with N6-threonylcarbamoyladenosine (t6A) synthesis, a particular chemical modification that occurs at position 37 of tRNAs that pair A-starting codons, required for proper translation in most species. Lack of this modification causes mistranslations and open reading frame shifts in yeast. The core constituents of the KEOPS complex are present in Drosophila, but their physical interaction has not been reported yet. Here, we present a review of the findings regarding the function of this complex in different organisms and new evidence that extends our recent observations of Prpk function in animal growth showing that depletion of Kae1 or Prpk, in accordance with their role in translation in yeast, is able to induce the unfolded protein response (UPR) in Drosophila. We suggest that EKC/KEOPS complex could be integrating t6A-modified tRNA availability with translational rates, which are ultimately reflected in animal growth.
Collapse
Affiliation(s)
- Diego Rojas-Benítez
- FONDAP Center for Genome Regulation; Departamento de Biología; Facultad de Ciencias; Universidad de Chile; Santiago, Chile
| | | | | |
Collapse
|
8
|
Perrochia L, Crozat E, Hecker A, Zhang W, Bareille J, Collinet B, van Tilbeurgh H, Forterre P, Basta T. In vitro biosynthesis of a universal t6A tRNA modification in Archaea and Eukarya. Nucleic Acids Res 2012; 41:1953-64. [PMID: 23258706 PMCID: PMC3561968 DOI: 10.1093/nar/gks1287] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
N6-threonylcarbamoyladenosine (t6A) is a modified nucleotide found in all transfer RNAs (tRNAs) decoding codons starting with adenosine. Its role is to facilitate codon–anticodon pairing and to prevent frameshifting during protein synthesis. Genetic studies demonstrated that two universal proteins, Kae1/YgjD and Sua5/YrdC, are necessary for t6A synthesis in Saccharomyces cerevisiae and Escherichia coli. In Archaea and Eukarya, Kae1 is part of a conserved protein complex named kinase, endopeptidase and other proteins of small size (KEOPS), together with three proteins that have no bacterial homologues. Here, we reconstituted for the first time an in vitro system for t6A modification in Archaea and Eukarya, using purified KEOPS and Sua5. We demonstrated binding of tRNAs to archaeal KEOPS and detected two distinct adenosine triphosphate (ATP)-dependent steps occurring in the course of the synthesis. Our data, together with recent reconstitution of an in vitro bacterial system, indicated that t6A cannot be catalysed by Sua5/YrdC and Kae1/YgjD alone but requires accessory proteins that are not universal. Remarkably, we observed interdomain complementation when bacterial, archaeal and eukaryotic proteins were combined in vitro, suggesting a conserved catalytic mechanism for the biosynthesis of t6A in nature. These findings shed light on the reaction mechanism of t6A synthesis and evolution of molecular systems that promote translation fidelity in present-day cells.
Collapse
Affiliation(s)
- Ludovic Perrochia
- Institut de Génétique et Microbiologie, Université Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cell polarity in Saccharomyces cerevisiae depends on proper localization of the Bud9 landmark protein by the EKC/KEOPS complex. Genetics 2011; 188:871-82. [PMID: 21625000 DOI: 10.1534/genetics.111.128231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In diploid Saccharomyces cerevisiae cells, bud-site selection is determined by two cortical landmarks, Bud8p and Bud9p, at the distal and proximal poles, respectively. Their localizations depend on the multigenerational proteins Rax1p/Rax2p. Many genes involved in bud-site selection were identified previously by genome-wide screening of deletion mutants, which identified BUD32 that causes a random budding in diploid cells. Bud32p is an atypical kinase involved in a signaling cascade of Sch9p kinase, the yeast homolog of Akt/PKB, and a component of the EKC/KEOPS (endopeptidase-like, kinase, chromatin-associated/kinase, putative endopeptidase, and other proteins of small size) complex that functions in telomere maintenance and transcriptional regulation. However, its role in bipolar budding has remained unclear. In this report, we show that the Sch9p kinase cascade does not affect bipolar budding but that the EKC/KEOPS complex regulates the localization of Bud9p. The kinase activity of Bud32p, which is essential for the functions of the EKC/KEOPS complex but is not necessary for the Sch9p signaling cascade, is required for bipolar bud-site selection. BUD9 is necessary for random budding in each deletion mutant of EKC/KEOPS components, and RAX2 is genetically upstream of EKC/KEOPS genes for the regulation of bipolar budding. The asymmetric localization of Bud9p was dependent on the complex, but Bud8p and Rax2p were not. We concluded that the EKC/KEOPS complex is specifically involved in the regulation of Bud9p localization downstream of Rax1p/Rax2p.
