1
|
Meng SL, Li MX, Lu Y, Chen X, Wang WP, Song C, Fan LM, Qiu LP, Li DD, Xu HM, Xu P. Effect of environmental level of methomyl on hatching, morphology, immunity and development related genes expression in zebrafish (Danio rerio) embryo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115684. [PMID: 37976935 DOI: 10.1016/j.ecoenv.2023.115684] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The extensive use of carbamate pesticides has led to a range of environmental and health problems, such as surface and groundwater contamination, and endocrine disorders in organisms. In this study, we focused on examining the effects of toxic exposure to the carbamate pesticide methomyl on the hatching, morphology, immunity and developmental gene expression levels in zebrafish embryos. Four concentrations of methomyl (0, 2, 20, and 200 μg/L) were administered to zebrafish embryos for a period of 96 h. The study found that exposure to methomyl accelerated the hatching process of zebrafish embryos, with the strongest effect recorded at the concentration of 2 μg/L. Methomyl exposure also trigged significantly reductions in heart rate and caused abnormalities in larvae morphology, and it also stimulated the synthesis and release of several inflammatory factors such as IL-1β, IL-6, TNF-α and INF-α, lowered the IgM contents, ultimately enhancing inflammatory response and interfering with immune function. All of these showed the significant effects on exposure time, concentration and their interaction (Time × Concentration). Furthermore, the body length of zebrafish exposed to methomyl for 96 h was significantly shorter, particularly at higher concentrations (200 μg/L). Methomyl also affected the expression levels of genes associated with development (down-regulated igf1, bmp2b, vasa, dazl and piwi genes), demonstrating strong developmental toxicity and disruption of the endocrine system, with the most observed at the concentration of 200 μg/L and 96 h exposure to methomyl. The results of this study provide valuable reference information on the potential damage of methomyl concentrations in the environment on fish embryo development, while also supplementing present research on the immunotoxicity of methomyl.
Collapse
Affiliation(s)
- Shun Long Meng
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China.
| | - Ming Xiao Li
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Yan Lu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xi Chen
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Wei Ping Wang
- Jiangxi Provincial Aquatic Biology Protection and Rescue Center, Nangchang 330029, China
| | - Chao Song
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Li Min Fan
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Li Ping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Dan Dan Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Hui Min Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Pao Xu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China.
| |
Collapse
|
2
|
Sánchez-Moya A, Balbuena-Pecino S, Vélez EJ, Perelló-Amorós M, García-Meilán I, Fontanillas R, Calduch-Giner JÀ, Pérez-Sánchez J, Fernández-Borràs J, Blasco J, Gutiérrez J. Cysteamine improves growth and the GH/IGF axis in gilthead sea bream ( Sparus aurata): in vivo and in vitro approaches. Front Endocrinol (Lausanne) 2023; 14:1211470. [PMID: 37547324 PMCID: PMC10400459 DOI: 10.3389/fendo.2023.1211470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 08/08/2023] Open
Abstract
Aquaculture is the fastest-growing food production sector and nowadays provides more food than extractive fishing. Studies focused on the understanding of how teleost growth is regulated are essential to improve fish production. Cysteamine (CSH) is a novel feed additive that can improve growth through the modulation of the GH/IGF axis; however, the underlying mechanisms and the interaction between tissues are not well understood. This study aimed to investigate the effects of CSH inclusion in diets at 1.65 g/kg of feed for 9 weeks and 1.65 g/kg or 3.3 g/kg for 9 weeks more, on growth performance and the GH/IGF-1 axis in plasma, liver, stomach, and white muscle in gilthead sea bream (Sparus aurata) fingerlings (1.8 ± 0.03 g) and juveniles (14.46 ± 0.68 g). Additionally, the effects of CSH stimulation in primary cultured muscle cells for 4 days on cell viability and GH/IGF axis relative gene expression were evaluated. Results showed that CSH-1.65 improved growth performance by 16% and 26.7% after 9 and 18 weeks, respectively, while CSH-3.3 improved 32.3% after 18 weeks compared to control diet (0 g/kg). However, no significant differences were found between both experimental doses. CSH reduced the plasma levels of GH after 18 weeks and increased the IGF-1 ones after 9 and 18 weeks. Gene expression analysis revealed a significant upregulation of the ghr-1, different igf-1 splice variants, igf-2 and the downregulation of the igf-1ra and b, depending on the tissue and dose. Myocytes stimulated with 200 µM of CSH showed higher cell viability and mRNA levels of ghr1, igf-1b, igf-2 and igf-1rb compared to control (0 µM) in a similar way to white muscle. Overall, CSH improves growth and modulates the GH/IGF-1 axis in vivo and in vitro toward an anabolic status through different synergic ways, revealing CSH as a feasible candidate to be included in fish feed.
