1
|
Beitzinger C, Kronhardt A, Benz R. Chloroquine-analogues block anthrax protective antigen channels in steady-state and kinetic studies. Toxicology 2023; 492:153547. [PMID: 37201861 DOI: 10.1016/j.tox.2023.153547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The tripartite anthrax toxin from Bacillus anthracis represents the prototype of A-B type of toxins, where the effector A (an enzymatic subunit) is transported with the help of a binding component B into a target cell. Anthrax toxin consists of three different molecules, two effectors, lethal factor (LF) and edema factor (EF) and the binding component also known as protective antigen (PA). PA forms heptamers or octamers following binding to host cell's receptors and mediates the translocation of the effectors into the cytosol via the endosomal pathway. The cation-selective PA63-channel is able to reconstitute in lipid membranes and can be blocked by chloroquine and other heterocyclic compounds. This suggests that the PA63-channel contains a binding site for quinolines. In this study, we investigated the structure-function relationship of different quinolines for the block of the PA63-channel. The affinity of the different chloroquine analogues to the PA63-channel as provided by the equilibrium dissociation constant was measured using titrations. Some quinolines had a much higher affinity to the PA63-channel than chloroquine itself. We also performed ligand-induced current noise measurements using fast Fourier transformation to get insight in the kinetics of the binding of some quinolines to the PA63-channel. The on-rate constants of ligand binding were around 108M-1·s-1 at 150mM KCl and were only little dependent on the individual quinoline. The off-rates varied between 4s-1 and 160s-1 and depended much more on the structure of the molecules than the on-rate constants. The possible use of the 4-aminoquinolines as a therapy is discussed.
Collapse
Affiliation(s)
- Christoph Beitzinger
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
| | - Angelika Kronhardt
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
| | - Roland Benz
- Science Faculty, Constructor University Bremen, Campus-Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
2
|
Sharma S, Bahl V, Srivastava G, Shamim R, Bhatnagar R, Gaur D. Recombinant full-length Bacillus Anthracis protective antigen and its 63 kDa form elicits protective response in formulation with addavax. Front Immunol 2023; 13:1075662. [PMID: 36713362 PMCID: PMC9877290 DOI: 10.3389/fimmu.2022.1075662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Bacillus anthracis is the causative agent for the lethal disease anthrax, primarily affecting animals and humans in close contact with an infected host. The pathogenicity of B. anthracis is attributed to the secreted exotoxins and their outer capsule. The host cell-binding exotoxin component "protective antigen" (PA) is reported to be a potent vaccine candidate. The aim of our study is to produce several PA constructs and analyze their vaccine potential. Methods We have designed the various subunit, PA-based recombinant proteins, i.e., full-length Protective antigen (PA-FL), C-terminal 63 kDa fragment (PA63), Protective antigen domain 1-domain 4 chimeras (PA-D1-4) and protective antigen domain 4 (PA-D4) and analyzed their vaccine potential with different human-compatible adjuvants in the mouse model. We have optimized the process and successfully expressed our recombinant antigens as soluble proteins, except full-length PA. All the recombinant antigen formulations with three different adjuvants i.e., Addavax, Alhydrogel, and Montanide ISA 720, were immunized in different mouse groups. The vaccine efficacy of the formulations was analyzed by mouse serum antigen-specific antibody titer, toxin neutralization assay, and survival analysis of mouse groups challenged with a lethal dose of B. anthracis virulent spores. Results We have demonstrated that the PA-FL addavax and PA63 addavax formulations were most effective in protecting spore-challenged mice and serum from the mice immunized with PAFL addavax, PA-FL alhydrogel, PA63 addavax, and PA63 alhydrogel formulations were equivalently efficient in neutralizing the anthrax lethal toxin. The higher levels of serum Th1, Th2, and Th17 cytokines in PA-FL addavax immunized mice correspond to the enhanced protection provided by the formulation in challenged mice. Discussion We have demonstrated that the PA-FL addavax and PA63 addavax formulations exhibit equivalent efficiency as vaccine formulation both in a mouse model of anthrax and mammalian cell lines. However, PA63 is a smaller antigen than PA-FL and more importantly, PA63 is expressed as a soluble protein in E. coli, which imparts a translational advantage to PA63-based formulation. Thus, the outcome of our study has significant implications for the development of protective antigen-based vaccine formulations for human use against the lethal disease anthrax.
Collapse
Affiliation(s)
- Shikhar Sharma
- Laboratory of Malaria & Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,Department of Oncology Science, University of Oklahoma Health Science Center, Oklahoma City, OK, United States,*Correspondence: Shikhar Sharma, ;
| | - Vanndita Bahl
- Laboratory of Malaria & Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Gaurav Srivastava
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Risha Shamim
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria & Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Ciaston I, Dobosz E, Potempa J, Koziel J. The subversion of toll-like receptor signaling by bacterial and viral proteases during the development of infectious diseases. Mol Aspects Med 2022; 88:101143. [PMID: 36152458 PMCID: PMC9924004 DOI: 10.1016/j.mam.2022.101143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 02/05/2023]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that respond to pathogen-associated molecular patterns (PAMPs). The recognition of specific microbial ligands by TLRs triggers an innate immune response and also promotes adaptive immunity, which is necessary for the efficient elimination of invading pathogens. Successful pathogens have therefore evolved strategies to subvert and/or manipulate TLR signaling. Both the impairment and uncontrolled activation of TLR signaling can harm the host, causing tissue destruction and allowing pathogens to proliferate, thus favoring disease progression. In this context, microbial proteases are key virulence factors that modify components of the TLR signaling pathway. In this review, we discuss the role of bacterial and viral proteases in the manipulation of TLR signaling, highlighting the importance of these enzymes during the development of infectious diseases.
Collapse
Affiliation(s)
- Izabela Ciaston
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Joanna Koziel
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
4
|
The Roles of c-Jun N-Terminal Kinase (JNK) in Infectious Diseases. Int J Mol Sci 2021; 22:ijms22179640. [PMID: 34502556 PMCID: PMC8431791 DOI: 10.3390/ijms22179640] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 01/12/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) are among the most crucial mitogen-activated protein kinases (MAPKs) and regulate various cellular processes, including cell proliferation, apoptosis, autophagy, and inflammation. Microbes heavily rely on cellular signaling pathways for their effective replication; hence, JNKs may play important roles in infectious diseases. In this review, we describe the basic signaling properties of MAPKs and JNKs in apoptosis, autophagy, and inflammasome activation. Furthermore, we discuss the roles of JNKs in various infectious diseases induced by viruses, bacteria, fungi, and parasites, as well as their potential to serve as targets for the development of therapeutic agents for infectious diseases. We expect this review to expand our understanding of the JNK signaling pathway’s role in infectious diseases and provide important clues for the prevention and treatment of infectious diseases.
Collapse
|
5
|
Li Y, Cui X, Shiloach J, Wang J, Suffredini DA, Xu W, Liu W, Fitz Y, Sun J, Eichacker PQ. Hydrocortisone decreases lethality and inflammatory cytokine and nitric oxide production in rats challenged with B. anthracis cell wall peptidoglycan. Intensive Care Med Exp 2020; 8:67. [PMID: 33206255 PMCID: PMC7674536 DOI: 10.1186/s40635-020-00358-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022] Open
Abstract
Background Lethal B. anthracis infection produces high proinflammatory peptidoglycan (PGN) burdens in hosts. We investigated whether the lethality and inflammation anthrax PGN can produce are related. Methods At 6 h before and the start of 24 h anthrax PGN infusions, rats (n = 198) were treated with diluent (controls) or one of three IV-doses of either hydrocortisone (125, 12.5 or 1.25 mg/kg) or TNF-soluble receptor (TNFsr; 2000, 1000 or 333 μg/kg), non-selective and selective anti-inflammatory agents, respectively. Results Compared to controls, hydrocortisone 125 and 12.5 mg/kg each decreased 7-day lethality (p ≤ 0.004). Hydrocortisone 125 mg/kg decreased IL-1β, IL-6, TNFα, MCP, MIP-1α, MIP-2, RANTES and nitric oxide (NO) blood levels at 4 and 24 h after starting PGN (except MCP at 24 h). Each decrease was significant at 4 h (except MIP-1α that was significant at 24 h) (p ≤ 0.05). Similarly, hydrocortisone 12.5 mg/kg decreased each measure at 4, 24 and 48 h (except TNFα at 24 h and MIP-1α at 24 and 48 h and NO at 48 h). Decreases were significant for IL-6 and NO at 4 h and RANTES at 48 h (p ≤ 0.05). Hydrocortisone 1.25 mg/kg had non-significant effects. Each TNFsr dose decreased lethality but non-significantly. However, when doses were analyzed together, TNFsr decreased lethality in a potential trend (p = 0.16) and IL-6 and NO significantly at 4 h (p = 0.05). Conclusions Peptidoglycan-stimulated host inflammation may contribute to B. anthracis lethality.
