1
|
Biophysical characterization of the recombinant chitinase chi18-5 with potential biotechnological interest. Appl Microbiol Biotechnol 2022; 106:1185-1197. [DOI: 10.1007/s00253-022-11782-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/23/2022]
|
2
|
Abstract
Fourier transform infrared (FTIR) spectroscopy has become one of the major techniques of structural characterization of proteins, peptides, and protein-membrane interactions. While the method does not have the capability of providing the precise, atomic-resolution molecular structure, it is exquisitely sensitive to conformational changes occurring in proteins upon functional transitions or intermolecular interactions. The sensitivity of vibrational frequencies to atomic masses has led to development of "isotope-edited" FTIR spectroscopy, where structural effects in two proteins, one unlabeled and the other labeled with a heavier stable isotope, such as 13C, are resolved simultaneously based on spectral downshift (separation) of the amide I band of the labeled protein. The same isotope effect is used to identify site-specific conformational changes in proteins by site-directed or segmental isotope labeling. Negligible light scattering in the infrared region provides an opportunity to study intermolecular interactions between large protein complexes, interactions of proteins and peptides with lipid vesicles, or protein-nucleic acid interactions without light scattering problems often encountered in ultraviolet spectroscopy. Attenuated total reflection FTIR (ATR-FTIR) is a surface-sensitive version of infrared spectroscopy that has proved useful in studying membrane proteins and lipids, protein-membrane interactions, mechanisms of interfacial enzymes, the structural features of membrane pore forming proteins and peptides, and much more. The purpose of this chapter was to provide a practical guide to analyze protein structure and protein-membrane interactions by FTIR and ATR-FTIR techniques, including procedures of sample preparation, measurements, and data analysis. Basic background information on FTIR spectroscopy, as well as some relatively new developments in structural and functional characterization of proteins and peptides in lipid membranes, is also presented.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
3
|
Abstract
Most interfacial enzymes undergo activation upon membrane binding. Interfacial activation is determined not only by the binding strength but also by the specific mode of protein-membrane interactions, including the angular orientation and membrane insertion of the enzymes. This chapter describes biophysical techniques to quantitatively evaluate membrane binding, orientation, membrane insertion, and activity of secreted phospholipase A2 (PLA2) and lipoxygenase (LO) enzymes. Procedures for recombinant production and purification of human pancreatic PLA2 and human 5-lipoxygenase (5-LO) are also presented. Several methods for measurements of membrane binding of peripheral proteins are described, i.e., fluorescence resonance energy transfer (FRET) from tryptophan or tyrosine residues of the protein to a fluorescent lipid in vesicles, changes in fluorescence of an environment-sensitive fluorescent lipid upon binding of proteins to membranes, and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. These methods produce the apparent binding constant, the protein-to-lipid binding stoichiometry, and the Hill cooperativity coefficient. Experimental procedures for segmental isotope labeling of proteins and determination of the orientation of membrane-bound proteins by polarized ATR-FTIR spectroscopy are described. Furthermore, evaluation of membrane insertion of peripheral proteins by a fluorescence quenching technique is outlined. Combination of the orientation and membrane insertion provides a unique configuration of the protein-membrane complex and hence elucidates certain details of the enzyme function, such as the modes of acquisition of a membrane-residing substrate and product release. Finally, assays for determination of the activities of secreted PLA2, soybean LO, and human 5-LO are described.
Collapse
Affiliation(s)
- S A Tatulian
- College of Sciences, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
4
|
Tatulian SA. Structural characterization of membrane proteins and peptides by FTIR and ATR-FTIR spectroscopy. Methods Mol Biol 2013; 974:177-218. [PMID: 23404277 DOI: 10.1007/978-1-62703-275-9_9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is widely used in structural characterization of proteins or peptides. While the method does not have the capability of providing the precise, atomic-resolution molecular structure, it is exquisitely sensitive to conformational changes occurring in proteins upon functional transitions or upon intermolecular interactions. Sensitivity of vibrational frequencies to atomic masses has led to development of "isotope-edited" FTIR spectroscopy, where structural effects in two proteins, one unlabeled and the other labeled with a heavier stable isotope, such as (13)C, are resolved simultaneously based on spectral downshift (separation) of the amide I band of the labeled protein. The same isotope effect is used to identify site-specific conformational changes in proteins by site-directed or segmental isotope labeling. Negligible light scattering in the infrared region provides an opportunity to study intermolecular interactions between large protein complexes, interactions of proteins and peptides with lipid vesicles, or protein-nucleic acid interactions without light scattering problems often encountered in ultraviolet spectroscopy. Attenuated total reflection FTIR (ATR-FTIR) is a surface-sensitive version of infrared spectroscopy that has proved useful in studying membrane proteins and lipids, protein-membrane interactions, mechanisms of interfacial enzymes, and molecular architecture of membrane pore or channel forming proteins and peptides. The purpose of this article was to provide a practical guide to analyze protein structure and protein-membrane interactions by FTIR and ATR-FTIR techniques, including procedures of sample preparation, measurements, and data analysis. Basic background information on FTIR spectroscopy, as well as some relatively new developments in structural and functional characterization of proteins and peptides in lipid membranes, are also presented.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
5
|
Taylor M, Banerjee T, Ray S, Tatulian SA, Teter K. Protein-disulfide isomerase displaces the cholera toxin A1 subunit from the holotoxin without unfolding the A1 subunit. J Biol Chem 2011; 286:22090-100. [PMID: 21543321 DOI: 10.1074/jbc.m111.237966] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-disulfide isomerase (PDI) has been proposed to exhibit an "unfoldase" activity against the catalytic A1 subunit of cholera toxin (CT). Unfolding of the CTA1 subunit is thought to displace it from the CT holotoxin and to prepare it for translocation to the cytosol. To date, the unfoldase activity of PDI has not been demonstrated for any substrate other than CTA1. An alternative explanation for the putative unfoldase activity of PDI has been suggested by recent structural studies demonstrating that CTA1 will unfold spontaneously upon its separation from the holotoxin at physiological temperature. Thus, PDI may simply dislodge CTA1 from the CT holotoxin without unfolding the CTA1 subunit. To evaluate the role of PDI in CT disassembly and CTA1 unfolding, we utilized a real-time assay to monitor the PDI-mediated separation of CTA1 from the CT holotoxin and directly examined the impact of PDI binding on CTA1 structure by isotope-edited Fourier transform infrared spectroscopy. Our collective data demonstrate that PDI is required for disassembly of the CT holotoxin but does not unfold the CTA1 subunit, thus uncovering a new mechanism for CTA1 dissociation from its holotoxin.