Collapse
Affiliation(s)
- Albert Sánchez-Moya
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Sara Balbuena-Pecino
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Emilio J. Vélez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Irene García-Meilán
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | | | - Josep Àlvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, Spanish National Research Council (CSIC)), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, Spanish National Research Council (CSIC)), Castellón, Spain
| | - Jaume Fernández-Borràs
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Joaquin Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Silva HNPD, Almeida APG, Souza CDF, Mancera JM, Martos-Sitcha JA, Martínez-Rodríguez G, Baldisserotto B. Stress response of Rhamdia quelen to the interaction stocking density - Feeding regimen. Gen Comp Endocrinol 2023; 335:114228. [PMID: 36781023 DOI: 10.1016/j.ygcen.2023.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
This study aimed to verify the effect of different feeding and stocking conditions during 14 days on the gene expression of several hormones and enzymes related to the stress cascade and metabolic parameters in silver catfish Rhamdia quelen under the following experimental conditions: 1) fed at low stocking density (2.5 kg m-3, LSD-F); 2) fed at high stocking density (32 kg m-3, HSD-F); 3) food-deprived at LSD (LSD-FD); and 4) food-deprived at HSD (HSD-FD). Fish from LSD-F and HSD-F groups were fed daily (1 % of their body mass), while fish from food-deprived groups (LSD-FD and HSD-FD) were not fed during the experimental time. Plasma metabolic parameters (glucose, lactate, triglycerides, and proteins) and hepatosomatic index (HSI) were evaluated. In addition, mRNA expression of genes related to the stress axis (crh, pomca, pomcb, nr3c2, star, hsd11b2 and hsd20b), heat shock protein family (hsp90 and hspa12a), sodium-dependent noradrenaline transporter (slc6a2), and growth axis (gh and igf1) were also assessed. Specific growth rate and HSI decreased in food-deprived fish regardless of stocking density. The HSD-FD group showed weight loss compared to the HSD-F, LSD-F, and LSD-FD groups. Plasma glucose and triglycerides were reduced in food-deprived groups, while lactate and protein levels did not change. The expression of key players of the stress response (crh, pomca, pomcb, hsd11b2, nr3c2, and hsp90b) and growth (gh and igf1) pathways were differently regulated depending on the experimental condition, whereas no statistical difference between treatments was found for hsd20b, scl6a2, hspa12a, and star mRNAs expression. This study suggests that LSD acts as a stressor affecting negatively the physiological status of fed fish, as demonstrated by the reduction in growth rates, altered metabolic orchestration, and a higher crh mRNA expression. In addition, food deprivation also increased mRNA expression of other assessed genes (nr3c2, hsp90b, pomca, and pomcb) in fish from the HSD group, indicating higher responsiveness to stress in this stocking density when combined with food deprivation.
Collapse
Affiliation(s)
| | - Ana Paula G Almeida
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Carine de F Souza
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Juan Miguel Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Juan Antonio Martos-Sitcha
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real, Cádiz, Spain
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
4
|
Canosa LF, Bertucci JI. The effect of environmental stressors on growth in fish and its endocrine control. Front Endocrinol (Lausanne) 2023; 14:1109461. [PMID: 37065755 PMCID: PMC10098185 DOI: 10.3389/fendo.2023.1109461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Fish body growth is a trait of major importance for individual survival and reproduction. It has implications in population, ecology, and evolution. Somatic growth is controlled by the GH/IGF endocrine axis and is influenced by nutrition, feeding, and reproductive-regulating hormones as well as abiotic factors such as temperature, oxygen levels, and salinity. Global climate change and anthropogenic pollutants will modify environmental conditions affecting directly or indirectly fish growth performance. In the present review, we offer an overview of somatic growth and its interplay with the feeding regulatory axis and summarize the effects of global warming and the main anthropogenic pollutants on these endocrine axes.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico Chascomús (INTECH), CONICET-EByNT-UNSAM, Chascomús, Argentina
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| | - Juan Ignacio Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía - Consejo Superior de Investigaciones Científicas (IEO-CSIC), Vigo, Spain
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| |
Collapse
|
5
|
Panteli N, Demertzioglou M, Feidantsis K, Karapanagiotis S, Tsele N, Tsakoniti K, Gkagkavouzis K, Mylonas CC, Kormas KA, Mente E, Antonopoulou E. Advances in understanding the mitogenic, metabolic, and cell death signaling in teleost development: the case of greater amberjack (Seriola dumerili, Risso 1810). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1665-1684. [PMID: 36459361 DOI: 10.1007/s10695-022-01146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Cell growth and differentiation signals of insulin-like growth factor-1 (IGF-1), a key regulator in embryonic and postnatal development, are mediated through the IGF-1 receptor (IGF-1R), which activates several downstream pathways. The present study aims to address crucial organogenesis and development pathways including Akt, MAPKs, heat shock response, apoptotic and autophagic machinery, and energy metabolism in relation to IGF-1R activation during five developmental stages of reared Seriola dumerili: 1 day prior to hatching fertilized eggs (D-1), hatching day (D0), 3 days post-hatching larvae (D3), 33 (D33) and 46 (D46) days post-hatching juveniles. During both the fertilized eggs stage and larval-to-juvenile transition, IGF-1R/Akt pathway activation may mediate the hypertrophic signaling, while p44/42 MAPK phosphorylation was apparent at S. dumerili post-hatching processes and juvenile organs completion. On the contrary, apoptosis was induced during embryogenesis and autophagy at hatching day indicating a potential involvement in morphogenetic rearrangements and yolk-sac reserves depletion. Larvae morphogenesis was accompanied by a metabolic turnover with increased substantial energy consumption. The findings of the present study demonstrate the developmental stages-specific shift in critical signaling pathways during the ontogeny of reared S. dumerili.
