1
|
Calamita G, Delporte C. Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 2023; 12:2170. [PMID: 37681902 PMCID: PMC10486417 DOI: 10.3390/cells12172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner's gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
2
|
Kiernan DP, O'Doherty JV, Connolly KR, Ryan M, Sweeney T. Exploring the Differential Expression of a Set of Key Genes Involved in the Regulation and Functioning of the Stomach in the Post-Weaned Pig. Vet Sci 2023; 10:473. [PMID: 37505877 PMCID: PMC10386345 DOI: 10.3390/vetsci10070473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Despite playing a key role in digestion, there is only a broad characterization of the spatiotemporal development of the three glandular regions of the stomach (cardiac, fundic and pyloric) in the weaned pig. Hence, the objective of this experiment was to explore the differential expression (DE) of a panel of key genes within the three glandular regions of the stomach. Eight pigs were sacrificed at d 8 post-weaning, and three mucosal samples were collected from each stomach's glandular regions. The expression of a panel of genes were measured using QPCR. The true cardiac gland region was characterized by increased expression of PIGR, OLFM4, CXCL8 and MUC2 relative to the two other regions (p < 0.05). The fundic gland region was characterized by increased expression of ATP4A, CLIC6, KCNQ1, HRH2, AQP4, HDC, CCKBR, CHIA, PGA5, GHRL and MBOAT4 compared to the two other regions (p < 0.05). The pyloric gland region was characterized by exclusive expression of GAST (p < 0.05). A transition region between the cardiac and fundic region (cardiac-to-oxyntic transition) was observed with a gene expression signature that resembles a cross of the signatures found in the two regions. In conclusion, unique gene expression signatures were identifiable in each of the glandular regions, with a cardiac-to-oxyntic transition region clearly identifiable in the post-weaned pigs' stomachs.
Collapse
Affiliation(s)
- Dillon P Kiernan
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - Kathryn Ruth Connolly
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - Marion Ryan
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| |
Collapse
|
3
|
Calamita G, Delporte C. Aquaporins in Glandular Secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:225-249. [PMID: 36717498 DOI: 10.1007/978-981-19-7415-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner's glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
4
|
Abe Y, Yasui M. Aquaporin-4 in Neuromyelitis Optica Spectrum Disorders: A Target of Autoimmunity in the Central Nervous System. Biomolecules 2022; 12:biom12040591. [PMID: 35454180 PMCID: PMC9030581 DOI: 10.3390/biom12040591] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Since the discovery of a specific autoantibody in patients with neuromyelitis optica spectrum disorder (NMOSD) in 2004, the water channel aquaporin-4 (AQP4) has attracted attention as a target of autoimmune diseases of the central nervous system. In NMOSD, the autoantibody (NMO-IgG) binds to the extracellular loops of AQP4 as expressed in perivascular astrocytic end-feet and disrupts astrocytes in a complement-dependent manner. NMO-IgG is an excellent marker for distinguishing the disease from other inflammatory demyelinating diseases, such as multiple sclerosis. The unique higher-order structure of AQP4—called orthogonal arrays of particles (OAPs)—as well as its subcellular localization may play a crucial role in the pathogenesis of the disease. Recent studies have also demonstrated complement-independent cytotoxic effects of NMO-IgG. Antibody-induced endocytosis of AQP4 has been suggested to be involved in this mechanism. This review focuses on the binding properties of antibodies that recognize the extracellular region of AQP4 and the characteristics of AQP4 that are implicated in the pathogenesis of NMOSD.
Collapse
Affiliation(s)
- Yoichiro Abe
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Global Research Institute, Tokyo 108-8345, Japan
- Correspondence: (Y.A.); (M.Y.); Tel.: +81-3-5363-3751 (M.Y.)
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Global Research Institute, Tokyo 108-8345, Japan
- Correspondence: (Y.A.); (M.Y.); Tel.: +81-3-5363-3751 (M.Y.)
| |
Collapse
|
5
|
Palazzo C, Abbrescia P, Valente O, Nicchia GP, Banitalebi S, Amiry-Moghaddam M, Trojano M, Frigeri A. Tissue Distribution of the Readthrough Isoform of AQP4 Reveals a Dual Role of AQP4ex Limited to CNS. Int J Mol Sci 2020; 21:ijms21041531. [PMID: 32102323 PMCID: PMC7073200 DOI: 10.3390/ijms21041531] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
Translational readthrough (TRT) of aquaporin-4 (AQP4) has remarkably expanded the importance of this new post-transcriptional mechanism, as well as the regulation potential of AQP4. The TRT isoform of AQP4, named AQP4ex, is central for both AQP4 polarization and water channel activity in the central nervous system (CNS). Here we evaluate the relevance of the TRT mechanism by analyzing whether AQP4ex is also expressed in peripheral tissues and whether the expression of AQP4ex is necessary for its polarized expression as it occurs in perivascular astrocyte processes. To this purpose, AQP4ex null mice were used, and analysis was performed by immunolocalization and immunoblot. The results demonstrate that AQP4ex is expressed in kidney, stomach, trachea and skeletal muscle with the same localization pattern as the canonical AQP4 isoforms. AQP4ex protein levels vary from 6% to about 13% of the total AQP4 protein levels in peripheral tissues. Immunogold electron microscopy experiments demonstrated the localization of AQP4ex at the astrocytic endfeet, and experiments conducted on AQP4ex null mice CNS confirmed that the expression of AQP4ex is necessary for anchoring of the perivascular AQP4. Without the readthrough isoform, AQP4 assemblies are mis-localized, being uniformly distributed on the astrocyte processes facing the neuropile. No alteration of AQP4 polarization was found in AQP4ex null kidney, stomach, trachea or skeletal muscle, suggesting that AQP4ex does not have a role for proper membrane localization of AQP4 in peripheral tissues. We conclude that a dual role for AQP4ex is limited to the CNS.
Collapse
Affiliation(s)
- Claudia Palazzo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.P.); (O.V.); (M.T.)
| | - Pasqua Abbrescia
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.P.); (O.V.); (M.T.)
| | - Onofrio Valente
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.P.); (O.V.); (M.T.)
