1
|
Cole-Osborn LF, McCallan SA, Prifti O, Abu R, Sjoelund V, Lee-Parsons CWT. The role of the Golden2-like (GLK) transcription factor in regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PLANT CELL REPORTS 2024; 43:141. [PMID: 38743349 PMCID: PMC11093837 DOI: 10.1007/s00299-024-03208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
KEY MESSAGE A GLK homologue was identified and functionally characterized in Catharanthus roseus. Silencing CrGLK with VIGS or the chloroplast retrograde signaling inducer lincomycin increased terpenoid indole alkaloid biosynthesis. Catharanthus roseus is the sole source of the chemotherapeutic terpenoid indole alkaloids (TIAs) vinblastine and vincristine. TIA pathway genes, particularly genes in the vindoline pathway, are expressed at higher levels in immature versus mature leaves, but the molecular mechanisms responsible for this developmental regulation are unknown. We investigated the role of GOLDEN2-LIKE (GLK) transcription factors in contributing to this ontogenetic regulation since GLKs are active in seedlings upon light exposure and in the leaf's early development, but their activity is repressed as leaves age and senesce. We identified a GLK homologue in C. roseus and functionally characterized its role in regulating TIA biosynthesis, with a focus on the vindoline pathway, by transiently reducing its expression through two separate methods: virus-induced gene silencing (VIGS) and application of chloroplast retrograde signaling inducers, norflurazon and lincomycin. Reducing CrGLK levels with each method reduced chlorophyll accumulation and the expression of the light harvesting complex subunit (LHCB2.2), confirming its functional homology with GLKs in other plant species. In contrast, reducing CrGLK via VIGS or lincomycin increased TIA accumulation and TIA pathway gene expression, suggesting that CrGLK may repress TIA biosynthesis. However, norflurazon had no effect on TIA gene expression, indicating that reducing CrGLK alone is not sufficient to induce TIA biosynthesis. Future work is needed to clarify the specific molecular mechanisms leading to increased TIA biosynthesis with CrGLK silencing. This is the first identification and characterization of GLK in C. roseus and the first investigation of how chloroplast retrograde signaling might regulate TIA biosynthesis.
Collapse
Affiliation(s)
- Lauren F Cole-Osborn
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Shannon A McCallan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA
| | - Olga Prifti
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Rafay Abu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA
| | - Virginie Sjoelund
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA
| | - Carolyn W T Lee-Parsons
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, USA.
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA.
| |
Collapse
|
2
|
Kaminski KP, Bovet L, Hilfiker A, Laparra H, Schwaar J, Sierro N, Lang G, De Palo D, Guy PA, Laszlo C, Goepfert S, Ivanov NV. Suppression of pyrrolidine ring biosynthesis and its effects on gene expression and subsequent accumulation of anatabine in leaves of tobacco (N. tabacum L.). BMC Genomics 2023; 24:516. [PMID: 37667170 PMCID: PMC10476381 DOI: 10.1186/s12864-023-09588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Anatabine, although being one of four major tobacco alkaloids, is never accumulated in high quantity in any of the naturally occurring species from the Nicotiana genus. Previous studies therefore focused on transgenic approaches to synthetize anatabine, most notably by generating transgenic lines with suppressed putrescine methyltransferase (PMT) activity. This led to promising results, but the global gene expression of plants with such distinct metabolism has not been analyzed. In the current study, we describe how these plants respond to topping and the downstream effects on alkaloid biosynthesis. RESULTS The surge in anatabine accumulation in PMT transgenic lines after topping treatment and its effects on gene expression changes were analyzed. The results revealed increases in expression of isoflavone reductase-like (A622) and berberine bridge-like enzymes (BBLs) oxidoreductase genes, previously shown to be crucial for the final steps of nicotine biosynthesis. We also observed significantly higher methylputrescine oxidase (MPO) expression in all plants subjected to topping treatment. In order to investigate if MPO suppression would have the same effects as that of PMT, we generated transgenic plants. These plants with suppressed MPO expression showed an almost complete drop in leaf nicotine content, whereas leaf anatabine was observed to increase by a factor of ~ 1.6X. CONCLUSION Our results are the first concrete evidence that suppression of MPO leads to decreased nicotine in favor of anatabine in tobacco roots and that this anatabine is successfully transported to tobacco leaves. Alkaloid transport in plants remains to be investigated to higher detail due to high variation of its efficiency among Nicotiana species and varieties of tobacco. Our research adds important step to better understand pyrrolidine ring biosynthesis and its effects on gene expression and subsequent accumulation of anatabine.
Collapse
Affiliation(s)
- Kacper Piotr Kaminski
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Lucien Bovet
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Aurore Hilfiker
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Helene Laparra
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Joanne Schwaar
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Gerhard Lang
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Damien De Palo
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Philippe Alexandre Guy
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Csaba Laszlo
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Simon Goepfert
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
3
|
Lemos Cruz P, Carqueijeiro I, Koudounas K, Bomzan DP, Stander EA, Abdallah C, Kulagina N, Oudin A, Lanoue A, Giglioli-Guivarc'h N, Nagegowda DA, Papon N, Besseau S, Clastre M, Courdavault V. Identification of a second 16-hydroxytabersonine-O-methyltransferase suggests an evolutionary relationship between alkaloid and flavonoid metabolisms in Catharanthus roseus. PROTOPLASMA 2023; 260:607-624. [PMID: 35947213 DOI: 10.1007/s00709-022-01801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16-O-methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid-O-methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O-methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.
Collapse
Affiliation(s)
- Pamela Lemos Cruz
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Ines Carqueijeiro
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - Emily Amor Stander
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Cécile Abdallah
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Natalja Kulagina
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Audrey Oudin
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Arnaud Lanoue
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR, ICAT, F-49000, Angers, France
| | - Sébastien Besseau
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Marc Clastre
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Courdavault
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France.
| |
Collapse
|
4
|
Williams D, Brzezinski W, Gordon H, De Luca V. Site directed mutagenesis of Catharanthus roseus (+)-vincadifformine 19-hydroxylase (CYP71BY3) results in two distinct enzymatic functions. PHYTOCHEMISTRY 2022; 201:113265. [PMID: 35660549 DOI: 10.1016/j.phytochem.2022.113265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
The most abundant monoterpenoid indole alkaloids (MIAs) in Catharanthus roseus roots include lochnericine and (+)-echitovenine. The formation of (+)-echitovenine involves a 3-step pathway including (+)-vincadifformine-19-hydroxylase (V19H) that differentiates it from a parallel pathway involved in the formation of lochnericine, hörhammericine and its O-acetylated derivative. Homology based modeling and docking experiments in the present study show that (+) and (-) vincadifformine can occupy the V19H active site and is proven experimentally by showing that (-)-vincadifformine is a competitive inhibitor of V19H. Comparative modeling of V19H with tabersonine 3-oxidase (T3O) and tabersonine 19-hydroxylase (T19H) that accept (-)-aspidosperma MIAs identified four conserved amino acid residues in T3O and T19H that were different in the V19H binding site and were used to generate a series of single-, double-, or four-point mutations in V19H. While all mutants retained their ability to convert (+)-vincadifformine to (+)-minovincinine only the four-point mutant gained T3O activity enabling it to convert (-)-tabersonine to tabersonine 2,3-epoxide. The gain of T3O-like activity following mutagenesis without the loss of V19H activity supports the hypothesis that V19H shares a common ancestor to T3O which is involved in vindoline biosynthesis in C. roseus leaves.
Collapse
Affiliation(s)
- Danielle Williams
- Department of Biological Sciences Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON, L2S 3A1, Canada.
| | - Weronika Brzezinski
- Department of Biological Sciences Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON, L2S 3A1, Canada.
| | - Heather Gordon
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON, L2S 3A1, Canada.
| | - Vincenzo De Luca
- Department of Biological Sciences Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
5
|
Morey KJ, Peebles CAM. Hairy roots: An untapped potential for production of plant products. FRONTIERS IN PLANT SCIENCE 2022; 13:937095. [PMID: 35991443 PMCID: PMC9389236 DOI: 10.3389/fpls.2022.937095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
While plants are an abundant source of valuable natural products, it is often challenging to produce those products for commercial application. Often organic synthesis is too expensive for a viable commercial product and the biosynthetic pathways are often so complex that transferring them to a microorganism is not trivial or feasible. For plants not suited to agricultural production of natural products, hairy root cultures offer an attractive option for a production platform which offers genetic and biochemical stability, fast growth, and a hormone free culture media. Advances in metabolic engineering and synthetic biology tools to engineer hairy roots along with bioreactor technology is to a point where commercial application of the technology will soon be realized. We discuss different applications of hairy roots. We also use a case study of the advancements in understanding of the terpenoid indole alkaloid pathway in Catharanthus roseus hairy roots to illustrate the advancements and challenges in pathway discovery and in pathway engineering.