Collapse
Affiliation(s)
- Michael Taylor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826, USA
| | | | | | | | | |
Collapse
|
6
|
Hielscher R, Friedrich T, Hellwig P. Far- and Mid-Infrared Spectroscopic Analysis of the Substrate-Induced Structural Dynamics of Respiratory Complex I. Chemphyschem 2010; 12:217-24. [DOI: 10.1002/cphc.201000688] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/22/2010] [Indexed: 11/07/2022]
|
7
|
Martínez-Cruz LA, Encinar JA, Sevilla P, Oyenarte I, Gómez-García I, Aguado-Llera D, García-Blanco F, Gómez J, Neira JL. Nucleotide-induced conformational transitions in the CBS domain protein MJ0729 of Methanocaldococcus jannaschii. Protein Eng Des Sel 2010; 24:161-9. [PMID: 20959390 DOI: 10.1093/protein/gzq073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nucleotide-binding cystathionine β-synthase (CBS) domains function as regulatory motifs in several proteins distributed through all kingdoms of life. This function has been proposed based on their affinity for adenosyl-derivatives, although the exact binding mechanisms remain largely unknown. The question of how CBS domains exactly work is relevant because in humans, several genetic diseases have been associated with mutations in those motifs. In this work, we describe the adenosyl-ligand (AMP, ATP, NADP and SAM) properties of the wild-type CBS domain protein MJ0729 from Methanocaldococcus jannaschii by using a combination of spectroscopic techniques (fluorescence, FTIR and FRET). The fluorescence results show that binding to AMP and ATP occurs with an apparent dissociation constant of ~10 µM, and interestingly enough, binding induces protein conformational changes, as shown by FTIR. On the other hand, fluorescence spectra (FRET and steady-state) did not change upon addition of NADP and SAM to MJ0729, suggesting that tryptophan and/or tyrosine residues were not involved in the recognition of those ligands; however, there were changes in the secondary structure of the protein upon addition of NADP and SAM, as shown by FTIR (thus, indicating binding to the nucleotide). Taken together, these results suggest that: (i) the adenosyl ligands bind to MJ0729 in different ways, and (ii) there are changes in the protein secondary structure upon binding of the nucleotides.
Collapse
Affiliation(s)
- Luis Alfonso Martínez-Cruz
- Unidad de Biología Estructural, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio (Vizcaya), Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pagán M, Solá RJ, Griebenow K. On the role of protein structural dynamics in the catalytic activity and thermostability of serine protease subtilisin Carlsberg. Biotechnol Bioeng 2009; 103:77-84. [PMID: 19132746 DOI: 10.1002/bit.22221] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effect of structural dynamics on enzyme activity and thermostability has thus far only been investigated in detail for the serine protease alpha-chymotrypsin (for a recent review see Solá et al., Cell Mol Life Sci 2007, 64(16): 2133-2152). Herein, we extend this type of study to a structurally unrelated serine protease, specifically, subtilisin Carlsberg. The protease was incrementally glycosylated with chemically activated lactose to obtain various subtilisin glycoconjugates which were biophysically characterized. Near UV-CD spectroscopy revealed that the tertiary structure was unaffected by the glycosylation procedure. H/D exchange FT-IR spectroscopy was performed to assess the changes in structural dynamics of the enzyme. It was found that increasing the level of glycosylation caused a linearly dependent reduction in structural dynamics. This led to an increase in thermostability and a decrease in the catalytic turnover rate for both, the enzyme acylation and deacylation steps. These results highlight the possibility that a structural dynamics-activity relationship might be a phenomenon generally found in serine proteases.
Collapse
Affiliation(s)
- Miraida Pagán
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, PO Box 23346, San Juan 00931-3346, Puerto Rico
| | | | | |
Collapse
|
9
|
Chakrapani S, Cordero-Morales JF, Perozo E. A quantitative description of KcsA gating I: macroscopic currents. ACTA ACUST UNITED AC 2007; 130:465-78. [PMID: 17938230 PMCID: PMC2151670 DOI: 10.1085/jgp.200709843] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prokaryotic K+ channel KcsA is activated by intracellular protons and its gating is modulated by transmembrane voltage. Typically, KcsA functions have been studied under steady-state conditions, using macroscopic Rb+-flux experiments and single-channel current measurements. These studies have provided limited insights into the gating kinetics of KcsA due to its low open probability, uncertainties in the number of channels in the patch, and a very strong intrinsic kinetic variability. In this work, we have carried out a detailed analysis of KcsA gating under nonstationary conditions by examining the influence of pH and voltage on the activation, deactivation, and slow-inactivation gating events. We find that activation and deactivation gating of KcsA are predominantly modulated by pH without a significant effect of voltage. Activation gating showed sigmoidal pH dependence with a pKa of ∼4.2 and a Hill coefficient of ∼2. In the sustained presence of proton, KcsA undergoes a time-dependent decay of conductance. This inactivation process is pH independent but is modulated by voltage and the nature of permeant ion. Recovery from inactivation occurs via deactivation and also appears to be voltage dependent. We further find that inactivation in KcsA is not entirely a property of the open-conducting channel but can also occur from partially “activated” closed states. The time course of onset and recovery of the inactivation process from these pre-open closed states appears to be different from the open-state inactivation, suggesting the presence of multiple inactivated states with diverse kinetic pathways. This information has been analyzed together with a detailed study of KcsA single-channel behavior (in the accompanying paper) in the framework of a kinetic model. Taken together our data constitutes the first quantitative description of KcsA gating.
Collapse
Affiliation(s)
- Sudha Chakrapani
- Institute of Molecular Pediatrics Science, Department of Biochemistry and Molecular Biology, University of Chicago, Center for integrative Science, Chicago, IL 60637, USA
| | | | | |
Collapse
|
10
|
Nemec KN, Pande AH, Qin S, Bieber Urbauer RJ, Tan S, Moe D, Tatulian SA. Structural and functional effects of tryptophans inserted into the membrane-binding and substrate-binding sites of human group IIA phospholipase A2. Biochemistry 2006; 45:12448-60. [PMID: 17029400 DOI: 10.1021/bi061440r] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phospholipase A(2) (PLA(2)) enzymes become activated by binding to biological membranes and hydrolyze phospholipids to free fatty acids and lyso-phospholipids, the precursors of inflammatory mediators. To understand the functional significance of amino acid residues at key positions, we have studied the effects of the substitution of Val(3) (membrane binding surface) and Phe(5) (substrate binding pocket) of human group IIA PLA(2) by tryptophan on the structure and function of the enzyme. Despite the close proximity of the sites of mutations, the V3W mutation results in substantial enhancement of the enzyme activity, whereas the F5W mutant demonstrates significantly suppressed activity. A structural analysis of all three proteins free in buffer and bound to membranes indicates that large differences in activities result from distinct conformational changes in PLA(2)s upon membrane binding. Although PLA(2) and the V3W mutant demonstrate a decrease in helical content and an increase in helix flexibility, the F5W mutant experiences partial distortion of the alpha-helical structure presumably resulting from the tendency of Trp(5) to insert into the membrane. Furthermore, whereas the PLA(2) and the V3W mutant bind to the membrane at similar and apparently productive-mode orientation, the F5W mutant binds to membranes with a distinctly different orientation. It is suggested that both the stimulatory effect of the V3W mutation and the inhibitory effect of the F5W mutation result from the high affinity of Trp for the membrane-water interface. Although Trp(3) at the membrane binding face of PLA(2) facilitates the proper membrane binding of the enzyme, Trp(5) in the internal substrate binding site causes partial unwinding of the N-terminal helix in order to interact with the membrane.