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Shervin Banitalebi
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (S.B.); (M.A.-M.)
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (S.B.); (M.A.-M.)
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.P.); (O.V.); (M.T.)
| | - Antonio Frigeri
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.P.); (O.V.); (M.T.)
- Correspondence:
| |
Collapse
|
6
|
Abstract
Aquaporins (AQPs ) are expressed in most exocrine and endocrine secretory glands. Consequently, summarizing the expression and functions of AQPs in secretory glands represents a daunting task considering the important number of glands present in the body, as well as the number of mammalian AQPs - thirteen. The roles played by AQPs in secretory processes have been investigated in many secretory glands. However, despite considerable research, additional studies are clearly needed to pursue our understanding of the role played by AQPs in secretory processes. This book chapter will focus on summarizing the current knowledge on AQPs expression and function in the gastrointestinal tract , including salivary glands, gastric glands, Duodenal Brunner's gland, liver and gallbladder, intestinal goblets cells, exocrine and endocrine pancreas, as well as few other secretory glands including airway submucosal glands, lacrimal glands, mammary glands and eccrine sweat glands.
Collapse
Affiliation(s)
- Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
7
|
Immunohistochemical localization of aquaporin 4 (AQP4) in the porcine gastrointestinal tract. ACTA VET BRNO 2015. [DOI: 10.2754/avb201584040321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The water channel aquaporin-4 (AQP4) is a protein widely expressed on plasma membrane of a variety of epithelial cells. In this study we investigated the expression of AQP4 in the gastrointestinal tract of the pig using immunohistochemical staining. We found no presence of AQP4 in the different regions of the pig stomach. In the porcine small intestine moderate immunoreactivity to AQP4 was detected in enterocytes (along the villi and in the bottom of the crypts), duodenal Brunner’s glands and in enteric ganglia in cells lying in close vicinity to myenteric as well as submucous neurons. In superficial epithelial cells of the colonic mucosa as well as of caecal and colonic glands a very strong immunoreactivity to AQP4 was found. Both in the myenteric and submucous ganglia of the large intestine AQP4-positive cells surrounding enteric neurons were observed. We concluded that AQP4 expression in the porcine gastrointestinal tract showed some species-dependent differences in relation to other species. Based on the presented distribution pattern of AQP4, it is likely that the aquaporin plays a role in mucous (but not acid) secretion and intestinal absorptive processes in the pig.
Collapse
|
8
|
Expression of aquaporin-4 water channels in the digestive tract of the guinea pig. J Mol Histol 2013; 45:229-41. [DOI: 10.1007/s10735-013-9545-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/03/2013] [Indexed: 01/14/2023]
|
9
|
Mack AF, Wolburg H. A novel look at astrocytes: aquaporins, ionic homeostasis, and the role of the microenvironment for regeneration in the CNS. Neuroscientist 2012; 19:195-207. [PMID: 22645111 DOI: 10.1177/1073858412447981] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aquaporin-4 (AQP4) water channels are located at the basolateral membrane domain of many epithelial cells involved in ion transport and secretion. These epithelial cells separate fluid compartments by forming apical tight junctions. In the brain, AQP4 is located on astrocytes in a polarized distribution: At the border to blood vessels or the pial surface, its density is very high. During ontogeny and phylogeny, astroglial cells go through a stage of expressing tight junctions, separating fluid compartments differently than in adult mammals. In adult mammals, this barrier is formed by arachnoid, choroid plexus, and endothelial cells. The ontogenetic and phylogenetic barrier transition from glial to endothelial cells correlates with the regenerative capacity of neuronal structures: Glial cells forming tight junctions, and expressing no or unpolarized AQP4 are found in the fish optic nerve and the olfactory nerve in mammals both known for their regenerative ability. It is hypothesized that highly polarized AQP4 expression and the lack of tight junctions on astrocytes increase ionic homeostasis, thus improving neuronal performance possibly at the expense of restraining neurogenesis and regeneration.
Collapse
Affiliation(s)
- Andreas F Mack
- Institute of Anatomy, University of Tübingen, Tübingen, Germany.
| | | |
Collapse
|
10
|
Immunolocalization of aquaporin-4 in the brain, kidney, skeletal muscle, and gastro-intestinal tract of chicken. Cell Tissue Res 2011; 344:51-61. [DOI: 10.1007/s00441-011-1134-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 01/13/2011] [Indexed: 11/26/2022]
|
11
|
Seidler U, Song P, Xiao F, Riederer B, Bachmann O, Chen M. Recent advances in the molecular and functional characterization of acid/base and electrolyte transporters in the basolateral membranes of gastric and duodenal epithelial cells. Acta Physiol (Oxf) 2011; 201:3-20. [PMID: 20331540 DOI: 10.1111/j.1748-1716.2010.02107.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
All segments of the gastrointestinal tract are comprised of an elaborately folded epithelium that expresses a variety of cell types and performs multiple secretory and absorptive functions. While the apical membrane expresses the electrolyte transporters that secrete or absorb electrolytes and water, basolateral transporters regulate the secretory or absorptive rates. During gastric acid formation, Cl⁻/HCO₃⁻ and Na(+) /H(+) exchange and other transporters secure Cl⁻ re-supply as well as pH and volume regulation. Gastric surface cells utilize ion transporters to secrete HCO₃⁻, maintain pH(i) during a luminal acid load and repair damaged surface areas during the process of epithelial restitution. Na(+)/H(+) exchange and Na(+)/HCO₃⁻ cotransport serve basolateral acid/base import for gastroduodenal HCO₃⁻ secretion. The gastric and duodenal epithelium also absorbs salt and water. Recent molecular information on novel ion transporters expressed in the gastric and duodenal epithelium has exploded; however, a function has not been found yet for all transporters. The purpose of this review is to summarize current knowledge on the molecular identity and cellular function of basolateral ion transporters in the gastric and duodenal epithelium.