Collapse
Affiliation(s)
- Yan Li
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Xizhong Cui
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey Wang
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Dante A Suffredini
- Section of Critical Care, Department of Medicine, St. Agnes Hospital, Baltimore, MD, 21229, USA
| | - Wanying Xu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Wancang Liu
- Biotechnology Core Laboratory, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yvonne Fitz
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Junfeng Sun
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Peter Q Eichacker
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Peignier A, Parker D. Pseudomonas aeruginosa Can Degrade Interferon λ, Thereby Repressing the Antiviral Response of Bronchial Epithelial Cells. J Interferon Cytokine Res 2020; 40:429-431. [PMID: 32672514 DOI: 10.1089/jir.2020.0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Adeline Peignier
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
7
|
Carlson CJ, Getz WM, Kausrud KL, Cizauskas CA, Blackburn JK, Bustos Carrillo FA, Colwell R, Easterday WR, Ganz HH, Kamath PL, Økstad OA, Turner WC, Kolstø AB, Stenseth NC. Spores and soil from six sides: interdisciplinarity and the environmental biology of anthrax (Bacillus anthracis). Biol Rev Camb Philos Soc 2018; 93:1813-1831. [PMID: 29732670 DOI: 10.1111/brv.12420] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022]
Abstract
Environmentally transmitted diseases are comparatively poorly understood and managed, and their ecology is particularly understudied. Here we identify challenges of studying environmental transmission and persistence with a six-sided interdisciplinary review of the biology of anthrax (Bacillus anthracis). Anthrax is a zoonotic disease capable of maintaining infectious spore banks in soil for decades (or even potentially centuries), and the mechanisms of its environmental persistence have been the topic of significant research and controversy. Where anthrax is endemic, it plays an important ecological role, shaping the dynamics of entire herbivore communities. The complex eco-epidemiology of anthrax, and the mysterious biology of Bacillus anthracis during its environmental stage, have necessitated an interdisciplinary approach to pathogen research. Here, we illustrate different disciplinary perspectives through key advances made by researchers working in Etosha National Park, a long-term ecological research site in Namibia that has exemplified the complexities of the enzootic process of anthrax over decades of surveillance. In Etosha, the role of scavengers and alternative routes (waterborne transmission and flies) has proved unimportant relative to the long-term persistence of anthrax spores in soil and their infection of herbivore hosts. Carcass deposition facilitates green-ups of vegetation to attract herbivores, potentially facilitated by the role of anthrax spores in the rhizosphere. The underlying seasonal pattern of vegetation, and herbivores' immune and behavioural responses to anthrax risk, interact to produce regular 'anthrax seasons' that appear to be a stable feature of the Etosha ecosystem. Through the lens of microbiologists, geneticists, immunologists, ecologists, epidemiologists, and clinicians, we discuss how anthrax dynamics are shaped at the smallest scale by population genetics and interactions within the bacterial communities up to the broadest scales of ecosystem structure. We illustrate the benefits and challenges of this interdisciplinary approach to disease ecology, and suggest ways anthrax might offer insights into the biology of other important pathogens. Bacillus anthracis, and the more recently emerged Bacillus cereus biovar anthracis, share key features with other environmentally transmitted pathogens, including several zoonoses and panzootics of special interest for global health and conservation efforts. Understanding the dynamics of anthrax, and developing interdisciplinary research programs that explore environmental persistence, is a critical step forward for understanding these emerging threats.
Collapse
Affiliation(s)
- Colin J Carlson
- National Socio-Environmental Synthesis Center (SESYNC), University of Maryland, Annapolis, MD 21401, U.S.A.,Department of Biology, Georgetown University, Washington, DC 20057, U.S.A
| | - Wayne M Getz
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, U.S.A.,School of Mathematical Sciences, University of KwaZulu-Natal, PB X 54001, Durban 4000, South Africa
| | - Kyrre L Kausrud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway
| | - Carrie A Cizauskas
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, U.S.A
| | - Jason K Blackburn
- Spatial Epidemiology & Ecology Research Lab, Department of Geography, University of Florida, Gainesville, FL 32611, U.S.A.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - Fausto A Bustos Carrillo
- Department of Epidemiology & Department of Biostatistics, School of Public Health, University of California, Berkeley, CA 94720-7360, U.S.A
| | - Rita Colwell
- CosmosID Inc., Rockville, MD 20850, U.S.A.,Center for Bioinformatics and Computational Biology, University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, U.S.A.,Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, U.S.A
| | - W Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway
| | - Holly H Ganz
- UC Davis Genome Center, University of California, Davis, CA 95616, U.S.A
| | - Pauline L Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, U.S.A
| | - Ole A Økstad
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316, Oslo, Norway
| | - Wendy C Turner
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, U.S.A
| | - Anne-Brit Kolstø
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316, Oslo, Norway
| | - Nils C Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway
| |
Collapse
|
8
|
Gallegos-Candela M, Boyer AE, Woolfitt AR, Brumlow J, Lins RC, Quinn CP, Hoffmaster AR, Meister G, Barr JR. Validated MALDI-TOF-MS method for anthrax lethal factor provides early diagnosis and evaluation of therapeutics. Anal Biochem 2017; 543:97-107. [PMID: 29224733 PMCID: PMC7904043 DOI: 10.1016/j.ab.2017.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 01/12/2023]
Abstract
Anthrax lethal factor (LF) is a zinc-dependent endoprotease and a critical virulence factor for Bacillus anthracis, the causative agent of anthrax. The mass spectrometry (MS) method for total-LF quantification includes three steps; 1) LF specific antibody capture/concentration, 2) LF-specific hydrolysis of a peptide substrate, and 3) detection and quantification of LF-cleaved peptides by isotope-dilution MALDI-TOF/MS. Recombinant LF spiked plasma was used for calibration and quality control (QC) materials. Specificity was 100% from analysis of serum and plasma from 383 non-infected humans, 31 rabbits, and 24 rhesus macaques. Sensitivity was 100% from 32 human clinical anthrax cases including infections by inhalation, ingestion, cutaneous and injection exposures and experimental infections for 29 rabbits and 24 rhesus macaques with inhalation anthrax. Robustness evaluation included sample storage, serum and plasma, antimicrobial and antitoxin effects and long-term performance. Data from 100 independent runs gave detection limits 0.01 ng/mL (111 amol/mL) for the 4-h method and 0.0027 ng/mL (30 amol/mL) for an alternate 20-h method. QC precision ranged from 7.7 to 14.8% coefficient of variation and accuracy from 0.2 to 9.8% error. The validated LF MS method provides sensitive quantification of anthrax total-LF using a robust high throughput platform for early diagnosis and evaluation of therapeutics during an anthrax emergency.
Collapse
Affiliation(s)
- Maribel Gallegos-Candela
- Centers for Disease Control and Prevention, 4770 Buford Highway Mailstop F-50, Atlanta, GA 30341, USA
| | - Anne E Boyer
- Centers for Disease Control and Prevention, 4770 Buford Highway Mailstop F-50, Atlanta, GA 30341, USA.
| | - Adrian R Woolfitt
- Centers for Disease Control and Prevention, 4770 Buford Highway Mailstop F-50, Atlanta, GA 30341, USA
| | - Judy Brumlow
- Battelle Atlanta Analytical Services, 2987 Clairmont Road NE, Suite 450, Atlanta, GA 30329, USA
| | - Renato C Lins
- Battelle Atlanta Analytical Services, 2987 Clairmont Road NE, Suite 450, Atlanta, GA 30329, USA
| | - Conrad P Quinn
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Alex R Hoffmaster
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Gabriel Meister
- Battelle Biomedical Research Center, 1425 Plain City Georgesville Rd, West Jefferson, OH 43162, USA
| | - John R Barr
- Centers for Disease Control and Prevention, 4770 Buford Highway Mailstop F-50, Atlanta, GA 30341, USA
| |
Collapse
|
9
|
Seshadri S, Allan DSJ, Carlyle JR, Zenewicz LA. Bacillus anthracis lethal toxin negatively modulates ILC3 function through perturbation of IL-23-mediated MAPK signaling. PLoS Pathog 2017; 13:e1006690. [PMID: 29059238 PMCID: PMC5695638 DOI: 10.1371/journal.ppat.1006690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 11/02/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, secretes lethal toxin that down-regulates immune functions. Translocation of B. anthracis across mucosal epithelia is key for its dissemination and pathogenesis. Group 3 innate lymphocytes (ILC3s) are important in mucosal barrier maintenance due to their expression of the cytokine IL-22, a critical regulator of tissue responses and repair during homeostasis and inflammation. We found that B. anthracis lethal toxin perturbed ILC3 function in vitro and in vivo, revealing an unknown IL-23-mediated MAPK signaling pathway. Lethal toxin had no effects on the canonical STAT3-mediated IL-23 signaling pathway. Rather lethal toxin triggered the loss of several MAP2K kinases, which correlated with reduced activation of downstream ERK1/2 and p38, respectively. Inhibition studies showed the importance of MAPK signaling in IL-23-mediated production of IL-22. Our finding that MAPK signaling is required for optimal IL-22 production in ILC3s may lead to new approaches for targeting IL-22 biology.