Collapse
|
10
|
The activity of an ancient atypical protein kinase is stimulated by ADP-ribose in vitro. Arch Biochem Biophys 2011; 511:56-63. [PMID: 21527241 DOI: 10.1016/j.abb.2011.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 04/06/2011] [Accepted: 04/10/2011] [Indexed: 11/22/2022]
Abstract
The piD261/Bud32 protein kinases are universal amongst the members of the Eucarya and Archaea. Despite the fact that phylogenetic analyses indicate that the piD261/Bud32 protein kinases descend directly from the primordial ancestor of the "eukaryotic" protein kinase superfamily, our knowledge of their physiological role is relatively fragmentary and largely limited to two eucaryal representatives: piD261/Bud32 from yeast and the p53-related protein kinase from humans. A deduced archaeal homolog, SsoPK5, is encoded by open reading frame sso0433 from the acidothermophile Sulfolobus solfataricus. Recombinantly-expressed SsoPK5 exhibited protein kinase activity, with a noticeable preference for phosphorylating proteins of acidic character and for Mn(2+) as cofactor. The protein kinase also can phosphorylate itself on serine and threonine residues. The activity of rSsoPK5 was increased several-fold upon preincubation with either millimolar concentrations of 5'-AMP or submicromolar concentrations of ADP-ribose. Other mono- and di-nucleotides were ineffective. While activation was enhanced by the presence of ATP, no autophosphorylation of the protein kinase could be detected prior to addition of exogenous substrate proteins. We therefore suggest that ADP-ribose acts by evoking a conformational transition in the enzyme. Activation by ADP-ribose represents a potential regulatory link between chromatin remodeling and the activity of SsoPK5.
Collapse
|
11
|
Hecker A, Lopreiato R, Graille M, Collinet B, Forterre P, Libri D, van Tilbeurgh H. Structure of the archaeal Kae1/Bud32 fusion protein MJ1130: a model for the eukaryotic EKC/KEOPS subcomplex. EMBO J 2009; 27:2340-51. [PMID: 19172740 DOI: 10.1038/emboj.2008.157] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The EKC/KEOPS yeast complex is involved in telomere maintenance and transcription. The Bud32p and kinase-associated endopeptidase 1 (Kaelp) components of the complex are totally conserved in eukarya and archaea. Their genes are fused in several archaeal genomes, suggesting that they physically interact. We report here the structure of the Methanocaldococcus jannaschii Kae1/Bud32 fusion protein MJ1130. Kae1 is an iron protein with an ASKHA fold and Bud32 is an atypical small RIO-type kinase. The structure MJ1130 suggests that association with Kae1 maintains the Bud32 kinase in an inactive state. We indeed show that yeast Kae1p represses the kinase activity of yeast Bud32p. Extensive conserved interactions between MjKae1 and MjBud32 suggest that Kae1p and Bud32p directly interact in both yeast and archaea. Mutations that disrupt the Kae1p/Bud32p interaction in the context of the yeast complex have dramatic effects in vivo and in vitro, similar to those observed with deletion mutations of the respective components. Direct interaction between Kae1p and Bud32p in yeast is required both for the transcription and the telomere homeostasis function of EKC/KEOPS.
Collapse
Affiliation(s)
- Arnaud Hecker
- Institut de Génétique et Microbiologie, Université Paris-Sud, IFR115 UMR8621-CNR, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
12
|
The universal Kae1 protein and the associated Bud32 kinase (PRPK), a mysterious protein couple probably essential for genome maintenance in Archaea and Eukarya. Biochem Soc Trans 2009; 37:29-35. [PMID: 19143597 DOI: 10.1042/bst0370029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The similarities between essential molecular mechanisms in Archaea and Eukarya make it possible to discover, using comparative genomics, new fundamental mechanisms conserved between these two domains. We are studying a complex of two proteins conserved in Archaea and Eukarya whose precise biological role and biochemical function remain unknown. One of them is a universal protein known as Kae1 (kinase-asociated endopeptidase 1). The second protein is a serine/threonine kinase corresponding to the proteins Bud32 in Saccharomyces cerevisiae and PRPK (p53-related protein kinase) in humans. The genes encoding the archaeal orthologues of Kae1 and PRPK are either contiguous or even fused in many archaeal genomes. In S. cerevisiae, Kae1 and Bud32 (PRPK) belong to a chromatin-associated complex [KEOPS (kinase, endopeptidase and other proteins of small size)/EKC (endopeptidase-like kinase chromatin-associated)] that is essential for telomere elongation and transcription of essential genes. Although Kae1 is annotated as O-sialoglycoprotein endopeptidase in most genomes, we found that the Kae1 protein from Pyrococcus abyssi has no protease activity, but is an atypical DNA-binding protein with an AP (apurinic) lyase activity. The structure of the fusion protein from Methanocaldococcus jannaschii revealed that Kae1 maintains the ATP-binding site of Bud32 [corrected] in an inactive configuration. We have in fact found that Kae1 inhibits the kinase activity of Bud32 (PRPK) in vitro. Understanding the precise biochemical function and biological role of these two proteins (which are probably essential for genome maintenance) remains a major challenge.