Collapse
Affiliation(s)
- U Seidler
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
The protective effects of calcitonin gene-related peptide on gastric mucosa injury after cerebral ischemia reperfusion in rats. ACTA ACUST UNITED AC 2010; 160:121-8. [DOI: 10.1016/j.regpep.2009.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/27/2009] [Accepted: 11/01/2009] [Indexed: 02/06/2023]
|
13
|
Abstract
Aquaporins (AQPs) are membrane proteins serving in the transfer of water and small solutes across cellular membranes. AQPs play a variety of roles in the body such as urine formation, prevention from dehydration in covering epithelia, water handling in the blood–brain barrier, secretion, conditioning of the sensory system, cell motility and metastasis, formation of cell junctions, and fat metabolism. The kidney plays a central role in water homeostasis in the body. At least seven isoforms, namely AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP11, are expressed. Among them, AQP2, the anti-diuretic hormone (ADH)-regulated water channel, plays a critical role in water reabsorption. AQP2 is expressed in principal cells of connecting tubules and collecting ducts, where it is stored in Rab11-positive storage vesicles in the basal state. Upon ADH stimulation, AQP2 is translocated to the apical plasma membrane, where it serves in the influx of water. The translocation process is regulated through the phosphorylation of AQP2 by protein kinase A. As soon as the stimulation is terminated, AQP2 is retrieved to early endosomes, and then transferred back to the Rab 11-positive storage compartment. Some AQP2 is secreted via multivesicular bodies into the urine as exosomes. Actin plays an important role in the intracellular trafficking of AQP2. Recent findings have shed light on the molecular basis that controls the trafficking of AQP2.
Collapse
|
14
|
Mochida H, Nakakura T, Suzuki M, Hayashi H, Kikuyama S, Tanaka S. Immunolocalization of a mammalian aquaporin 3 homolog in water-transporting epithelial cells in several organs of the clawed toad Xenopus laevis. Cell Tissue Res 2008; 333:297-309. [PMID: 18548281 DOI: 10.1007/s00441-008-0628-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Accepted: 04/28/2008] [Indexed: 12/13/2022]
Abstract
Nucleotide sequences of cDNA were used to construct antibodies against an aquaporin (AQP) expressed in the clawed toad, Xenopus laevis, viz., Xenopus AQP3, a homolog of mammalian AQP3. Xenopus AQP3 was immunolocalized in the basolateral membrane of the principal cells of the ventral skin, the urinary bladder, the collecting duct and late distal tubule of the kidney, the absorptive epithelial cells of the large intestine, and the ciliated epithelial cells of the oviducts. Therefore, we designated this AQP as basolateral Xenopus AQP3 (AQP-x3BL). The intensity of labeling for AQP-x3BL differed between the ventral and dorsal skin, with the basolateral membrane of the principal cells in the ventral skin showing intense labeling, whereas that in the dorsal skin was lightly labeled. AQP-x3BL was also immunolocalized in the basolateral membrane of secretory cells in the small granular and mucous glands of the skin. As AQP-x5, a homolog of mammalian AQP5, is localized in the apical membrane of these same cells, this provides a pathway for fluid secretion by the glands. Although Hyla AQP-h2 is translocated from the cytoplasm to the apical membrane of the Hyla urinary bladder in response to arginine vasotocin (AVT), AQP-h2 immunoreactivity in Xenopus bladder remains in the cytoplasm and barely moves to the apical membrane, regardless of AVT stimulation. AQP-x3 is localized in the basolateral membrane, even though the AVT-stimulated AQP-h2 does not translocate to the apical membrane. These findings provide new insights into AQP function in aquatic anurans.
Collapse
Affiliation(s)
- Hiroshi Mochida
- Department of Environmental Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Lindsay LA, Murphy CR. Aquaporins are upregulated in glandular epithelium at the time of implantation in the rat. J Mol Histol 2007; 38:87-95. [PMID: 17342345 DOI: 10.1007/s10735-007-9083-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
Regulation of luminal fluid is essential for blastocyst implantation. While it has been known for quite some time that there is a reduction in the amount of luminal fluid at the time of implantation, the mechanisms regulating this process are only just emerging. Previous studies have shown an upregulation of aquaporin (AQP) 5 channels in luminal epithelial cells at the time of implantation providing a mechanism for fluid reabsorption across the surface epithelium. However to date the contribution of fluid reabsorption by glandular epithelial cells has not been established. This study using reverse transcriptase polymerase chain reaction demonstrates the presence of several AQP isoforms in the rat uterus at the time of implantation while immunofluorescence data demonstrates an apical distribution of AQPs5 and 9 in the glandular epithelium at the time of implantation. The presence of AQPs5 and 9 in the apical plasma membrane of the glandular epithelium seen in this study provides a mechanism for transcellular fluid transport across these glandular epithelial cells similar to that seen in luminal epithelial cells. The reabsorption of glandular fluid via AQP channels may also regulate luminal fluid volume and be involved in the reduction in luminal fluid seen at the time of implantation.
Collapse
Affiliation(s)
- Laura A Lindsay
- School of Medical Sciences (Anatomy and Histology), The University of Sydney, Anderson Stuart Building, F13, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
16
|
Matsuoka T, Kobayashi M, Sugimoto T, Araki K. An immunocytochemical study of regeneration of gastric epithelia in rat experimental ulcers. Med Mol Morphol 2006; 38:233-42. [PMID: 16378232 DOI: 10.1007/s00795-005-0297-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
We experimentally observed the process of regeneration of gastric mucosal cells in ulcers induced by surgical removal of the fundic mucosa of rats. The techniques utilized were immunocytochemistry, laser confocal microscopy, and transmission electron microscopy (TEM). Routine TEM and PAS reaction were used for parietal cells, chief cells, and mucous cells. As markers of parietal cells, H+-K+ ATPase, Na+-K+ ATPase, carbonic anhydrase, and aquaporin 4 (AQP4) were used, and for chief cells pepsinogen was used. Healing process of mucosal defect was as follows. On day 2 after the operation, the single-layered regenerating epithelium (RE) originating from the marginal epithelium of the ulcer extended over the granulation tissue of the ulcer base towards the center. Regenerating glands (RGs) appeared in the ulcer margin. The cells appearing first in the RE were undifferentiated cells that had a high nucleus: cytoplasm ratio and abundant free ribosomes. On day 5, the ulcer was almost filled with RGs. Most cells stained positive for PAS reaction. A few immature parietal cells stained weakly with H+-K+ ATPase, Na+-K+ ATPase, carbonic anhydrase, and aquaporin-4 antibodies, and a few immature chief cells stained weakly with pepsinogen antibody were also observed on day 5. On day 10, the ulcer was filled with RGs. The RGs in the periphery of the ulcer stained positive for markers of mature parietal cells and chief cells, whereas the center of the ulcer was composed of immature parietal cells and chief cells. By day 25, the mucosal defect was filled with normal gastric glands formed by maturation of the RGs. The undifferentiated cells that first appeared in the ulcer margin seem to differentiate to special functioning cells of the stomach 5-10 days after ulcer formation.
