1
|
Lee SE, Kang SG, Choi MJ, Jung SB, Ryu MJ, Chung HK, Chang JY, Kim YK, Lee JH, Kim KS, Kim HJ, Lee HK, Yi HS, Shong M. Growth Differentiation Factor 15 Mediates Systemic Glucose Regulatory Action of T-Helper Type 2 Cytokines. Diabetes 2017; 66:2774-2788. [PMID: 28874416 DOI: 10.2337/db17-0333] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/24/2017] [Indexed: 11/13/2022]
Abstract
T-helper type 2 (Th2) cytokines, including interleukin (IL)-13 and IL-4, produced in adipose tissue, are critical regulators of intra-adipose and systemic lipid and glucose metabolism. Furthermore, IL-13 is a potential therapy for insulin resistance in obese mouse models. Here, we examined mediators produced by adipocytes that are responsible for regulating systemic glucose homeostasis in response to Th2 cytokines. We used RNA sequencing data analysis of cultured adipocytes to screen factors secreted in response to recombinant IL-13. Recombinant IL-13 induced expression of growth differentiation factor 15 (GDF15) via the Janus kinase-activated STAT6 pathway. In vivo administration of α-galactosylceramide or IL-33 increased IL-4 and IL-13 production, thereby increasing GDF15 levels in adipose tissue and in plasma of mice; however, these responses were abrogated in STAT6 knockout mice. Moreover, administration of recombinant IL-13 to wild-type mice fed a high-fat diet (HFD) improved glucose intolerance; this was not the case for GDF15 knockout mice fed the HFD. Taken together, these data suggest that GDF15 is required for IL-13-induced improvement of glucose intolerance in mice fed an HFD. Thus, beneficial effects of Th2 cytokines on systemic glucose metabolism and insulin sensitivity are mediated by GDF15. These findings open up a potential pharmacological route for reversing insulin resistance associated with obesity.
Collapse
Affiliation(s)
- Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
2
|
Mizuma A, Yenari MA. Anti-Inflammatory Targets for the Treatment of Reperfusion Injury in Stroke. Front Neurol 2017; 8:467. [PMID: 28936196 PMCID: PMC5594066 DOI: 10.3389/fneur.2017.00467] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
While the mainstay of acute stroke treatment includes revascularization via recombinant tissue plasminogen activator or mechanical thrombectomy, only a minority of stroke patients are eligible for treatment, as delayed treatment can lead to worsened outcome. This worsened outcome at the experimental level has been attributed to an entity known as reperfusion injury (R/I). R/I is occurred when revascularization is delayed after critical brain and vascular injury has occurred, so that when oxygenated blood is restored, ischemic damage is increased, rather than decreased. R/I can increase lesion size and also worsen blood barrier breakdown and lead to brain edema and hemorrhage. A major mechanism underlying R/I is that of poststroke inflammation. The poststroke immune response consists of the aberrant activation of glial cell, infiltration of peripheral leukocytes, and the release of damage-associated molecular pattern (DAMP) molecules elaborated by ischemic cells of the brain. Inflammatory mediators involved in this response include cytokines, chemokines, adhesion molecules, and several immune molecule effectors such as matrix metalloproteinases-9, inducible nitric oxide synthase, nitric oxide, and reactive oxygen species. Several experimental studies over the years have characterized these molecules and have shown that their inhibition improves neurological outcome. Yet, numerous clinical studies failed to demonstrate any positive outcomes in stroke patients. However, many of these clinical trials were carried out before the routine use of revascularization therapies. In this review, we cover mechanisms of inflammation involved in R/I, therapeutic targets, and relevant experimental and clinical studies, which might stimulate renewed interest in designing clinical trials to specifically target R/I. We propose that by targeting anti-inflammatory targets in R/I as a combined therapy, it may be possible to further improve outcomes from pharmacological thrombolysis or mechanical thrombectomy.
Collapse
Affiliation(s)
- Atsushi Mizuma
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
3
|
El Darzi E, Bazzi S, Daoud S, Echtay KS, Bahr GM. Differential regulation of surface receptor expression, proliferation, and apoptosis in HaCaT cells stimulated with interferon-γ, interleukin-4, tumor necrosis factor-α, or muramyl dipeptide. Int J Immunopathol Pharmacol 2017; 30:130-145. [PMID: 28449603 PMCID: PMC5806789 DOI: 10.1177/0394632017707611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Keratinocytes are routinely subjected to both internal and external stimulation. This study investigates the effects of interferon gamma, interleukin-4, tumor necrosis factor alpha, and the synthetic immunomodulator muramyl dipeptide on the human keratinocyte cell line, HaCaT. Following HaCaT stimulation with cytokines or muramyl dipeptide for different time periods, changes in the expression of different cell surface receptors, cell proliferation, and cell apoptosis were evaluated by flow cytometry, tritiated thymidine uptake, and annexin-V staining, respectively. A significant decrease in the expression of CD49d was found upon treatment with interleukin-4. Interferon gamma and tumor necrosis factor alpha increased the expression of intercellular adhesion molecule 1 and major histocompatibility complex class I, whereas major histocompatibility complex class II and CD1b were only upregulated by interferon gamma. Interferon gamma and tumor necrosis factor alpha had opposite effects regarding CD119 expression, with the former downregulating, while the latter upregulating its expression. Of the stimuli tested, only interferon gamma and tumor necrosis factor alpha significantly inhibited proliferation of HaCaT cells, yet only interferon gamma played a significant role in inducing HaCaT cell apoptosis. Our data demonstrate differential effects of the three tested cytokines on keratinocytes and reveal that the absence of HaCaT cell responses to muramyl dipeptide is associated with undetectable levels of its cytoplasmic receptor, nucleotide-binding oligomerization domain-containing protein 2.