Collapse
Affiliation(s)
- Kathleen N Nemec
- Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Solá RJ, Griebenow K. Influence of modulated structural dynamics on the kinetics of alpha-chymotrypsin catalysis. Insights through chemical glycosylation, molecular dynamics and domain motion analysis. FEBS J 2006; 273:5303-19. [PMID: 17076704 DOI: 10.1111/j.1742-4658.2006.05524.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the chemical nature of the catalytic mechanism of the serine protease alpha-chymotrypsin (alpha-CT) is largely understood, the influence of the enzyme's structural dynamics on its catalysis remains uncertain. Here we investigate whether alpha-CT's structural dynamics directly influence the kinetics of enzyme catalysis. Chemical glycosylation [Solá RJ & Griebenow K (2006) FEBS Lett 580, 1685-1690] was used to generate a series of glycosylated alpha-CT conjugates with reduced structural dynamics, as determined from amide hydrogen/deuterium exchange kinetics (k(HX)). Determination of their catalytic behavior (K(S), k(2), and k(3)) for the hydrolysis of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide (Suc-Ala-Ala-Pro-Phe-pNA) revealed decreased kinetics for the catalytic steps (k(2) and k(3)) without affecting substrate binding (K(S)) at increasing glycosylation levels. Statistical correlation analysis between the catalytic (DeltaG( not equal)k(i)) and structurally dynamic (DeltaG(HX)) parameters determined revealed that the enzyme acylation and deacylation steps are directly influenced by the changes in protein structural dynamics. Molecular modelling of the alpha-CT glycoconjugates coupled with molecular dynamics simulations and domain motion analysis employing the Gaussian network model revealed structural insights into the relation between the protein's surface glycosylation, the resulting structural dynamic changes, and the influence of these on the enzyme's collective dynamics and catalytic residues. The experimental and theoretical results presented here not only provide fundamental insights concerning the influence of glycosylation on the protein biophysical properties but also support the hypothesis that for alpha-CT the global structural dynamics directly influence the kinetics of enzyme catalysis via mechanochemical coupling between domain motions and active site chemical groups.
Collapse
Affiliation(s)
- Ricardo J Solá
- Laboratory for Applied Biochemistry and Biotechnology, Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931
| | | |
Collapse
|
12
|
Solá RJ, Griebenow K. Chemical glycosylation: New insights on the interrelation between protein structural mobility, thermodynamic stability, and catalysis. FEBS Lett 2006; 580:1685-90. [PMID: 16494868 DOI: 10.1016/j.febslet.2006.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 01/19/2006] [Accepted: 02/05/2006] [Indexed: 11/22/2022]
Abstract
Chemical protein glycosylation was employed to sequentially modulate the structural dynamics of the serine protease alpha-chymotrypsin as evidenced from amide H/D exchange kinetics. The reduction in alpha-CT's structural dynamics at increasing glycan molar contents statistically correlated with the increased thermodynamic stability (T(m)) and reduced rate of enzyme catalysis (k(cat)) exhibited by the enzyme upon chemical glycosylation. Temperature-dependent experiments revealed that native-like structural dynamics and function could be restored for the glycosylated conjugates at temperature values close to their thermodynamic stability suggesting that the concept of "corresponding states" can be extended to glycoproteins. These results demonstrate the value of chemical glycosylation as a tool for studying the role of protein structural dynamics on protein biophysical properties; e.g. enzyme stability and function.
Collapse
Affiliation(s)
- Ricardo J Solá
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Facundo Bueso Bldg Lab-215, San Juan 23346, PR 00931-3346
| | | |
Collapse
|
13
|
Sharpe S, Yau WM, Tycko R. Structure and Dynamics of the HIV-1 Vpu Transmembrane Domain Revealed by Solid-State NMR with Magic-Angle Spinning†. Biochemistry 2006; 45:918-33. [PMID: 16411768 DOI: 10.1021/bi051766k] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report solid-state nuclear magnetic resonance (NMR) measurements on the peptide Vpu(1-40), comprising residues 1-40 of the 81-residue type 1 integral membrane protein Vpu encoded by the HIV-1 genome. On the basis of a combination of 13C and 15N NMR chemical shifts under magic-angle spinning (MAS), effects of local mobility on NMR signal intensities, site-specific MAS NMR line widths, and NMR-detected hydrogen-deuterium exchange, we develop a model for the structure and dynamics of the Vpu(1-40) monomer in phospholipid bilayer membranes. Our data are largely consistent with earlier structural studies of Vpu peptides by Opella and co-workers, in which solution NMR and solid-state NMR without MAS were used, but our data provide new information about local variations in the degree of mobility and structural order. In addition, our data indicate that the transmembrane alpha-helix of Vpu(1-40) extends beyond the hydrophobic core of the bilayer. We find no evidence for heterogeneity in the conformation and intermolecular contacts of the transmembrane alpha-helix, with the exception of two distinct chemical shifts observed for the C alpha and C beta atoms of A18 that may reflect distinct modes of helix-helix interaction. These results have possible implications for the supramolecular structure of Vpu oligomers that form cation-selective ion channels.
Collapse
Affiliation(s)
- Simon Sharpe
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | |
Collapse
|
14
|
Encinar JA, Molina ML, Poveda JA, Barrera FN, Renart ML, Fernández AM, González-Ros JM. The influence of a membrane environment on the structure and stability of a prokaryotic potassium channel, KcsA. FEBS Lett 2005; 579:5199-204. [PMID: 16150445 DOI: 10.1016/j.febslet.2005.08.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 08/22/2005] [Accepted: 08/22/2005] [Indexed: 11/22/2022]
Abstract
The lack of a membrane environment in membrane protein crystals is considered one of the major limiting factors to fully imply X-ray structural data to explain functional properties of ion channels [Gulbis, J.M. and Doyle, D. (2004) Curr. Opin. Struct. Biol. 14, 440-446]. Here, we provide infrared spectroscopic evidence that the structure and stability of the potassium channel KcsA and its chymotryptic derivative 1-125 KcsA reconstituted into native-like membranes differ from those exhibited by these proteins in detergent solution, the latter taken as an approximation of the mixed detergent-protein crystal conditions.
Collapse
Affiliation(s)
- J A Encinar
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Tso IM, Wu HC, Hwang IR. Giant wood spider Nephila pilipes alters silk protein in response to prey variation. ACTA ACUST UNITED AC 2005; 208:1053-61. [PMID: 15767307 DOI: 10.1242/jeb.01437] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies have demonstrated that orb-weaving spiders may alter web structures, foraging localities or silk output in response to prey variations. In this study we conducted field surveys and food manipulations to examine whether orb-weaving spiders may also adjust the protein of silk to prey variations. A comparison of dragline silks collected from nine giant wood spider Nephila pilipes populations in Taiwan showed a spatial variation. The percentage of all amino acids (except alanine and glycine) exhibited significant differences among populations. A survey of prey composition also revealed a significant spatial variation among N. pilipes populations. To determine whether prey variation was responsible for silk protein variation, we fed N. pilipes with different types of prey (dipteran vs orthopteran) then compared the percentage of five major dragline amino acids and secondary structures. The results showed that dragline of N. pilipes fed with orthopteran prey contained significantly higher proline and glutamine but lower alanine. Congruent with this result were those from FTIR spectroscopy, which showed that dragline of N. pilipes fed with crickets exhibited significantly higher percentage of proline- and glutamine-containing beta turns, and lower percentage of alanine-containing beta sheet structures. Since the results of feeding manipulations showed that diet significantly affected the compositions of dragline silks, the observed spatial variation seemed to reflect the different types of prey these spiders had consumed. Results of this study thus indicated that orb-weaving spiders can alter dragline protein in response to prey variations.