Collapse
Affiliation(s)
- Takanori Matsuoka
- Department of Tumor Surgery, Kochi Medical School, Oko-cho, Nankoku, Kochi, 783-8505, Japan.
| | | | | | | |
Collapse
|
17
|
Cavazzin C, Ferrari D, Facchetti F, Russignan A, Vescovi AL, La Porta CAM, Gritti A. Unique expression and localization of aquaporin- 4 and aquaporin-9 in murine and human neural stem cells and in their glial progeny. Glia 2006; 53:167-81. [PMID: 16206164 DOI: 10.1002/glia.20256] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aquaporins (AQP) are water channel proteins that play important roles in the regulation of water homeostasis in physiological and pathological conditions. AQP4 and AQP9, the main aquaporin subtypes in the brain, are expressed in the adult forebrain subventricular zone (SVZ), where neural stem cells (NSCs) reside, but little is known about their expression and role in the NSC population, either in vivo or in vitro. Also, no reports are available on the presence of these proteins in human NSCs. We performed a detailed molecular and phenotypical characterization of different AQPs, and particularly AQP4 and AQP9, in murine and human NSC cultures at predetermined stages of differentiation. We demonstrated that AQP4 and AQP9 are expressed in adult murine SVZ-derived NSCs (ANSCs) and that their levels of expression and cellular localization are differentially regulated upon ANSC differentiation into neurons and glia. AQP4 (but not AQP9) is expressed in human NSCs and their progeny. The presence of AQP4 and AQP9 in different subsets of ANSC-derived glial cells and in different cellular compartments suggests different roles of the two proteins in these cells, indicating that ANSC-derived astrocytes might maintain in vitro the heterogeneity that characterize the astrocyte-like cell populations in the SVZ in vivo. The development of therapeutic strategies based on modulation of AQP function relies on a better knowledge of the functional role of these channels in brain cells. We provide a reliable and standardized in vitro experimental model to perform functional studies as well as toxicological and pharmacological screenings.
Collapse
Affiliation(s)
- Chiara Cavazzin
- Institute for Stem Cell Research, DIBIT, Fond San Raffaele, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Jain RN, Brunkan CS, Chew CS, Samuelson LC. Gene expression profiling of gastrin target genes in parietal cells. Physiol Genomics 2005; 24:124-32. [PMID: 16278279 DOI: 10.1152/physiolgenomics.00133.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies demonstrated that mice with a null mutation in the gene encoding the hormone gastrin have impaired gastric acid secretion. Hence, the aim of this study was to evaluate changes in the acid-secreting parietal cell in gastrin-deficient (GAS-KO) mice. Analysis of several transcripts encoding parietal cell proteins involved in gastric acid secretion showed reduced abundance in the GAS-KO stomach, including H+,K+-ATPase alpha- and beta-subunits, KCNQ1 potassium channel, aquaporin-4 water channel, and creatine kinase B, which were reversed by gastrin infusion for 1 wk. Although mRNA and protein levels of LIM and SH3 domain-containing protein-1 (LASP-1) were not greatly changed in the mutant, there was a marked reduction in phosphorylation, consistent with its proposed role as a cAMP signal adaptor protein associated with acid secretion. A more comprehensive analysis of parietal cell gene expression in GAS-KO mice was performed using the Affymetrix U74AV2 chip with RNA from parietal cells purified by flow cytometry to >90%. Comparison of gene expression in GAS-KO and wild-type mice identified 47 transcripts that differed by greater than or equal to twofold, suggesting that gastrin affects parietal cell gene expression in a specific manner. The differentially expressed genes included several genes in signaling pathways, with a substantial number (20%) known to be target genes for Wnt and Myc.
Collapse
Affiliation(s)
- Renu N Jain
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-0622, USA
| | | | | | | |
Collapse
|
19
|
Abstract
The prime function of aquaporins (AQPs) is generally believed to be that of increasing water flow rates across membranes by raising their osmotic or hydraulic permeability. In addition, this applies to other small solutes of physiological importance. Notable applications of this 'simple permeability hypothesis' (SPH) have been epithelial fluid transport in animals, water exchanges associated with transpiration, growth and stress in plants, and osmoregulation in microbes. We first analyze the need for such increased permeabilities and conclude that in a range of situations at the cellular, subcellular and tissue levels the SPH cannot satisfactorily account for the presence of AQPs. The analysis includes an examination of the effects of the genetic elimination or reduction of AQPs (knockouts, antisense transgenics and null mutants). These either have no effect, or a partial effect that is difficult to explain, and we argue that they do not support the hypothesis beyond showing that AQPs are involved in the process under examination. We assume that since AQPs are ubiquitous, they must have an important function and suggest that this is the detection of osmotic and turgor pressure gradients. A mechanistic model is proposed--in terms of monomer structure and changes in the tetrameric configuration of AQPs in the membrane--for how AQPs might function as sensors. Sensors then signal within the cell to control diverse processes, probably as part of feedback loops. Finally, we examine how AQPs as sensors may serve animal, plant and microbial cells and show that this sensor hypothesis can provide an explanation of many basic processes in which AQPs are already implicated. Aquaporins are molecules in search of a function; osmotic and turgor sensors are functions in search of a molecule.