Collapse
Affiliation(s)
- Emale El Darzi
- 1 Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, Lebanon
| | - Samer Bazzi
- 2 Department of Biology, Faculty of Sciences, University of Balamand, Al Kurah, Lebanon
| | - Sarah Daoud
- 1 Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, Lebanon
| | - Karim S Echtay
- 1 Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, Lebanon
| | - Georges M Bahr
- 1 Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, Lebanon
| |
Collapse
|
4
|
Alves de Medeiros AK, Speeckaert R, Desmet E, Van Gele M, De Schepper S, Lambert J. JAK3 as an Emerging Target for Topical Treatment of Inflammatory Skin Diseases. PLoS One 2016; 11:e0164080. [PMID: 27711196 PMCID: PMC5053514 DOI: 10.1371/journal.pone.0164080] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022] Open
Abstract
The recent interest and elucidation of the JAK/STAT signaling pathway created new targets for the treatment of inflammatory skin diseases (ISDs). JAK inhibitors in oral and topical formulations have shown beneficial results in psoriasis and alopecia areata. Patients suffering from other ISDs might also benefit from JAK inhibition. Given the development of specific JAK inhibitors, the expression patterns of JAKs in different ISDs needs to be clarified. We aimed to analyze the expression of JAK/STAT family members in a set of prevalent ISDs: psoriasis, lichen planus (LP), cutaneous lupus erythematosus (CLE), atopic dermatitis (AD), pyoderma gangrenosum (PG) and alopecia areata (AA) versus healthy controls for (p)JAK1, (p)JAK2, (p)JAK3, (p)TYK2, pSTAT1, pSTAT2 and pSTAT3. The epidermis carried in all ISDs, except for CLE, a strong JAK3 signature. The dermal infiltrate showed a more diverse expression pattern. JAK1, JAK2 and JAK3 were significantly overexpressed in PG and AD suggesting the need for pan-JAK inhibitors. In contrast, psoriasis and LP showed only JAK1 and JAK3 upregulation, while AA and CLE were characterized by a single dermal JAK signal (pJAK3 and pJAK1, respectively). This indicates that the latter diseases may benefit from more targeted JAK inhibitors. Our in vitro keratinocyte psoriasis model displayed reversal of the psoriatic JAK profile following tofacitinib treatment. This direct interaction with keratinocytes may decrease the need for deep skin penetration of topical JAK inhibitors in order to exert its effects on dermal immune cells. In conclusion, these results point to the important contribution of the JAK/STAT pathway in several ISDs. Considering the epidermal JAK3 expression levels, great interest should go to the investigation of topical JAK3 inhibitors as therapeutic option of ISDs.
Collapse
Affiliation(s)
- Ana Karina Alves de Medeiros
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
- Department of Dermatology, Ghent University, Ghent, Belgium
- * E-mail:
| | - Reinhart Speeckaert
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
- Department of Dermatology, Ghent University, Ghent, Belgium
| | - Eline Desmet
- Department of Dermatology, Ghent University, Ghent, Belgium
| | | | - Sofie De Schepper
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Jo Lambert
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
- Department of Dermatology, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Hall SL, Baker T, Lajoie S, Richgels PK, Yang Y, McAlees JW, van Lier A, Wills-Karp M, Sivaprasad U, Acciani TH, LeCras TD, Myers JB, Kovacic MB, Lewkowich IP. IL-17A enhances IL-13 activity by enhancing IL-13-induced signal transducer and activator of transcription 6 activation. J Allergy Clin Immunol 2016; 139:462-471.e14. [PMID: 27417023 DOI: 10.1016/j.jaci.2016.04.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/22/2016] [Accepted: 04/25/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Increased IL-17A production has been associated with more severe asthma; however, the mechanisms whereby IL-17A can contribute to IL-13-driven pathology in asthmatic patients remain unclear. OBJECTIVE We sought to gain mechanistic insight into how IL-17A can influence IL-13-driven responses. METHODS The effect of IL-17A on IL-13-induced airway hyperresponsiveness, gene expression, mucus hypersecretion, and airway inflammation was assessed by using in vivo models of IL-13-induced lung pathology and in vitro culture of murine fibroblast cell lines and primary fibroblasts and human epithelial cell lines or primary human epithelial cells exposed to IL-13, IL-17A, or both. RESULTS Compared with mice given intratracheal IL-13 alone, those exposed to IL-13 and IL-17A had augmented airway hyperresponsiveness, mucus production, airway inflammation, and IL-13-induced gene expression. In vitro, IL-17A enhanced IL-13-induced gene expression in asthma-relevant murine and human cells. In contrast to the exacerbating influence of IL-17A on IL-13-induced responses, coexposure to IL-13 inhibited IL-17A-driven antimicrobial gene expression in vivo and in vitro. Mechanistically, in both primary human and murine cells, the IL-17A-driven increase in IL-13-induced gene expression was associated with enhanced IL-13-driven signal transducer and activator of transcription 6 activation. CONCLUSIONS Our data suggest that IL-17A contributes to asthma pathophysiology by increasing the capacity of IL-13 to activate intracellular signaling pathways, such as signal transducer and activator of transcription 6. These data represent the first mechanistic explanation of how IL-17A can directly contribute to the pathogenesis of IL-13-driven pathology.
Collapse
Affiliation(s)
- Sara L Hall
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Theresa Baker
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stephane Lajoie
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Phoebe K Richgels
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yanfen Yang
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jaclyn W McAlees
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Adelaide van Lier
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marsha Wills-Karp
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Umasundari Sivaprasad
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Thomas H Acciani
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Timothy D LeCras
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jocelyn Biagini Myers
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Melinda Butsch Kovacic
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ian P Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
6
|
Wang S, Zhou J, Kang W, Dong Z, Wang H. Tocilizumab inhibits neuronal cell apoptosis and activates STAT3 in cerebral infarction rat model. Bosn J Basic Med Sci 2016; 16:145-50. [PMID: 26773188 PMCID: PMC4852997 DOI: 10.17305/bjbms.2016.853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/17/2015] [Indexed: 01/10/2023] Open
Abstract
Cerebral infarction is a severe hypoxic ischemic necrosis with accelerated neuronal cell apoptosis in the brain. As a monoclonal antibody against interleukin 6, tocilizumab (TCZ) is widely used in immune diseases, whose function in cerebral infarction has not been studied. This study aims to reveal the role of TCZ in regulating neuronal cell apoptosis in cerebral infarction. The cerebral infarction rat model was constructed by middle cerebral artery occlusion and treated with TCZ. Cell apoptosis in hippocampus and cortex of the brain was examined with TUNEL method. Rat neuronal cells cultured in oxygen-glucose deprivation (OGD) conditions and treated with TCZ were used to compare cell viability and apoptosis. Apoptosis-related factors including B-cell lymphoma extra large (Bcl-xL) and Caspase 3, as well as the phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in brain cortex were analyzed from the protein level. Results indicated that TCZ treatment could significantly prevent the promoted cell apoptosis caused by cerebral infarction or OGD (P < 0.05 or P < 0.01). In brain cortex of the rat model, TCZ up-regulated Bcl-xL and down-regulated Caspase 3, consistent with the inhibited cell apoptosis. It also promoted tyrosine 705 phosphorylation of STAT3, which might be the potential regulatory mechanism of TCZ in neuronal cells. This study provided evidence for the protective role of TCZ against neuronal cell apoptosis in cerebral infarction. Based on these fundamental data, TCZ is a promising option for treating cerebral infarction, but further investigations on related mechanisms are still necessary.