Collapse
Affiliation(s)
- Sudarshan Seshadri
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David S. J. Allan
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - James R. Carlyle
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
10
|
Toxin Transport by A-B Type of Toxins in Eukaryotic Target Cells and Its Inhibition by Positively Charged Heterocyclic Molecules. Curr Top Microbiol Immunol 2017; 406:229-256. [DOI: 10.1007/82_2017_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Bachran C, Leppla SH. Tumor Targeting and Drug Delivery by Anthrax Toxin. Toxins (Basel) 2016; 8:toxins8070197. [PMID: 27376328 PMCID: PMC4963830 DOI: 10.3390/toxins8070197] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/17/2022] Open
Abstract
Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.
Collapse
Affiliation(s)
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Animal Models for the Pathogenesis, Treatment, and Prevention of Infection by Bacillus anthracis. Microbiol Spectr 2016; 3:TBS-0001-2012. [PMID: 26104551 DOI: 10.1128/microbiolspec.tbs-0001-2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This article reviews the characteristics of the major animal models utilized for studies on Bacillus anthracis and highlights their contributions to understanding the pathogenesis and host responses to anthrax and its treatment and prevention. Advantages and drawbacks associated with each model, to include the major models (murine, guinea pig, rabbit, nonhuman primate, and rat), and other less frequently utilized models, are discussed. Although the three principal forms of anthrax are addressed, the main focus of this review is on models for inhalational anthrax. The selection of an animal model for study is often not straightforward and is dependent on the specific aims of the research or test. No single animal species provides complete equivalence to humans; however, each species, when used appropriately, can contribute to a more complete understanding of anthrax and its etiologic agent.
Collapse
|
13
|
Ha SD, Reid C, Meshkibaf S, Kim SO. Inhibition of Interleukin 1β (IL-1β) Expression by Anthrax Lethal Toxin (LeTx) Is Reversed by Histone Deacetylase 8 (HDAC8) Inhibition in Murine Macrophages. J Biol Chem 2016; 291:8745-55. [PMID: 26912657 DOI: 10.1074/jbc.m115.695809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 12/18/2022] Open
Abstract
Many pathogenic microbes often release toxins that subvert the host's immune responses to render the environment suitable for their survival and proliferation. LeTx is one of the toxins causing immune paralysis by cleaving and inactivating the mitogen-activated protein kinase (MAPK) kinases (MEKs). Here, we show that inhibition of the histone deacetylase 8 (HDAC8) by either the HDAC8-specific inhibitor PCI-34051 or small interference (si)RNAs rendered LeTx-exposed murine macrophages responsive to LPS in pro-IL-1β production. HDAC8 selectively targeted acetylated histone H3 lysine 27 (H3K27Ac), which is known to associate with active enhancers. LeTx induced HDAC8 expression, in part through inhibiting p38 MAPK, which resulted in a decrease of H3K27Ac levels. Inhibition of HDAC8 increased H3K27Ac levels and enhanced NF-κB-mediated pro-IL-1β enhancer and messenger RNA production in LeTx-exposed macrophages. Collectively, this study demonstrates a novel role of HDAC8 in LeTx immunotoxicity and regulation of pro-IL-1β production likely through eRNAs. Targeting HDAC8 could be a strategy for enhancing immune responses in macrophages exposed to LeTx or other toxins that inhibit MAPKs.
Collapse
Affiliation(s)
- Soon-Duck Ha
- From the Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Chantelle Reid
- From the Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Shahab Meshkibaf
- From the Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Sung Ouk Kim
- From the Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| |
Collapse
|
14
|
do Vale A, Cabanes D, Sousa S. Bacterial Toxins as Pathogen Weapons Against Phagocytes. Front Microbiol 2016; 7:42. [PMID: 26870008 PMCID: PMC4734073 DOI: 10.3389/fmicb.2016.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022] Open
Abstract
Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favor microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signaling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.
Collapse
Affiliation(s)
- Ana do Vale
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Didier Cabanes
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Sandra Sousa
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| |
Collapse
|
15
|
Kulshreshtha P, Tiwari A, Priyanka, Joon S, Sinha S, Bhatnagar R. Investigation of a panel of monoclonal antibodies and polyclonal sera against anthrax toxins resulted in identification of an anti-lethal factor antibody with disease-enhancing characteristics. Mol Immunol 2015; 68:185-93. [PMID: 26364143 DOI: 10.1016/j.molimm.2015.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 11/27/2022]
Abstract
Hybridomas were created using spleen of mice that were actively immunized with rLFn (recombinant N-terminal domain of lethal factor). Later on, separate group of mice were immunized with rLFn to obtain a polyclonal control for passive immunization studies of monoclonal antibodies. This led to the identification of one cohort of rLFn-immnized mice that harboured disease-enhancing polyclonal antibodies. At the same time, the monoclonal antibodies secreted by all the hybridomas were being tested. Two hybridomas secreted monoclonal antibodies (H10 and H8) that were cross-reactive with EF (edema factor) and LF (lethal factor), while the other two hybridomas secreted LF-specific antibodies (H7 and H11). Single chain variable fragment (LETscFv) was derived from H10 hybridoma. H11 was found to have disease-enhancing property. Combination of H11 with protective monoclonal antibodies (H8 and H10) reduced its disease enhancing nature. This in vitro abrogation of disease-enhancement provides the proof of concept that in polyclonal sera the disease enhancing character of a fraction of antibodies is overshadowed by the protective nature of the rest of the antibodies generated on active immunization.
Collapse
Affiliation(s)
- Parul Kulshreshtha
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashutosh Tiwari
- Present address: Centre for Biodesign, Translational Health Science and Technology Institute, Gurgaon, India
| | - Priyanka
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Joon
- Structural and Computational Biology Laboratory, Department Of Biotechnology, Netaji Subhas Institute of Technology, New Delhi 110078, India
| | | | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
16
|
Schacherl M, Pichlo C, Neundorf I, Baumann U. Structural Basis of Proline-Proline Peptide Bond Specificity of the Metalloprotease Zmp1 Implicated in Motility of Clostridium difficile. Structure 2015. [DOI: 10.1016/j.str.2015.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Cote CK, Welkos SL. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination. Toxins (Basel) 2015; 7:3167-78. [PMID: 26287244 PMCID: PMC4549744 DOI: 10.3390/toxins7083167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/08/2015] [Accepted: 08/11/2015] [Indexed: 11/18/2022] Open
Abstract
The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions.
Collapse
Affiliation(s)
- Christopher K Cote
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA.
| | - Susan L Welkos
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA.
| |
Collapse
|
18
|
Saavedra PHV, Demon D, Van Gorp H, Lamkanfi M. Protective and detrimental roles of inflammasomes in disease. Semin Immunopathol 2015; 37:313-22. [PMID: 25895577 DOI: 10.1007/s00281-015-0485-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
Over recent years, inflammasomes have emerged as key regulators of immune and inflammatory responses. They induce programmed cell death and direct the release of danger signals and the inflammatory cytokines interleukin (IL)-1β and IL-18. The concerted actions of inflammasomes are of utmost importance for responding adequately to harmful environmental agents and infections. However, deregulated inflammasome signaling is increasingly linked to a diversity of human pathologies, including rheumatoid arthritis, inflammatory bowel disease, and rare, hereditary periodic fever syndromes. In this review, we discuss recent insight in the protective and detrimental roles of inflammasomes in selected infectious, autoinflammatory and autoimmune diseases, and cover clinically approved therapies that interfere with inflammasome signaling. These findings highlight the importance of fine-balancing the Ying and Yang activities of inflammasomes for sustained homeostasis and suggest that further understanding of inflammasome mechanisms may offer new cures for human diseases.
Collapse
Affiliation(s)
- Pedro H V Saavedra
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | | | | | | |
Collapse
|
19
|
Arévalo MT, Navarro A, Arico CD, Li J, Alkhatib O, Chen S, Diaz-Arévalo D, Zeng M. Targeted silencing of anthrax toxin receptors protects against anthrax toxins. J Biol Chem 2014; 289:15730-8. [PMID: 24742682 DOI: 10.1074/jbc.m113.538587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Anthrax spores can be aerosolized and dispersed as a bioweapon. Current postexposure treatments are inadequate at later stages of infection, when high levels of anthrax toxins are present. Anthrax toxins enter cells via two identified anthrax toxin receptors: tumor endothelial marker 8 (TEM8) and capillary morphogenesis protein 2 (CMG2). We hypothesized that host cells would be protected from anthrax toxins if anthrax toxin receptor expression was effectively silenced using RNA interference (RNAi) technology. Thus, anthrax toxin receptors in mouse and human macrophages were silenced using targeted siRNAs or blocked with specific antibody prior to challenge with anthrax lethal toxin. Viability assays were used to assess protection in macrophages treated with specific siRNA or antibody as compared with untreated cells. Silencing CMG2 using targeted siRNAs provided almost complete protection against anthrax lethal toxin-induced cytotoxicity and death in murine and human macrophages. The same results were obtained by prebinding cells with specific antibody prior to treatment with anthrax lethal toxin. In addition, TEM8-targeted siRNAs also offered significant protection against lethal toxin in human macrophage-like cells. Furthermore, silencing CMG2, TEM8, or both receptors in combination was also protective against MEK2 cleavage by lethal toxin or adenylyl cyclase activity by edema toxin in human kidney cells. Thus, anthrax toxin receptor-targeted RNAi has the potential to be developed as a life-saving, postexposure therapy against anthrax.