Collapse
|
13
|
Peggion C, Lopreiato R, Casanova E, Ruzzene M, Facchin S, Pinna LA, Carignani G, Sartori G. Phosphorylation of the Saccharomyces cerevisiae Grx4p glutaredoxin by the Bud32p kinase unveils a novel signaling pathway involving Sch9p, a yeast member of the Akt / PKB subfamily. FEBS J 2008; 275:5919-33. [DOI: 10.1111/j.1742-4658.2008.06721.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Abe Y, Takeuchi T, Imai Y, Murase R, Kamei Y, Fujibuchi T, Matsumoto S, Ueda N, Ogasawara M, Shigemoto K, Kito K. A Small Ras-like protein Ray/Rab1c modulates the p53-regulating activity of PRPK. Biochem Biophys Res Commun 2006; 344:377-85. [PMID: 16600182 DOI: 10.1016/j.bbrc.2006.03.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 03/12/2006] [Indexed: 01/31/2023]
Abstract
PRPK phosphorylates serine-15 residue of p53 and enhances transcriptional activity. PRPK possesses a bipartite nuclear localization signal and localizes in nucleus when over-expressed in cells. However, intrinsic PRPK localizes mainly in the cytosol in situ. While studying the mechanisms in the distribution of intrinsic PRPK, we identified a PRPK binding protein, an ubiquitously expressed Small Ras-like GTPase, Rab1c, also named Ray or Rab35. The over-expressed Ray was distributed in the nucleus, cytosol, and cell membrane. Both Ray wild type and GTP-restrictively binding mutant Ray-Q67L, but not guanine nucleotide unstable binding mutant Ray-N120I, partially distributed the over-expressed PRPK to the cytosol and also suppressed the PRPK-induced p53-transcriptional activity profoundly. A Small Ras-like GTPase protein Ray was thus indicated to modulate p53 transcriptional activity of PRPK.
Collapse
Affiliation(s)
- Yasuhito Abe
- Department of Pathology, Division of Molecular Pathology, National University Corporation, Ehime University School of Medicine, Toh-on, Ehime 791-0295, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chan EWS, Chattopadhaya S, Panicker RC, Huang X, Yao SQ. Developing Photoactive Affinity Probes for Proteomic Profiling: Hydroxamate-based Probes for Metalloproteases. J Am Chem Soc 2004; 126:14435-46. [PMID: 15521763 DOI: 10.1021/ja047044i] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The denaturing aspect of current activity-based protein profiling strategies limits the classes of chemical probes to those which irreversibly and covalently modify their targeting enzymes. Herein, we present a complimentary, affinity-based labeling approach to profile enzymes which do not possess covalently bound substrate intermediates. Using a variety of enzymes belonging to the class of metalloproteases, the feasibility of the approach was successfully demonstrated in several proof-of-concept experiments. The design template of affinity-based probes targeting metalloproteases consists of a peptidyl hydroxamate zinc-binding group (ZBG), a fluorescent reporter tag, and a photolabile diazirine group. Photolysis of the photolabile unit in the probe effectively generates a covalent, irreversible linkage between the probe and the target enzyme, rendering the enzyme distinguishable from unlabeled proteins upon separation on a SDS-PAGE gel. A variety of labeling studies were carried out to confirm that the affinity-based approach selectively labeled metalloproteases in the presence of a large excess of other proteins and that the success of the labeling reaction depends intimately upon the catalytic activity of the enzyme. Addition of competitive inhibitors proportionally diminished the extent of enzyme labeling, making the approach useful for potential in situ screening of metalloprotease inhibitors. Using different probes with varying P(1) amino acids, we were able to generate unique "fingerprint" profiles of enzymes which may be used to determine their substrate specificities. Finally, by testing against a panel of yeast metalloproteases, we demonstrated that the affinity-based approach may be used for the large-scale profiling of metalloproteases in future proteomic experiments.
Collapse
Affiliation(s)
- Elaine W S Chan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | | | | | | | | |
Collapse
|
16
|
Gopalaswamy R, Narayanan PR, Narayanan S. Cloning, overexpression, and characterization of a serine/threonine protein kinase pknI from Mycobacterium tuberculosis H37Rv. Protein Expr Purif 2004; 36:82-9. [PMID: 15177288 DOI: 10.1016/j.pep.2004.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 03/19/2004] [Indexed: 01/29/2023]
Abstract
Protein phosphorylation-dephosphorylation is the principal mechanism for translation of external signals into cellular responses. Eukaryotic-like serine/threonine kinases have been reported to play important roles in bacterial development and/or virulence. The PknI protein is one of the 11 eukaryotic-like serine/threonine kinases in Mycobacterium tuberculosis H37Rv. From the bioinformatic studies, PknI protein has been shown to have an N-terminal cytoplasmic domain followed by a transmembrane region and an extracellular C-terminus suggestive of a sensor molecule. In this study, we have cloned, overexpressed, and characterized the entire coding region and the cytoplasmic domain of PknI as a fusion protein with an N-terminal histidine tag, and used immobilized metal affinity chromatography for purification of recombinant proteins. The purified recombinant proteins were found to be functionally active through in vitro phosphorylation assay and phosphoamino acid analysis. In vitro kinase assay of both proteins revealed that PknI is capable of autophosphorylation and showed manganese-dependent activity. Phosphoamino acid analysis indicated phosphorylation at serine and threonine residues. Southern blot analysis with genomic DNA highlighted the conserved nature of pknI among the various mycobacterial species. In silico analysis revealed a close homology of PknI to Stk1 from Streptococcus agalactiae, shown to have a role in virulence and cell segregation of the organism.