Collapse
Affiliation(s)
- Shaojun Wang
- Department of Neurology, Xianyang Hospital of Yan'an University, Xianyang, Shaanxi, China..
| | | | | | | | | |
Collapse
|
7
|
Berg EL, O'Mahony A. Complex Primary Human Cell Systems for Drug Discovery. HUMAN-BASED SYSTEMS FOR TRANSLATIONAL RESEARCH 2014. [DOI: 10.1039/9781782620136-00088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phenotypic or biofunctional assays play an important role in drug discovery by helping to bridge the gap between high-throughput, target-based screening assays used for compound identification and more physiologically relevant in vivo disease models used for preclinical development. We have developed a standardised panel of phenotypic assays using primary human cells and co-cultures that model tissue and disease biology for characterization of drug leads. Here we show application of these assays for characterisation of clinical stage kinase inhibitors for rheumatoid arthritis, the recently approved JAK kinase inhibitor, tofacitinib, and the SYK kinase inhibitor, fostamatinib. We demonstrate how profiling in this assay panel can relate to clinical effects, both efficacy and safety related.
Collapse
Affiliation(s)
- Ellen L. Berg
- BioSeek, A Division of DiscoveRx 310 Utah Avenue Suite 100 South San Francisco CA 94080 USA
| | - Alison O'Mahony
- BioSeek, A Division of DiscoveRx 310 Utah Avenue Suite 100 South San Francisco CA 94080 USA
| |
Collapse
|
8
|
Xie M, Mustovich AT, Jiang Y, Trudeau JB, Ray A, Ray P, Hu H, Holguin F, Freeman B, Wenzel SE. IL-27 and type 2 immunity in asthmatic patients: association with severity, CXCL9, and signal transducer and activator of transcription signaling. J Allergy Clin Immunol 2014; 135:386-94. [PMID: 25312760 DOI: 10.1016/j.jaci.2014.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/23/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Severe asthma (SA) can involve both innate and type 2 cytokine-associated adaptive immunity. Although IL-27 has been reported to potentiate TH1 responses (including the chemokine CXCL9) and suppress TH2 responses, its function in asthmatic patients is unknown. OBJECTIVE We sought to evaluate IL-27 expression in human asthma alone and in combination with type 2 immunity to determine the relationship to disease severity and CXCL9 expression. We also sought to model these interactions in vitro in human bronchial epithelial cells. METHODS Bronchoalveolar lavage cells from 87 participants were evaluated for IL-27 mRNA and protein alone and in association with epithelial CCL26 (a marker of type 2 activation) in relation to asthma severity and CXCL9 mRNA. Human bronchial epithelial cells cultured at the air-liquid interface and stimulated with IL-27 (1-100 ng/mL) with or without IL-13 (1 ng/mL) were evaluated for CXCL9 expression by using quantitative real-time PCR and ELISA. Phosphorylated and total signal transducer and activator of transcription (STAT) 1/3 were detected by means of Western blotting. Small interfering RNA knockdown of STAT1 or STAT3 was performed. RESULTS Bronchoalveolar lavage cell IL-27 mRNA and protein levels were increased in asthmatic patients. Patients with evidence for type 2 pathway activation had higher IL-27 expression (P = .02). Combined IL-27 and CCL26 expression associated with more SA and higher CXCL9 expression (P = .004 and P = .007 respectively), whereas IL-27 alone was associated with milder disease. In vitro IL-13 augmented IL-27-induced CXCL9 expression, which appeared to be due to augmented STAT1 activation and reduced STAT3 activation. CONCLUSIONS IL-27, in combination with a type 2/CCL26 signature, identifies a more SA phenotype, perhaps through combined effects of IL-27 and IL-13 on STAT signaling. Understanding these interactions could lead to new targets for asthma therapy.