Collapse
Affiliation(s)
- A E Hill
- The Physiological Laboratory, University of Cambridge, Downing St., Cambridge CB2 3EG, UK.
| | | | | |
Collapse
|
20
|
Hibino H, Higashi-Shingai K, Fujita A, Iwai K, Ishii M, Kurachi Y. Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential. Eur J Neurosci 2004; 19:76-84. [PMID: 14750965 DOI: 10.1111/j.1460-9568.2004.03092.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cochlear endolymph contains 150 mm K+ and has a highly positive potential of approximately +80 mV. The specialized ionic composition and high potential in endolymph are essential for hearing and maintained by circulation of K+ from perilymph to endolymph through the cochlear lateral wall. Various types of K+ channel such as Kir4.1 and KCNQ1/KCNE1 are expressed in stria vascularis of the lateral wall and play essential roles in K+ circulation. In this study, we examined a distribution of another K+ channel, Kir5.1, and found it specifically expressed in the spiral ligament of the cochlear lateral wall. Specific immunoreactivity for Kir5.1 was detected in type II, IV and V fibrocytes of the ligament and spiral limbus, all of which are directly involved in K+ circulation. Kir5.1 was not found in either type I or III fibrocytes. Although Kir5.1 assembles with Kir4.1 to form a functional Kir channel in renal epithelia and retinal Müller cells, double-immunolabelling revealed that they were expressed in distinct regions in the cochlea lateral wall, i.e. Kir4.1 only in stria vascularis vs. Kir5.1 in spiral ligament. During development, the expression of Kir5.1 subunits started significantly later than Kir4.1 and was correlated with the 'rapid' phase of the elevation of endocochlear potential (EP). Kir5.1 and Kir4.1 channel-subunits may therefore play distinct functional roles in K+ circulation in the cochlear lateral wall.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology II, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Splinter PL, Masyuk AI, Marinelli RA, LaRusso NF. AQP4 transfected into mouse cholangiocytes promotes water transport in biliary epithelia. Hepatology 2004; 39:109-16. [PMID: 14752829 DOI: 10.1002/hep.20033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rodent cholangiocytes express 6 of the 11 known channel proteins called aquaporins (AQPs) that are involved in transcellular water transport in mammals. However, clarifying the role of AQPs in mediating water transport in biliary epithelia has been limited in part because of the absence of physiologically relevant experimental models. In this study, we established a novel AQP4-transfected polarized mouse cholangiocyte cell line suitable for functional studies of transepithelial water transport, and, using this model, we define the importance of this AQP in water transport across biliary epithelia. Polarized normal mouse cholangiocytes (NMCs) lacking endogenous AQP4 were transfected stably with functional AQP4 or cotransfected with functional AQP4 and a transport-deficient AQP4 dominant negative mutant using a retroviral delivery system. In transfected NMCs, AQP4 is expressed on both the mRNA and protein levels and is localized at both the apical and basolateral membranes. In nontransfected NMCs, the transcellular water flow, P(f), value was relatively high (i.e., 16.4 +/- 3.2 microm/sec) and likely was a reflection of endogenous expression of AQP1 and AQP8. In NMCs transfected with AQP4, P(f) increased to 75.7 +/- 1.4 microm/sec, that is, by 4.6-fold, indicating the contribution of AQP4 in channel-mediated water transport across MNCs monolayer. In cotransfected NMCs, AQP4 dominant negative reduced P(f) twofold; no changes in P(f) were observed in NMCs transfected with the empty vector. In conclusion, we developed a novel polarized mouse cholangiocyte monolayer model, allowing direct study of AQP4-mediated water transport by biliary epithelia and generated data providing additional support for the importance of AQP4 in cholangiocyte water transport.
Collapse
Affiliation(s)
- Patrick L Splinter
- The Center for Basic Research in Digestive Diseases, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Medical School, Clinic and Foundation, Rochester, MN, USA
| | | | | | | |
Collapse
|
22
|
Fujita A, Horio Y, Higashi K, Mouri T, Hata F, Takeguchi N, Kurachi Y. Specific localization of an inwardly rectifying K(+) channel, Kir4.1, at the apical membrane of rat gastric parietal cells; its possible involvement in K(+) recycling for the H(+)-K(+)-pump. J Physiol 2002; 540:85-92. [PMID: 11927671 PMCID: PMC2290207 DOI: 10.1113/jphysiol.2001.013439] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hydrochloric acid (HCl) is produced in parietal cells of gastric epithelium by a H(+)-K(+) pump. Protons are secreted into the gastric lumen in exchange for K(+) by the action of the H(+)-K(+)-ATPase. Luminal K(+) is essential for the operation of the pump and is thought to be supplied by unidentified K(+) channels localized at the apical membrane of parietal cells. In this study, we showed that histamine- and carbachol-induced acid secretion from isolated parietal cells monitored by intracellular accumulation of aminopyrine was depressed by Ba(2+), an inhibitor of inwardly rectifying K(+) channels. Among members of the inwardly rectifying K(+) channel family, we found with reverse transcriptase-polymerase chain reaction analyses that Kir4.1, Kir4.2 and Kir7.1 were expressed in rat gastric mucosa. With immunohistochemical analyses, Kir4.1 was found to be expressed in gastric parietal cells and localized specifically at their apical membrane. The current flowing through Kir4.1 channel expressed in HEK293T cells was not affected by reduction of extracellular pH from 7.4 to 3. These results suggest that Kir4.1 may be involved in the K(+) recycling pathway in the apical membrane which is required for activation of the H(+)-K(+) pump in gastric parietal cells.