Collapse
Affiliation(s)
- Maria T Arévalo
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Ashley Navarro
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Chenoa D Arico
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Junwei Li
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Omar Alkhatib
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Shan Chen
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Diana Diaz-Arévalo
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Mingtao Zeng
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
20
|
Structure-based pharmacophore modeling and virtual screening to identify novel inhibitors for anthrax lethal factor. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0947-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Langel FD, Chiang CY, Lane D, Kenny T, Ojeda JF, Zhong Y, Che J, Zhou Y, Ribot W, Kota KP, Bavari S, Panchal RG. Alveolar macrophages infected with Ames or Sterne strain of Bacillus anthracis elicit differential molecular expression patterns. PLoS One 2014; 9:e87201. [PMID: 24516547 PMCID: PMC3917846 DOI: 10.1371/journal.pone.0087201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/20/2013] [Indexed: 11/25/2022] Open
Abstract
Alveolar macrophages (AMs) phagocytose Bacillus anthracis following inhalation and induce the production of pro-inflammatory cytokines and chemokines to mediate the activation of innate immunity. Ames, the virulent strain of B. anthracis, contains two plasmids that encode the antiphagocytic poly-γ-d-glutamic acid capsule and the lethal toxin. The attenuated Sterne strain of B. anthracis, which lacks the plasmid encoding capsule, is widely adapted as a vaccine strain. Although differences in the outcome of infection with the two strains may have originated from the presence or absence of an anti-phagocytic capsule, the disease pathogenesis following infection will be manifested via the host responses, which is not well understood. To gain understanding of the host responses at cellular level, a microarray analysis was performed using primary rhesus macaque AMs infected with either Ames or Sterne spores. Notably, 528 human orthologs were identified to be differentially expressed in AMs infected with either strain of the B. anthracis. Meta-analyses revealed genes differentially expressed in response to B. anthracis infection were also induced upon infections with multiple pathogens such as Francisella Novicida or Staphylococcus aureus. This suggests the existence of a common molecular signature in response to pathogen infections. Importantly, the microarray and protein expression data for certain cytokines, chemokines and host factors provide further insights on how cellular processes such as innate immune sensing pathways, anti-apoptosis versus apoptosis may be differentially modulated in response to the virulent or vaccine strain of B. anthracis. The reported differences may account for the marked difference in pathogenicity between these two strains.
Collapse
Affiliation(s)
- Felicia D. Langel
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Chih-Yuan Chiang
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Douglas Lane
- SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Tara Kenny
- SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jenifer F. Ojeda
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Yang Zhong
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Jianwei Che
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Wilson Ribot
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Krishna P. Kota
- Perkin Elmer, Waltham, Massachusetts, United States of America
| | - Sina Bavari
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Rekha G. Panchal
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| |
Collapse
|
22
|
Tournier JN, Ulrich RG, Quesnel-Hellmann A, Mohamadzadeh M, Stiles BG. Anthrax, toxins and vaccines: a 125-year journey targetingBacillus anthracis. Expert Rev Anti Infect Ther 2014; 7:219-36. [DOI: 10.1586/14787210.7.2.219] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Brojatsch J, Casadevall A, Goldman DL. Molecular determinants for a cardiovascular collapse in anthrax. Front Biosci (Elite Ed) 2014; 6:139-47. [PMID: 24389148 DOI: 10.2741/e697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacillus anthracis releases two bipartite proteins, lethal toxin and edema factor, that contribute significantly to the progression of anthrax-associated shock. As blocking the anthrax toxins prevents disease, the toxins are considered the main virulence factors of the bacterium. The anthrax bacterium and the anthrax toxins trigger multi-organ failure associated with enhanced vascular permeability, hemorrhage and cardiac dysfunction in animal challenge models. A recent study using mice that either lacked the anthrax toxin receptor in specific cells and corresponding mice expressing the receptor in specific cell types demonstrated that cardiovascular cells are critical for disease mediated by anthrax lethal toxin. These studies are consistent with involvement of the cardiovascular system, and with an increase of cardiac failure markers observed in human anthrax and in animal models using B. anthracis and anthrax toxins. This review discusses the current state of knowledge regarding the pathophysiology of anthrax and tries to provide a mechanistic model and molecular determinants for the circulatory shock in anthrax.
Collapse
Affiliation(s)
- Jurgen Brojatsch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY
| | - David L Goldman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY
| |
Collapse
|
24
|
Beitzinger C, Bronnhuber A, Duscha K, Riedl Z, Huber-Lang M, Benz R, Hajós G, Barth H. Designed azolopyridinium salts block protective antigen pores in vitro and protect cells from anthrax toxin. PLoS One 2013; 8:e66099. [PMID: 23840407 PMCID: PMC3688708 DOI: 10.1371/journal.pone.0066099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/02/2013] [Indexed: 11/28/2022] Open
Abstract
Background Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way. Methodology/Principal Findings Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the µM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro. Conclusions/Significance These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax.
Collapse
Affiliation(s)
- Christoph Beitzinger
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Anika Bronnhuber
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Kerstin Duscha
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Zsuzsanna Riedl
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Markus Huber-Lang
- Institute of Traumatology, Hand- and Reconstructive Surgery, University of Ulm Medical Center, Ulm, Germany
| | - Roland Benz
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- * E-mail: (RB); (HB)
| | - György Hajós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
- * E-mail: (RB); (HB)
| |
Collapse
|
25
|
Abstract
In previous studies, we have found that anthrax lethal toxin (LeTx) induces apoptosis in both murine macrophages and human peripheral blood mononuclear cells (PBMCs). In this study, we further report that bacterial cell wall (CW) components of Bacillus (B.) anthracis are powerful inducers of proinflammatory cytokines from the PBMCs. These effects are deprived when the LeTx is present. The major causative element for this suppression is lethal factor (LF) rather than protective antigen (PA). These results indicate that the roles of LeTx in anthrax pathogenesis, particularly its effects on cytokine production, should be reevaluated as our findings and other reports are controversial to the conventional concept.
Collapse
|
26
|
Wein AN, Liu S, Zhang Y, McKenzie AT, Leppla SH. Tumor therapy with a urokinase plasminogen activator-activated anthrax lethal toxin alone and in combination with paclitaxel. Invest New Drugs 2013; 31:206-12. [PMID: 22843210 PMCID: PMC3757568 DOI: 10.1007/s10637-012-9847-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/07/2012] [Indexed: 01/03/2023]
Abstract
PA-U2, an engineered anthrax protective antigen that is activated by urokinase was combined with wildtype lethal factor in the treatment of Colo205 colon adenocarcinoma in vitro and B16-BL6 mouse melanoma in vitro and in vivo. This therapy was also tested in combination with the small molecule paclitaxel, based on prior reports suggesting synergy between ERK1/2 inhibition and chemotherapeutics. Colo205 was sensitive to PA-U2/LF while B16-BL6 was not. For the combination treatment of B16-BL6, paclitaxel showed a dose response in vitro, but cells remained resistant to PA-U2/LF even in the presence of paclitaxel. In vivo, each therapy slowed tumor progression, and an additive effect between the two was observed. Since LF targets tumor vasculature while paclitaxel is an antimitotic, it is possible the agents were acting against different cells in the stroma, precluding a synergistic effect. The engineered anthrax toxin PA-U2/LF warrants further development and testing, possibly in combination with an antiangiogenesis therapy such as sunitinib or sorafinib.
Collapse
Affiliation(s)
- Alexander N. Wein
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Bethesda, MD, 20892, USA
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Bethesda, MD, 20892, USA
| | - Yi Zhang
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Bethesda, MD, 20892, USA
| | - Andrew T. McKenzie
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Bethesda, MD, 20892, USA
| | - Stephen H. Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
27
|
Friedlander AM, Grabenstein JD, Brachman PS. Anthrax vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
28
|
Mannam P, Zhang X, Shan P, Zhang Y, Shinn AS, Zhang Y, Lee PJ. Endothelial MKK3 is a critical mediator of lethal murine endotoxemia and acute lung injury. THE JOURNAL OF IMMUNOLOGY 2012; 190:1264-75. [PMID: 23275604 DOI: 10.4049/jimmunol.1202012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sepsis is a leading cause of intensive care unit admissions, with high mortality and morbidity. Although outcomes have improved with better supportive care, specific therapies are limited. Endothelial activation and oxidant injury are key events in the pathogenesis of sepsis-induced lung injury. The signaling pathways leading to these events remain poorly defined. We sought to determine the role of MAPK kinase 3 (MKK3), a kinase of the p38 group, in the pathogenesis of sepsis. We used a murine i.p. LPS model of systemic inflammation to mimic sepsis. Lung injury parameters were assessed in lung tissue and bronchoalveolar lavage specimens. Primary lung endothelial cells were cultured and assessed for mediators of inflammation and injury, such as ICAM-1, AP-1, NF-κB, and mitochondrial reactive oxygen species. Our studies demonstrate that MKK3 deficiency confers virtually complete protection against organ injury after i.p. LPS. Specifically, MKK3(-/-) mice were protected against acute lung injury, as assessed by reduced inflammation, mitochondrial reactive oxygen species generation, endothelial injury, and ICAM-1 expression after LPS administration. Our results show that endothelial MKK3 is required for inflammatory cell recruitment to the lungs, mitochondrial oxidant-mediated AP-1, NF-κB activation, and ICAM-1 expression during LPS challenge. Collectively, these studies identify a novel role for MKK3 in lethal LPS responses and provide new therapeutic targets against sepsis and acute lung injury.