Collapse
Affiliation(s)
- Min Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; University of Pittsburgh Asthma Institute@UPMC, Pulmonary Allergy Critical Care Medicine Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Anthony T Mustovich
- University of Pittsburgh Asthma Institute@UPMC, Pulmonary Allergy Critical Care Medicine Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Yi Jiang
- University of Pittsburgh Asthma Institute@UPMC, Pulmonary Allergy Critical Care Medicine Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - John B Trudeau
- University of Pittsburgh Asthma Institute@UPMC, Pulmonary Allergy Critical Care Medicine Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Anuradha Ray
- University of Pittsburgh Asthma Institute@UPMC, Pulmonary Allergy Critical Care Medicine Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Prabir Ray
- University of Pittsburgh Asthma Institute@UPMC, Pulmonary Allergy Critical Care Medicine Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Haizhen Hu
- University of Pittsburgh Asthma Institute@UPMC, Pulmonary Allergy Critical Care Medicine Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Fernando Holguin
- University of Pittsburgh Asthma Institute@UPMC, Pulmonary Allergy Critical Care Medicine Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Bruce Freeman
- University of Pittsburgh Asthma Institute@UPMC, Pulmonary Allergy Critical Care Medicine Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Sally E Wenzel
- University of Pittsburgh Asthma Institute@UPMC, Pulmonary Allergy Critical Care Medicine Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
9
|
Omori-Miyake M, Yamashita M, Tsunemi Y, Kawashima M, Yagi J. In Vitro Assessment of IL-4- or IL-13-Mediated Changes in the Structural Components of Keratinocytes in Mice and Humans. J Invest Dermatol 2014; 134:1342-1350. [DOI: 10.1038/jid.2013.503] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 11/03/2013] [Accepted: 11/05/2013] [Indexed: 12/25/2022]
|
10
|
Bao L, Zhang H, Chan LS. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. JAKSTAT 2013; 2:e24137. [PMID: 24069552 PMCID: PMC3772104 DOI: 10.4161/jkst.24137] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 12/18/2022] Open
Abstract
Atopic dermatitis (AD), a common chronic inflammatory skin disease, is characterized by inflammatory cell skin infiltration. The JAK-STAT pathway has been shown to play an essential role in the dysregulation of immune responses in AD, including the exaggeration of Th2 cell response, the activation of eosinophils, the maturation of B cells, and the suppression of regulatory T cells (Tregs). In addition, the JAK-STAT pathway, activated by IL-4, also plays a critical role in the pathogenesis of AD by upregulating epidermal chemokines, pro-inflammatroy cytokines, and pro-angiogenic factors as well as by downregulating antimicrobial peptides (AMPs) and factors responsible for skin barrier function. In this review, we will highlight the recent advances in our understanding of the JAK-STAT pathway in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology; University of Illinois; Chicago, IL USA
| | | | | |
Collapse
|
11
|
Bao L, Shi VY, Chan LS. IL-4 regulates chemokine CCL26 in keratinocytes through the Jak1, 2/Stat6 signal transduction pathway: Implication for atopic dermatitis. Mol Immunol 2012; 50:91-7. [PMID: 22226123 DOI: 10.1016/j.molimm.2011.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 01/11/2023]
Abstract
Atopic dermatitis (AD), a chronic, pruritic, inflammatory skin disease, is histopathologically characterized by epidermal hyperplasia and infiltration of T cells, mast cells, and eosinophils. Clinical study and basic research have established that IL-4 plays an important role in the pathogenesis of AD. In this report, using HaCat cells, we show that CCL26, a chemokine for eosinophils, is up-regulated by IL-4 at both the mRNA and protein levels. IL-4 also enhances CCL26 promoter activity. Serial 5' deletion of the promoter and mutagenesis study reveal that the proximal Stat site is the key response element for IL-4 regulation of CCL26. Although IL-4 increases phosphorylation of both Stat3 and Stat6, it only activates Stat6 as shown by dominant negative studies. In addition, we found that IL-4 induces Stat6 nuclear translocation and stimulates phosphorylation of Jak1 and Jak2 but not Tyk2. IL-4 up-regulation of CCL26 can be suppressed by Jak inhibitors in a dose-dependent manner. Taken together, results of this investigation reveal that IL-4 signals through the Jak1, 2/Stat6 pathway in keratinocytes to stimulate CCL26 expression and this may provide an explanation for the pathogenesis of AD.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| | | | | |
Collapse
|
12
|
Antonios D, Rousseau P, Larangé A, Kerdine-Römer S, Pallardy M. Mechanisms of IL-12 Synthesis by Human Dendritic Cells Treated with the Chemical Sensitizer NiSO4. THE JOURNAL OF IMMUNOLOGY 2010; 185:89-98. [DOI: 10.4049/jimmunol.0901992] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Ruíz-González V, Cancino-Diaz JC, Rodríguez-Martínez S, Cancino-Diaz ME. Keratinocytes treated with peptidoglycan fromStaphylococcus aureusproduce vascular endothelial growth factor, and its expression is amplified by the subsequent production of interleukin-13. Int J Dermatol 2009; 48:846-54. [DOI: 10.1111/j.1365-4632.2008.03924.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Antonios D, Ade N, Kerdine-Römer S, Assaf-Vandecasteele H, Larangé A, Azouri H, Pallardy M. Metallic haptens induce differential phenotype of human dendritic cells through activation of mitogen-activated protein kinase and NF-κB pathways. Toxicol In Vitro 2009; 23:227-34. [DOI: 10.1016/j.tiv.2008.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/30/2008] [Accepted: 11/30/2008] [Indexed: 10/21/2022]
|
15
|
Nishi N, Yamamoto S, Ou W, Muro E, Inada Y, Hamasaki Y. Enhanced CCL26 production by IL-4 through IFN-gamma-induced upregulation of type 1 IL-4 receptor in keratinocytes. Biochem Biophys Res Commun 2008; 376:234-40. [PMID: 18774776 DOI: 10.1016/j.bbrc.2008.08.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 08/28/2008] [Indexed: 01/25/2023]
Abstract
A Th2 cytokine, IL-4, induces various chemokines from epidermal keratinocytes which play crucial roles in the pathogenesis of skin disorders such as atopic dermatitis. In contrast, the role of IFN-gamma, a Th1 cytokine, on eosinophilic skin inflammation is unclear. This study investigated the effects of IFN-gamma on IL-4-induced production of eotaxin-3/CCL26, a potent chemoattractant to eosinophils, in normal human epidermal keratinocytes (NHEK). When the cells were stimulated with IL-4 and IFN-gamma simultaneously, IL-4-induced CCL26 production was attenuated. In contrast, prior stimulation with IFN-gamma enhanced IL-4-induced CCL26 production. NHEK constitutively expressed type 1 IL-4 receptor, and expression at the cell surface was upregulated by stimulation with IFN-gamma. This upregulation resulted in an enhanced IL-4-mediated cellular signal. These results indicate that IFN-gamma has opposite effects on IL-4-induced CCL26 production in NHEK depending on the time of exposure. Thus, changes in IL-4R expression by IFN-gamma might modulate eosinophilic skin inflammation.
Collapse
Affiliation(s)
- Natsuko Nishi
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Tabata Y, Khurana Hershey GK. IL-13 receptor isoforms: breaking through the complexity. Curr Allergy Asthma Rep 2007; 7:338-45. [PMID: 17697639 DOI: 10.1007/s11882-007-0051-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Interleukin (IL)-13 is an immunoregulatory cytokine secreted predominantly by activated T-helper type 2 (Th2) cells, and it has been identified as crucial in developing allergic inflammatory responses. Its diverse functions are mediated by a complex receptor system including IL-4 receptor alpha (IL-4Ralpha; CD124) and two other cognate cell surface proteins, IL-13Ralpha1 (CD213a1) and IL-13Ralpha2 (CD213a2). IL-13Ralpha1 forms a heterodimer with IL-4Ralpha that is a signaling IL-13 receptor. In contrast, IL-13Ralpha2 has been thought to be a decoy receptor due to its short cytoplasmic tail. IL-13Ralpha2 exists on the cell membrane, intracellularly, and in soluble form. Recent reports revealed that membrane IL-13Ralpha2 may have some signaling capabilities, and soluble IL-13Ralpha2 is a critical endogenous modulator for IL-13 responses. The receptor has more complicated functions than a simple decoy receptor. In this review, we describe the isoforms of IL-13Ralpha2 and discuss newly revealed functions of IL-13Ralpha2.