Collapse
Affiliation(s)
- Nikolas Panteli
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Demertzioglou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | | | | | - Konstantinos Gkagkavouzis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Buildings A & B 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Konstantinos Ar Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Eleni Mente
- School of Veterinary Medicine, Laboratory of Ichthyology-Culture and Pathology of Aquatic Animals, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
6
|
Lahnsteiner F. Seasonal differences in thermal stress susceptibility of diploid and triploid brook trout, Salvelinus fontinalis (Teleostei, Pisces). JOURNAL OF FISH BIOLOGY 2022; 101:276-288. [PMID: 35633147 DOI: 10.1111/jfb.15118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Many physiological processes of teleost fish show periodicity due to intrinsic rhythms. It may be hypothesized that also susceptibility to thermal stress differs seasonally. To shed more light on this problem the following experiment was conducted. Diploid and triploid Salvelinus fontinalis were kept at an acclimation temperature of 9°C and at a natural photoperiod typical for the Northern Hemisphere during their entire live. During eight different periods of the year, different subgroups were exposed to a 32 day lasting thermal stress of 20°C. Rate of fish maintaining equilibrium, daily growth rate, condition factor, viscerosomatic index and hepato-somatic index were measured. Complementary mRNA expression of genes characterizing growth (GHR1, GHR2), proteolysis (Protreg, Protα5), stress (Hsp47, Hsp90) and respiratory energy metabolism (ATPJ52) was determined. Seasonal differences in thermal stress susceptibility of 2n and 3n S. fontinalis were detected. It was highest from September to December and moderate from January to March. During the remaining period of the year, susceptibility to thermal stress was minimal. Increased thermal stress susceptibility was related to decreased rates of fish maintaining equilibrium, decreased growth rates, reduction of viscera and liver mass and changes in mRNA expression of genes characterizing proteolysis, growth, respiratory energy metabolism and stress. The differences in seasonal stress susceptibility were minor between 2n and 3n S. fontinalis. The data are valuable for ecology and fish culture to identify periods when animals are most susceptible to thermal stress.
Collapse
Affiliation(s)
- Franz Lahnsteiner
- Federal Agency for Water Management, Institute for Water Ecology, Fisheries and Lake Research, Mondsee, Austria
- Fishfarm Kreuzstein, Unterach, Austria
| |
Collapse
|
7
|
Feed Supplementation with the GHRP-6 Peptide, a Ghrelin Analog, Improves Feed Intake, Growth Performance and Aerobic Metabolism in the Gilthead Sea Bream Sparus aurata. FISHES 2022. [DOI: 10.3390/fishes7010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aquaculture sector has experienced rapid and important growth with the subsequent increase of feeding and nutritional issues for sustaining this activity, mainly related to the use of high quality, safe and environmentally friendly feed ingredients. The use of additives in aquafeeds has proven to be a suitable option to improve different productive indicators in farmed fish. In the present study, the effect of adding the GHRP-6 peptide, a ghrelin analog, to a commercial diet of gilthead sea bream (Sparus aurata) was studied at two proportions (100 or 500 μg/kg of feed). Both experimental diets show an increase in growth performance, as well as in feed efficiency after 97 days of experiment. The lower inclusion of GHRP-6 (100 μg/kg) results in a better aerobic metabolism, while the higher inclusion significantly increased plasma GH levels in agreement with the GH secretagogue effects of ghrelin. Similar growth outcome and differences between GHRP-6 levels in aerobic metabolism and GH stimulation suggest that improvements in culture performance by this peptide may occur through different mechanisms. Taken together, this compound can be considered as a viable dietary supplement for increasing production efficiency of sea bream aquaculture, although a better understanding of its dose-specific effects is still required.