Collapse
Affiliation(s)
- Praveen Mannam
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Anthrax lethal toxin and the induction of CD4 T cell immunity. Toxins (Basel) 2012; 4:878-99. [PMID: 23162703 PMCID: PMC3496994 DOI: 10.3390/toxins4100878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 12/27/2022] Open
Abstract
Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.
Collapse
|
30
|
Calugi C, Trabocchi A, Lalli C, Guarna A. d-Proline-based peptidomimetic inhibitors of anthrax lethal factor. Eur J Med Chem 2012; 56:96-107. [DOI: 10.1016/j.ejmech.2012.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 11/27/2022]
|
31
|
Vargas M, Karamsetty R, Leppla SH, Chaudry GJ. Broad expression analysis of human ANTXR1/TEM8 transcripts reveals differential expression and novel splizce variants. PLoS One 2012; 7:e43174. [PMID: 22912819 PMCID: PMC3422265 DOI: 10.1371/journal.pone.0043174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/20/2012] [Indexed: 01/25/2023] Open
Abstract
Tumor endothelial marker 8 (TEM8; ANTXR1) is one of two anthrax toxin receptors; the other is capillary morphogenesis gene 2 protein (CMG2; ANTXR2). TEM8 shows enhanced expression in certain tumor endothelia, and is thought to be a player in tumor vasculature formation. However, a comprehensive expression profile of individual TEM8 variants in normal or cancerous tissues is lacking. In this work we carried out an extensive analysis of all splice variants of human TEM8 in 12 digestive tissues, and 8 each fetal and adult tissues, 6 of them cognate pairs. Using variant-specific primers, we first ascertained the status of full-length transcripts by nested PCR. We then carried out quantitative analysis of each transcript by real-time PCR. Three splice variants of TEM8 were reported before, two single-pass integral membrane forms (V1 and V2) and one secreted (V3). Our analysis has revealed two new variants, one encoding a membrane-bound form of the receptor and the other secreted, which we have designated V4 and V5, respectively. All tissues had V1, V2, V3, and V4, but only prostate had V5. Real-time PCR revealed that all variants are present at different levels in various tissues. V3 appeared the most abundant of all. To ascertain its functionality for anthrax toxin, we expressed the newly identified form V4 in a receptor-negative host cell, and included V1 and V2 for comparison. Cytotoxicity, toxin binding, and internalization assays showed V4 to be as efficient a receptor as V1 and V2.
Collapse
Affiliation(s)
- Micaela Vargas
- Cell and Molecular Biology Program, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Raghavendra Karamsetty
- Cell and Molecular Biology Program, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Stephen H. Leppla
- Microbial Pathogenesis Section, The Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - G. Jilani Chaudry
- Cell and Molecular Biology Program, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
32
|
Characterization of a therapeutic model of inhalational anthrax using an increase in body temperature in New Zealand white rabbits as a trigger for treatment. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1517-25. [PMID: 22837095 DOI: 10.1128/cvi.00292-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The development of an appropriate animal therapeutic model is essential to assess the potential efficacy of therapeutics for use in the event of a Bacillus anthracis exposure. We conducted a natural history study that showed New Zealand White rabbits exhibited a significant increase in body temperature (SIBT), changes in hematologic parameters, and increases in C-reactive protein and succumbed to disease with an average time to death of approximately 73 h following aerosol challenge with B. anthracis Ames spores. The SIBT was used as a trigger to treat with a fully human monoclonal antibody directed at protective antigen (PA). Ninety percent (9/10) of the treated rabbits survived the lethal inhalational challenge of B. anthracis. Further characterization investigated the protective window of opportunity for anti-PA antibody administration up to 12 h post-onset of SIBT. Eighty-three percent (5/6) of the rabbits treated at SIBT and 100% (6/6) of those treated at 6 h after SIBT survived challenge. Only 67% (4/6) of the rabbits treated at 12 h after SIBT survived. The increase in body temperature corresponded with both bacteremia and antigenemia (PA in the blood), indicating that SIBT is a suitable trigger to initiate treatment in a therapeutic model of inhalational anthrax.
Collapse
|
33
|
Weigel KJ, Rues L, Doyle EJ, Buchheit CL, Wood JG, Gallagher RJ, Kelly LE, Radel JD, Bradley KA, LeVine SM. Rapid vascular responses to anthrax lethal toxin in mice containing a segment of chromosome 11 from the CAST/Ei strain on a C57BL/6 genetic background. PLoS One 2012; 7:e40126. [PMID: 22792226 PMCID: PMC3390349 DOI: 10.1371/journal.pone.0040126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/01/2012] [Indexed: 11/29/2022] Open
Abstract
Host allelic variation controls the response to B. anthracis and the disease course of anthrax. Mouse strains with macrophages that are responsive to anthrax lethal toxin (LT) show resistance to infection while mouse strains with LT non-responsive macrophages succumb more readily. B6.CAST.11M mice have a region of chromosome 11 from the CAST/Ei strain (a LT responsive strain) introgressed onto a LT non-responsive C57BL/6J genetic background. Previously, B6.CAST.11M mice were found to exhibit a rapid inflammatory reaction to LT termed the early response phenotype (ERP), and displayed greater resistance to B. anthracis infection compared to C57BL/6J mice. Several ERP features (e.g., bloat, hypothermia, labored breathing, dilated pinnae vessels) suggested vascular involvement. To test this, Evan’s blue was used to assess vessel leakage and intravital microscopy was used to monitor microvascular blood flow. Increased vascular leakage was observed in lungs of B6.CAST.11M mice compared to C57BL/6J mice 1 hour after systemic administration of LT. Capillary blood flow was reduced in the small intestine mesentery without concomitant leukocyte emigration following systemic or topical application of LT, the latter suggesting a localized tissue mechanism in this response. Since LT activates the Nlrp1b inflammasome in B6.CAST.11M mice, the roles of inflammasome products, IL-1β and IL-18, were examined. Topical application to the mesentery of IL-1β but not IL-18 revealed pronounced slowing of blood flow in B6.CAST.11M mice that was not present in C57BL/6J mice. A neutralizing anti-IL-1β antibody suppressed the slowing of blood flow induced by LT, indicating a role for IL-1β in the response. Besides allelic differences controlling Nlrp1b inflammasome activation by LT observed previously, evidence presented here suggests that an additional genetic determinant(s) could regulate the vascular response to IL-1β. These results demonstrate that vessel leakage and alterations to blood flow are part of the rapid response in mice resistant to B. anthracis infection.
Collapse
Affiliation(s)
- Kelsey J. Weigel
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Rockhurst University, Kansas City, Missouri, United States of America
| | - Laura Rues
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Rockhurst University, Kansas City, Missouri, United States of America
| | - Edward J. Doyle
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Rockhurst University, Kansas City, Missouri, United States of America
| | - Cassandra L. Buchheit
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Rockhurst University, Kansas City, Missouri, United States of America
| | - John G. Wood
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Ryan J. Gallagher
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Laura E. Kelly
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Rockhurst University, Kansas City, Missouri, United States of America
| | - Jeffrey D. Radel
- Department of Occupational Therapy Education, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Kenneth A. Bradley
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven M. LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Göttle M, Dove S, Seifert R. Bacillus anthracis edema factor substrate specificity: evidence for new modes of action. Toxins (Basel) 2012; 4:505-35. [PMID: 22852066 PMCID: PMC3407890 DOI: 10.3390/toxins4070505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/15/2012] [Accepted: 06/27/2012] [Indexed: 12/20/2022] Open
Abstract
Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5'-triphosphate, uridine 5'-triphosphate and inosine 5'-triphosphate, in addition to adenosine 5'-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3':5'-monophosphate, cyclic uridine 3':5'-monophosphate and cyclic inosine 3':5'-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed.