Collapse
|
6
|
Kumar S, Singh B, Singh R. Catharanthus roseus (L.) G. Don: A review of its ethnobotany, phytochemistry, ethnopharmacology and toxicities. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114647. [PMID: 34562562 DOI: 10.1016/j.jep.2021.114647] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Catharanthus roseus (L.) G. Don is a well known medicinal plant belonging to family Apocynaceae that have been traditionally used as medicine since ancient times. C. roseus is a well-recognized herbal medicine due to its anticancer bisindole alkaloids (vinblastine (111), vincristine (112) and vindesine (121)). In the Ayurvedic system of medicine, different parts of C. roseus are used in folklore herbal medicine for treatment of many types of cancer, diabetes, stomach disorders, kidney, liver and cardiovascular diseases. AIM OF THE STUDY The main idea behind this communication is to update comprehensively and analyze critically the traditional applications, phytochemistry, pharmacological activities, and toxicity of various extracts and isolated compounds from C. roseus. MATERIALS AND METHODS The presented data covers scientific works on C. roseus published across the world between 1967 and 2021 was searched from various international publishing houses using search engines as well as several traditional texts like Ayurveda and relevant books. Collected data from different sources was comprehensively summarized/analyzed for ethnomedicinal uses, phytochemistry, analytical chemistry, biological activities and toxicity studies of C. roseus. RESULTS AND DISCUSSION C. roseus has a wide range of applications in the traditional system of medicine especially in cancer and diabetes. During phytochemical investigation, total of 344 compounds including monoterpene indole alkaloids (MIAs) (110), bisindole alkaloids (35), flavonoids (34), phenolic acids (9) and volatile constituents (156) have been reported in the various extracts and fractions of different plant parts of C. roseus. The extracts and isolated compounds of C. roseus have to exhibit many pharmacological activities such as anticancer/cytotoxic, antidiabetic, antimicrobial, antioxidant, larvicidal and pupicidal. The comparative toxicity of extracts and bioactive compounds investigated in dose dependent manner. The investigation of toxicity showed that the both extracts and isolated compounds are safe to a certain limit beyond that they cause adverse effects. CONCLUSION This review is a comprehensive, critically analyzed summarization of sufficient baseline information of selected topics in one place undertaken till date on C. roseus for future works and drug discovery. The phytochemical investigation including biosynthetic pathways showed that the MIAs and bisindole alkaloids are major and characteristic class of compounds in this plant. The present data confirm that the extracts/fractions and their isolated alkaloids especially vinblastine (111) and vincristine (112) have a potent anticancer/cytotoxic and antidiabetic property and there is a need for further study with particular attention to the mechanisms of anticancer activity. In biosynthesis pathways of alkaloids especially bisindole alkaloids, some enzymes and rearrangement are unexposed therefore it is required to draw special attention. It also focuses on attracting the attention of scientific communities about the widespread biological activities of this species for its better utilization prospects in the near future.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Ma. Kanshiram Government Degree College, Ninowa, (affiliated to Chhatrapati Shahu Ji Maharaj University (CSJM) Kanpur), Farrukhabad, 209602, Uttar Pradesh, India
| | - Bikarma Singh
- Botanic Garden Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ramesh Singh
- Department of Botany, Government Degree College Bahua Dehat, (affiliated to Professor Rajendra Singh (Rajju Bhaiya) University Prayagraj), Fatehpur, 212663, Uttar Pradesh, India
| |
Collapse
|
7
|
Peng Y, Chen Z, Xu J, Wu Q. Recent Advances in Photobiocatalysis for Selective Organic Synthesis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yongzhen Peng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Zhichun Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| |
Collapse
|
8
|
Gardner A, Andrade RB. Semisynthesis of Bis-Indole Alkaloid (-)-Melodinine K Enabled by a Combination of Biotransformation and Chemical Synthesis. Methods Mol Biol 2022; 2505:101-112. [PMID: 35732940 DOI: 10.1007/978-1-0716-2349-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Enzymatic biotransformation has become a widely used technique in synthetic chemistry to achieve difficult chemical transformations. Cytochrome P450 monooxygenase enzymes found in nature carry out a wide range of difficult chemical reactions, such as the oxidation of the monoterpene indole alkaloid (-)-tabersonine at the unreactive 16th position on the indoline benzene ring in the biosynthesis of biologically active natural products such as the bis-indole alkaloid (-)-melodinine K. Herein, we describe the first semisynthesis of (-)-melodinine K enabled by a biological gram scale route to the northern fragment, (-)-16-hydroxytabersonine, as well as a chemical route to the southern fragment, (-)-pachysiphine, both derived from (-)-tabersonine and subsequently coupled in only eight linear steps. (-)-16-Hydroxytabersonine is produced through an enzymatic biotransformation with a genetically modified Saccharomyces cerevisiae yeast strain expressing a tabersonine 16-hydroxylase enzyme to enable regioselective oxidation on multigram scale, and (-)-pachysiphine is produced through stereoselective and regioselective epoxidation of the disubstituted alkene.
Collapse
Affiliation(s)
- Alex Gardner
- Department of Chemistry, Temple University, Philadelphia, PA, USA.
| | | |
Collapse
|
9
|
Zhao S, Sirasani G, Andrade RB. Aspidosperma and Strychnos alkaloids: Chemistry and biology. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2021; 86:1-143. [PMID: 34565505 DOI: 10.1016/bs.alkal.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Of Nature's nearly 3000 unique monoterpene indole alkaloids derived from tryptophan, those members belonging to the Aspidosperma and Strychnos families continue to impact the fields of natural products (i.e., isolation, structure determination, biosynthesis) and organic chemistry (i.e., chemical synthesis, methodology development) among others. This review covers the biological activity (Section 2), biosynthesis (Section 3), and synthesis of both classical and novel Aspidosperma (Section 4), Strychnos (Section 5), and selected bis-indole (Section 6) alkaloids. Technological advancements in genetic sequencing and bioinformatics have deepened our understanding of how Nature assembles these intriguing molecules. The proliferation of innovative synthetic strategies and tactics for the synthesis of the alkaloids covered in this review, which include contributions from over fifty research groups from around the world, are a testament to the creative power and technical skills of synthetic organic chemists. To be sure, Nature-the Supreme molecular architect and source of a dazzling array of irresistible chemical logic puzzles-continues to inspire scientists across multiple disciplines and will certainly continue to do so for the foreseeable future.
Collapse
Affiliation(s)
- Senzhi Zhao
- Department of Chemistry, Temple University, Philadelphia, PA, United States
| | | | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Nguyen TD, Dang TTT. Cytochrome P450 Enzymes as Key Drivers of Alkaloid Chemical Diversification in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:682181. [PMID: 34367208 PMCID: PMC8336426 DOI: 10.3389/fpls.2021.682181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/01/2021] [Indexed: 05/30/2023]
Abstract
Plants produce more than 20,000 nitrogen-containing heterocyclic metabolites called alkaloids. These chemicals serve numerous eco-physiological functions in the plants as well as medicines and psychedelic drugs for human for thousands of years, with the anti-cancer agent vinblastine and the painkiller morphine as the best-known examples. Cytochrome P450 monooxygenases (P450s) play a key role in generating the structural variety that underlies this functional diversity of alkaloids. Most alkaloid molecules are heavily oxygenated thanks to P450 enzymes' activities. Moreover, the formation and re-arrangement of alkaloid scaffolds such as ring formation, expansion, and breakage that contribute to their structural diversity and bioactivity are mainly catalyzed by P450s. The fast-expanding genomics and transcriptomics databases of plants have accelerated the investigation of alkaloid metabolism and many players behind the complexity and uniqueness of alkaloid biosynthetic pathways. Here we discuss recent discoveries of P450s involved in the chemical diversification of alkaloids and how these inform our approaches in understanding plant evolution and producing plant-derived drugs.
Collapse
|
11
|
Lemos Cruz P, Kulagina N, Guirimand G, De Craene JO, Besseau S, Lanoue A, Oudin A, Giglioli-Guivarc’h N, Papon N, Clastre M, Courdavault V. Optimization of Tabersonine Methoxylation to Increase Vindoline Precursor Synthesis in Yeast Cell Factories. Molecules 2021; 26:3596. [PMID: 34208368 PMCID: PMC8231165 DOI: 10.3390/molecules26123596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Plant specialized metabolites are widely used in the pharmaceutical industry, including the monoterpene indole alkaloids (MIAs) vinblastine and vincristine, which both display anticancer activity. Both compounds can be obtained through the chemical condensation of their precursors vindoline and catharanthine extracted from leaves of the Madagascar periwinkle. However, the extensive use of these molecules in chemotherapy increases precursor demand and results in recurrent shortages, explaining why the development of alternative production approaches, such microbial cell factories, is mandatory. In this context, the precursor-directed biosynthesis of vindoline from tabersonine in yeast-expressing heterologous biosynthetic genes is of particular interest but has not reached high production scales to date. To circumvent production bottlenecks, the metabolic flux was channeled towards the MIA of interest by modulating the copy number of the first two genes of the vindoline biosynthetic pathway, namely tabersonine 16-hydroxylase and tabersonine-16-O-methyltransferase. Increasing gene copies resulted in an optimized methoxylation of tabersonine and overcame the competition for tabersonine access with the third enzyme of the pathway, tabersonine 3-oxygenase, which exhibits a high substrate promiscuity. Through this approach, we successfully created a yeast strain that produces the fourth biosynthetic intermediate of vindoline without accumulation of other intermediates or undesired side-products. This optimization will probably pave the way towards the future development of yeast cell factories to produce vindoline at an industrial scale.