Collapse
Affiliation(s)
- I-Min Tso
- Department of Life Sciences, Tunghai University, Taichung 407, Taiwan.
| | | | | |
Collapse
|
16
|
Qin S, Pande AH, Nemec KN, Tatulian SA. The N-terminal α-Helix of Pancreatic Phospholipase A2 Determines Productive-mode Orientation of the Enzyme at the Membrane Surface. J Mol Biol 2004; 344:71-89. [PMID: 15504403 DOI: 10.1016/j.jmb.2004.09.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 09/12/2004] [Accepted: 09/16/2004] [Indexed: 10/26/2022]
Abstract
Phospholipase A(2) (PLA(2)) hydrolyzes glycerophospholipids to free fatty acid and lyso-phospholipid, which serve as precursors for the biosynthesis of eicosanoids and other lipid-derived mediators of inflammation and allergy. PLA(2) activity strongly increases upon binding to the surface of aggregated phospholipid. The N-terminal approximately ten residue alpha-helix of certain PLA(2) isoforms plays important roles in the interfacial activation of the enzyme by providing residues for membrane binding of PLA(2) and by contributing to the formation of the substrate-binding pocket. However, the relative contributions of the N-terminal alpha-helix and the rest of the protein in membrane binding of PLA(2) and its productive-mode orientation at the membrane surface are not well understood. Here we use a variety of biophysical approaches to determine the role of the N-terminal helix in membrane binding strength, orientation, and activity of human pancreatic PLA(2). While the full-length PLA(2) binds to membranes with a defined orientation, an engineered PLA(2) fragment DeltaN10 that lacks the N-terminal ten residues binds to membranes with weaker affinity and at random orientation, and exhibits approximately 100-fold lower enzymatic activity compared to the full-length PLA(2), indicating the key role of the N terminus in PLA(2) function. The results of polarized infrared spectroscopic experiments permit determination of the orientation of membrane-bound PLA(2) and identification of its interfacial binding surface. Moreover, the full-length PLA(2) demonstrates increased conformational flexibility in solution and is stabilized upon membrane binding, while the DeltaN10 fragment is more rigid than the full-length PLA(2) both in free and membrane-bound states. Our results suggest that the N-terminal alpha-helix supports the activation of PLA(2) by (a) enhancing the membrane binding strength, (b) facilitating a productive-mode orientation of PLA(2) at the membrane surface, and (c) conferring conformational integrity and plasticity to the enzyme.
Collapse
Affiliation(s)
- Shan Qin
- Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA
| | | | | | | |
Collapse
|
17
|
Tatulian SA. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy: A Method of Choice for Studying Membrane Proteins and Lipids†. Biochemistry 2003; 42:11898-907. [PMID: 14556620 DOI: 10.1021/bi034235+] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suren A Tatulian
- Biomolecular Science Center and Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida 32826, USA.
| |
Collapse
|
18
|
Vass E, Hollósi M, Besson F, Buchet R. Vibrational spectroscopic detection of beta- and gamma-turns in synthetic and natural peptides and proteins. Chem Rev 2003; 103:1917-54. [PMID: 12744696 DOI: 10.1021/cr000100n] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elemér Vass
- Department of Organic Chemistry, Eötvös Loránd University, H-1518 Budapest 112, P.O. Box 32, Hungary
| | | | | | | |
Collapse
|
19
|
Demmers JAA, van Dalen A, de Kruijff B, Heck AJR, Killian JA. Interaction of the K+ channel KcsA with membrane phospholipids as studied by ESI mass spectrometry. FEBS Lett 2003; 541:28-32. [PMID: 12706814 DOI: 10.1016/s0014-5793(03)00282-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study we have used electrospray ionization mass spectrometry (ESI-MS) to investigate interactions between the bacterial K(+) channel KcsA and membrane phospholipids. KcsA was reconstituted into lipid vesicles of variable lipid composition. These vesicles were directly analyzed by ESI-MS or mixed with trifluoroethanol (TFE) before analysis. In the resulting mass spectra, non-covalent complexes of KcsA and phospholipids were observed with an interesting lipid specificity. The anionic phosphatidylglycerol (PG), and, to a lesser extent, the zwitterionic phosphatidylethanolamine (PE), which both are abundant bacterial lipids, were found to preferentially associate with KcsA as compared to the zwitterionic phosphatidylcholine (PC). These preferred interactions may reflect the differences in affinity of these phospholipids for KcsA in the membrane.
Collapse
Affiliation(s)
- Jeroen A A Demmers
- Department of Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Kelly BL, Gross A. Potassium channel gating observed with site-directed mass tagging. Nat Struct Mol Biol 2003; 10:280-4. [PMID: 12640442 DOI: 10.1038/nsb908] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2002] [Accepted: 01/27/2003] [Indexed: 11/08/2022]
Abstract
Potassium channels allow the selective flow of K+ ions across otherwise impermeable membranes. During a process called gating, these channels undergo a conformational change that proceeds from a closed to an open state. The closed state of KcsA, a prokaryotic potassium channel, has been structurally well characterized with equilibrium structural techniques. However, attempts to obtain a structural description of the gating transition of the channel have been hampered because the open state is only transiently occupied and, therefore, not readily accessible to such techniques. Here we describe a non-equilibrium technique that we call site-directed mass tagging and use this technique to probe the conformational change that KcsA undergoes during gating. The results indicate that KcsA is a dynamically modular molecule; the extracellular half of the membrane-spanning region is held rigid during gating, while the intracellular half undergoes a significant conformational change.
Collapse
Affiliation(s)
- Brent L Kelly
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University School of Medicine, 303 East Chicago Avenue, Chicago, Illinois 60611, USA
| | | |
Collapse
|
21
|
Tatulian SA. Structural effects of covalent inhibition of phospholipase A2 suggest allosteric coupling between membrane binding and catalytic sites. Biophys J 2003; 84:1773-83. [PMID: 12609879 PMCID: PMC1302746 DOI: 10.1016/s0006-3495(03)74985-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) binds to membranes and catalyzes phospholipid hydrolysis, thus initiating the biosynthesis of lipid-derived mediators of inflammation. A snake-venom PLA(2) was completely inhibited by covalent modification of the catalytic histidine 48 by p-bromophenacyl bromide. Moreover, His(48) modification affected PLA(2) structure, its membrane-binding affinity, and the effects of PLA(2) on the membrane structure. The native PLA(2) increased the order parameter of fluid membranes, whereas the opposite effect was observed for gel-state membranes. The data suggest membrane dehydration by PLA(2) and the formation of PLA(2)-membrane hydrogen bonding. The inhibited PLA(2) had lower membrane-binding affinity and exerted weaker effects on membrane hydration and on the lipid-order parameter. Although membrane binding resulted in formation of more flexible alpha-helices in the native PLA(2), which corresponds to faster amide hydrogen exchange, the modified enzyme was more resistant to hydrogen exchange and experienced little structural change upon membrane binding. The data suggest that 1), modification of a catalytic residue of PLA(2) induces conformational changes that propagate to the membrane-binding surface through an allosteric mechanism; 2), the native PLA(2) acquires more dynamic properties during interfacial activation via membrane binding; and 3), the global conformation of the inhibited PLA(2), including the alpha-helices, is less stable and is not influenced by membrane binding. These findings provide further evidence for an allosteric coupling between the membrane-binding (regulatory) site and the catalytic center of PLA(2), which contributes to the interfacial activation of the enzyme.