Collapse
Affiliation(s)
- Martin Göttle
- Department of Neurology, Emory University School of Medicine, 6302 Woodruff Memorial Research Building, 101 Woodruff Circle, Atlanta, GA 30322, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-404-727-1678; Fax: +1-404-727-3157
| | - Stefan Dove
- Department of Medicinal/Pharmaceutical Chemistry II, University of Regensburg, D-93040 Regensburg, Germany;
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| |
Collapse
|
35
|
Lowe DE, Glomski IJ. Cellular and physiological effects of anthrax exotoxin and its relevance to disease. Front Cell Infect Microbiol 2012; 2:76. [PMID: 22919667 PMCID: PMC3417473 DOI: 10.3389/fcimb.2012.00076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/16/2012] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellular knowledge back to the broader physiological effects of the exotoxin. This review focuses on the progress that has been made bridging molecular knowledge back to the exotoxin’s physiological effects on the host.
Collapse
Affiliation(s)
- David E Lowe
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville VA, USA
| | | |
Collapse
|
36
|
Chromy BA, Fodor IK, Montgomery NK, Luciw PA, McCutchen-Maloney SL. Cluster analysis of host cytokine responses to biodefense pathogens in a whole blood ex vivo exposure model (WEEM). BMC Microbiol 2012; 12:79. [PMID: 22607329 PMCID: PMC3430575 DOI: 10.1186/1471-2180-12-79] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/20/2012] [Indexed: 01/14/2023] Open
Abstract
Background Rapid detection and therapeutic intervention for infectious and emerging diseases is a major scientific goal in biodefense and public health. Toward this end, cytokine profiles in human blood were investigated using a human whole blood ex vivo exposure model, called WEEM. Results Samples of whole blood from healthy volunteers were incubated with seven pathogens including Yersinia pseudotuberculosis, Yersinia enterocolitica, Bacillus anthracis, and multiple strains of Yersinia pestis, and multiplexed protein expression profiling was conducted on supernatants of these cultures with an antibody array to detect 30 cytokines simultaneously. Levels of 8 cytokines, IL-1α, IL-1β, IL-6, IL-8, IL-10, IP-10, MCP-1 and TNFα, were significantly up-regulated in plasma after bacterial exposures of 4 hours. Statistical clustering was applied to group the pathogens based on the host response protein expression profiles. The nearest phylogenetic neighbors clustered more closely than the more distant pathogens, and all seven pathogens were clearly differentiated from the unexposed control. In addition, the Y. pestis and Yersinia near neighbors were differentiated from the B. anthracis strains. Conclusions Cluster analysis, based on host response cytokine profiles, indicates that distinct patterns of immunomodulatory proteins are induced by the different pathogen exposures and these patterns may enable further development into biomarkers for diagnosing pathogen exposure.
Collapse
Affiliation(s)
- Brett A Chromy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA.
| | | | | | | | | |
Collapse
|
37
|
Moayeri M, Sastalla I, Leppla SH. Anthrax and the inflammasome. Microbes Infect 2012; 14:392-400. [PMID: 22207185 PMCID: PMC3322314 DOI: 10.1016/j.micinf.2011.12.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 01/07/2023]
Abstract
Anthrax lethal toxin (LT), a major virulence determinant of anthrax disease, induces vascular collapse in mice and rats. LT activates the Nlrp1 inflammasome in macrophages and dendritic cells, resulting in caspase-1 activation, IL-1β and IL-18 maturation and a rapid cell death (pyroptosis). This review presents the current understanding of LT-induced activation of Nlrp1 in cells and its consequences for toxin-mediated effects in rodent toxin and spore challenge models.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
38
|
Beierlein JM, Anderson AC. New developments in vaccines, inhibitors of anthrax toxins, and antibiotic therapeutics for Bacillus anthracis. Curr Med Chem 2012; 18:5083-94. [PMID: 22050756 DOI: 10.2174/092986711797636036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/07/2011] [Accepted: 09/09/2011] [Indexed: 01/28/2023]
Abstract
Bacillus anthracis, the causative agent responsible for anthrax infections, poses a significant biodefense threat. There is a high mortality rate associated with untreated anthrax infections; specifically, inhalation anthrax is a particularly virulent form of infection with mortality rates close to 100%, even with aggressive treatment. Currently, a vaccine is not available to the general public and few antibiotics have been approved by the FDA for the treatment of inhalation anthrax. With the threat of natural or engineered bacterial resistance to antibiotics and the limited population for whom the current drugs are approved, there is a clear need for more effective treatments against this deadly infection. A comprehensive review of current research in drug discovery is presented in this article, including efforts to improve the purity and stability of vaccines, design inhibitors targeting the anthrax toxins, and identify inhibitors of novel enzyme targets. High resolution structural information for the anthrax toxins and several essential metabolic enzymes has played a significant role in aiding the structure-based design of potent and selective antibiotics.
Collapse
Affiliation(s)
- J M Beierlein
- Dept. Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Storrs, CT 06269, USA
| | | |
Collapse
|
39
|
Bann JG. Anthrax toxin protective antigen--insights into molecular switching from prepore to pore. Protein Sci 2012; 21:1-12. [PMID: 22095644 DOI: 10.1002/pro.752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The protective antigen is a key component of the anthrax toxin, as it allows entry of the enzymatic components edema factor and lethal factor into the host cell, through the formation of a membrane spanning pore. This event is absolutely critical for the pathogenesis of anthrax, and although we have yet to understand the mechanism of pore formation, recent developments have provided key insights into how this process may occur. Based on the available data, a model is proposed for the kinetic steps for protective antigen conversion from prepore to pore. In this model, the driving force for pore formation is the formation of the phi (ϕ)-clamp, a region that forms a leak-free seal around the translocating polypeptide. Formation of the ϕ-clamp elicits movements within the prepore that provide steric freedom for the subsequent conformational changes required to form the membrane spanning pore.
Collapse
Affiliation(s)
- James G Bann
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260-0051, USA.
| |
Collapse
|
40
|
Thomas D, Naughton J, Cote C, Welkos S, Manchester M, Young JAT. Delayed toxicity associated with soluble anthrax toxin receptor decoy-Ig fusion protein treatment. PLoS One 2012; 7:e34611. [PMID: 22511955 PMCID: PMC3325282 DOI: 10.1371/journal.pone.0034611] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/05/2012] [Indexed: 11/21/2022] Open
Abstract
Soluble receptor decoy inhibitors, including receptor-immunogloubulin (Ig) fusion proteins, have shown promise as candidate anthrax toxin therapeutics. These agents act by binding to the receptor-interaction site on the protective antigen (PA) toxin subunit, thereby blocking toxin binding to cell surface receptors. Here we have made the surprising observation that co-administration of receptor decoy-Ig fusion proteins significantly delayed, but did not protect, rats challenged with anthrax lethal toxin. The delayed toxicity was associated with the in vivo assembly of a long-lived complex comprised of anthrax lethal toxin and the receptor decoy-Ig inhibitor. Intoxication in this system presumably results from the slow dissociation of the toxin complex from the inhibitor following their prolonged circulation. We conclude that while receptor decoy-Ig proteins represent promising candidates for the early treatment of B. anthracis infection, they may not be suitable for therapeutic use at later stages when fatal levels of toxin have already accumulated in the bloodstream.
Collapse
Affiliation(s)
- Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - John Naughton
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Christopher Cote
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Susan Welkos
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (MM); (JATY)
| | - John A. T. Young
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (MM); (JATY)
| |
Collapse
|
41
|
Veach RA, Zienkiewicz J, Collins RD, Hawiger J. Lethality in a murine model of pulmonary anthrax is reduced by combining nuclear transport modifier with antimicrobial therapy. PLoS One 2012; 7:e30527. [PMID: 22291977 PMCID: PMC3266913 DOI: 10.1371/journal.pone.0030527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/22/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In the last ten years, bioterrorism has become a serious threat and challenge to public health worldwide. Pulmonary anthrax caused by airborne Bacillus anthracis spores is a life-threatening disease often refractory to antimicrobial therapy. Inhaled spores germinate into vegetative forms that elaborate an anti-phagocytic capsule along with potent exotoxins which disrupt the signaling pathways governing the innate and adaptive immune responses and cause endothelial cell dysfunction leading to vascular injury in the lung, hypoxia, hemorrhage, and death. METHODS/PRINCIPAL FINDINGS Using a murine model of pulmonary anthrax disease, we showed that a nuclear transport modifier restored markers of the innate immune response in spore-infected animals. An 8-day protocol of single-dose ciprofloxacin had no significant effect on mortality (4% survival) of A/J mice lethally infected with B. anthracis Sterne. Strikingly, mice were much more likely to survive infection (52% survival) when treated with ciprofloxacin and a cell-penetrating peptide modifier of host nuclear transport, termed cSN50. In B. anthracis-infected animals treated with antibiotic alone, we detected a muted innate immune response manifested by cytokines, tumor necrosis factor alpha (TNFα), interleukin (IL)-6, and chemokine monocyte chemoattractant protein-1 (MCP-1), while the hypoxia biomarker, erythropoietin (EPO), was greatly elevated. In contrast, cSN50-treated mice receiving ciprofloxacin demonstrated a restored innate immune responsiveness and reduced EPO level. Consistent with this improvement of innate immunity response and suppression of hypoxia biomarker, surviving mice in the combination treatment group displayed minimal histopathologic signs of vascular injury and a marked reduction of anthrax bacilli in the lungs. CONCLUSIONS We demonstrate, for the first time, that regulating nuclear transport with a cell-penetrating modifier provides a cytoprotective effect, which enables the host's immune system to reduce its susceptibility to lethal B. anthracis infection. Thus, by combining a nuclear transport modifier with antimicrobial therapy we offer a novel adjunctive measure to control florid pulmonary anthrax disease.