Collapse
Affiliation(s)
- Pamela Lemos Cruz
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Natalja Kulagina
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Grégory Guirimand
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
- Graduate School of Sciences, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans & Tours, France
| | - Johan-Owen De Craene
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Sébastien Besseau
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Arnaud Lanoue
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Audrey Oudin
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Nathalie Giglioli-Guivarc’h
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, F-49000 Angers, France;
| | - Marc Clastre
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Vincent Courdavault
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| |
Collapse
|
12
|
Trenti F, Yamamoto K, Hong B, Paetz C, Nakamura Y, O'Connor SE. Early and Late Steps of Quinine Biosynthesis. Org Lett 2021; 23:1793-1797. [PMID: 33625237 PMCID: PMC7944568 DOI: 10.1021/acs.orglett.1c00206] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The enzymatic basis
for quinine 1 biosynthesis was
investigated. Transcriptomic data from the producing plant led to
the discovery of three enzymes involved in the early and late steps
of the pathway. A medium-chain alcohol dehydrogenase (CpDCS) and an
esterase (CpDCE) yielded the biosynthetic intermediate dihydrocorynantheal 2 from strictosidine aglycone 3. Additionally,
the discovery of an O-methyltransferase specific
for 6′-hydroxycinchoninone 4 suggested the final
step order to be cinchoninone 16/17 hydroxylation, methylation,
and keto-reduction.
Collapse
Affiliation(s)
- Francesco Trenti
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Kotaro Yamamoto
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Benke Hong
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Christian Paetz
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| |
Collapse
|
13
|
Li W, Sun W, Li C. Engineered microorganisms and enzymes for efficiently synthesizing plant natural products. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Stander EA, Sepúlveda LJ, Dugé de Bernonville T, Carqueijeiro I, Koudounas K, Lemos Cruz P, Besseau S, Lanoue A, Papon N, Giglioli-Guivarc’h N, Dirks R, O’Connor SE, Atehortùa L, Oudin A, Courdavault V. Identifying Genes Involved in alkaloid Biosynthesis in Vinca minor Through Transcriptomics and Gene Co-Expression Analysis. Biomolecules 2020; 10:biom10121595. [PMID: 33255314 PMCID: PMC7761029 DOI: 10.3390/biom10121595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/19/2022] Open
Abstract
The lesser periwinkle Vinca minor accumulates numerous monoterpene indole alkaloids (MIAs) including the vasodilator vincamine. While the biosynthetic pathway of MIAs has been largely elucidated in other Apocynaceae such as Catharanthus roseus, the counterpart in V. minor remains mostly unknown, especially for reactions leading to MIAs specific to this plant. As a consequence, we generated a comprehensive V. minor transcriptome elaborated from eight distinct samples including roots, old and young leaves exposed to low or high light exposure conditions. This optimized resource exhibits an improved completeness compared to already published ones. Through homology-based searches using C. roseus genes as bait, we predicted candidate genes for all common steps of the MIA pathway as illustrated by the cloning of a tabersonine/vincadifformine 16-O-methyltransferase (Vm16OMT) isoform. The functional validation of this enzyme revealed its capacity of methylating 16-hydroxylated derivatives of tabersonine, vincadifformine and lochnericine with a Km 0.94 ± 0.06 µM for 16-hydroxytabersonine. Furthermore, by combining expression of fusions with yellow fluorescent proteins and interaction assays, we established that Vm16OMT is located in the cytosol and forms homodimers. Finally, a gene co-expression network was performed to identify candidate genes of the missing V. minor biosynthetic steps to guide MIA pathway elucidation.
Collapse
Affiliation(s)
- Emily Amor Stander
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Liuda Johana Sepúlveda
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Antioquia Medellin 050021, Colombia;
| | - Thomas Dugé de Bernonville
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Inês Carqueijeiro
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Konstantinos Koudounas
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Pamela Lemos Cruz
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Sébastien Besseau
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Arnaud Lanoue
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Nicolas Papon
- Host-Pathogen Interaction Study Group (GEIHP, EA 3142), UNIV Angers, UNIV Brest, 49933 Angers, France;
| | - Nathalie Giglioli-Guivarc’h
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Ron Dirks
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands;
| | - Sarah Ellen O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Antioquia Medellin 050021, Colombia;
| | - Audrey Oudin
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
- Correspondence: (A.O.); (V.C.)
| | - Vincent Courdavault
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
- Correspondence: (A.O.); (V.C.)
| |
Collapse
|
15
|
Walia M, Teijaro CN, Gardner A, Tran T, Kang J, Zhao S, O'Connor SE, Courdavault V, Andrade RB. Synthesis of (-)-Melodinine K: A Case Study of Efficiency in Natural Product Synthesis. JOURNAL OF NATURAL PRODUCTS 2020; 83:2425-2433. [PMID: 32786883 DOI: 10.1021/acs.jnatprod.0c00310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Efficiency is a key organizing principle in modern natural product synthesis. Practical criteria include time, cost, and effort expended to synthesize the target, which tracks with step-count and scale. The execution of a natural product synthesis, that is, the sum and identity of each reaction employed therein, falls along a continuum of chemical (abiotic) synthesis on one extreme, followed by the hybrid chemoenzymatic approach, and ultimately biological (biosynthesis) on the other, acknowledging the first synthesis belongs to Nature. Starting materials also span a continuum of structural complexity approaching the target with constituent elements on one extreme, followed by petroleum-derived and "chiral pool" building blocks, and complex natural products (i.e., semisynthesis) on the other. Herein, we detail our approach toward realizing the first synthesis of (-)-melodinine K, a complex bis-indole alkaloid. The total syntheses of monomers (-)-tabersonine and (-)-16-methoxytabersonine employing our domino Michael/Mannich annulation is described. Isolation of (-)-tabersonine from Voacanga africana and strategic biotransformation with tabersonine 16-hydroxylase for site-specific C-H oxidation enabled a scalable route. The Polonovski-Potier reaction was employed in biomimetic fragment coupling. Subsequent manipulations delivered the target. We conclude with a discussion of efficiency in natural products synthesis and how chemical and biological technologies define the synthetic frontier.
Collapse
Affiliation(s)
- Manish Walia
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Christiana N Teijaro
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Alex Gardner
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Thi Tran
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jinfeng Kang
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Senzhi Zhao
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute of Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", Université de Tours, Tours 37200, France
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
16
|
Chen Y, Klinkhamer PGL, Memelink J, Vrieling K. Diversity and evolution of cytochrome P450s of Jacobaea vulgaris and Jacobaea aquatica. BMC PLANT BIOLOGY 2020; 20:342. [PMID: 32689941 PMCID: PMC7372880 DOI: 10.1186/s12870-020-02532-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Collectively, plants produce a huge variety of secondary metabolites (SMs) which are involved in the adaptation of plants to biotic and abiotic stresses. The most characteristic feature of SMs is their striking inter- and intraspecific chemical diversity. Cytochrome P450 monooxygenases (CYPs) often play an important role in the biosynthesis of SMs and thus in the evolution of chemical diversity. Here we studied the diversity and evolution of CYPs of two Jacobaea species which contain a characteristic group of SMs namely the pyrrolizidine alkaloids (PAs). RESULTS We retrieved CYPs from RNA-seq data of J. vulgaris and J. aquatica, resulting in 221 and 157 full-length CYP genes, respectively. The analyses of conserved motifs confirmed that Jacobaea CYP proteins share conserved motifs including the heme-binding signature, the PERF motif, the K-helix and the I-helix. KEGG annotation revealed that the CYPs assigned as being SM metabolic pathway genes were all from the CYP71 clan but no CYPs were assigned as being involved in alkaloid pathways. Phylogenetic analyses of full-length CYPs were conducted for the six largest CYP families of Jacobaea (CYP71, CYP76, CYP706, CYP82, CYP93 and CYP72) and were compared with CYPs of two other members of the Asteraceae, Helianthus annuus and Lactuca sativa, and with Arabidopsis thaliana. The phylogenetic trees showed strong lineage specific diversification of CYPs, implying that the evolution of CYPs has been very fast even within the Asteraceae family. Only in the closely related species J. vulgaris and J. aquatica, CYPs were found often in pairs, confirming a close relationship in the evolutionary history. CONCLUSIONS This study discovered 378 full-length CYPs in Jacobaea species, which can be used for future exploration of their functions, including possible involvement in PA biosynthesis and PA diversity.
Collapse
Affiliation(s)
- Yangan Chen
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, The Netherlands
- Plant Cell Physiology, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Peter G L Klinkhamer
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Johan Memelink
- Plant Cell Physiology, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, The Netherlands.
| | - Klaas Vrieling
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
17
|
Kitisripanya T, Laoburee M, Puengsiricharoen L, Pratoomtong P, Daodee S, Wangboonskul J, Putalun W. Production of carbazole alkaloids through callus and suspension cultures in Clausena harmandiana. Nat Prod Res 2018; 34:434-440. [PMID: 30585087 DOI: 10.1080/14786419.2018.1533833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Carbazole alkaloids are major constituents in Clausena spp. and exhibit a wide range of biological activities. The roots of Clausena harmandiana are a rich source of active carbazole alkaloids. However, its roots take several years to grow to be able to harvest. To obtain an alternative source of carbazole alkaloids, in vitro callus cultures of C. harmandiana were induced, and the formation of two active carbazole alkaloids was investigated. The effects of precursor, concentrations of sucrose, elicitors and light were studied to improve carbazole alkaloids formation. In this study, light had a strong effect on the formation of both carbazole alkaloids. The highest yields of clausine K and 7-methoxymukonal were 4.74 ± 0.26 and 0.92 ± 0.04 mg/g DW, respectively, which have more than 10-fold found in intact roots. According to the results of this study, C. harmandiana callus cultures can be used as an alternative source of carbazole alkaloids for additional biological studies.