Collapse
Affiliation(s)
- Suren A Tatulian
- Biomolecular Science Center and Department of Molecular Biology and Microbiology, University of Central Florida, Orlando 32826, USA.
| |
Collapse
|
22
|
Tatulian SA, Chen B, Li J, Negash S, Middaugh CR, Bigelow DJ, Squier TC. The inhibitory action of phospholamban involves stabilization of alpha-helices within the Ca-ATPase. Biochemistry 2002; 41:741-51. [PMID: 11790095 DOI: 10.1021/bi011148d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have used attenuated total reflection Fourier transform infrared (ATR-FTIR) and circular dichroism (CD) spectroscopies to identify secondary and dynamic structural changes within the Ca-ATPase that result from the functional inhibition of transport activity by phospholamban (PLB). Isotopically labeled [(13)C]PLB was expressed and purified from Escherichia coli and was functionally reconstituted with unlabeled Ca-ATPase, permitting the resolution of the amide I and II absorbance bands of the Ca-ATPase from those of [(13)C]PLB. Upon co-reconstitution of the Ca-ATPase with PLB, spectral shifts are observed in both the CD spectra and the amide I and II bands associated with the Ca-ATPase, which are indicative of increased alpha-helical stability. Corresponding changes in the kinetics of H/D exchange occur upon association with PLB, indicating that 100 +/- 20 residues in the Ca-ATPase that normally undergo rapid amide H/D exchange become exchange resistant. There are no corresponding large changes in the secondary structure of PLB. The affinity of the structural interaction between PLB and the Ca-ATPase is virtually identical to that associated with functional inhibition (K(d) = 140 +/- 30 microM), confirming that the inhibitory regulation of the Ca-ATPase by PLB involves the stabilization of alpha-helices within the Ca-ATPase.
Collapse
Affiliation(s)
- Suren A Tatulian
- Biochemistry and Biophysics Section, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045-2106, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Sompornpisut P, Liu YS, Perozo E. Calculation of rigid-body conformational changes using restraint-driven Cartesian transformations. Biophys J 2001; 81:2530-46. [PMID: 11606268 PMCID: PMC1301722 DOI: 10.1016/s0006-3495(01)75898-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We present an approach for calculating conformational changes in membrane proteins using limited distance information. The method, named restraint-driven Cartesian transformations, involves 1) the use of relative distance changes; 2) the systematic sampling of rigid body movements in Cartesian space; 3) a penalty evaluation; and 4) model refinement using energy minimization. As a test case, we have analyzed the structural basis of activation gating in the Streptomyces lividans potassium channel (KcsA). A total of 10 pairs of distance restraints derived from site-directed spin labeling and electron paramagnetic resonance (SDSL-EPR) spectra were used to calculate the open conformation of the second transmembrane domains of KcsA (TM2). The SDSL-EPR based structure reveals a gating mechanism consistent with a scissoring-type motion of the TM2 segments that includes a pivot point near middle of the helix. The present approach considerably reduces the amount of time and effort required to establish the overall nature of conformational changes in membrane proteins. It is expected that this approach can be implemented into restrained molecular dynamics protocol to calculate the structure and conformational changes in a variety of membrane protein systems.
Collapse
Affiliation(s)
- P Sompornpisut
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22906-0011, USA
| | | | | |
Collapse
|
24
|
Caprini M, Ferroni S, Planells-Cases R, Rueda J, Rapisarda C, Ferrer-Montiel A, Montal M. Structural compatibility between the putative voltage sensor of voltage-gated K+ channels and the prokaryotic KcsA channel. J Biol Chem 2001; 276:21070-6. [PMID: 11274182 DOI: 10.1074/jbc.m100487200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sequence similarity among and electrophysiological studies of known potassium channels, along with the three-dimensional structure of the Streptomyces lividans K(+) channel (KcsA), support the tenet that voltage-gated K(+) channels (Kv channels) consist of two distinct modules: the "voltage sensor" module comprising the N-terminal portion of the channel up to and including the S4 transmembrane segment and the "pore" module encompassing the C-terminal portion from the S5 transmembrane segment onward. To substantiate this modular design, we investigated whether the pore module of Kv channels may be replaced with the pore module of the prokaryotic KcsA channel. Biochemical and immunocytochemical studies showed that chimeric channels were expressed on the cell surface of Xenopus oocytes, demonstrating that they were properly synthesized, glycosylated, folded, assembled, and delivered to the plasma membrane. Unexpectedly, surface-expressed homomeric chimeras did not exhibit detectable voltage-dependent channel activity upon both hyperpolarization and depolarization regardless of the expression system used. Chimeras were, however, strongly dominant-negative when coexpressed with wild-type Kv channels, as evidenced by the complete suppression of wild-type channel activity. Notably, the dominant-negative phenotype correlated well with the formation of stable, glycosylated, nonfunctional, heteromeric channels. Collectively, these findings imply a structural compatibility between the prokaryotic pore module and the eukaryotic voltage sensor domain that leads to the biogenesis of non-responsive channels. Our results lend support to the notion that voltage-dependent channel gating depends on the precise coupling between both protein domains, probably through a localized interaction surface.
Collapse
Affiliation(s)
- M Caprini
- Department of Human and General Physiology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
García-García J, Gómez-Fernández JC, Corbalán-García S. Structural characterization of the C2 domain of novel protein kinase Cepsilon. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1107-17. [PMID: 11179977 DOI: 10.1046/j.1432-1327.2001.2680041107.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infrared spectroscopy (IR) and differential scanning calorimetry (DSC) were used to study the biophysical properties of the PKCepsilon-C2 domain, a C2 domain that possess special characteristics as it binds to acidic phospholipids in a Ca2+-independent manner and no structural information about it is available to date. When the secondary structure was determined by IR spectroscopy in H2O and D2O buffers, beta sheet was seen to be the major structural component. Spectroscopic studies of the thermal denaturation in D2O showed a broadening in the amide I' band starting at 45 degrees C. Curve fitting analysis of the spectra demonstrated that two components appear upon thermal denaturation, one at 1623 cm(-1) which was assigned to aggregation and a second one at 1645 cm(-1), which was assigned to unordered or open loop structures. A lipid binding assay has demonstrated that PKCepsilon-C2 domain has preferential affinity for PIP2 although it exhibits maximal binding activity for phosphatidic acid when 100 mol% of this negatively charged phospholipid was used. Thus, phosphatidic acid containing vesicles were used to characterize the effect of lipid binding on the secondary structure and thermal stability. These experiments showed that the secondary structure did not change upon lipid binding and the thermal stability was very high with no significant changes occurring in the secondary structure after heating. DSC experiments demonstrated that when the C2-protein was scanned alone, it showed a Tm of 49 degrees C and a calorimetric denaturation enthalpy of 144.318 kJ x mol(-1). However, when phoshatidic acid vesicles were included in the mixture, the transition disappeared and further IR experiments demonstrated that the protein structure was not modified under these conditions.