Collapse
Affiliation(s)
- Akikazu Fujita
- Department of Pharmacology II, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Anatoly I Masyuk
- The Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Medical School, Clinic, and Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
24
|
Parvin MN, Tsumura K, Akamatsu T, Kanamori N, Hosoi K. Expression and localization of AQP5 in the stomach and duodenum of the rat. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1542:116-24. [PMID: 11853885 DOI: 10.1016/s0167-4889(01)00172-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The expression, localization, and regulation of aquaporin 5 (AQP5), a member of the water channel family of proteins, was investigated in tissues of the rat gastrointestinal tract. Reverse transcriptase--polymerase chain reaction (RT--PCR) detected AQP5 mRNA in the lower stomach and duodenum. DNA sequencing confirmed that the cDNA fragment amplified had the complete sequence of the AQP5 cDNA fragment. Western blot analysis indicated the expression of a 27 kDa molecular mass AQP5 protein in the lower stomach and duodenum, which size was the same as that found for the protein in the submandibular gland and lungs. By immunohistochemistry using the IgG affinity-purified AQP5 antibody, the pyloric gland and Brunner's gland were primarily stained in the lower stomach and duodenum, respectively; a strong staining appeared in the apical and lateral membranes in both glands. These results indicate that AQP5 is present in the rat lower stomach and duodenum where it may be involved in a water transport mechanism. These results also support the idea that AQP5, and probably other aquaporins, are involved in water secretion in the stomach and duodenum although the volume of water transported via AQPs is unclear.
Collapse
Affiliation(s)
- Most Nahid Parvin
- Department of Physiology and Oral Physiology, Tokushima University School of Dentistry, 3 Kuramoto-cho, Tokushima-Shi, 770-8504, Tokushima, Japan
| | | | | | | | | |
Collapse
|
25
|
Nagy G, Szekeres G, Kvell K, Berki T, Németh P. Development and characterisation of a monoclonal antibody family against aquaporin 1 (AQP1) and aquaporin 4 (AQP4). Pathol Oncol Res 2002; 8:115-24. [PMID: 12172575 DOI: 10.1007/bf03033720] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recent studies have discovered the existence of water-channel molecules, the so called aquaporins (AQP) presumably involved in active, ATP dependent water transport between the intracellular and extracellular compartments. Both genetic and protein sequences and structures of the AQPs are known and crystallographic analyses of some members of the AQP family have been performed. Specific antibodies are required to examine their histological locations and analyse their roles in physiological and pathological pathways of water transportation and osmotic regulation. Until recently some polyclonal antibodies have been developed against certain members of the AQP family. However, to date highly specific monoclonal antibodies against aquaporins do not exist. We have developed a monoclonal antibody family against the aquaporin 1 (AQP1) and aquaporin 4 (AQP4) molecules. Well-conserved epitop sequences of AQP1 and AQP4 proteins were selected by computer analysis and their synthetic peptide fragments were used as the antigens of immunisation and the following screening. Antibodies were characterised by immunoserological methods (ELISA, dot-blot and immunoblot), flow cytometry and immunohistochemistry of formaldehyde-fixed and paraffin-embedded tissue samples. RT-PCR tests controlled the specificity of the immune reactions. Our monoclonal antibodies recognised AQP1 and AQP4 in all the techniques mentioned above and apparently they are useful both in various quantitative and qualitative measurements of the expressions of AQP1 and AQP4 in several species (human, rat, mouse, invertebrates, even plants). According to preliminary immunohistochemical studies our monoclonal anti-AQP1 and anti-AQP4 antibodies are appropriate tools of patho-morphological examinations on routine formol-paraffin tissue samples.
Collapse
Affiliation(s)
- Gergely Nagy
- Department of Immunology and Biotechnology, University of Pécs, Faculty of Medicine, Pécs, H-7643, Hungary.
| | | | | | | | | |
Collapse
|
26
|
Madrid R, LeMaout S, Barrault MB, Janvier K, Benichou S, Mérot J. Polarized trafficking and surface expression of the AQP4 water channel are coordinated by serial and regulated interactions with different clathrin-adaptor complexes. EMBO J 2001; 20:7008-21. [PMID: 11742978 PMCID: PMC125333 DOI: 10.1093/emboj/20.24.7008] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aquaporin 4 (AQP4) is the predominant water channel in the brain. It is targeted to specific membrane domains of astrocytes and plays a crucial role in cerebral water balance in response to brain edema formation. AQP4 is also specifically expressed in the basolateral membranes of epithelial cells. However, the molecular mechanisms involved in its polarized targeting and membrane trafficking remain largely unknown. Here, we show that two independent C-terminal signals determine AQP4 basolateral membrane targeting in epithelial MDCK cells. One signal involves a tyrosine-based motif; the other is encoded by a di-leucine-like motif. We found that the tyrosine-based basolateral sorting signal also determines AQP4 clathrin-dependent endocytosis through direct interaction with the mu subunit of AP2 adaptor complex. Once endocytosed, a regulated switch in mu subunit interaction changes AP2 adaptor association to AP3. We found that the stress-induced kinase casein kinase (CK)II phosphorylates the Ser276 immediately preceding the tyrosine motif, increasing AQP4-mu 3A interaction and enhancing AQP4-lysosomal targeting and degradation. AQP4 phosphorylation by CKII may thus provide a mechanism that regulates AQP4 cell surface expression.