Collapse
Affiliation(s)
- Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Manus Laoburee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Supawadee Daodee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jinda Wangboonskul
- Department of Pharmaceutical Sciences, Thammasat University, Pathumthani, Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB), National Research University-Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
18
|
Liang C, Chen C, Zhou P, Xu L, Zhu J, Liang J, Zi J, Yu R. Effect of Aspergillus flavus Fungal Elicitor on the Production of Terpenoid Indole Alkaloids in Catharanthus roseus Cambial Meristematic Cells. Molecules 2018; 23:molecules23123276. [PMID: 30544939 PMCID: PMC6320906 DOI: 10.3390/molecules23123276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 11/16/2022] Open
Abstract
This study reported the inducing effect of Aspergillus flavus fungal elicitor on biosynthesis of terpenoid indole alkaloids (TIAs) in Catharanthus roseus cambial meristematic cells (CMCs) and its inducing mechanism. According to the results determined by HPLC and HPLC-MS/MS, the optimal condition of the A. flavus elicitor was as follows: after suspension culture of C. roseus CMCs for 6 day, 25 mg/L A. flavus mycelium elicitor were added, and the CMC suspensions were further cultured for another 48 h. In this condition, the contents of vindoline, catharanthine, and ajmaline were 1.45-, 3.29-, and 2.14-times as high as those of the control group, respectively. Transcriptome analysis showed that D4H, G10H, GES, IRS, LAMT, SGD, STR, TDC, and ORCA3 were involved in the regulation of this induction process. The results of qRT-PCR indicated that the increasing accumulations of vindoline, catharanthine, and ajmaline in C. roseus CMCs were correlated with the increasing expression of the above genes. Therefore, A. flavus fungal elicitor could enhance the TIA production of C. roseus CMCs, which might be used as an alternative biotechnological resource for obtaining bioactive alkaloids.
Collapse
Affiliation(s)
- Chuxin Liang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Chang Chen
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Pengfei Zhou
- Department of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China.
| | - Lv Xu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Jincai Liang
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Jiachen Zi
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
19
|
Alam P, Khan ZA, Abdin MZ, Khan JA, Ahmad P, Elkholy SF, Sharaf-Eldin MA. Efficient regeneration and improved sonication-assisted Agrobacterium transformation (SAAT) method for Catharanthus roseus. 3 Biotech 2017; 7:26. [PMID: 28401464 PMCID: PMC5388651 DOI: 10.1007/s13205-016-0593-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/23/2016] [Indexed: 11/30/2022] Open
Abstract
Catharanthus roseus is an important medicinal plant known for its pharmacological qualities such as antimicrobial, anticancerous, antifeedant, antisterility, antidiabetic activities. More than 130 bioactive compounds like vinblastine, vindoline and vincristine have been synthesized in this plant. Extensive studies have been carried out for optimization regeneration and transformation protocols. Most of the protocol described are laborious and time-consuming. Due to sophisticated protocol of regeneration and genetic transformation, the production of these bioactive molecules is less and not feasible to be commercialized worldwide. Here we have optimized the efficient protocol for regeneration and transformation to minimize the time scale and enhance the transformation frequency through Agrobacterium and sonication-assisted transformation (SAAT) method. In this study, hypocotyl explants responded best for maximal production of transformed shoots. The callus percentage were recorded 52% with 1.0 mg L−1 (BAP) and 0.5 mg L−1 (NAA) while 80% shoot percentage obtained with 4.0 mg L−1 (BAP) and 0.05 mg L−1 (NAA). The microscopic studies revealed that the expression of GFP was clearly localized in leaf tissue of the C. roseus after transformation of pRepGFP0029 construct. Consequently, transformation efficiency was revealed on the basis of GFP localization. The transformation efficiency of SAAT method was 6.0% comparable to 3.5% as conventional method. Further, PCR analysis confirmed the integration of the nptII gene in the transformed plantlets of C. roseus.
Collapse
Affiliation(s)
- Pravej Alam
- Sara Alghonaim Research Chair (SRC), Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, 11942, Kingdom of Saudi Arabia.
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Zainul Abdeen Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Malik Zainul Abdin
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi, 110062, India
| | - Jawaid A Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Botany, S.P. College, Srinagar, 190001, Jammu and Kashmir, India
| | - Shereen F Elkholy
- Sara Alghonaim Research Chair (SRC), Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, 11942, Kingdom of Saudi Arabia
- Plant Transformation and Biopharmaceuticals Lab, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Centre (ARC), Giza, Egypt
| | - Mahmoud A Sharaf-Eldin
- Sara Alghonaim Research Chair (SRC), Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, 11942, Kingdom of Saudi Arabia
- Department of Medicinal and Aromatic Plants Research, National Research Centre (NRC), Cairo, 12622, Egypt
| |
Collapse
|
20
|
Rasool S, Mohamed R. Plant cytochrome P450s: nomenclature and involvement in natural product biosynthesis. PROTOPLASMA 2016; 253:1197-209. [PMID: 26364028 DOI: 10.1007/s00709-015-0884-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/31/2015] [Indexed: 05/10/2023]
Abstract
Cytochrome P450s constitute the largest family of enzymatic proteins in plants acting on various endogenous and xenobiotic molecules. They are monooxygenases that insert one oxygen atom into inert hydrophobic molecules to make them more reactive and hydro-soluble. Besides for physiological functions, the extremely versatile cytochrome P450 biocatalysts are highly demanded in the fields of biotechnology, medicine, and phytoremediation. The nature of reactions catalyzed by P450s is irreversible, which makes these enzymes attractions in the evolution of plant metabolic pathways. P450s are prime targets in metabolic engineering approaches for improving plant defense against insects and pathogens and for production of secondary metabolites such as the anti-neoplastic drugs taxol or indole alkaloids. The emerging examples of P450 involvement in natural product synthesis in traditional medicinal plant species are becoming increasingly interesting, as they provide new alternatives to modern medicines. In view of the divergent roles of P450s, we review their classification and nomenclature, functions and evolution, role in biosynthesis of secondary metabolites, and use as tools in pharmacology.
Collapse
Affiliation(s)
- Saiema Rasool
- Forest Biotech Laboratory, Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rozi Mohamed
- Forest Biotech Laboratory, Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
21
|
Kellner F, Geu-Flores F, Sherden NH, Brown S, Foureau E, Courdavault V, O'Connor SE. Discovery of a P450-catalyzed step in vindoline biosynthesis: a link between the aspidosperma and eburnamine alkaloids. Chem Commun (Camb) 2016; 51:7626-8. [PMID: 25850027 DOI: 10.1039/c5cc01309g] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the discovery of a cytochrome P450 that is required for the biosynthesis of vindoline, a plant-derived natural product used for semi-synthesis of several anti-cancer drugs. This enzyme catalyzes the formation of an epoxide that can undergo rearrangement to yield the vincamine-eburnamine backbone, thereby providing evidence for the long-standing hypothesis that the aspidosperma- and eburnamine-type alkaloids are biosynthetically related.
Collapse
Affiliation(s)
- Franziska Kellner
- Department of Biological Chemistry, The John Innes Centre, Norwich, NR4 7UH, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Li CY, Leopold AL, Sander GW, Shanks JV, Zhao L, Gibson SI. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes. FRONTIERS IN PLANT SCIENCE 2015; 6:818. [PMID: 26483828 PMCID: PMC4589645 DOI: 10.3389/fpls.2015.00818] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/18/2015] [Indexed: 05/23/2023]
Abstract
Terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Toward this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a "fine-tune" regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression.