Collapse
Affiliation(s)
- J García-García
- Departamento de Bioquímica y Biología Molecular 'A', Facultad de Veterinaria, Universidad de Murcia, Spain
| | | | | |
Collapse
|
26
|
Yarov-Yarovoy V, Brown J, Sharp EM, Clare JJ, Scheuer T, Catterall WA. Molecular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment IIIS6 of the Na(+) channel alpha subunit. J Biol Chem 2001; 276:20-7. [PMID: 11024055 DOI: 10.1074/jbc.m006992200] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations of amino acid residues in the inner two-thirds of the S6 segment in domain III of the rat brain type IIA Na(+) channel (G1460A to I1473A) caused periodic positive and negative shifts in the voltage dependence of activation, consistent with an alpha-helix having one face on which mutations to alanine oppose activation. Mutations in the outer one-third of the IIIS6 segment all favored activation. Mutations in the inner half of IIIS6 had strong effects on the voltage dependence of inactivation from closed states without effect on open-state inactivation. Only three mutations had strong effects on block by local anesthetics and anticonvulsants. Mutations L1465A and I1469A decreased affinity of inactivated Na(+) channels up to 8-fold for the anticonvulsant lamotrigine and its congeners 227c89, 4030w92, and 619c89 as well as for the local anesthetic etidocaine. N1466A decreased affinity of inactivated Na(+) channels for the anticonvulsant 4030w92 and etidocaine by 3- and 8-fold, respectively, but had no effect on affinity of the other tested compounds. Leu-1465, Asn-1466, and Ile-1469 are located on one side of the IIIS6 helix, and mutation of each caused a positive shift in the voltage dependence of activation. Evidently, these amino acid residues face the lumen of the pore, contribute to formation of the high-affinity receptor site for pore-blocking drugs, and are involved in voltage-dependent activation and coupling to closed-state inactivation.
Collapse
Affiliation(s)
- V Yarov-Yarovoy
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abrecht H, Goormaghtigh E, Ruysschaert JM, Homble F. Structure and orientation of two voltage-dependent anion-selective channel isoforms. An attenuated total reflection fourier-transform infrared spectroscopy study. J Biol Chem 2000; 275:40992-9. [PMID: 11018035 DOI: 10.1074/jbc.m006437200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two VDAC (voltage-dependent anion-selective channel) isoforms were purified from seed cotyledons of Phaseolus vulgaris by chromatofocusing chromatography. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was used to study the structural properties of the two isoforms reconstituted in a mixture of asolectin and 5% stigmasterol. The IR spectra of the two VDAC isoforms were highly similar indicating 50 to 53% anti-parallel beta-sheet. The orientation of the beta-strands relative to the barrel axis was calculated from the experimentally obtained dichroic ratios of the amide I beta-sheet component and the amide II band. Comparing the IR spectra of the reconstituted VDAC isoforms with the IR spectra of the bacterial porin OmpF, for which a high resolution structure is available, provided evidence for a general structural organization of the VDAC isoforms similar to that of bacterial porins. Hydrogen-deuterium exchange measurements indicated that the exchange of the amide protons occurs to a higher extent in the two VDAC isoforms than in the OmpF porin.
Collapse
Affiliation(s)
- H Abrecht
- Laboratoire de Physiologie Végétale, CP 206/2, Faculté des Sciences, Université Libre de Bruxelles, Bld du Triomphe, B-1050 Brussels, Belgium
| | | | | | | |
Collapse
|
28
|
Dave N, Troullier A, Mus-Veteau I, Duñach M, Leblanc G, Padrós E. Secondary structure components and properties of the melibiose permease from Escherichia coli: a fourier transform infrared spectroscopy analysis. Biophys J 2000; 79:747-55. [PMID: 10920008 PMCID: PMC1300974 DOI: 10.1016/s0006-3495(00)76332-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The structure of the melibiose permease from Escherichia coli has been investigated by Fourier transform infrared spectroscopy, using the purified transporter either in the solubilized state or reconstituted in E. coli lipids. In both instances, the spectra suggest that the permease secondary structure is dominated by alpha-helical components (up to 50%) and contains beta-structure (20%) and additional components assigned to turns, 3(10) helix, and nonordered structures (30%). Two distinct and strong absorption bands are recorded at 1660 and 1653 cm(-1), i.e., in the usual range of absorption of helices of membrane proteins. Moreover, conditions that preserve the transporter functionality (reconstitution in liposomes or solubilization with dodecyl maltoside) make possible the detection of two separate alpha-helical bands of comparable intensity. In contrast, a single intense band, centered at approximately 1656 cm(-1), is recorded from the inactive permease in Triton X-100, or a merged and broader signal is recorded after the solubilized protein is heated in dodecyl maltoside. It is suggested that in the functional permease, distinct signals at 1660 and 1653 cm(-1) arise from two different populations of alpha-helical domains. Furthermore, the sodium- and/or melibiose-induced changes in amide I line shape, and in particular, in the relative amplitudes of the 1660 and 1653 cm(-1) bands, indicate that the secondary structure is modified during the early step of sugar transport. Finally, the observation that approximately 80% of the backbone amide protons can be exchanged suggests high conformational flexibility and/or a large accessibility of the membrane domains to the aqueous solvent.
Collapse
Affiliation(s)
- N Dave
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Molecular dynamics (MD) simulations of an atomic model of the KcsA K(+) channel embedded in an explicit dipalmitoylphosphatidylcholine (DPPC) phospholipid bilayer solvated by a 150 mM KCl aqueous salt solution are performed and analyzed. The model includes the KcsA K(+) channel, based on the recent crystallographic structure of, Science. 280:69-77), 112 DPPC, K(+) and Cl(-) ions, as well as over 6500 water molecules for a total of more than 40,000 atoms. Three K(+) ions are explicitly included in the pore. Two are positioned in the selectivity filter on the extracellular side and one in the large water-filled cavity. Different starting configurations of the ions and water molecules in the selectivity filter are considered, and MD trajectories are generated for more than 4 ns. The conformation of KcsA is very stable in all of the trajectories, with a global backbone root mean square (RMS) deviation of less than 1.9 A with respect to the crystallographic structure. The RMS atomic fluctuations of the residues surrounding the selectivity filter on the extracellular side of the channel are significantly lower than those on the intracellular side. The motion of the residues with aromatic side chains surrounding the selectivity filter (Trp(67), Trp(68), Tyr(78), and Tyr(82)) is anisotropic with the smallest RMS fluctuations in the direction parallel to the membrane plane. A concerted dynamic transition of the three K(+) ions in the pore is observed, during which the K(+) ion located initially in the cavity moves into the narrow part of the selectivity filter, while the other two K(+) ions move toward the extracellular side. A single water molecule is stabilized between each pair of ions during the transition, suggesting that each K(+) cation translocating through the narrow pore is accompanied by exactly one water molecule, in accord with streaming potential measurements (, Biophys. J. 55:367-371). The displacement of the ions is coupled with the structural fluctuations of Val(76) and Gly(77), in the selectivity filter, as well as the side chains of Glu(71), Asp(80), and Arg(89), near the extracellular side. Thus the mechanical response of the channel structure at distances as large as 10-20 A from the ions in the selectivity filter appears to play an important role in the concerted transition.