Collapse
Affiliation(s)
- Yasuhiro Tabata
- Division of Allergy and Immunology, Institute for Personalized and Predictive Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | |
Collapse
|
17
|
Ade N, Antonios D, Kerdine-Romer S, Boisleve F, Rousset F, Pallardy M. NF-kappaB plays a major role in the maturation of human dendritic cells induced by NiSO(4) but not by DNCB. Toxicol Sci 2007; 99:488-501. [PMID: 17636246 DOI: 10.1093/toxsci/kfm178] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dendritic cell (DC) activation is a critical event for the induction of an immune response to haptens. Although signaling pathways such as mitogen-activated protein kinase (MAPK) family members have been reported to play a role in DC activation by haptens, little is known about the implication of the nuclear factor kappa B (NF-kappaB) pathway. In this work, we showed that NiSO(4) induced the expression of HLA-DR, CD83, CD86, and CD40 and the production of interleukin (IL)-8, IL-6, and IL-12p40 in human DCs, whereas DNCB induced mainly the expression of CD83 and CD86 and the production of IL-8. NiSO(4) but not DNCB was able to activate the degradation of IkappaB-alpha leading to the binding of the p65 subunit of NF-kappaB on specific DNA probes. Inhibition of the NF-kappaB pathway using BAY 11-7085 prevents both CD40 and HLA-DR expression and cytokine production induced by NiSO(4). However, BAY 11-7085 only partially inhibited CD86 and CD83 expression induced by NiSO(4). In addition, p38 MAPK and NF-kappaB were independently activated by NiSO(4) since SB203580 did not inhibit NF-kappaB activation by NiSO(4). Interestingly, we also showed that DNCB inhibited the degradation of IkappaB-alpha induced by tumor necrosis factor-alpha leading to alteration of CD40, HLA-DR, and CD83 expression but not of CD86 and CCR7. Extensive modifications of DC phenotype by NiSO(4) in comparison to DNCB are probably the consequence of NF-kappaB activation by NiSO(4) but not by DNCB.
Collapse
Affiliation(s)
- Nadège Ade
- Univ Paris-Sud, INSERM, 92296 Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
18
|
Adriani M, Garbi C, Amodio G, Russo I, Giovannini M, Amorosi S, Matrecano E, Cosentini E, Candotti F, Pignata C. Functional Interaction of Common γ-Chain and Growth Hormone Receptor Signaling Apparatus. THE JOURNAL OF IMMUNOLOGY 2006; 177:6889-95. [PMID: 17082603 DOI: 10.4049/jimmunol.177.10.6889] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported on an X-linked SCID (X-SCID) patient, who also had peripheral growth hormone (GH) hyporesponsiveness and abnormalities of the protein phosphorylation events following GH receptor (GHR) stimulation. In the present study, we examined a potential role of common cytokine receptor gamma-chain (gammac) in GHR signaling using EBV-transformed lymphocytes from healthy subjects and gammac-negative X-SCID patients. We demonstrated that the proliferative response to GH stimulation of the B cell lines of gammac-negative patients was impaired despite a comparable cellular expression of GHR molecules to controls. In patients, after GH stimulation, no phosphorylation of STAT5 was observed. In addition, the molecule localization through confocal microscopy revealed that in B cell lines of patients no nuclear translocation of STAT5b following GH stimulation occurred differently from controls. Biochemical analysis of the nuclear extracts of gammac-negative cell lines provided further evidence that the amount of STAT5b and its phosphorylated form did not increase following GH stimulation. In patients, cells reconstituted with wild-type gammac abnormal biochemical and functional events were restored resulting in nuclear translocation of STAT5. Confocal experiments revealed that GHR and gammac were colocalized on the cell membrane. Our study demonstrates the existence of a previously unappreciated relationship between GHR-signaling pathway and gammac, which is required for the activation of STAT5b in B cell lines. These data also confirm that growth failure in X-SCID is primarily related to the genetic alteration of the IL2RG gene.
Collapse
|
19
|
Travagli J, Letourneur M, Bertoglio J, Pierre J. STAT6 and Ets-1 Form a Stable Complex That Modulates Socs-1 Expression by Interleukin-4 in Keratinocytes. J Biol Chem 2004; 279:35183-92. [PMID: 15199062 DOI: 10.1074/jbc.m403223200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Supressor of cytokine signaling (SOCS)-1 is selectively and rapidly induced by appropriate agonists and modulates cytokine responses by interfering with the Janus kinase/signal transducer and activator of transcription (Jak/STAT) pathway. On the basis of the observation that interleukin (IL)-4 up-regulates Socs-1 in the keratinocyte HaCaT cell line, we investigated which sequences of the 5'-Socs-1 gene are responsive to IL-4. We therefore have cloned the 5'-flanking region of this gene, and by promoter analysis we identified a functional IL-4-responsive element located at nucleotide (-684/-570) upstream from the transcription initiation site, whose presence and integrity are necessary to ensure IL-4 responsiveness. This element contains three STAT6 and one Ets consensus binding sequences of which specific mutations abolished IL-4 responsiveness either partially or totally. We also report that Ets-1 physically interacted with STAT6. Exogenous expression of Ets-1 in conjunction with STAT6 activation strongly inhibited expression of a Socs-1 promoter-luciferase reporter. Collectively, our data demonstrated the involvement of STAT6 and Ets, via a composite DNA element, in the IL-4 regulation of Socs-1 gene expression in keratinocytes.