Collapse
Affiliation(s)
- Chun Yao Li
- Department of Plant Biology, University of Minnesota Twin Cities, Saint PaulMN, USA
| | - Alex L. Leopold
- Department of Plant Biology, University of Minnesota Twin Cities, Saint PaulMN, USA
| | - Guy W. Sander
- Department of Chemical Engineering, University of Minnesota DuluthDuluth, MN, USA
| | - Jacqueline V. Shanks
- Department of Chemical and Biological Engineering, Iowa State UniversityAmes, IA, USA
| | - Le Zhao
- Department of Chemical and Biological Engineering, Iowa State UniversityAmes, IA, USA
| | - Susan I. Gibson
- Department of Plant Biology, University of Minnesota Twin Cities, Saint PaulMN, USA
| |
Collapse
|
23
|
Dugé de Bernonville T, Foureau E, Parage C, Lanoue A, Clastre M, Londono MA, Oudin A, Houillé B, Papon N, Besseau S, Glévarec G, Atehortùa L, Giglioli-Guivarc'h N, St-Pierre B, De Luca V, O'Connor SE, Courdavault V. Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome. BMC Genomics 2015; 16:619. [PMID: 26285573 PMCID: PMC4541752 DOI: 10.1186/s12864-015-1678-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 06/01/2015] [Indexed: 01/14/2023] Open
Abstract
Background Transcriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing. Transcriptome databases dedicated to this plant were recently developed by several consortia to uncover new biosynthetic genes. However, the identification of missing steps in MIA biosynthesis based on these large datasets may be limited by the erroneous assembly of close transcripts and isoforms, even with the multiple available transcriptomes. Results Secologanin synthases (SLS) are P450 enzymes that catalyze an unusual ring-opening reaction of loganin in the biosynthesis of the MIA precursor secologanin. We report here the identification and characterization in C. roseus of a new isoform of SLS, SLS2, sharing 97 % nucleotide sequence identity with the previously characterized SLS1. We also discovered that both isoforms further oxidize secologanin into secoxyloganin. SLS2 had however a different expression profile, being the major isoform in aerial organs that constitute the main site of MIA accumulation. Unfortunately, we were unable to find a current C. roseus transcriptome database containing simultaneously well reconstructed sequences of SLS isoforms and accurate expression levels. After a pair of close mRNA encoding tabersonine 16-hydroxylase (T16H1 and T16H2), this is the second example of improperly assembled transcripts from the MIA pathway in the public transcriptome databases. To construct a more complete transcriptome resource for C. roseus, we re-processed previously published transcriptome data by combining new single assemblies. Care was particularly taken during clustering and filtering steps to remove redundant contigs but not transcripts encoding potential isoforms by monitoring quality reconstruction of MIA genes and specific SLS and T16H isoforms. The new consensus transcriptome allowed a precise estimation of abundance of SLS and T16H isoforms, similar to qPCR measurements. Conclusions The C. roseus consensus transcriptome can now be used for characterization of new genes of the MIA pathway. Furthermore, additional isoforms of genes encoding distinct MIA biosynthetic enzymes isoforms could be predicted suggesting the existence of a higher level of complexity in the synthesis of MIA, raising the question of the evolutionary events behind what seems like redundancy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1678-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Emilien Foureau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Claire Parage
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Arnaud Lanoue
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Marc Clastre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Monica Arias Londono
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France. .,Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellín, Colombia.
| | - Audrey Oudin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Benjamin Houillé
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Nicolas Papon
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Sébastien Besseau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Gaëlle Glévarec
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Lucia Atehortùa
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellín, Colombia.
| | - Nathalie Giglioli-Guivarc'h
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Benoit St-Pierre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Vincenzo De Luca
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St Catharines, Ontario, L2S 3A1, Canada.
| | - Sarah E O'Connor
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK.
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| |
Collapse
|
24
|
Zhu J, Wang M, Wen W, Yu R. Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus. Pharmacogn Rev 2015; 9:24-8. [PMID: 26009689 PMCID: PMC4441158 DOI: 10.4103/0973-7847.156323] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/16/2014] [Accepted: 05/05/2015] [Indexed: 11/16/2022] Open
Abstract
Catharanthus roseus produces a wide range of terpenoid indole alkaloids (TIA). Many of them, such as vinblastine and vincristine, have significant bioactivity. They are valuable chemotherapy drugs used in combination with other drugs to treat lymphoma and leukemia. The TIA biosynthetic pathway has been investigated for many years, for scientific interest and for their potential in manufacturing applications, to fulfill the market demand. In this review, the progress and perspective of C. roseus TIA biosynthesis and its regulating enzymes are described. In addition, the culture condition, hormones, signaling molecules, precursor feeding on the accumulation of TIA, and gene expression are also evaluated and discussed.
Collapse
Affiliation(s)
- Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
| | - Mingxuan Wang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
| | - Wei Wen
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China ; Department of Natural Medicinal Chemistry, College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
25
|
Dugé de Bernonville T, Clastre M, Besseau S, Oudin A, Burlat V, Glévarec G, Lanoue A, Papon N, Giglioli-Guivarc'h N, St-Pierre B, Courdavault V. Phytochemical genomics of the Madagascar periwinkle: Unravelling the last twists of the alkaloid engine. PHYTOCHEMISTRY 2015; 113:9-23. [PMID: 25146650 DOI: 10.1016/j.phytochem.2014.07.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 05/12/2023]
Abstract
The Madagascar periwinkle produces a large palette of Monoterpenoid Indole Alkaloids (MIAs), a class of complex alkaloids including some of the most valuable plant natural products with precious therapeutical values. Evolutionary pressure on one of the hotspots of biodiversity has obviously turned this endemic Malagasy plant into an innovative alkaloid engine. Catharanthus is a unique taxon producing vinblastine and vincristine, heterodimeric MIAs with complex stereochemistry, and also manufactures more than 100 different MIAs, some shared with the Apocynaceae, Loganiaceae and Rubiaceae members. For over 60 years, the quest for these powerful anticancer drugs has inspired biologists, chemists, and pharmacists to unravel the chemistry, biochemistry, therapeutic activity, cell and molecular biology of Catharanthus roseus. Recently, the "omics" technologies have fuelled rapid progress in deciphering the last secret of strictosidine biosynthesis, the central precursor opening biosynthetic routes to several thousand MIA compounds. Dedicated C. roseus transcriptome, proteome and metabolome databases, comprising organ-, tissue- and cell-specific libraries, and other phytogenomic resources, were developed for instance by PhytoMetaSyn, Medicinal Plant Genomic Resources and SmartCell consortium. Tissue specific library screening, orthology comparison in species with or without MIA-biochemical engines, clustering of gene expression profiles together with various functional validation strategies, largely contributed to enrich the toolbox for plant synthetic biology and metabolic engineering of MIA biosynthesis.
Collapse
Affiliation(s)
- Thomas Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Marc Clastre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Sébastien Besseau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Audrey Oudin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Burlat
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France
| | - Gaëlle Glévarec
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Arnaud Lanoue
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Nicolas Papon
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Benoit St-Pierre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France.
| |
Collapse
|
26
|
Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus. Front Med 2014; 8:285-93. [DOI: 10.1007/s11684-014-0350-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/11/2014] [Indexed: 12/18/2022]
|
27
|
Jasmonic acid effect on the fatty acid and terpenoid indole alkaloid accumulation in cell suspension cultures of Catharanthus roseus. Molecules 2014; 19:10242-60. [PMID: 25029072 PMCID: PMC6271271 DOI: 10.3390/molecules190710242] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/10/2014] [Accepted: 06/23/2014] [Indexed: 11/17/2022] Open
Abstract
The stress response after jasmonic acid (JA) treatment was studied in cell suspension cultures of Catharanthus roseus. The effect of JA on the primary and secondary metabolism was based on changes in profiles of fatty acids (FA) and terpenoid indole alkaloids (TIA). According to multivariate data analyses (MVDA), three major time events were observed and characterized according to the variations of specific FA and TIA: after 0-30 min of induction FA such as C18:1, C20:0, C22:0 and C24:0 were highly induced by JA; 90-360 min after treatment was characterized by variations of C14:0 and C15:0; and 1440 min after induction JA had the largest effect on both group of metabolites were C18:1, C18:2, C18:3, C16:0, C20:0, C22:0, C24:0, catharanthine, tabersonine-like 1, serpentine, tabersonine and ajmalicine-like had the most significant variations. These results unambiguously demonstrate the profound effect of JA particularly on the accumulation of its own precursor, C18:3 and the accumulation of TIA, which can be considered as late stress response events to JA since they occurred only after 1440 min. These observations show that the early events in the JA response do not involve the de novo biosynthesis of neither its own precursor nor TIA, but is due to an already present biochemical system.
Collapse
|
28
|
Salim V, Wiens B, Masada-Atsumi S, Yu F, De Luca V. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis. PHYTOCHEMISTRY 2014; 101:23-31. [PMID: 24594312 DOI: 10.1016/j.phytochem.2014.02.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/31/2014] [Accepted: 02/08/2014] [Indexed: 06/03/2023]
Abstract
Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds.
Collapse
Affiliation(s)
- Vonny Salim
- Department of Biological Sciences, 500 Glenridge Avenue, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
| | - Brent Wiens
- Department of Biological Sciences, 500 Glenridge Avenue, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
| | - Sayaka Masada-Atsumi
- Department of Biological Sciences, 500 Glenridge Avenue, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
| | - Fang Yu
- Department of Biological Sciences, 500 Glenridge Avenue, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
| | - Vincenzo De Luca
- Department of Biological Sciences, 500 Glenridge Avenue, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
29
|
Salim V, Yu F, Altarejos J, De Luca V. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:754-65. [PMID: 24103035 DOI: 10.1111/tpj.12330] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/24/2013] [Accepted: 09/09/2013] [Indexed: 05/23/2023]
Abstract
Iridoids are a major group of biologically active molecules that are present in thousands of plant species, and one versatile iridoid, secologanin, is a precursor for the assembly of thousands of monoterpenoid indole alkaloids (MIAs) as well as a number of quinoline alkaloids. This study uses bioinformatics to screen large databases of annotated transcripts from various MIA-producing plant species to select candidate genes that may be involved in iridoid biosynthesis. Virus-induced gene silencing of the selected genes combined with metabolite analyses of silenced plants was then used to identify the 7-deoxyloganic acid 7-hydroxylase (CrDL7H) that is involved in the 3rd to last step in secologanin biosynthesis. Silencing of CrDL7H reduced secologanin levels by at least 70%, and increased the levels of 7-deoxyloganic acid to over 4 mg g(-1) fresh leaf weight compared to control plants in which this iridoid is not detected. Functional expression of this CrDL7H in yeast confirmed its biochemical activity, and substrate specificity studies showed its preference for 7-deoxyloganic acid over other closely related substrates. Together, these results suggest that hydroxylation precedes carboxy-O-methylation in the secologanin pathway in Catharanthus roseus.