Collapse
Affiliation(s)
- Radha Gopalaswamy
- Department of Immunology, Tuberculosis Research Centre (ICMR), Mayor V.R. Ramanathan Road, Chetput, Chennai 600031, India
| | | | | |
Collapse
|
17
|
Lopreiato R, Facchin S, Sartori G, Arrigoni G, Casonato S, Ruzzene M, Pinna LA, Carignani G. Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin. Biochem J 2004; 377:395-405. [PMID: 14519092 PMCID: PMC1223863 DOI: 10.1042/bj20030638] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Revised: 09/30/2003] [Accepted: 09/30/2003] [Indexed: 11/17/2022]
Abstract
The Saccharomyces cerevisiae piD261/Bud32 protein and its structural homologues, which are present along the Archaea-Eukarya lineage, constitute a novel protein kinase family (the piD261 family) distantly related in sequence to the eukaryotic protein kinase superfamily. It has been demonstrated that the yeast protein displays Ser/Thr phosphotransferase activity in vitro and contains all the invariant residues of the family. This novel protein kinase appears to play an important cellular role as deletion in yeast of the gene encoding piD261/Bud32 results in the alteration of fundamental processes such as cell growth and sporulation. In this work we show that the phosphotransferase activity of Bud32 is relevant to its functionality in vivo, but is not the unique role of the protein, since mutants which have lost catalytic activity but not native conformation can partially complement the disruption of the gene encoding piD261/Bud32. A two-hybrid approach has led to the identification of several proteins interacting with Bud32; in particular a glutaredoxin (Grx4), a putative glycoprotease (Ykr038/Kae1) and proteins of the Imd (inosine monophosphate dehydrogenase) family seem most plausible interactors. We further demonstrate that Grx4 directly interacts with Bud32 and that it is phosphorylated in vitro by Bud32 at Ser-134. The functional significance of the interaction between Bud32 and the putative protease Ykr038/Kae1 is supported by its evolutionary conservation.
Collapse
Affiliation(s)
- Raffaele Lopreiato
- Dipartimento di Chimica Biologica, Università di Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lower BH, Potters MB, Kennelly PJ. A phosphoprotein from the archaeon Sulfolobus solfataricus with protein-serine/threonine kinase activity. J Bacteriol 2004; 186:463-72. [PMID: 14702316 PMCID: PMC305749 DOI: 10.1128/jb.186.2.463-472.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 10/03/2003] [Indexed: 11/20/2022] Open
Abstract
Sulfolobus solfataricus contains a membrane-associated protein kinase activity that displays a strong preference for threonine as the phospho-acceptor amino acid residue. When a partially purified detergent extract of the membrane fraction from the archaeon S. solfataricus that had been enriched for this activity was incubated with [gamma-(32)P]ATP, radiolabeled phosphate was incorporated into roughly a dozen polypeptides, several of which contained phosphothreonine. One of the phosphothreonine-containing proteins was identified by mass peptide profiling as the product of open reading frame [ORF] sso0469. Inspection of the DNA-derived amino acid sequence of the predicted protein product of ORF sso0469 revealed the presence of sequence characteristics faintly reminiscent of the "eukaryotic" protein kinase superfamily. ORF sso0469 therefore was cloned, and its polypeptide product was expressed in Escherichia coli. The recombinant protein formed insoluble aggregates that could be dispersed using urea or detergents. The solubilized polypeptide phosphorylated several exogenous proteins in vitro, including casein, myelin basic protein, and bovine serum albumin. Mutagenic alteration of amino acids predicted to be essential for catalytic activity abolished or severely reduced catalytic activity. Phosphorylation of exogenous substrates took place on serine and, occasionally, threonine. This new archaeal protein kinase displayed no catalytic activity when GTP was substituted for ATP as the phospho-donor substrate, while Mn(2+) was the preferred cofactor.
Collapse
Affiliation(s)
- Brian H Lower
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
19
|
Facchin S, Lopreiato R, Ruzzene M, Marin O, Sartori G, Götz C, Montenarh M, Carignani G, Pinna LA. Functional homology between yeast piD261/Bud32 and human PRPK: both phosphorylate p53 and PRPK partially complements piD261/Bud32 deficiency. FEBS Lett 2003; 549:63-6. [PMID: 12914926 DOI: 10.1016/s0014-5793(03)00770-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Yeast piD261/Bud32 belongs to the piD261 family of atypical protein kinases structurally conserved, from Archaea to human. The disruption of its gene is causative of severely defective growth. Its human homologue, PRPK, interacts with and phosphorylates the oncosuppressor p53 protein, which is lacking in yeast. Here we show that on one hand piD261/Bud32 interacts with and phosphorylates human p53 in vitro, on the other hand PRPK can partially complement the phenotype of yeast lacking the gene encoding piD261/Bud32. These data indicate that, despite considerable structural divergence, members of the piD261 family from distantly related organisms display a remarkable functional conservation.
Collapse
Affiliation(s)
- Sonia Facchin
- Dipartimento di Chimica Biologica, Università di Padova, Viale G Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Petříčková K, Petříček M. Eukaryotic-type protein kinases in Streptomyces coelicolor: variations on a common theme. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1609-1621. [PMID: 12855714 DOI: 10.1099/mic.0.26275-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The increasing number of genes encoding eukaryotic-type Ser/Thr protein kinases (ESTPKs) in prokaryotes, identified mostly due to genome-sequencing projects, suggests that these enzymes play an indispensable role in many bacterial species. Some prokaryotes, such as Streptomyces coelicolor, carry numerous genes of this type. Though the regulatory pathways have been intensively studied in the organism, experimental proof of the physiological function of ESTPKs is scarce. This review presents a family portrait of the genes identified in the sequence of the S. coelicolor A3(2) genome. Based on the available experimental data on ESTPKs in streptomycetes and related bacteria, and on computer-assisted sequence analyses, possible roles of these enzymes in the regulation of cellular processes in streptomycetes are suggested.