Collapse
Affiliation(s)
- Julia Travagli
- INSERM U461, Faculté de pharmacie, 5 Rue J. B. Clément, 92296-Chatenay-Malabry, France
| | | | | | | |
Collapse
|
20
|
Wongpiyabovorn J, Suto H, Ushio H, Izuhara K, Mitsuishi K, Ikeda S, Nakao A, Okumura K, Ogawa H. Up-regulation of interleukin-13 receptor alpha1 on human keratinocytes in the skin of psoriasis and atopic dermatitis. J Dermatol Sci 2004; 33:31-40. [PMID: 14527737 DOI: 10.1016/s0923-1811(03)00148-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Interleukin (IL)-13 is a pleiotropic cytokine, which shares many biological functions with IL-4. The receptor subunits of IL-13 consist of IL-4Ralpha, IL-13Ralpha1 and IL-13Ralpha2. The regulatory mechanisms of the IL-13Ralpha expression in the keratinocytes of certain skin disease have not been known. OBJECTIVE To clear the roles of IL-13 and the regulatory mechanisms of its receptor in atopic dermatitis (AD) and psoriasis. METHOD The expression of IL-13Ralpha1 in the skin of AD and psoriasis was investigated by immunohistochemistry. The regulation of IL-13Ralpha mRNA in the skin and human primary keratinocyte (HPK) was investigated by quantitative PCR. The secretion of IL-6 and RANTES from HPK was measured by ELISA. RESULTS The expression of IL-13Ralpha1 was more prominent on the suprabasal keratinocytes in the skin of AD and striking increase of staining was observed on all layers of keratinocyte in the skin of psoriasis. The mRNA of IL-13Ralpha1, but not of IL-13Ralpha2 was overexpressed in both skin of AD and psoriasis. In vitro experiment using HPK demonstrated that IFN-gamma, IL-13 but not IL-4 could up-regulate the mRNA expression of IL-13Ralpha1. In contrast, IL-13Ralpha2 mRNA expression was up-regulated by IFN-gamma plus IL-4. Furthermore, the stimulation of HPK with IFN-gamma plus IL-13 and/or IL-4 resulted in significant enhancement of IL-6 and RANTES secretion. CONCLUSION These findings indicate that IL-4 and IL-13 have different regulatory effects on the expression of IL-13Ralpha1 and alpha2, and the overexpression of IL-13Ralpha1 may play some roles in the pathogenesis of chronic stage of AD or psoriasis.
Collapse
Affiliation(s)
- Jongkonnee Wongpiyabovorn
- Department of Dermatology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
David MD, Bertoglio J, Pierre J. Functional characterization of IL-13 receptor alpha2 gene promoter: a critical role of the transcription factor STAT6 for regulated expression. Oncogene 2003; 22:3386-94. [PMID: 12776189 DOI: 10.1038/sj.onc.1206352] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Interleukin (IL)-4 and IL-13 are two structurally and functionally related cytokines that have overlapping but also distinct biological activities. One of the components of the IL-13 receptor, the alpha2 chain (IL-13Ralpha2), has been reported to downregulate the cell responsiveness to IL-13, without affecting IL-4 signaling. Here, we report that TNFalpha synergizes with either IL-4 or IL-13 in inducing the IL-13Ralpha2 chain at both the mRNA and protein levels in the HaCaT human keratinocyte cell line. Further studies by 5'RACE identified as yet undescribed exonic sequences of the IL-13Ralpha2 5'UTR, provided evidence for the expression of alternatively spliced IL-13Ralpha2 transcripts and defined the transcription start of the IL-13Ralpha2 gene. A 1.5 kb region upstream of the first exon of the IL-13Ralpha2 gene displayed basal promoter activity when inserted in a reporter plasmid and transiently transfected in HaCaT cells. This promoter activity was further increased in response to IL-4 and IL-13. Furthermore, by electrophoretic mobility shift assay and site-directed mutagenesis, we showed that the IL-4/IL-13-induced promoter activity depended upon a positively acting STAT6 response element. Finally, TNFalpha was shown to potentiate IL-4/IL-13-induced IL-13Ralpha2 promoter activity when the same reporter construct was studied in stably but not in transiently transfected cells. These results suggest that the synergistic effect of TNFalpha on IL-4/IL-13-induced IL-13Ralpha2 expression is dependent upon chromatin re-modeling events.
Collapse
Affiliation(s)
- Muriel D David
- INSERM U461, Faculte de Pharmacie, 5, rue JB Clement, 92296 Chatenay Malabry Cedex, France
| | | | | |
Collapse
|
22
|
Abstract
IL-13 is an immunoregulatory cytokine secreted predominantly by activated T(H)2 cells. Over the past several years, it has become evident that IL-13 is a key mediator in the pathogenesis of allergic inflammation. IL-13 shares many functional properties with IL-4, stemming from the fact that they share a common receptor subunit, the alpha subunit of the IL-4 receptor (IL-4Ralpha). Characterization of IL-13-deficient mice, IL-4-deficient mice, and IL-4 receptor alpha-deficient (IL-4Ralpha(-/-)) mice have demonstrated nonredundant roles for IL-13. IL-13 mediates its effects by interacting with a complex receptor system comprised of IL-4Ralpha and two IL-13 binding proteins, IL-13Ralpha1 and IL-13Ralpha2. IL-13 receptors are expressed on human B cells, basophils, eosinophils, mast cells, endothelial cells, fibroblasts, monocytes, macrophages, respiratory epithelial cells, and smooth muscle cells. However, functional IL-13 receptors have not been demonstrated on human or mouse T cells. Thus unlike IL-4, IL-13 does not appear to be important in the initial differentiation of CD4 T cells into T(H)2-type cells but rather appears to be important in the effector phase of allergic inflammation. This is further supported by many in vivo observations, including that administration of IL-13 resulted in allergic inflammation, tissue-specific overexpression of IL-13 in the lungs of transgenic mice resulted in airway inflammation and mucus hypersecretion, IL-13 blockade abolished allergic inflammation independently of IL-4, and IL-13 appears to be more important than IL-4 in mucus hypersecretion. Given the importance of IL-13 as an effector molecule, regulation at the level of its receptors might be an important mechanism of modulating IL-13 responses and thus propagation of the allergic response. Accordingly, IL-13 is an attractive, novel therapeutic target for pharmacologic intervention in allergic disorders. This review will summarize the current understanding of the IL-13 receptors and signaling pathways, emphasizing recent observations.