Collapse
Affiliation(s)
- Vonny Salim
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | | | | | | |
Collapse
|
30
|
Besseau S, Kellner F, Lanoue A, Thamm AM, Salim V, Schneider B, Geu-Flores F, Höfer R, Guirimand G, Guihur A, Oudin A, Glevarec G, Foureau E, Papon N, Clastre M, Giglioli-Guivarc’h N, St-Pierre B, Werck-Reichhart D, Burlat V, De Luca V, O’Connor SE, Courdavault V. A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. PLANT PHYSIOLOGY 2013; 163:1792-803. [PMID: 24108213 PMCID: PMC3850188 DOI: 10.1104/pp.113.222828] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/07/2013] [Indexed: 05/18/2023]
Abstract
Hydroxylation of tabersonine at the C-16 position, catalyzed by tabersonine 16-hydroxylase (T16H), initiates the synthesis of vindoline that constitutes the main alkaloid accumulated in leaves of Catharanthus roseus. Over the last decade, this reaction has been associated with CYP71D12 cloned from undifferentiated C. roseus cells. In this study, we isolated a second cytochrome P450 (CYP71D351) displaying T16H activity. Biochemical characterization demonstrated that CYP71D12 and CYP71D351 both exhibit high affinity for tabersonine and narrow substrate specificity, making of T16H, to our knowledge, the first alkaloid biosynthetic enzyme displaying two isoforms encoded by distinct genes characterized to date in C. roseus. However, both genes dramatically diverge in transcript distribution in planta. While CYP71D12 (T16H1) expression is restricted to flowers and undifferentiated cells, the CYP71D351 (T16H2) expression profile is similar to the other vindoline biosynthetic genes reaching a maximum in young leaves. Moreover, transcript localization by carborundum abrasion and RNA in situ hybridization demonstrated that CYP71D351 messenger RNAs are specifically located to leaf epidermis, which also hosts the next step of vindoline biosynthesis. Comparison of high- and low-vindoline-accumulating C. roseus cultivars also highlights the direct correlation between CYP71D351 transcript and vindoline levels. In addition, CYP71D351 down-regulation mediated by virus-induced gene silencing reduces vindoline accumulation in leaves and redirects the biosynthetic flux toward the production of unmodified alkaloids at the C-16 position. All these data demonstrate that tabersonine 16-hydroxylation is orchestrated in an organ-dependent manner by two genes including CYP71D351, which encodes the specific T16H isoform acting in the foliar vindoline biosynthesis.
Collapse
|
31
|
Li CY, Leopold AL, Sander GW, Shanks JV, Zhao L, Gibson SI. The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway. BMC PLANT BIOLOGY 2013; 13:155. [PMID: 24099172 PMCID: PMC3851283 DOI: 10.1186/1471-2229-13-155] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 10/01/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND The terpenoid indole alkaloid (TIA) pathway leads to the production of pharmaceutically important drugs, such as the anticancer compounds vinblastine and vincristine. Unfortunately, these drugs are produced in trace amounts, causing them to be very costly. To increase production of these drugs, an improved understanding of the TIA regulatory pathway is needed. Towards this end, transgenic Catharanthus roseus hairy roots that overexpress the ORCA2 TIA transcriptional activator were generated and characterized. RESULTS Transcriptional profiling experiments revealed that overexpression of ORCA2 results in altered expression of key genes from the indole and terpenoid pathways, which produce precursors for the TIA pathway, and from the TIA pathway itself. In addition, metabolite-profiling experiments revealed that overexpression of ORCA2 significantly affects the levels of several TIA metabolites. ORCA2 overexpression also causes significant increases in transcript levels of several TIA regulators, including TIA transcriptional repressors. CONCLUSIONS Results presented here indicate that ORCA2 plays a critical role in regulation of TIA metabolism. ORCA2 regulates expression of key genes from both feeder pathways, as well as the genes (STR and SGD) encoding the enzymes that catalyze the first two steps in TIA biosynthesis. ORCA2 may play an especially important role in regulation of the downstream branches of the TIA pathway, as it regulates four out of five genes characterized from this part of the pathway. Regulation of TIA transcriptional repressors by ORCA2 may provide a mechanism whereby increases in TIA metabolite levels in response to external stimuli are transient and limited in magnitude.
Collapse
Affiliation(s)
- Chun Yao Li
- Department of Plant Biology, University of Minnesota Twin Cities, Saint Paul, MN 55108, USA
| | - Alex L Leopold
- Department of Plant Biology, University of Minnesota Twin Cities, Saint Paul, MN 55108, USA
| | - Guy W Sander
- Department of Chemical Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Jacqueline V Shanks
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Le Zhao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Susan I Gibson
- Department of Plant Biology, University of Minnesota Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
32
|
Van Moerkercke A, Fabris M, Pollier J, Baart GJE, Rombauts S, Hasnain G, Rischer H, Memelink J, Oksman-Caldentey KM, Goossens A. CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data. PLANT & CELL PHYSIOLOGY 2013; 54:673-85. [PMID: 23493402 DOI: 10.1093/pcp/pct039] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The medicinal plant Madagascar periwinkle (Catharanthus roseus) synthesizes numerous terpenoid indole alkaloids (TIAs), such as the anticancer drugs vinblastine and vincristine. The TIA pathway operates in a complex metabolic network that steers plant growth and survival. Pathway databases and metabolic networks reconstructed from 'omics' sequence data can help to discover missing enzymes, study metabolic pathway evolution and, ultimately, engineer metabolic pathways. To date, such databases have mainly been built for model plant species with sequenced genomes. Although genome sequence data are not available for most medicinal plant species, next-generation sequencing is now extensively employed to create comprehensive medicinal plant transcriptome sequence resources. Here we report on the construction of CathaCyc, a detailed metabolic pathway database, from C. roseus RNA-Seq data sets. CathaCyc (version 1.0) contains 390 pathways with 1,347 assigned enzymes and spans primary and secondary metabolism. Curation of the pathways linked with the synthesis of TIAs and triterpenoids, their primary metabolic precursors, and their elicitors, the jasmonate hormones, demonstrated that RNA-Seq resources are suitable for the construction of pathway databases. CathaCyc is accessible online (http://www.cathacyc.org) and offers a range of tools for the visualization and analysis of metabolic networks and 'omics' data. Overlay with expression data from publicly available RNA-Seq resources demonstrated that two well-characterized C. roseus terpenoid pathways, those of TIAs and triterpenoids, are subject to distinct regulation by both developmental and environmental cues. We anticipate that databases such as CathaCyc will become key to the study and exploitation of the metabolism of medicinal plants.
Collapse
|
33
|
Sadeghi SJ, Gilardi G. Chimeric P450 enzymes: Activity of artificial redox fusions driven by different reductases for biotechnological applications. Biotechnol Appl Biochem 2013; 60:102-10. [DOI: 10.1002/bab.1086] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/20/2012] [Indexed: 11/09/2022]
|
34
|
Berim A, Gang DR. The roles of a flavone-6-hydroxylase and 7-O-demethylation in the flavone biosynthetic network of sweet basil. J Biol Chem 2013; 288:1795-805. [PMID: 23184958 PMCID: PMC3548489 DOI: 10.1074/jbc.m112.420448] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/14/2012] [Indexed: 12/22/2022] Open
Abstract
Lipophilic flavonoids found in the Lamiaceae exhibit unusual 6- and 8-hydroxylations whose enzymatic basis is unknown. We show that crude protein extracts from peltate trichomes of sweet basil (Ocimum basilicum L.) cultivars readily hydroxylate position 6 of 7-O-methylated apigenin but not apigenin itself. The responsible protein was identified as a P450 monooxygenase from the CYP82 family, a family not previously reported to be involved in flavonoid metabolism. This enzyme prefers flavones but also accepts flavanones in vitro and requires a 5-hydroxyl in addition to a 7-methoxyl residue on the substrate. A peppermint (Mentha × piperita L.) homolog displayed identical substrate requirements, suggesting that early 7-O-methylation of flavones might be common in the Lamiaceae. This hypothesis is further substantiated by the pioneering discovery of 2-oxoglutarate-dependent flavone demethylase activity in basil, which explains the accumulation of 7-O-demethylated flavone nevadensin.