Collapse
Affiliation(s)
- Kateřina Petříčková
- Laboratory of Physiology and Genetics of Actinomycetes, Institute of Microbiology ASCR, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Miroslav Petříček
- Laboratory of Physiology and Genetics of Actinomycetes, Institute of Microbiology ASCR, Vídeňská 1083, 14220 Prague, Czech Republic
| |
Collapse
|
21
|
Miyoshi A, Kito K, Aramoto T, Abe Y, Kobayashi N, Ueda N. Identification of CGI-121, a novel PRPK (p53-related protein kinase)-binding protein. Biochem Biophys Res Commun 2003; 303:399-405. [PMID: 12659830 DOI: 10.1016/s0006-291x(03)00333-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PRPK (p53-related protein kinase) has been reported as a novel protein kinase which binds to the tumor suppressor protein p53 and induces phosphorylation of p53 at Ser 15. To identify novel binding partners of PRPK, we performed a yeast two-hybrid screening and isolated an expressed sequence tag CGI-121 by which a 20-kDa protein was encoded. We demonstrated the protein-protein interaction of CGI-121 with PRPK in vivo and in vitro. The protein expression of CGI-121 was observed in many cell lines and was immunocytochemically identified in both the nucleus and cytosol. Although PRPK interacted with both CGI-121 and p53, several attempts to demonstrate an association between CGI-121 and p53 were unsuccessful. In addition, coprecipitation of p53 using recombinant PRPK was inhibited by adding recombinant CGI-121 in vitro, suggesting that CGI-121 could act as a potent inhibitor of the binding of PRPK to p53.
Collapse
Affiliation(s)
- Akifumi Miyoshi
- First Department of Pathology, Ehime University School of Medicine, Shitsukawa, Shigenobucho, Onsengun, Ehime 791-0295, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Conde R, Pablo G, Cueva R, Larriba G. Screening for new yeast mutants affected in mannosylphosphorylation of cell wall mannoproteins. Yeast 2003; 20:1189-211. [PMID: 14587103 DOI: 10.1002/yea.1032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have carried out a screen of 622 deletion strains generated during the EUROFAN B0 project to identify non-essential genes related to the mannosylphosphate content of the cell wall. By examining the affinity of the deletants for the cationic dye alcian blue and the ion exchanger QAE-Sephadex, we have selected 50 strains. On the basis on their reactivity (blue colour intensity) in the alcian blue assay, mutants with a lower phosphate content than wild-type cells were then arranged in groups defined by previously characterized mutants, as follows: group I (mnn6), group II (between mnn6 and mnn9) and group III (mnn9). Similarly, strains that behaved like mnn1 (i.e. a blue colour deeper than wild-type) were included in group VI. To confirm the association between the phenotype and a specific mutation, strains were complemented with clones or subjected to tetrad analysis. Selected strains were further tested for extracellular invertase and exoglucanase. Within groups I, II and III, we found some genes known to be involved in oligosaccharide biosynthesis (ALG9, ALG12, HOC1), secretion (BRE5, COD4/COG5, VPS53), transcription (YOL072w/THP1, ELP2, STB1, SNF11), cell polarity (SEP7, RDG1), mitochondrial function (YFH1), cell metabolism, as well as orphan genes. Within group VI, we found genes involved in environmentally regulated transduction pathways (PAL2 and RIM20) as well as others with miscellaneous or unknown functions. We conclude that mannosylphosphorylation is severely impaired in some deletants deficient in specific glycosylation/secretion processes, but many other different pathways may also modulate the amount of mannosylphosphate in the cell wall.