Collapse
Affiliation(s)
| | | | | | - Katy Janvier
- Service de Biologie Cellulaire, Département de Biologie Cellulaire et Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette, Cedex,
Institut Cochin de Génétique Moléculaire, INSERM U529, F-75014 Paris and INSERM U533, Faculté de Médecine, F-44093 Nantes, France Corresponding author e-mail: R.Madrid and S.Le Maout contributed equally to this work
| | - Serge Benichou
- Service de Biologie Cellulaire, Département de Biologie Cellulaire et Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette, Cedex,
Institut Cochin de Génétique Moléculaire, INSERM U529, F-75014 Paris and INSERM U533, Faculté de Médecine, F-44093 Nantes, France Corresponding author e-mail: R.Madrid and S.Le Maout contributed equally to this work
| | - Jean Mérot
- Service de Biologie Cellulaire, Département de Biologie Cellulaire et Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette, Cedex,
Institut Cochin de Génétique Moléculaire, INSERM U529, F-75014 Paris and INSERM U533, Faculté de Médecine, F-44093 Nantes, France Corresponding author e-mail: R.Madrid and S.Le Maout contributed equally to this work
| |
Collapse
|
27
|
Fujita A, Takeuchi T, Saitoh N, Hanai J, Hata F. Expression of Ca(2+)-activated K(+) channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract. Am J Physiol Cell Physiol 2001; 281:C1727-33. [PMID: 11600437 DOI: 10.1152/ajpcell.2001.281.5.c1727] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A role for small-conductance Ca(2+)-activated K(+) (SK) channels on spontaneous motility of the gastrointestinal tract has been suggested. Although four subtypes of SK channels were identified in mammalian tissues, the subtypes of SK channel expressed in the gastrointestinal tract are still unknown. In this study, we investigated the expression and localization of SK channels in the gastrointestinal tract. RT-PCR analysis shows expression of SK3 and SK4 mRNA, but not SK1 or SK2 mRNA, in the rat intestine. SK3 immunoreactivity was detected in the myenteric plexus and muscular layers of the stomach, ileum, and colon. SK3-immunoreactive cells were stained with antibody for c-kit, a marker for the interstitial cells of Cajal (ICC), but not with that for glial fibrillary acidic protein in the ileum and stomach. Immunoelectron microscopic analysis indicates that SK3 channels are localized on processes of ICC that are located close to the myenteric plexus between the longitudinal and circular muscle layers and within the muscular layers. Because ICC have been identified as pacemaker cells and are known to play a major role in generating the regular motility of the gastrointestinal tract, these results suggest that SK3 channels, which are expressed specifically in ICC, play an important role in generating a rhythmic pacemaker current in the gastrointestinal tract.
Collapse
Affiliation(s)
- A Fujita
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | | | | | | | | |
Collapse
|
28
|
Gresz V, Kwon TH, Hurley PT, Varga G, Zelles T, Nielsen S, Case RM, Steward MC. Identification and localization of aquaporin water channels in human salivary glands. Am J Physiol Gastrointest Liver Physiol 2001; 281:G247-54. [PMID: 11408278 DOI: 10.1152/ajpgi.2001.281.1.g247] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aquaporin (AQP) water channels are expressed in a variety of fluid-transporting epithelia and are likely to play a significant role in salivary secretion. Our aim was to identify and localize the aquaporins expressed in human salivary glands. Total RNA was extracted from human parotid, submandibular, sublingual, and labial glands and from human brain. Expression of aquaporin mRNA was assessed by RT-PCR using specific primers for human AQP1, AQP3, AQP4, and AQP5. All four aquaporins were detected by RT-PCR in all of the glands, and the sequences were confirmed after further amplification with nested primers. Cleaned PCR products were then used as (32)P-labeled cDNA probes in a semiquantitative Northern blot analysis using glyceraldehyde-3-phosphate dehydrogenase as reference. Only AQP1, AQP3, and AQP5 mRNAs were present at significant levels. AQP localization was determined by immunohistochemistry on paraffin sections using affinity-purified primary antibodies and peroxidase-linked secondary antibodies. Each salivary gland type showed a broadly similar staining pattern: AQP1 was localized to the capillary endothelium and myoepithelial cells; AQP3 was present in the basolateral membranes of both mucous and serous acinar cells; AQP4 was not detected; and AQP5 was expressed in the luminal and canalicular membranes of both types of acinar cell. We conclude that AQP3 and AQP5 together may provide a pathway for transcellular osmotic water flow in the formation of the primary saliva.
Collapse
Affiliation(s)
- V Gresz
- Department of Cell Biology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tani T, Koyama Y, Nihei K, Hatakeyama S, Ohshiro K, Yoshida Y, Yaoita E, Sakai Y, Hatakeyama K, Yamamoto T. Immunolocalization of aquaporin-8 in rat digestive organs and testis. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2001; 64:159-68. [PMID: 11436986 DOI: 10.1679/aohc.64.159] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Expression of aquaporin-8 mRNA has previously been shown in hepatocytes, pancreatic acinar cells, colon epithelial cells and seminiferous tubules of the testis in the rat by in situ hybridization technique. However, immunolocalization of this water channel has not yet been demonstrated. In the present study, the localization of immunoreactive aquaporin-8 and expression of the mRNA were examined in rat organs (cerebrum, cerebellum, eye, salivary gland, heart, lung, liver, pancreas, esophagus, stomach, jejunum, ileum, colon, testis, ovary, kidney, spleen and lymphnode) by immunohistochemistry using an antibody against aquaporin-8 and ribonuclease protection assay. Aquaporin-8 was distinctly immunolocalized on the apical membranes of pancreatic acinar cells and mucosal epithelium of the colon and jejunum. In the liver, the bile canalicular membrane of hepatocytes was immunostained. In the testis, immunoreactive aquaporin-8 was demonstrated on the luminal side of the seminiferous tubules. At high magnification, the peroxidase reaction products appeared on the ramified cytoplasmic membrane of Sertoli cells surrounding the residual bodies or spermatogenic cells. Specificity of the antibody was verified by Western blot analysis showing a minor approximately 28 kDa band (deduced deglycosylated form of aquaporin-8) and a major approximately 30 kDa band (glycosylated form) in these organs. The intensity of aquaporin-8 immunoreactivity was approximately comparable to that of aquaporin-8 mRNA expression in the liver, pancreas, colon, jejunum and testis. The aquaporin-8 mRNA expression in the hepatocytes was presumed to be closely associated with the structure of bile canaliculi since the message was detected in hepatocytes immediately after isolation from the liver but not in cells following cultivation for three days. The localization of immunoreactive aquaporin-8 indicated functions for this water channel in the secretion of bile and pancreatic juice, and the secretion or absorption of water in the colon and jejunum, and the maturation or liberation of spermatogenic cells in the testis.