Collapse
Affiliation(s)
- Ruth Ann Veach
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jozef Zienkiewicz
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Robert D. Collins
- Department of Pathology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jacek Hawiger
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
42
|
Klezovich-Bénard M, Corre JP, Jusforgues-Saklani H, Fiole D, Burjek N, Tournier JN, Goossens PL. Mechanisms of NK cell-macrophage Bacillus anthracis crosstalk: a balance between stimulation by spores and differential disruption by toxins. PLoS Pathog 2012; 8:e1002481. [PMID: 22253596 PMCID: PMC3257302 DOI: 10.1371/journal.ppat.1002481] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/28/2011] [Indexed: 01/08/2023] Open
Abstract
NK cells are important immune effectors for preventing microbial invasion and dissemination, through natural cytotoxicity and cytokine secretion. Bacillus anthracis spores can efficiently drive IFN-γ production by NK cells. The present study provides insights into the mechanisms of cytokine and cellular signaling that underlie the process of NK-cell activation by B. anthracis and the bacterial strategies to subvert and evade this response. Infection with non-toxigenic encapsulated B. anthracis induced recruitment of NK cells and macrophages into the mouse draining lymph node. Production of edema (ET) or lethal (LT) toxin during infection impaired this cellular recruitment. NK cell depletion led to accelerated systemic bacterial dissemination. IFN-γ production by NK cells in response to B. anthracis spores was: i) contact-dependent through RAE-1-NKG2D interaction with macrophages; ii) IL-12, IL-18, and IL-15-dependent, where IL-12 played a key role and regulated both NK cell and macrophage activation; and iii) required IL-18 for only an initial short time window. B. anthracis toxins subverted both NK cell essential functions. ET and LT disrupted IFN-γ production through different mechanisms. LT acted both on macrophages and NK cells, whereas ET mainly affected macrophages and did not alter NK cell capacity of IFN-γ secretion. In contrast, ET and LT inhibited the natural cytotoxicity function of NK cells, both in vitro and in vivo. The subverting action of ET thus led to dissociation in NK cell function and blocked natural cytotoxicity without affecting IFN-γ secretion. The high efficiency of this process stresses the impact that this toxin may exert in anthrax pathogenesis, and highlights a potential usefulness for controlling excessive cytotoxic responses in immunopathological diseases. Our findings therefore exemplify the delicate balance between bacterial stimulation and evasion strategies. This highlights the potential implication of the crosstalk between host innate defences and B. anthracis in initial anthrax control mechanisms. NK cells are important immune effectors that perform a surveillance task and react to transformed, stressed, and virally infected cells. They represent a first-line defence against cancer and pathogen invasion. Different pathogens trigger distinct NK-cell activation pathways. The Bacillus anthracis spore is the highly resistant form that enters the host and provokes anthrax. This microbe kills through a combination of acute bacterial infection and devastating toxemia. In the present study, we characterise the crosstalk between NK cells and spores, as well as the strategies used by B. anthracis to evade initial control mechanisms and impact anthrax pathogenesis. Our findings exemplify the spores' property to efficiently drive a high production of IFN-γ by NK cells, as well as the complex pathways used for activation which require both cytokine and cellular signaling. B. anthracis subverts this response through its toxins by paralysing essential NK cell functions. Furthermore, edema toxin from B. anthracis blocks natural cytotoxicity without affecting IFN-γ secretion. The CyaA toxin of Bordetella pertussis possesses the same enzymatic activity and has a similar effect. The high efficiency of these toxins in blocking cytotoxicity in vivo implies possible exploitation of their subverting activity to modulate excessive cytotoxic responses in immunopathological diseases.
Collapse
MESH Headings
- Animals
- Bacillus anthracis/immunology
- Bacterial Toxins/pharmacology
- Cells, Cultured
- Female
- Homeostasis/drug effects
- Homeostasis/immunology
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Macrophage Activation/drug effects
- Macrophage Activation/immunology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptor Cross-Talk/drug effects
- Receptor Cross-Talk/immunology
- Spores, Bacterial/immunology
- Spores, Bacterial/physiology
Collapse
Affiliation(s)
- Maria Klezovich-Bénard
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
| | - Jean-Philippe Corre
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
| | | | - Daniel Fiole
- Unité Interactions Hôte-Agents Pathogènes, Département de Microbiologie, Institut de Recherche Biomédicale des Armées, La Tronche, France
- Laboratoire Interdisciplinaire de Physique, UMR 5588 CNRS/Université Joseph Fourier, St-Martin-d'Hères, France
| | - Nick Burjek
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
| | - Jean-Nicolas Tournier
- Unité Interactions Hôte-Agents Pathogènes, Département de Microbiologie, Institut de Recherche Biomédicale des Armées, La Tronche, France
- École du Val-de-Grâce, Paris, France
| | - Pierre L. Goossens
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
- * E-mail:
| |
Collapse
|
43
|
Guichard A, Nizet V, Bier E. New insights into the biological effects of anthrax toxins: linking cellular to organismal responses. Microbes Infect 2011; 14:97-118. [PMID: 21930233 DOI: 10.1016/j.micinf.2011.08.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 12/15/2022]
Abstract
The anthrax toxins lethal toxin (LT) and edema toxin (ET) are essential virulence factors produced by Bacillus anthracis. These toxins act during two distinct phases of anthrax infection. During the first, prodromal phase, which is often asymptomatic, anthrax toxins act on cells of the immune system to help the pathogen establish infection. Then, during the rapidly progressing (or fulminant) stage of the disease bacteria disseminate via a hematological route to various target tissues and organs, which are typically highly vascularized. As bacteria proliferate in the bloodstream, LT and ET begin to accumulate rapidly reaching a critical threshold level that will cause death even when the bacterial proliferation is curtailed by antibiotics. During this final phase of infection the toxins cause an increase in vascular permeability and a decrease in function of target organs including the heart, spleen, kidney, adrenal gland, and brain. In this review, we examine the various biological effects of anthrax toxins, focusing on the fulminant stage of the disease and on mechanisms by which the two toxins may collaborate to cause cardiovascular collapse. We discuss normal mechanisms involved in maintaining vascular integrity and based on recent studies indicating that LT and ET cooperatively inhibit membrane trafficking to cell-cell junctions we explore several potential mechanisms by which the toxins may achieve their lethal effects. We also summarize the effects of other potential virulence factors secreted by B. anthracis and consider the role of toxic factors in the evolutionarily recent emergence of this devastating disease.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA
| | | | | |
Collapse
|
44
|
AMPD3 is involved in anthrax LeTx-induced macrophage cell death. Protein Cell 2011; 2:564-72. [PMID: 21822801 DOI: 10.1007/s13238-011-1078-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/10/2011] [Indexed: 10/17/2022] Open
Abstract
The responses of macrophages to Bacillus anthracis infection are important for the survival of the host, since macrophages are required for the germination of B. anthracis spores in lymph nodes, and macrophage death exacerbates anthrax lethal toxin (LeTx)-induced organ collapse. To elucidate the mechanism of macrophage cell death induced by LeTx, we performed a genetic screen to search for genes associated with LeTx-induced macrophage cell death. RAW264.7 cells, a macrophage-like cell line sensitive to LeTx-induced death, were randomly mutated and LeTx-resistant mutant clones were selected. AMP deaminase 3 (AMPD3), an enzyme that converts AMP to IMP, was identified to be mutated in one of the resistant clones. The requirement of AMPD3 in LeTx-induced cell death of RAW 264.7 cells was confirmed by the restoration of LeTx sensitivity with ectopic reconstitution of AMPD3 expression. AMPD3 deficiency does not affect LeTx entering cells and the cleavage of mitogen-activated protein kinase kinase (MKK) by lethal factor inside cells, but does impair an unknown downstream event that is linked to cell death. Our data provides new information regarding LeTx-induced macrophage death and suggests that there is a key regulatory site downstream of or parallel to MKK cleavage that controls the cell death in LeTx-treated macrophages.
Collapse
|
45
|
Inhibition of anthrax toxins with a bispecific monoclonal antibody that cross reacts with edema factor as well as lethal factor of Bacillus anthracis. Mol Immunol 2011; 48:1958-65. [PMID: 21704379 DOI: 10.1016/j.molimm.2011.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/26/2011] [Accepted: 05/26/2011] [Indexed: 01/29/2023]
Abstract
Bacillus anthracis overwhelms its victims by way of two toxins, namely edema toxin and lethal toxin. Lethal toxin is formed by the combination of protective antigen with lethal factor while edema toxin is formed by the combination of Protective Antigen with edema factor. Overlapping regions between edema factor and lethal factor have been reported in past. For the first time, this study reports characterization of a bispecific monoclonal antibody (mAb), H10, which showed high affinity interaction with both edema factor and lethal factor of B. anthracis. H10 mAb not only neutralized the adenylate cyclase activity of edema toxin but it could also neutralize the cytotoxic activity of lethal toxin. Passive immunization with this antibody gave 100% protection to mice from in vivo challenge with lethal toxin and edema toxin. The results of this study suggest future application of this bispecific monoclonal antibody as passive immunization prophylactics in cases of B. anthracis exposure and infection.