Collapse
Affiliation(s)
- Raúl Conde
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | | | |
Collapse
|
23
|
Facchin S, Sarno S, Marin O, Lopreiato R, Sartori G, Pinna LA. Acidophilic character of yeast PID261/BUD32, a putative ancestor of eukaryotic protein kinases. Biochem Biophys Res Commun 2002; 296:1366-71. [PMID: 12207926 DOI: 10.1016/s0006-291x(02)02090-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Yeast piD261/Bud32 and its homologues are present in eukaryotes and in archaea but not in bacteria and are believed to make up a primordial branch of the eukaryotic protein kinase superfamily. Here, we show that, at variance with the majority of Ser/Thr protein kinases which recognize phosphoacceptor sites specified by basic and/or proline residues, piD261 phosphorylates in vitro a number of acidic proteins and peptides, and it recognizes seryl residues specified by carboxylic side chains. These data suggest that recognition of acidic sites might have been a primordial trait of protein kinases, which was modified during evolution to cope with the increasing complexity of protein phosphorylation in eukaryotes.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Biological Chemistry, and CRIBI, University of Padua, and Venetian Institute for Molecular Medicine, Viale G. Colombo 3, 35121, Padva, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Gong D, Guo Y, Jagendorf AT, Zhu JK. Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. PLANT PHYSIOLOGY 2002; 130:256-64. [PMID: 12226505 PMCID: PMC166558 DOI: 10.1104/pp.004507] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2002] [Revised: 04/17/2002] [Accepted: 05/16/2002] [Indexed: 05/17/2023]
Abstract
The Arabidopsis Salt Overly Sensitive 2 (SOS2) gene encodes a serine/threonine (Thr) protein kinase that has been shown to be a critical component of the salt stress signaling pathway. SOS2 contains a sucrose-non-fermenting protein kinase 1/AMP-activated protein kinase-like N-terminal catalytic domain with an activation loop and a unique C-terminal regulatory domain with an FISL motif that binds to the calcium sensor Salt Overly Sensitive 3. In this study, we examined some of the biochemical properties of the SOS2 in vitro. To determine its biochemical properties, we expressed and isolated a number of active and inactive SOS2 mutants as glutathione S-transferase fusion proteins in Escherichia coli. Three constitutively active mutants, SOS2T168D, SOS2T168D Delta F, and SOS2T168D Delta 308, were obtained previously, which contain either the Thr-168 to aspartic acid (Asp) mutation in the activation loop or combine the activation loop mutation with removal of the FISL motif or the entire regulatory domain. These active mutants exhibited a preference for Mn(2+) relative to Mg(2+) and could not use GTP as phosphate donor for either substrate phosphorylation or autophosphorylation. The three enzymes had similar peptide substrate specificity and catalytic efficiency. Salt overly sensitive 3 had little effect on the activity of the activation loop mutant SOS2T168D, either in the presence or absence of calcium. The active mutant SOS2T168D Delta 308 could not transphosphorylate an inactive protein (SOS2K40N), which indicates an intramolecular reaction mechanism of SOS2 autophosphorylation. Interestingly, SOS2 could be activated not only by the Thr-168 to Asp mutation but also by a serine-156 or tyrosine-175 to Asp mutation within the activation loop. Our results provide insights into the regulation and biochemical properties of SOS2 and the SOS2 subfamily of protein kinases.
Collapse
Affiliation(s)
- Deming Gong
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
25
|
Gong D, Gong Z, Guo Y, Chen X, Zhu JK. Biochemical and functional characterization of PKS11, a novel Arabidopsis protein kinase. J Biol Chem 2002; 277:28340-50. [PMID: 12029080 DOI: 10.1074/jbc.m107719200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Arabidopsis SOS2 (Salt Overly Sensitive 2)-like protein kinases (PKS) are novel protein kinases that contain an SNF1-like catalytic domain with a putative activation loop and a regulatory domain with an FISL motif that binds calcium sensors. Very little biochemical and functional information is currently available on this family of kinases. Here we report on the expression of the PKS11 gene, activation and characterization of the gene product, and transgenic evaluation of its function in plants. PKS11 transcript was preferentially expressed in roots of Arabidopsis plants. Recombinant glutathione S-transferase fusion protein of PKS11 was inactive in substrate phosphorylation. However, the kinase can be highly activated by a threonine 161 to aspartate substitution (designated PKS11T161D) in the putative activation loop. Interestingly, PKS11 can also be activated by substitution of either a serine or tyrosine with aspartate within the activation loop. Deletion of the FISL motif also resulted in a slight activation of PKS11. PKS11T161D displayed an uncommon preference for Mn(2+) over Mg(2+) for substrate phosphorylation and autophosphorylation. The optimal pH and temperature values of PKS11T161D were determined to be 7.5 and 30 degrees C, respectively. The activated kinase showed substrate specificity, high affinity, and catalytic efficiency for a peptide substrate p3 and for ATP. AMP or ADP at concentrations from 10 microm to 1 mm did not activate PKS11T161D. Transgenic Arabidopsis plants expressing PKS11T161D were more resistant to high concentrations of glucose, suggesting the involvement of this protein kinase in sugar signaling in plants. These results provide insights into the function as well as regulation and biochemical properties of the PKS protein kinase.
Collapse
Affiliation(s)
- Deming Gong
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
26
|
Facchin S, Lopreiato R, Stocchetto S, Arrigoni G, Cesaro L, Marin O, Carignani G, Pinna LA. Structure-function analysis of yeast piD261/Bud32, an atypical protein kinase essential for normal cell life. Biochem J 2002; 364:457-63. [PMID: 12023889 PMCID: PMC1222591 DOI: 10.1042/bj20011376] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Saccharomyces cerevisiae YGR262c/BUD32 gene, whose disruption causes a severe pleiotropic phenotype, encodes a 261-residue putative protein kinase, piD261, whose structural homologues have been identified in a variety of organisms, including humans, and whose function is unknown. We have demonstrated previously that piD261, expressed in Escherichia coli as a recombinant protein, is a Ser/Thr kinase, as judged by its ability to autophosphorylate and to phosphorylate casein. Here we describe a mutational analysis showing that, despite low sequence similarity, the invariant residues representing the signature of protein kinases are conserved in piD261 and in its structural homologues, but are embedded in an altered context, suggestive of unique mechanistic properties. Especially noteworthy are: (i) three unique inserts of unknown function within the N-terminal lobe, (ii) the lack of a lysyl residue which in all other Ser/Thr kinases participates in the catalytic event by interacting with the transferred ATP gamma-phosphate, and which in piD261 is replaced by a threonine, and (iii) an exceedingly short activation loop including two serines, Ser-187 and Ser-189, whose autophosphorylation accounts for the appearance of an upshifted band upon SDS/PAGE. A mutant in which these serines are replaced by alanines was devoid of the upshifted band and displayed reduced catalytic activity. This would include piD261 in the category of protein kinases activated by phosphorylation, although it lacks the RD (Arg-Asp) motif which is typical of these enzymes.