Collapse
Affiliation(s)
- Anna Berim
- From the Institute of Biological Chemistry Washington State University, Pullman, Washington 99164-6340
| | - David R. Gang
- From the Institute of Biological Chemistry Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
35
|
Schückel J, Rylott EL, Grogan G, Bruce NC. A gene-fusion approach to enabling plant cytochromes p450 for biocatalysis. Chembiochem 2012; 13:2758-63. [PMID: 23129550 DOI: 10.1002/cbic.201200572] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Indexed: 11/08/2022]
Abstract
Cytochromes P450 from plants have the potential to be valuable catalysts for industrial hydroxylation reactions, but their application is hindered by poor solubility, the lack of suitable expression systems and the requirement of P450s for auxiliary redox-transport proteins for the delivery of reducing equivalents from NAD(P)H. In the interests of enabling useful P450 activity from plants, we have developed a suite of vectors for the expression of plant P450s as non-natural genetic fusions with reductase proteins. First, we have fused the P450 isoflavone synthase (IFS) from Glycine max with the bacterial P450 reductase domain (Rhf-RED) from Rhodococcus sp., by using our LICRED vector developed previously (F. Sabbadin, R. Hyde, A. Robin, E.-M. Hilgarth, M. Delenne, S. Flitsch, N. Turner, G. Grogan, N. C. Bruce, ChemBioChem 2010, 11, 987-994) creating the first active bacterial-plant fusion P450 enzyme. We have then created a complementary vector, ACRyLIC for the fusion of selected plant P450 enzymes to the P450 reductase ATR2 from Arabidopsis thaliana. The applicability of this vector to the creation of active P450 fusion enzymes was demonstrated using both IFS1 and the cinnamate-4-hydroxylase (C4H) from A. thaliana. Overall the fusion vector systems will allow the rapid creation of libraries of plant P450s with the aim of identifying enzyme activities with possible applications in industrial biocatalysis.
Collapse
Affiliation(s)
- Julia Schückel
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, UK
| | | | | | | |
Collapse
|
36
|
Anitha S, Kumari BR. In vitro Callus Culture in Rauvolfia tetraphylla L.: Indole Alkaloid Production. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajps.2013.28.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Champagne A, Rischer H, Oksman-Caldentey KM, Boutry M. In-depth proteome mining of culturedCatharanthus roseuscells identifies candidate proteins involved in the synthesis and transport of secondary metabolites. Proteomics 2012; 12:3536-47. [DOI: 10.1002/pmic.201200218] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Antoine Champagne
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve; Belgium
| | | | | | - Marc Boutry
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve; Belgium
| |
Collapse
|
38
|
Paniagua-Vega D, Cerda-García-Rojas CM, Ponce-Noyola T, Ramos-Valdivia AC. A New Monoterpenoid Oxindole Alkaloid from Hamelia Patens Micropropagated Plantlets. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200701109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chemical studies on Hamelia patens (Rubiaceae) micropropagated plantlets allowed production of a new monoterpenoid oxindole alkaloid, named (–)-hameline (7), together with eight known alkaloids, tetrahydroalstonine (1), aricine (2), pteropodine (3), isopteropodine (4), uncarine F (5), speciophylline (6), palmirine (8), and rumberine (9). The structure of the new alkaloid was assigned on the basis of 1D and 2D NMR spectroscopy, mass spectrometry, and molecular modeling.
Collapse
Affiliation(s)
- David Paniagua-Vega
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico D. F., Mexico
| | - Carlos M. Cerda-García-Rojas
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico D. F., Mexico
| | - Teresa Ponce-Noyola
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico D. F., Mexico
| | - Ana C. Ramos-Valdivia
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico D. F., Mexico
| |
Collapse
|
39
|
Huang FC, Sung PH, Do YY, Huang PL. Differential expression and functional characterization of the NADPH cytochrome P450 reductase genes from Nothapodytes foetida. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 190:16-23. [PMID: 22608516 DOI: 10.1016/j.plantsci.2012.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 06/01/2023]
Abstract
Three unique NADPH:cytochrome P450 reductase (CPR) cDNAs have been isolated from a Nothapodytes foetida cDNA library and characterized. Phylogenetic analysis showed that NfCPR1 is a class I isoform, whereas NfCPR2 and NfCPR3 are class II isoforms. Both NfCPR1 and NfCPR2 transcripts were detected in all examined organs of N. foetida, with the highest level for NfCPR1 being in the seeds whereas for NfCPR2 predominantly in leaves. In contrast, NfCPR3 transcripts were only detected in flower buds and seeds at almost equal expression levels. Moreover, NfCPR1 expression did not change during wounding treatment, whereas NfCPR2 and NfCPR3 were induced in response to wounding. Microsomes isolated from insect cells co-expressing NfCPR2 and cytochrome P450 enzyme geraniol 10-hydroxylase (G10H) enhanced the production of eriodictyol from naringenin approximately 11-fold relative to control G10H-only insect cells, indicating the supportive role of NfCPR2 for G10H activity in insect cells.
Collapse
Affiliation(s)
- Fong-Chin Huang
- Department of Horticulture and Landscape Architecture, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan, ROC
| | | | | | | |
Collapse
|
40
|
A novel cytochrome P450 gene from Catharanthus roseus cell line C20hi: cloning and characterization of expression. Acta Pharm Sin B 2012. [DOI: 10.1016/j.apsb.2012.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
Analysis of alkaloids from different chemical groups by different liquid chromatography methods. OPEN CHEM 2012. [DOI: 10.2478/s11532-012-0037-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractAlkaloids are biologically active compounds widely used as pharmaceuticals and synthesised as secondary methabolites in plants. Many of these compounds are strongly toxic. Therefore, they are often subject of scientific interests and analysis. Since alkaloids — basic compounds appear in aqueous solutions as ionized and unionized forms, they are difficult for chromatographic separation for peak tailing, poor systems efficiency, poor separation and poor column-to-column reproducibility. For this reason it is necessity searching of more suitable chromatographic systems for analysis of the compounds. In this article we present an overview on the separation of selected alkaloids from different chemical groups by liquid chromatography thus indicating the range of useful methods now available for alkaloid analysis. Different selectivity, system efficiency and peaks shape may be achieved in different LC methods separations by use of alternative stationary phases: silica, alumina, chemically bonded stationary phases, cation exchange phases, or by varying nonaqueous or aqueous mobile phase (containing different modifier, different buffers at different pH, ion-pairing or silanol blocker reagents). Developments in TLC (NP and RP systems), HPLC (NP, RP, HILIC, ion-exchange) are presented and the advantages of each method for alkaloids analysis are discussed.
Collapse
|
42
|
Verma P, Mathur AK, Srivastava A, Mathur A. Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update. PROTOPLASMA 2012; 249:255-68. [PMID: 0 DOI: 10.1007/s00709-011-0291-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/17/2011] [Indexed: 05/21/2023]
|
43
|
He L, Yang L, Tan R, Zhao S, Hu Z. Enhancement of vindoline production in suspension culture of the Catharanthus roseus cell line C20hi by light and methyl jasmonate elicitation. ANAL SCI 2012; 27:1243-8. [PMID: 22156254 DOI: 10.2116/analsci.27.1243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of light and methyl jasmonate (MJ) on the transcription of biosynthetic genes as well as the accumulation of vindoline and catharanthine in Catharanthus roseus C20hi cell suspensions were studied. t16h (the gene encoding tabersonine 16-hydroxylase) could be induced by light and MJ, whereas d4h (the gene encoding deacetoxyvindoline 4-hydroxylase) could only be induced by light. Quantification by UPLC-MS showed that light significantly increased vindoline production in C20hi cells by about 0.49 - 5.51-fold more than that in controls, with the highest yield being 75.3 ng/g of dry weight. The biosynthesis of vindoline was further enhanced by combining MJ with light. The accumulation of catharanthine was not improved by either light or MJ elicitation. These results suggested that light and MJ could promote vindoline, but not catharanthine accumulation in C20hi cells.
Collapse
Affiliation(s)
- Lihong He
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | | | | | | | | |
Collapse
|
44
|
De Luca V, Salim V, Levac D, Atsumi SM, Yu F. Discovery and functional analysis of monoterpenoid indole alkaloid pathways in plants. Methods Enzymol 2012; 515:207-29. [PMID: 22999176 DOI: 10.1016/b978-0-12-394290-6.00010-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Numerous difficulties have been associated with forward genetic approaches to identify, and functionally characterize genes involved in the biosynthesis, regulation, and transport of monoterpenoid indole alkaloids (MIAs). While the identification of certain classes of genes associated with MIA pathways has facilitated the use of homology-based approaches to clone other genes catalyzing similar reactions in other parts of the pathway, this has not greatly speeded up the pace of gene discovery for the diversity of reactions involved. Compounding this problem has been the lack of knowledge or even availability of certain MIA intermediates that would be required to establish a novel enzyme reaction to functionally identify a biosynthetic step or the candidate gene product involved. The advent of inexpensive sequencing technologies for transcriptome and genome sequencing, combined with proteomics and metabolomics, is now revolutionizing the pace of gene discovery associated with MIA pathways and their regulation. The discovery process uses large databases of genes, proteins, and metabolites from an ever-expanding list of nonmodel plant species competent to produce and accumulate MIAs. Comparative bioinformatics between species, together with gene expression analysis of particular tissue, cell, and developmental types, is helping to identify target genes that can then be investigated for their possible role in an MIA pathway by virus-induced gene silencing. Successful silencing not only confirms the involvement of the candidate gene but also allows identification of the pathway intermediate involved. In many circumstances, the pathway intermediate can be isolated for use as a substrate in order to confirm gene function in heterologous bacterial, yeast, or plant expression systems.