Collapse
Affiliation(s)
- S Bernèche
- Membrane Transport Research Group, Departments of Physics and Chemistry, Université de Montréal, Quebec, Canada
| | | |
Collapse
|
30
|
Li-Smerin Y, Hackos DH, Swartz KJ. A localized interaction surface for voltage-sensing domains on the pore domain of a K+ channel. Neuron 2000; 25:411-23. [PMID: 10719895 DOI: 10.1016/s0896-6273(00)80904-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Voltage-gated K+ channels contain a central pore domain and four surrounding voltage-sensing domains. How and where changes in the structure of the voltage-sensing domains couple to the pore domain so as to gate ion conduction is not understood. The crystal structure of KcsA, a bacterial K+ channel homologous to the pore domain of voltage-gated K+ channels, provides a starting point for addressing this question. Guided by this structure, we used tryptophan-scanning mutagenesis on the transmembrane shell of the pore domain in the Shaker voltage-gated K+ channel to localize potential protein-protein and protein-lipid interfaces. Some mutants cause only minor changes in gating and when mapped onto the KcsA structure cluster away from the interface between pore domain subunits. In contrast, mutants producing large changes in gating tend to cluster near this interface. These results imply that voltage-sensing domains interact with localized regions near the interface between adjacent pore domain subunits.
Collapse
Affiliation(s)
- Y Li-Smerin
- Molecular Physiology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
31
|
Tatulian SA, Tamm LK. Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin. Biochemistry 2000; 39:496-507. [PMID: 10642174 DOI: 10.1021/bi991594p] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Influenza virus hemagglutinin (HA), the viral envelope glycoprotein that mediates fusion between the viral and cellular membranes, is a homotrimer of three subunits, each containing two disulfide-linked polypeptide chains, HA(1) and HA(2). Each HA(2) chain spans the viral membrane with a single putative transmembrane alpha-helix near its C-terminus. Fusion experiments with recombinant HAs suggest that this sequence is required for a late step of membrane fusion, as a glycosylphosphatidylinositol-anchored analogue of HA only mediates "hemifusion" of membranes, i.e., the merging of the proximal, but not distal, leaflets of the two juxtaposed lipid bilayers [Kemble et al. (1994) Cell 76, 383-391]. To find a structural explanation for the function of the transmembrane domain of HA(2) in membrane fusion, we have studied the secondary structure, orientation, oligomerization, and lipid interactions of a synthetic peptide representing the transmembrane segment of X:31 HA (TMX31) by circular dichroism and attenuated total reflection Fourier transform infrared spectroscopy and by gel electrophoresis. The peptide was predominantly alpha-helical in detergent micelles and in phospholipid bilayers. The helicity was increased in lipid bilayers composed of acidic lipids compared to pure phosphatidylcholine bilayers. In planar lipid bilayers, the helices were oriented close to the membrane normal. TMX31 aggregated into small heat-resistant oligomers composed of two to five subunits in SDS micelles. Amide hydrogen exchange experiments indicated that a large fraction of the helical residues were accessible to water, suggesting the possibility that TMX31 forms pores in lipid bilayers. Finally, the peptide increased the acyl chain order in lipid bilayers, which may be related to the preferential association of HA with lipid "rafts" in the cell surface and which may be an important prerequisite for complete membrane fusion.
Collapse
Affiliation(s)
- S A Tatulian
- Department of Molecular Physiology and Biological Physics and Center for Structural Biology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908-0736, USA
| | | |
Collapse
|
32
|
Bryan J, Aguilar-Bryan L. Sulfonylurea receptors: ABC transporters that regulate ATP-sensitive K(+) channels. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1461:285-303. [PMID: 10581362 DOI: 10.1016/s0005-2736(99)00164-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The association of sulfonylurea receptors (SURs) with K(IR)6.x subunits to form ATP-sensitive K(+) channels presents perhaps the most unusual function known for members of the transport ATPase family. The integration of these two protein subunits extends well beyond conferring sensitivity to sulfonylureas. Recent studies indicate SUR-K(IR)6.x interactions are critical for all of the properties associated with native K(ATP) channels including quality control over surface expression, channel kinetics, inhibition and stimulation by Mg-nucleotides and response both to channel blockers like sulfonylureas and to potassium channel openers. K(ATP) channels are a unique example of the physiologic and medical importance of a transport ATPase and provide a paradigm for how other members of the family may interact with other ion channels.
Collapse
Affiliation(s)
- J Bryan
- Department of Cell Biology, Baylor College of Medicine, Houston, TX, USA.
| | | |
Collapse
|
33
|
Abstract
Polarized attenuated total reflection infrared spectroscopy of aligned membranes provides essential information on the secondary structure content and orientation of the associated membrane proteins. Quantitation of the relative content of different secondary structures, however, requires allowance for geometric relations of the electric field components (E(x), E(y), E(z)) of the evanescent wave, and of the components of the infrared transition moments, in combining absorbances (A and A(perpendicular)) measured with radiation polarized parallel with and perpendicular to, respectively, the plane of incidence. This has hitherto not been done. The appropriate combination for exact evaluation of relative integrated absorbances is A + (2E(z)(2)/E(y)(2) - E(x)(2)/E(y)(2))A(perpendicular), where z is the axis of ordering that is normal to the membrane plane, and the x-axis lies in the membrane plane within the plane of incidence. This combination can take values in the range approximately from A - 0.4A(perpendicular) to A + 2.7A(perpendicular), depending on experimental conditions and the attenuated total reflection crystal used. With unpolarized radiation, this correction is not possible. Similar considerations apply to the dichroic ratios of multicomponent bands, which are also treated.
Collapse
Affiliation(s)
- D Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, D-37070 Göttingen, Germany.
| |
Collapse
|
34
|
Gross A, Columbus L, Hideg K, Altenbach C, Hubbell WL. Structure of the KcsA potassium channel from Streptomyces lividans: a site-directed spin labeling study of the second transmembrane segment. Biochemistry 1999; 38:10324-35. [PMID: 10441126 DOI: 10.1021/bi990856k] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
KcsA is a prokaryotic potassium channel. The present study employs cysteine scanning mutagenesis and site-directed spin labeling to investigate the structure of the second transmembrane segment (residues 82-120) in functional tetrameric channels reconstituted in lipid bilayers. Spin-spin interactions are observed between nitroxide side chains at symmetry-related sites close to the 4-fold axis of symmetry. To aid in quantitative analysis of these interactions, a new diamagnetic analogue of the nitroxide side chain is used to prepare magnetically dilute samples with constant structure. Using constraints imposed by the spin-spin interactions, a packing model for this segment is deduced that is in excellent agreement with the recently reported crystal structure [Doyle, D., et al. (1998) Science 280, 69-77]. The relatively immobilized state of the nitroxide side chains suggests that the channel is rigid on the electron paramagnetic resonance time scale. Moreover, the poor sulfhydryl reactivity of the cysteine at many locations indicates that the channel is not subject to the low-frequency fluctuations that permit reaction of buried cysteines. At sites expected to be located in the pore, the accessibility of the side chains to collision with O(2) or nickel(II) ethylenediaminediacetate is low. This inaccessibility, together with the generally low mobility of the side chains throughout the sequence, makes it difficult to detect the presence of the pore based on these measurements. However, the presence of a solvated pore can be directly demonstrated using a polarity parameter deduced from the EPR spectra recorded at low temperature. These measurements also reveal the presence of a polarity gradient in the phospholipid bilayer.