Collapse
Affiliation(s)
- Gurjit K Khurana Hershey
- Division of Allergy, and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| |
Collapse
|
23
|
Giron-Michel J, Fogli M, Gaggero A, Ferrini S, Caignard A, Brouty-Boye D, Baouz S, Le Bousse-Kerdiles MC, Peault B, van Dijk M, Bulfone-Paus S, Durali D, Chouaib S, Azzarone B. Detection of a functional hybrid receptor gammac/GM-CSFRbeta in human hematopoietic CD34+ cells. J Exp Med 2003; 197:763-75. [PMID: 12642604 PMCID: PMC2193857 DOI: 10.1084/jem.20020150] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A functional hybrid receptor associating the common gamma chain (gammac) with the granulocyte/macrophage colony-stimulating factor receptor beta (GM-CSFRbeta) chain is found in mobilized human peripheral blood (MPB) CD34+ hematopoietic progenitors, SCF/Flt3-L primed cord blood (CB) precursors (CBPr CD34+/CD56-), and CD34+ myeloid cell lines, but not in normal natural killer (NK) cells, the cytolytic NK-L cell line or nonhematopoietic cells. We demonstrated, using CD34+ TF1beta cells, which express an interleukin (IL)-15Ralpha/beta/gammac receptor, that within the hybrid receptor, the GM-CSFRbeta chain inhibits the IL-15-triggered gammac/JAK3-specific signaling controlling TF1beta cell proliferation. However, the gammac chain is part of a functional GM-CSFR, activating GM-CSF-dependent STAT5 nuclear translocation and the proliferation of TF1beta cells. The hybrid receptor is functional in normal hematopoietic progenitors in which both subunits control STAT5 activation. Finally, the parental TF1 cell line, which lacks the IL-15Rbeta chain, nevertheless expresses both a functional hybrid receptor that controls JAK3 phosphorylation and a novel IL-15alpha/gammac/TRAF2 complex that triggers nuclear factor kappaB activation. The lineage-dependent distribution and function of these receptors suggest that they are involved in hematopoiesis because they modify transduction pathways that play a major role in the differentiation of hematopoietic progenitors.
Collapse
Affiliation(s)
- J Giron-Michel
- U 506 Institut National de la Sante et de la Recherche Medicale (INSERM), Hôpital Paul Brousse, 94807 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Elbe-Bürger A, Egyed A, Olt S, Klubal R, Mann U, Rappersberger K, Rot A, Stingl G. Overexpression of IL-4 alters the homeostasis in the skin. J Invest Dermatol 2002; 118:767-78. [PMID: 11982753 DOI: 10.1046/j.1523-1747.2002.01753.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
IL-4 has been implicated to play an important role in the pathogenesis of many inflammatory diseases including skin diseases such as atopic dermatitis. Because it is not clear which pathologic features of atopic dermatitis are dependent on IL-4, we assessed the consequences of IL-4 overexpression in the skin, using transgenic mice overexpressing IL-4 ubiquitously. Although transgenic mice display no clinical signs of skin inflammation, IL-4 induced a wide spectrum of pathologies including an increased number of mast cells and Langerhans cells in dermis and epidermis, respectively, focal deposition of collagen and a considerably reduced adipocyte layer in the dermis as well as an increased mitotic activity of keratinocytes, reflected in acanthosis and hyperkeratosis. The increase in Langerhans cell number may be explained in part by the substantially reduced Langerhans cell emigration from the epidermis in transgenic mice. The molecular mechanism behind this phenomenon remains to be clarified. Under in vitro culture conditions, Langerhans cells from transgenic mice undergo a maturation process similar to that of Langerhans cells from control mice, and their immunostimulatory capacity is also comparable. In contrast, transgenic Langerhans cells are superior to control Langerhans cells in their antigen-processing capacity. We conclude that the overexpression of IL-4 in the skin is, by itself, not sufficient for the induction of a full-blown atopic dermatitis phenotype, but several changes seen in the skin of transgenic mice mirror the cardinal pathologic manifestations of this disease.
Collapse
Affiliation(s)
- Adelheid Elbe-Bürger
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases, University of Vienna Medical School, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Distinct signal transduction processes by IL-4 and IL-13 and influences from the Q551R variant of the human IL-4 receptor alpha chain. Respir Res 2002; 3:24. [PMID: 12204103 PMCID: PMC150510 DOI: 10.1186/rr174] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2001] [Revised: 05/22/2002] [Accepted: 05/28/2002] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Although IL-4 and IL-13 share the IL-13 receptor, IL-13 exhibits unique functions. To elicit the cellular basis of these differences, signal transduction processes have been compared. Additionally, the role of the IL-4 receptor alpha (IL-4Ralpha) variant Q551R was investigated. METHODS Peripheral blood mononuclear cells from donors were stimulated with IL-4 and IL-13. The phosphorylation status of effector substrates was detected by immunostaining. Binding of SHP-2 to IL-4Ralpha was investigated by using synthetic peptides. RESULTS SHP-2 bound IL-4Ralpha synthetic peptide; this binding was reduced in the presence of the R551 variant. Stimulation with IL-4 increased SHP-1 phosphorylation, however, stimulation with IL-13 increased SHP-2 phosphorylation. PI3-kinase phosphorylation was elevated following stimulation with IL-13 in all individuals and with IL-4 only in R551 individuals. Jak1, Tyk2 and IRS-2 signals were reduced after IL-13 stimulation in Q551 individuals. STAT3 phosphorylation was markedly increased in R551 individuals, following stimulation with both IL-4 and IL-13. However, STAT3 was only detected immediately in nuclear extracts from variant individuals after stimulation with IL-13; in wildtype individuals STAT3 was only detected after IL-4 treatment. CONCLUSION IL-4 and IL-13 appear to promote distinct signal transduction cascades. SHP-1 seems to be predominately activated by IL-4 and to influence the PI3-kinase, in contrast, SHP-2 seems to be predominately activated by IL-13 and to influence Jak1, Tyk2 and IRS-2. Both phosphatases control STAT3. In the presence of the variant R551, SHP-1/2 activation is reduced and signal transduction is altered. STAT3 signaling appears be further regulated on the level of nuclear translocation.