Collapse
Affiliation(s)
- T Tani
- Department of Structural Pathology, Faculty of Medicine, Niigata University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang Y, Tracy R, Walsberg GE, Makkinje A, Fang P, Brown D, Van Hoek AN. Absence of aquaporin-4 water channels from kidneys of the desert rodent Dipodomys merriami merriami. Am J Physiol Renal Physiol 2001; 280:F794-802. [PMID: 11292621 DOI: 10.1152/ajprenal.2001.280.5.f794] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, we found that aquaporin-4 (AQP4) is expressed in the S3 segment of renal proximal tubules of mice but not in rat proximal tubules. Because mice have relatively larger papillae than rats, it was proposed that the renal distribution of AQP4 in various species could be related to their maximum urinary concentrating ability. Therefore, kidneys and other tissues of Merriam's desert kangaroo rat, Dipodomys merriami merriami, which produce extremely concentrated urine (up to 5,000 mosmol/kgH(2)O), were examined for AQP4 expression and localization. Contrary to our expectation, AQP4 immunostaining was undetectable in any region of the kidney, and the absence of AQP4 protein was confirmed by Western blotting. By freeze fracture electron microscopy, orthogonal arrays of intramembraneous particles (OAPs) were not detectable in plasma membranes of principal cells and proximal tubules. However, AQP4 protein was readily detectable in gastric parietal and brain astroglial cells. Northern blotting failed to detect AQP4 mRNA in kangaroo rat kidneys, whereas both in situ hybridization and RT-PCR experiments did reveal AQP4 mRNA in collecting ducts and proximal tubules of the S3 segment. These results suggest that renal expression of AQP4 in the kangaroo rat kidney is regulated at the transcriptional or translational level, and the absence of AQP4 may be critical for the extreme urinary concentration that occurs in this species.
Collapse
Affiliation(s)
- Y Huang
- Renal Unit and Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Kusaka S, Inanobe A, Fujita A, Makino Y, Tanemoto M, Matsushita K, Tano Y, Kurachi Y. Functional Kir7.1 channels localized at the root of apical processes in rat retinal pigment epithelium. J Physiol 2001; 531:27-36. [PMID: 11179389 PMCID: PMC2278447 DOI: 10.1111/j.1469-7793.2001.0027j.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. The inwardly rectifying K+ channel current (IK(IR)) recorded from isolated retinal pigmented epithelial (RPE) cells showed poor dependence on external K+ ([K+]o) and low sensitivity to block by Ba2+. We examined the molecular identity and specific subcellular localization of the KIR channel in RPE cells. 2. The Kir7.1 channel current heterologously expressed in HEK293T cells (human embryonic kidney cell line) showed identical properties to those of the RPE IK(IR), i.e. poor dependence on [K+]o and low sensitivity to Ba2+ block. 3. Expression of Kir7.1 mRNA and protein was detected in RPE cells by RT-PCR and immunoblot techniques, respectively. 4. Immunohistochemical studies including electron microscopy revealed that the Kir7.1 channel was localized specifically at the proximal roots of the apical processes of RPE cells, where Na+,K+-ATPase immunoreactivity was also detected. 5. The middle-distal portions of apical processes of RPE cells in the intact tissue exhibited immunoreactivity of Kir4.1, a common KIR channel. In the isolated RPE cells, however, Kir4.1 immunoreactivity was largely lost, while Kir7.1 immunoreactivity remained. 6. These data indicate that the only IK(IR) recorded in isolated RPE cells is derived from the functional Kir7.1 channel localized at the root of apical processes. Co-localization with Na+,K+-ATPase suggests that the Kir7.1 channel may provide the pathway for recycling of K+ to maintain pump activity and thus is essential for K+ handling in RPE cells.
Collapse
Affiliation(s)
- S Kusaka
- Departments of Pharmacology II and Ophthalmology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The phenotype analysis of transgenic mice deficient in specific aquaporin water channels has provided new insights into the role of aquaporins in organ physiology. AQP1-deficient mice are polyuric and are unable to concentrate their urine in response to water deprivation or vasopressin administration. AQP1 deletion reduces osmotic water permeability in the proximal tubule, thin descending limb of Henle and vasa recta, resulting in defective proximal tubule fluid absorption and medullary countercurrent exchange. Mice lacking AQP3, a basolateral membrane water channel expressed mainly in the cortical collecting duct, are remarkably polyuric but are able to generate a partly concentrated urine after water deprivation. In contrast, mice lacking AQP4, a water channel expressed mainly in the inner medullary collecting duct, manifest only a mild defect in maximum urinary concentrating ability. These data, together with phenotype analyses of the brain, lung, salivary gland, and gastrointestinal organs, support the paradigm that aquaporins can facilitate near-isosmolar transepithelial fluid absorption/secretion as well as rapid vectorial water movement driven by osmotic gradients. The phenotype data obtained from aquaporin knockout mice suggest the utility of aquaporin blockers as novel diuretic agents.
Collapse
Affiliation(s)
- A S Verkman
- Cardiovascular Research Institute, University of California, San Francisco 94143-0521, USA.
| |
Collapse
|
33
|
Ishikawa Y, Skowronski MT, Ishida H. Persistent increase in the amount of aquaporin-5 in the apical plasma membrane of rat parotid acinar cells induced by a muscarinic agonist SNI-2011. FEBS Lett 2000; 477:253-7. [PMID: 10908730 DOI: 10.1016/s0014-5793(00)01763-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
SNI-2011 induces the long-lasting increase in the amount of aquaporin-5 (AQP5) in apical plasma membranes (APMs) of rat parotid acini in a concentration-dependent manner. This induction was inhibited by p-F-HHSiD, U73122, TMB-8, or dantrolene but not by bisindolmaleimide or H-7, indicating that SNI-2011 acting at M(3) muscarinic receptors induced translocation of AQP5 via [Ca(2+)](i) elevation but not via the activation of protein kinase C. In contrast, acetylcholine induced a transient translocation of AQP5 to APMs. SNI-2011 induces long-lasting oscillations of [Ca(2+)](i) in the presence of extracellular Ca(2+). Thus, SNI-2011 induces a long-lasting translocation of AQP5 to APMs coupled with persistent [Ca(2+)](i) oscillations.
Collapse
Affiliation(s)
- Y Ishikawa
- Department of Pharmacology, School of Dentistry, Tokushima University, 3-18-15 Kuramoto-cho, 770-8504, Tokushima, Japan.
| | | | | |
Collapse
|