Collapse
Affiliation(s)
- Sonia Facchin
- Dipartimento di Chimica Biologica, Centro Studi delle Biomembrane del Consiglio Nazionale delle Ricerche and Centro Ricerca Interdipartimentale Biotecnologie Innovative, University of Padova, Viale G. Colombo, 3, 35125 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gong D, Gong Z, Guo Y, Zhu JK. Expression, activation, and biochemical properties of a novel Arabidopsis protein kinase. PLANT PHYSIOLOGY 2002; 129:225-34. [PMID: 12011353 PMCID: PMC155886 DOI: 10.1104/pp.010776] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2001] [Revised: 12/11/2001] [Accepted: 01/15/2002] [Indexed: 05/17/2023]
Abstract
An Arabidopsis SOS2 (salt overly sensitive 2)-like protein kinase gene, PKS6, was expressed in leaves, stems, and siliques, but not detectable in roots of adult plants; its expression in young seedlings was up-regulated by abscisic acid. To determine the biochemical properties of the PKS6 protein, we expressed the PKS6 coding sequence as a glutathione S-transferase fusion protein in Escherichia coli. The bacterially expressed glutathione S-transferase-PKS6 fusion protein was inactive in substrate phosphorylation. We have constructed constitutively active forms of PKS6 by either a deletion of its putative auto-inhibitory FISL motif (i.e. PKS6deltaF) or a substitution of threonine-178 with aspartic acid within the putative activation loop. We found that PKS6deltaF exhibited a strong preference for Mn2+ over Mg2+ as a divalent cation cofactor for kinase activity. PKS6DeltaF displayed substrate specificity against three different peptide substrates and had an optimal pH of approximately 7.5 and temperature optimum of 30 degrees C. The apparent Km values for ATP and the preferred peptide substrate p3 of PKS6deltaF were determined to be 1.7 and 28.5 microM, respectively. These results provide significant insights into the regulation and biochemical properties of the protein kinase PKS6. In addition, the constitutively active, gain-of-function kinase mutants will be invaluable for future determination of the in planta function of PKS6.
Collapse
Affiliation(s)
- Deming Gong
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
28
|
Abe Y, Matsumoto S, Wei S, Nezu K, Miyoshi A, Kito K, Ueda N, Shigemoto K, Hitsumoto Y, Nikawa J, Enomoto Y. Cloning and characterization of a p53-related protein kinase expressed in interleukin-2-activated cytotoxic T-cells, epithelial tumor cell lines, and the testes. J Biol Chem 2001; 276:44003-11. [PMID: 11546806 DOI: 10.1074/jbc.m105669200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A human protein kinase, p53-related protein kinase (PRPK), was cloned from an interleukin-2-activated cytotoxic T-cell subtraction library. PRPK appears to be a homologue of a growth-related yeast serine/threonine protein kinase, YGR262c. However, a complementation assay using YGR262c-disrupted yeast indicated that PRPK is not functionally identical to the yeast enzyme. PRPK expression was observed in interleukin-2-activated cytotoxic T-cells, some human epithelial tumor cell lines, and the testes. The intrinsic transcriptional activity of p53 was up-regulated by a transient transfection of PRPK to COS-7 cells. PRPK was shown to bind to p53 and to phosphorylate p53 at Ser-15. These results indicate that PRPK may play an important role in the cell cycle and cell apoptosis through phosphorylation of p53.
Collapse
Affiliation(s)
- Y Abe
- First Department of Pathology and Hygiene, Ehime University School of Medicine, Shigenobu, Ehime 791-0295, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Brunati AM, Marin O, Folda A, Meggio F, Pinna LA. Possible implication of the Golgi apparatus casein kinase in the phosphorylation of vesicle docking protein p115 Ser-940: a study with peptide substrates. Biochem Biophys Res Commun 2001; 284:817-22. [PMID: 11396975 DOI: 10.1006/bbrc.2001.5049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of human vescicle docking protein p115 at Ser-942 (homologous to Ser-940 in rat p115) promotes its dissociation from the Golgi membrane. Here we show that a peptide encompassing the 934--950 sequence of p115 is unaffected or poorly phosphorylated by a variety of Ser/Thr protein kinases with the notable exception of the Golgi apparatus casein kinase (G-CK) which phosphorylates it with an efficiency comparable to that of its optimal peptide substrates. In contrast phosphorylation of the p115 peptide by protein kinase CK2 is negligible compared to that of the specific peptide substrates of this kinase. Phosphorylation by G-CK is abolished if a conserved cluster of acidic residues at position between n + 4 and n + 9 (EDDDDE) is replaced by a neutral stretch (GAGAGA). These data strongly support the view that G-CK but not the other two classes of ubiquitous "casein kinases" (CK1 and CK2) is the natural phosphorylating agent of p115.