Collapse
Affiliation(s)
- A Gross
- Jules Stein Eye Institute, Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-7008, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
The intramembrane molecular events underlying activation gating in the Streptomyces K+ channel were investigated by site-directed spin-labeling methods and electron paramagnetic resonance spectroscopy. A comparison of the closed and open conformations of the channel revealed periodic changes in spin-label mobility and intersubunit spin-spin interaction consistent with rigid-body movements of the two transmembrane helices TM1 and TM2. These changes involve translations and counterclockwise rotations of both helices relative to the center of symmetry of the channel. The movement of TM2 increases the diameter of the permeation pathway along the point of convergence of the four subunits, thus opening the pore. Although the extracellular residues flanking the selectivity filter remained immobile during gating, small movements were detected at the C-terminal end of the pore helix, with possible implications to the gating mechanism.
Collapse
Affiliation(s)
- E Perozo
- Department of Molecular Physiology and Biological Physics and Center for Structural Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22906-0011, USA.
| | | | | |
Collapse
|
36
|
Abstract
KATP channels are a newly defined class of potassium channels based on the physical association of an ABC protein, the sulfonylurea receptor, and a K+ inward rectifier subunit. The beta-cell KATP channel is composed of SUR1, the high-affinity sulfonylurea receptor with multiple TMDs and two NBFs, and KIR6.2, a weak inward rectifier, in a 1:1 stoichiometry. The pore of the channel is formed by KIR6.2 in a tetrameric arrangement; the overall stoichiometry of active channels is (SUR1/KIR6.2)4. The two subunits form a tightly integrated whole. KIR6.2 can be expressed in the plasma membrane either by deletion of an ER retention signal at its C-terminal end or by high-level expression to overwhelm the retention mechanism. The single-channel conductance of the homomeric KIR6.2 channels is equivalent to SUR/KIR6.2 channels, but they differ in all other respects, including bursting behavior, pharmacological properties, sensitivity to ATP and ADP, and trafficking to the plasma membrane. Coexpression with SUR restores the normal channel properties. The key role KATP channel play in the regulation of insulin secretion in response to changes in glucose metabolism is underscored by the finding that a recessive form of persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is caused by mutations in KATP channel subunits that result in the loss of channel activity. KATP channels set the resting membrane potential of beta-cells, and their loss results in a constitutive depolarization that allows voltage-gated Ca2+ channels to open spontaneously, increasing the cytosolic Ca2+ levels enough to trigger continuous release of insulin. The loss of KATP channels, in effect, uncouples the electrical activity of beta-cells from their metabolic activity. PHHI mutations have been informative on the function of SUR1 and regulation of KATP channels by adenine nucleotides. The results indicate that SUR1 is important in sensing nucleotide changes, as implied by its sequence similarity to other ABC proteins, in addition to being the drug sensor. An unexpected finding is that the inhibitory action of ATP appears to be through a site located on KIR6.2, whose affinity for ATP is modified by SUR1. A PHHI mutation, G1479R, in the second NBF of SUR1 forms active KATP channels that respond normally to ATP, but fail to activate with MgADP. The result implies that ATP tonically inhibits KATP channels, but that the ADP level in a fasting beta-cell antagonizes this inhibition. Decreases in the ADP level as glucose is metabolized result in KATP channel closure. Although KATP channels are the target for sulfonylureas used in the treatment of NIDDM, the available data suggest that the identified KATP channel mutations do not play a major role in diabetes. Understanding how KATP channels fit into the overall scheme of glucose homeostasis, on the other hand, promises insight into diabetes and other disorders of glucose metabolism, while understanding the structure and regulation of these channels offers potential for development of novel compounds to regulate cellular electrical activity.
Collapse
Affiliation(s)
- L Aguilar-Bryan
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
37
|
Tatulian SA, Steczko J, Minor W. Uncovering a calcium-regulated membrane-binding mechanism for soybean lipoxygenase-1. Biochemistry 1998; 37:15481-90. [PMID: 9799511 DOI: 10.1021/bi981062t] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipoxygenases catalyze the biosynthesis of leukotrienes, lipoxins, and other lipid-derived mediators that are involved in a wide variety of pathophysiological processes, including inflammation, allergy, and tumorigenesis. Mammalian lipoxygenases are activated by a calcium-mediated translocation to intracellular membranes upon cell stimulation, and cooperate with cytosolic phospholipase A2 at the membrane surface to generate eicosanoids. Although it has been documented that plant cell stimulation increases intracellular Ca2+ concentration and activates cytosolic phospholipase A2, followed by lipoxygenase-catalyzed conversion of the liberated linolenic acid to jasmonic acid, no evidence is available for Ca2+-regulated membrane binding and activity of plant lipoxygenases. Plant lipoxygenases, unlike their mammalian counterparts, are believed to function independently of calcium or membranes. Here we present spectroscopic evidence for a calcium-regulated membrane-binding mechanism of soybean lipoxygenase-1 (L-1). Both calcium and membrane binding affect the structure and the mode of action of L-1. Free L-1 in solution is less accessible to the polar solvent and converts linoleic acid to conjugated dienes, whereas surface binding increases solvent accessibility and stimulates conjugated ketodiene production. Calcium exerts a biphasic effect on the structure and activity of L-1. Our results uncover a new regulatory mechanism for plant lipoxygenases and delineate common features in animal and plant cell signaling pathways.
Collapse
Affiliation(s)
- S A Tatulian
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville 22906-0011, USA
| | | | | |
Collapse
|
38
|
Heginbotham L, Kolmakova-Partensky L, Miller C. Functional reconstitution of a prokaryotic K+ channel. J Gen Physiol 1998; 111:741-9. [PMID: 9607934 PMCID: PMC2217152 DOI: 10.1085/jgp.111.6.741] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1998] [Accepted: 04/03/1998] [Indexed: 11/20/2022] Open
Abstract
SliK, a K+ channel encoded by the Streptomyces KcsA gene, was expressed, purified, and reconstituted in liposomes. A concentrative 86Rb+ flux assay was used to assess the ion transport properties of SliK. SliK-mediated ionic flux shows strong selectivity for K+ over Na+ and is inhibited by micromolar concentrations of Ba2+, mirroring the basic permeation characteristic of eukaryotic K+ channels studied by electrophysiological methods. 86Rb+ uptake kinetics and equilibrium measurements also demonstrate that the purified protein is fully active.
Collapse
Affiliation(s)
- L Heginbotham
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | |
Collapse
|
39
|
Perozo E, Cortes DM, Cuello LG. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. NATURE STRUCTURAL BIOLOGY 1998; 5:459-69. [PMID: 9628484 DOI: 10.1038/nsb0698-459] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transmembrane organization of a potassium channel from Streptomyces lividans has been studied using site-directed spin labeling techniques and electron paramagnetic resonance spectroscopy. In the tetrameric channel complex, two alpha-helices were identified per monomer and assigned to the amino acid sequence. Probe mobility and accessibility data clearly establish that the first helix (TM1) is located in the perimeter of the channel, showing extensive protein-lipid contacts, while the second helix (TM2) is closer to the four-fold symmetric axis of the channel, lining the intracellular vestibule. A large conformational change in the C-terminal end of TM2 was measured when comparing conditions that favor either the open or closed states. The present data suggest that the diameter of the internal vestibule increases with channel opening.
Collapse
Affiliation(s)
- E Perozo
- Department of Molecular Physiology and Biological Physics and Center for Structural Biology, University of Virginia Health Sciences Center, Charlottesville 22906-0011, USA.
| | | | | |
Collapse
|