Collapse
Affiliation(s)
- Vincenzo De Luca
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.
| | | | | | | | | |
Collapse
|
45
|
Liscombe DK, O’Connor SE. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus. PHYTOCHEMISTRY 2011; 72:1969-77. [PMID: 21802100 PMCID: PMC3435519 DOI: 10.1016/j.phytochem.2011.07.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/13/2011] [Accepted: 07/05/2011] [Indexed: 05/02/2023]
Abstract
The anticancer agents vinblastine and vincristine are bisindole alkaloids derived from coupling vindoline and catharanthine, monoterpenoid indole alkaloids produced exclusively by the Madagascar periwinkle (Catharanthus roseus). Industrial production of vinblastine and vincristine currently relies on isolation from C. roseus leaves, a process that affords these compounds in 0.0003-0.01% yields. Metabolic engineering efforts to either improve alkaloid content or provide alternative sources of the bisindole alkaloids ultimately rely on the isolation and characterization of the genes involved. Several vindoline biosynthetic genes have been isolated, and the cellular and subcellular organization of the corresponding enzymes has been well studied. However, due to the leaf-specific localization of vindoline biosynthesis, and the lack of production of this precursor in cell suspension and hairy root cultures of C. roseus, further elucidation of this pathway demands the development of reverse genetics approaches to assay gene function in planta. The bipartite pTRV vector system is a Tobacco Rattle Virus-based virus-induced gene silencing (VIGS) platform that has provided efficient and effective means to assay gene function in diverse plant systems. A VIGS method was developed herein to investigate gene function in C. roseus plants using the pTRV vector system. The utility of this approach in understanding gene function in C. roseus leaves is demonstrated by silencing known vindoline biosynthetic genes previously characterized in vitro.
Collapse
Affiliation(s)
- David K. Liscombe
- Jack H. Skirball Center for Chemical Biology & Proteomics, The Salk Institute for Biological Studies, La Jolla, CA 92037, U.S.A
| | - Sarah E. O’Connor
- Department of Biological Chemistry, The John Innes Centre, Colney Lane, Norwich NR4 6PG, UK
- School of Chemistry, The University of East Anglia, Norwich NR4 7TJ, UK
- Corresponding author: Sarah E. O’Connor, Sarah.O’ , Department of Biological Chemistry, The John Innes Centre, Colney Lane, Norwich NR4 6PG, UK, phone: (+44) (0)1603 450 334
| |
Collapse
|
46
|
Giddings LA, Liscombe DK, Hamilton JP, Childs KL, DellaPenna D, Buell CR, O'Connor SE. A stereoselective hydroxylation step of alkaloid biosynthesis by a unique cytochrome P450 in Catharanthus roseus. J Biol Chem 2011; 286:16751-7. [PMID: 21454651 PMCID: PMC3089517 DOI: 10.1074/jbc.m111.225383] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 03/22/2011] [Indexed: 12/20/2022] Open
Abstract
Plant cytochrome P450s are involved in the production of over a hundred thousand metabolites such as alkaloids, terpenoids, and phenylpropanoids. Although cytochrome P450 genes constitute one of the largest superfamilies in plants, many of the catalytic functions of the enzymes they encode remain unknown. Here, we report the identification and functional characterization of a cytochrome P450 gene in a new subfamily of CYP71, CYP71BJ1, involved in alkaloid biosynthesis. Co-expression analysis of putative cytochrome P450 genes in the Catharanthus roseus transcriptome identified candidate genes with expression profiles similar to known terpene indole alkaloid biosynthetic genes. Screening of these candidate genes by functional expression in Saccharomyces cerevisiae yielded a unique P450-dependent enzyme that stereoselectively hydroxylates the alkaloids tabersonine and lochnericine at the 19-position of the aspidosperma-type alkaloid scaffold. Tabersonine, which can be converted to either vindoline or 19-O-acetylhörhammericine, represents a branch point in alkaloid biosynthesis. The discovery of CYP71BJ1, which forms part of the pathway leading to 19-O-acetylhörhammericine, will help illuminate how this branch point is controlled in C. roseus.
Collapse
Affiliation(s)
- Lesley-Ann Giddings
- From the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - David K. Liscombe
- From the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | | | | | - Dean DellaPenna
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | | | - Sarah E. O'Connor
- From the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| |
Collapse
|
47
|
Guirimand G, Guihur A, Poutrain P, Héricourt F, Mahroug S, St-Pierre B, Burlat V, Courdavault V. Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:549-57. [PMID: 21047699 DOI: 10.1016/j.jplph.2010.08.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 05/24/2023]
Abstract
Vindoline constitutes the main terpenoid indole alkaloid accumulated in leaves of Catharanthus roseus, and four genes involved in its biosynthesis have been identified. However, the spatial organization of the tabersonine-to-vindoline biosynthetic pathway is still incomplete. To pursue the characterization of this six-step conversion, we illustrated, with in situ hybridization, that the transcripts of the second biosynthetic enzyme, 16-hydroxytabersonine 16-O-methyltransferase (16OMT), are specifically localized to the aerial organ epidermis. At the subcellular level, by combining GFP imaging, bimolecular fluorescence complementation assays and yeast two-hybrid analysis, we established that the first biosynthetic enzyme, tabersonine 16-hydroxylase (T16H), is anchored to the ER as a monomer via a putative N-terminal helix that we cloned using a PCR approach. We also showed that 16OMT homodimerizes in the cytoplasm, allowing its exclusion from the nucleus and thus facilitating the uptake of T16H conversion product, although no T16H/16OMT interactions occur. Moreover, the two last biosynthetic enzymes, desacetoxyvindoline-4-hydroxylase (D4H) and deacetylvindoline-4-O-acetyltransferase (DAT), were shown to operate as monomers that reside in the nucleocytoplasmic compartment following passive diffusion to the nucleus allowed by the protein size. No D4H/DAT interactions were detected, suggesting the absence of metabolic channeling in the vindoline biosynthetic pathway. Finally, these results highlight the importance of the inter- and intracellular translocations of intermediates during the vindoline biosynthesis and their potential regulatory role.
Collapse
Affiliation(s)
- Grégory Guirimand
- Université François Rabelais de Tours, EA 2106 Biomolécules et Biotechnologies Végétales, IFR 135 Imagerie fonctionnelle 37200 Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Park S, Kang K, Lee SW, Ahn MJ, Bae JM, Back K. Production of serotonin by dual expression of tryptophan decarboxylase and tryptamine 5-hydroxylase in Escherichia coli. Appl Microbiol Biotechnol 2010; 89:1387-94. [DOI: 10.1007/s00253-010-2994-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
|
49
|
Homolog of tocopherol C methyltransferases catalyzes N methylation in anticancer alkaloid biosynthesis. Proc Natl Acad Sci U S A 2010; 107:18793-8. [PMID: 20956330 DOI: 10.1073/pnas.1009003107] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Madagascar periwinkle (Catharanthus roseus) is the sole source of the anticancer drugs vinblastine and vincristine, bisindole alkaloids derived from the dimerization of the terpenoid indole alkaloids vindoline and catharanthine. Full elucidation of the biosynthetic pathways of these compounds is a prerequisite for metabolic engineering efforts that will improve production of these costly molecules. However, despite the medical and commercial importance of these natural products, the biosynthetic pathways remain poorly understood. Here we report the identification and characterization of a C. roseus cDNA encoding an S-adenosyl-L-methionine-dependent N methyltransferase that catalyzes a nitrogen methylation involved in vindoline biosynthesis. Recombinant enzyme produced in Escherichia coli is highly substrate specific, displaying a strict requirement for a 2,3-dihydro bond in the aspidosperma skeleton. The corresponding gene transcript is induced in methyl jasmonate-elicited seedlings, along with the other known vindoline biosynthetic transcripts. Intriguingly, this unique N methyltransferase is most similar at the amino acid level to the plastidic γ-tocopherol C methyltransferases of vitamin E biosynthesis, suggesting an evolutionary link between these two functionally disparate methyltransferases.
Collapse
|
50
|
Robert FO, Pandhal J, Wright PC. Exploiting cyanobacterial P450 pathways. Curr Opin Microbiol 2010; 13:301-6. [PMID: 20299274 DOI: 10.1016/j.mib.2010.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
Cytochrome P450s are hemoprotein oxygenases involved in natural product synthetic pathways. Cyanobacteria are oxygenic photosynthetic microorganisms and are considered a rich source of natural products, and are now known to harbour P450s. A variety of cyanobacterial species have been found to contain multiple copies of P450s in their genomes, and over 100 have been predicted. Interestingly, some are membrane-bound as in eukaryotes, as opposed to cytoplasmic in bacteria. Furthermore, they can complement plant P450s and perform bioremediation of oil spills by the breakdown of alkanes. Functional expression of a selection Nostoc spp. P450s in Escherichia coli, with associated enzymes, has successfully produced the sesquiterpenes--germacradienol, germacrene and B-elemene, although others have failed for undetermined reasons.
Collapse
Affiliation(s)
- Faith O Robert
- ChELSI Institute, Department of Chemical and Process Engineering, The University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK
| | | | | |
Collapse
|