Collapse
Affiliation(s)
- A M Brunati
- Dipartimento di Chimica Biologica, Centro per lo Studio delle Biomembrane del CNR and CRIBI, University of Padova, Padua, Italy
| | | | | | | | | |
Collapse
|
30
|
Sarno S, Reddy H, Meggio F, Ruzzene M, Davies SP, Donella-Deana A, Shugar D, Pinna LA. Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 ('casein kinase-2'). FEBS Lett 2001; 496:44-8. [PMID: 11343704 DOI: 10.1016/s0014-5793(01)02404-8] [Citation(s) in RCA: 294] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The specificity of 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), an ATP/GTP competitive inhibitor of protein kinase casein kinase-2 (CK2), has been examined against a panel of 33 protein kinases, either Ser/Thr- or Tyr-specific. In the presence of 10 microM TBB (and 100 microM ATP) only CK2 was drastically inhibited (>85%) whereas three kinases (phosphorylase kinase, glycogen synthase kinase 3 beta and cyclin-dependent kinase 2/cyclin A) underwent moderate inhibition, with IC(50) values one--two orders of magnitude higher than CK2 (IC(50)=0.9 microM). TBB also inhibits endogenous CK2 in cultured Jurkat cells. A CK2 mutant in which Val66 has been replaced by alanine is much less susceptible to inhibition by TBB as well as by another ATP competitive inhibitor, emodin. These data show that TBB is a quite selective inhibitor of CK2, that can be used in cell-based assays.
Collapse
Affiliation(s)
- S Sarno
- Department of Biological Chemistry, University of Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
On the basis of far-Western blot and plasmon resonance (BIAcore) experiments, we show here that recombinant bovine prion protein (bPrP) (25-242) strongly interacts with the catalytic alpha/alpha' subunits of protein kinase CK2 (also termed 'casein kinase 2'). This association leads to increased phosphotransferase activity of CK2alpha, tested on calmodulin or specific peptides as substrate. We also show that bPrP counteracts the inhibition of calmodulin phosphorylation promoted by the regulatory beta subunits of CK2. A truncated form of bPrP encompassing the C-terminal domain (residues 105-242) interacts with CK2 but does not affect its catalytic activity. The opposite is found with the N-terminal fragment of bPrP (residues 25-116), although the stimulation of catalysis is less efficient than with full-size bPrP. These results disclose the potential of the PrP to modulate the activity of CK2, a pleiotropic protein kinase that is particularly abundant in the brain.
Collapse
|
32
|
Sartori G, Mazzotta G, Stocchetto S, Pavanello A, Carignani G. Inactivation of six genes from chromosomes VII and XIV of Saccharomyces cerevisiae and basic phenotypic analysis of the mutant strains. Yeast 2000; 16:255-65. [PMID: 10649454 DOI: 10.1002/(sici)1097-0061(200002)16:3<255::aid-yea520>3.0.co;2-#] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Within the frame of the EUROFAN project, aimed at the functional analysis of the novel ORFs revealed by the systematic sequencing of the Saccharomyces cerevisiae genome, we have inactivated six ORFs encoding putative proteins with unknown function in the two S. cerevisiae strains FY1679 and W303-1B. Five ORFs are located on chromosome VII (YGR250c, YGR251w, YGR260w, YGR262c, YGR263c) and one on chromosome XIV (YNL234w). The genes have been inactivated in the FY1679 strain by a strategy that makes use of deletion cassettes containing the kanMX4 module, which confers resistance to geneticin to yeast cells, and short flanking regions homologous to the target locus (SFH). Tetrad dissection of heterozygous mutants and basic phenotypic analysis of the spores revealed that ORF YGR251w is an essential gene, while the disruption of YGR262c causes a severe slow-growth phenotype. Deletion of the remaining ORFs did not give rise to a detectable phenotype in the mutant strains. For each ORF we have cloned, in the pUG7 plasmid, a replacement cassette that possesses long flanking regions homologous to the target locus (LFH) and, in the pRS416 plasmid, the cognate wild-type gene. The LFH replacement cassettes were used to inactivate the respective genes in the W303-1B strain. This work has been performed in the framework of the B0 Consortium of the EUROFAN I project.
Collapse
Affiliation(s)
- G Sartori
- Dipartimento di Chimica Biologica, Università di Padova, viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | |
Collapse
|
33
|
Leonard CJ, Aravind L, Koonin EV. Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily. Genome Res 1998; 8:1038-47. [PMID: 9799791 DOI: 10.1101/gr.8.10.1038] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The central role of serine/threonine and tyrosine protein kinases in signal transduction and cellular regulation in eukaryotes is well established and widely documented. Considerably less is known about the prevalence and role of these protein kinases in bacteria and archaea. In order to examine the evolutionary origins of the eukaryotic-type protein kinase (ePK) superfamily, we conducted an extensive analysis of the proteins encoded by the completely sequenced bacterial and archaeal genomes. We detected five distinct families of known and predicted putative protein kinases with representatives in bacteria and archaea that share a common ancestry with the eukaryotic protein kinases. Four of these protein families have not been identified previously as protein kinases. From the phylogenetic distribution of these families, we infer the existence of an ancestral protein kinase(s) prior to the divergence of eukaryotes, bacteria, and archaea.
Collapse
Affiliation(s)
- C J Leonard
- National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894 USA
| | | | | |
Collapse
|