Collapse
|
46
|
Paccani SR, Baldari CT. T cell targeting by anthrax toxins: two faces of the same coin. Toxins (Basel) 2011; 3:660-71. [PMID: 22069732 PMCID: PMC3202842 DOI: 10.3390/toxins3060660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 12/24/2022] Open
Abstract
Bacillus anthracis, similar to other bacterial pathogens, has evolved effective immune evasion strategies to prolong its survival in the host, thus ensuring the unchecked spread of the infection. This function is subserved by lethal (LT) and edema (ET) toxins, two exotoxins produced by vegetative anthrax bacilli following germination of the spores. The structure of these toxins and the mechanism of cell intoxication are topics covered by other reviews in this issue. Here we shall discuss how B. anthracis uses LT and ET to suppress the immune defenses of the host, focusing on T lymphocytes, the key players in adaptive immunity. We shall also summarize recent findings showing that, depending on its concentration, ET has the ability not only to suppress T cell activation but also to promote the polarization of CD4(+) T cells to the Th2 and Th17 subsets, highlighting the potential use of this toxin as an immunomodulator.
Collapse
Affiliation(s)
- Silvia Rossi Paccani
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
- Novartis Vaccines, Via Fiorentina 1, 53100 Siena, Italy
- Author to whom correspondence should be addressed; or ; Tel.: +39-0577-234396; Fax: +39-0577-234476
| | - Cosima T. Baldari
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| |
Collapse
|
47
|
Brenneman KE, Doganay M, Akmal A, Goldman S, Galloway DR, Mateczun AJ, Cross AS, Baillie LW. The early humoral immune response to Bacillus anthracis toxins in patients infected with cutaneous anthrax. ACTA ACUST UNITED AC 2011; 62:164-72. [PMID: 21401726 DOI: 10.1111/j.1574-695x.2011.00800.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax, produces a tripartite toxin composed of two enzymatically active subunits, lethal factor (LF) and edema factor (EF), which, when associated with a cell-binding component, protective antigen (PA), form lethal toxin and edema toxin, respectively. In this preliminary study, we characterized the toxin-specific antibody responses observed in 17 individuals infected with cutaneous anthrax. The majority of the toxin-specific antibody responses observed following infection were directed against LF, with immunoglobulin G (IgG) detected as early as 4 days after the onset of symptoms in contrast to the later and lower EF- and PA-specific IgG responses. Unlike the case with infection, the predominant toxin-specific antibody response of those immunized with the US anthrax vaccine absorbed and UK anthrax vaccine precipitated licensed anthrax vaccines was directed against PA. We observed that the LF-specific human antibodies were, like anti-PA antibodies, able to neutralize toxin activity, suggesting the possibility that they may contribute to protection. We conclude that an antibody response to LF might be a more sensitive diagnostic marker of anthrax than to PA. The ability of human LF-specific antibodies to neutralize toxin activity supports the possible inclusion of LF in future anthrax vaccines.
Collapse
Affiliation(s)
- Karen E Brenneman
- Biological Defense Research Directorate, Naval Medical Research Center, Rockville, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Boyer AE, Gallegos-Candela M, Lins RC, Kuklenyik Z, Woolfitt A, Moura H, Kalb S, Quinn CP, Barr JR. Quantitative mass spectrometry for bacterial protein toxins--a sensitive, specific, high-throughput tool for detection and diagnosis. Molecules 2011; 16:2391-413. [PMID: 21403598 PMCID: PMC6259840 DOI: 10.3390/molecules16032391] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/01/2011] [Accepted: 03/09/2011] [Indexed: 12/28/2022] Open
Abstract
Matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometry (MS) is a valuable high-throughput tool for peptide analysis. Liquid chromatography electrospray ionization (LC-ESI) tandem-MS provides sensitive and specific quantification of small molecules and peptides. The high analytic power of MS coupled with high-specificity substrates is ideally suited for detection and quantification of bacterial enzymatic activities. As specific examples of the MS applications in disease diagnosis and select agent detection, we describe recent advances in the analyses of two high profile protein toxin groups, the Bacillus anthracis toxins and the Clostridium botulinum neurotoxins. The two binary toxins produced by B. anthracis consist of protective antigen (PA) which combines with lethal factor (LF) and edema factor (EF), forming lethal toxin and edema toxin respectively. LF is a zinc-dependent endoprotease which hydrolyzes specific proteins involved in inflammation and immunity. EF is an adenylyl cyclase which converts ATP to cyclic-AMP. Toxin-specific enzyme activity for a strategically designed substrate, amplifies reaction products which are detected by MALDI-TOF-MS and LC-ESI-MS/MS. Pre-concentration/purification with toxin specific monoclonal antibodies provides additional specificity. These combined technologies have achieved high specificity, ultrasensitive detection and quantification of the anthrax toxins. We also describe potential applications to diseases of high public health impact, including Clostridium difficile glucosylating toxins and the Bordetella pertussis adenylyl cyclase.
Collapse
Affiliation(s)
- Anne E. Boyer
- Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; E-Mail: (A.E.B.)
| | - Maribel Gallegos-Candela
- Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; E-Mail: (A.E.B.)
| | - Renato C. Lins
- Battelle Analytical Services, Atlanta, at the Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA
| | - Zsuzsanna Kuklenyik
- Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; E-Mail: (A.E.B.)
| | - Adrian Woolfitt
- Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; E-Mail: (A.E.B.)
| | - Hercules Moura
- Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; E-Mail: (A.E.B.)
| | - Suzanne Kalb
- Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; E-Mail: (A.E.B.)
| | - Conrad P. Quinn
- Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30333, USA
| | - John R. Barr
- Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA 30341, USA; E-Mail: (A.E.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-770-488-7848; Fax: +1-770-488-0509
| |
Collapse
|
49
|
MEK2 is sufficient but not necessary for proliferation and anchorage-independent growth of SK-MEL-28 melanoma cells. PLoS One 2011; 6:e17165. [PMID: 21365009 PMCID: PMC3041822 DOI: 10.1371/journal.pone.0017165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/23/2011] [Indexed: 01/14/2023] Open
Abstract
Mitogen-activated protein kinase kinases (MKK or MEK) 1 and 2 are usually treated as redundant kinases. However, in assessing their relative contribution towards ERK-mediated biologic response investigators have relied on tests of necessity, not sufficiency. In response we developed a novel experimental model using lethal toxin (LeTx), an anthrax toxin-derived pan-MKK protease, and genetically engineered protease resistant MKK mutants (MKKcr) to test the sufficiency of MEK signaling in melanoma SK-MEL-28 cells. Surprisingly, ERK activity persisted in LeTx-treated cells expressing MEK2cr but not MEK1cr. Microarray analysis revealed non-overlapping downstream transcriptional targets of MEK1 and MEK2, and indicated a substantial rescue effect of MEK2cr on proliferation pathways. Furthermore, LeTx efficiently inhibited the cell proliferation and anchorage-independent growth of SK-MEL-28 cells expressing MKK1cr but not MEK2cr. These results indicate in SK-MEL-28 cells MEK1 and MEK2 signaling pathways are not redundant and interchangeable for cell proliferation. We conclude that in the absence of other MKK, MEK2 is sufficient for SK-MEL-28 cell proliferation. MEK1 conditionally compensates for loss of MEK2 only in the presence of other MKK.
Collapse
|
50
|
Day J, Friedman A, Schlesinger LS. Modeling the host response to inhalation anthrax. J Theor Biol 2011; 276:199-208. [PMID: 21295589 DOI: 10.1016/j.jtbi.2011.01.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 12/14/2010] [Accepted: 01/31/2011] [Indexed: 12/19/2022]
Abstract
Inhalation anthrax, an often fatal infection, is initiated by endospores of the bacterium Bacillus anthracis, which are introduced into the lung. To better understand the pathogenesis of an inhalation anthrax infection, we propose a two-compartment mathematical model that takes into account the documented early events of such an infection. Anthrax spores, once inhaled, are readily taken up by alveolar phagocytes, which then migrate rather quickly out of the lung and into the thoracic/mediastinal lymph nodes. En route, these spores germinate to become vegetative bacteria. In the lymph nodes, the bacteria kill the host cells and are released into the extracellular environment where they can be disseminated into the blood stream and grow to a very high level, often resulting in the death of the infected person. Using this framework as the basis of our model, we explore the probability of survival of an infected individual. This is dependent on several factors, such as the rate of migration and germination events and treatment with antibiotics.
Collapse
Affiliation(s)
- Judy Day
- Mathematical Biosciences Institute, 3rd Floor Jennings Hall, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|