Collapse
|
26
|
David M, Ford D, Bertoglio J, Maizel AL, Pierre J. Induction of the IL-13 receptor alpha2-chain by IL-4 and IL-13 in human keratinocytes: involvement of STAT6, ERK and p38 MAPK pathways. Oncogene 2001; 20:6660-8. [PMID: 11709700 DOI: 10.1038/sj.onc.1204629] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2001] [Revised: 05/02/2001] [Accepted: 05/10/2001] [Indexed: 12/25/2022]
Abstract
IL-4 and IL-13 are related cytokines which induce both pro- and anti-inflammatory effects depending on the cell type they act upon and the nature of the receptors expressed. The type I receptor complex is composed of the IL-4Ralpha and gammac and only binds IL-4, whereas, in the type II receptor, IL-4Ralpha dimerizes with IL-13Ralpha1 upon either IL-4 or IL-13 binding. Another ligand binding chain potentially implicated in the IL-4/IL-13 receptor has been described, the IL-13Ralpha2, but the regulation of its expression and its role in IL-4/IL-13 transduction is poorly understood. In this study we report that IL-4 and IL-13 upregulate IL-13Ralpha2 at both the mRNA and protein levels in the keratinocyte cell line HaCaT. In these cells, IL-4 or IL-13 were shown to activate the Janus Kinases JAK1 and JAK2, the transcription factor STAT6, and the ERK and p38 mitogen-activated protein kinases. We show that IL-4 or IL-13-induced IL-13Ralpha2 mRNA expression was inhibited by the ERK inhibitor U0126, the JAK inhibitor AG490 and, to a lesser extent, the p38 MAPK inhibitor SB203580. Moreover, expression of a constitutive active mutant of STAT6 alone did not modify IL-13Ralpha2 mRNA expression, but potentiated the effects of IL-4 or IL-13 on IL-13Ralpha2 expression. The constitutive active mutants of MEK1 or MKK6 increased the level of expression of IL-13Ralpha2 mRNA even in absence of stimulation. Our findings demonstrate, for the first time, that IL-4 and IL-13 can induce IL-13Ralpha2 expression in keratinocytes, and that the ERK and p38 MAPK together with JAK2 and STAT6 play a critical role in this process.
Collapse
Affiliation(s)
- M David
- INSERM U461, Faculte de Pharmacie, 5, rue JB Clement, 92296 Chatenay Malabry Cedex, France
| | | | | | | | | |
Collapse
|
27
|
Subramaniam PS, Torres BA, Johnson HM. So many ligands, so few transcription factors: a new paradigm for signaling through the STAT transcription factors. Cytokine 2001; 15:175-87. [PMID: 11563878 DOI: 10.1006/cyto.2001.0905] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- P S Subramaniam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
28
|
Yu LC, Yang PC, Berin MC, Di Leo V, Conrad DH, McKay DM, Satoskar AR, Perdue MH. Enhanced transepithelial antigen transport in intestine of allergic mice is mediated by IgE/CD23 and regulated by interleukin-4. Gastroenterology 2001; 121:370-81. [PMID: 11487546 DOI: 10.1053/gast.2001.26470] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS We previously described a system for enhanced transepithelial transport of antigen in which both the amount of specific antigen and its rate of transport were dramatically increased in intestine of sensitized rats compared with controls. This study investigated the essential components mediating antigen uptake in mice genetically deficient for interleukin (IL)-4 or CD23. METHODS Mice were actively or passively sensitized to horseradish peroxidase (HRP). Jejunal segments from control or sensitized mice were mounted in Ussing chambers and challenged with HRP from the luminal side. Tissues were processed for electron microscopy, and photomicrographs were analyzed for antigen uptake (location and area of HRP-containing endosomes). Immunohistochemistry and reverse-transcription polymerase chain reaction were used to detect epithelial CD23 expression. RESULTS Actively sensitized IL-4(+/+), but not IL-4(-/-) mice, displayed increased transepithelial antigen transport and CD23 expression on enterocytes. Passively sensitized IL-4(+/+) and IL-4(-/-) mice displayed elevated antigen transport after transfer of immune serum but not if the serum was depleted of immunoglobulin (Ig) E or IL-4. IL-4 added to cultured IEC-4 cells up-regulated expression of CD23 messenger RNA. The augmented antigen uptake was inhibited by anti-CD23 and was absent in sensitized CD23(-/-) mice. CONCLUSIONS Our studies indicate that IL-4 regulates IgE/CD23-mediated enhanced transepithelial antigen transport in sensitized mouse intestine.
Collapse
Affiliation(s)
- L C Yu
- Intestinal Disease Research Programme, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wery-Zennaro S, Zugaza JL, Letourneur M, Bertoglio J, Pierre J. IL-4 regulation of IL-6 production involves Rac/Cdc42- and p38 MAPK-dependent pathways in keratinocytes. Oncogene 2000; 19:1596-604. [PMID: 10734320 DOI: 10.1038/sj.onc.1203458] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The stress-activated pathways leading to activation of p38 MAP kinase (p38 MAPK) and c-jun N-terminal kinases (JNK) have been shown to be activated by pro-inflammatory cytokines, physical and chemical stresses as well as a variety of hematopoietic growth factors. One exception is interleukin (IL)-4, which does not activate this pathway in hematopoietic cell. We report here that in A431, a keratinocytic cell line, IL-4 activates Rac and Cdc42 and their downstream effector p21-activated kinase (PAK). Rac and Cdc42 appear to regulate a protein kinase cascade initiated at the level of PAK and leading to activation of p38 MAPK, since IL-4 stimulates tyrosine phosphorylation of p38 MAPK and increases its catalytic activity. As A431 cells are able to produce IL-6 in response to IL-4 stimulation, we assessed the involvement of p38 MAPK in IL-6 gene expression. A pyrimidazole compound, SB203580, a specific inhibitor of p38 MAPK, inhibits production and gene expression of IL-6. SB203580 reduced significantly the stability of IL-6 mRNA. Here we provide evidence that p38 MAPK is activated in response to IL-4 and is involved in IL-6 synthesis by stabilizing IL-6 mRNA.
Collapse
Affiliation(s)
- S Wery-Zennaro
- INSERM U461, Faculté de Pharmacie, 5, rue J B Clément, 92296 Chätenay-Malabry, Cedex, France
| | | | | | | | | |
Collapse
|