Collapse
|
8
|
Effects of early low temperature exposure on the growth, glycolipid metabolism and growth hormone (gh) gene methylation in the late stage of Chinese perch (Siniperca chuatsi). Comp Biochem Physiol B Biochem Mol Biol 2021; 259:110705. [PMID: 34958964 DOI: 10.1016/j.cbpb.2021.110705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022]
Abstract
Temperature is an important factor affecting the early development, growth and physiology of fish, as well as on aspects of feeding and metabolism. Here, we investigated the impact of low temperature on the growth, glycolipid metabolism and growth hormone (gh) gene methylation in the late stage of Chinese perch (Siniperca chuatsi). Chinese perch larvae were exposed to temperatures with 21 °C (low temperature group (LT)) and 25 °C (control group) for 7 days, and then the LT group was slowly heated to 25 °C and raised at this temperature for two months. Results indicated that the LT group exhibited significantly lower growth rate and weight gain rate than the control group (p < 0.05), but no obvious food intake (FI) were detected yet between LT group and control group. The larvae exposed at 21 °C relative to the 25 °C group had significant decreased transcript levels of GH-IGF axis genes (gh, igf1 and igf2) in Chinese perch juvenile (p < 0.05). Further analysis of the DNA methylation levels of gh showed that the LT group had higher at the CpG sites of -3029 and - 3032 than the control group in larvae (p < 0.05), whereas the DNA methylation levels at CpG sites of -2982 and - 3039 of gh were significantly lower compared with the control group in juveniles (p < 0.05). In addition, the plasma glucose was significantly increased in the LT group (p < 0.05), suggesting the metabolism of blood glucose slowed at low temperature. In larvae, the expressions of glycolipid metabolism genes (ins-ra and ins-rb) in LT group were significantly up-regulated compared to control group in larvae (p < 0.05), while down-regulated in juveniles (p < 0.05). The expression level of ucp2 mRNA was continuously up-regulated under low temperature stress. All these data demonstrate that early exposure to low temperature affected the growth and glycolipid metabolism of Chinese perch.
Collapse
|
9
|
Shahjahan M, Zahangir MM, Islam SMM, Ashaf-Ud-Doulah M, Ando H. Higher acclimation temperature affects growth of rohu (Labeorohita) through suppression of GH and IGFs genes expression actuating stress response. J Therm Biol 2021; 100:103032. [PMID: 34503781 DOI: 10.1016/j.jtherbio.2021.103032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/24/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022]
Abstract
Water temperature alone can affect the growth, metabolic rates and physiological responses of aquatic organisms. Our earlier study reported that higher temperature affects cellular and hemato-biochemical responses in rohu, Labeo rohita. In this backdrop, the present study assessed the effect of higher acclimation temperature on the regulatory mechanisms of growth and stress responses of juvenile L. rohita acclimatized in three temperature conditions (30 °C, 33 °C, and 36 °C) for a period of 30 days. The relative expression of genes for growth hormone (GH), insulin-like growth factors (IGF-1 and IGF-2) and heat shock proteins (hsp70 and hsp90) were measured by real-time quantitative PCR. The results revealed that the highest acclimation temperature (36 °C) significantly decreased the weight gain (WG) and specific growth rate (SGR), and increased the feed conversion ratio (FCR) compared to 30 °C (control), while increased WG, SGR and lowered FCR were observed in fish reared at the intermediate temperature (33 °C) compared to 30 °C. Similarly, the GH gene expression in the pituitary was significantly decreased and increased at 36 °C and 33 °C, respectively as compared to 30 °C. A significantly lower expression of IGF-1 and IGF-2, and higher expression of hsp70 and hsp90 were observed in the liver of fish at 36 °C. The results of the present study indicate that although slightly elevated temperature promotes the growth of juvenile L. rohita, the higher acclimation temperature may induce stress response and impair growth performance by suppressing GH/IGF system.
Collapse
Affiliation(s)
- Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Md Mahiuddin Zahangir
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata, 952-2135, Japan; Department of Fish Biology and Biotechnology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - S M Majharul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Ashaf-Ud-Doulah
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Hironori Ando
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata, 952-2135, Japan
| |
Collapse
|
10
|
Rizky D, Mahardini A, Byun J, Takemura A. Molecular cloning of insulin-like growth factor 3 (igf3) and its expression in the tissues of a female damselfish, Chrysiptera cyanea, in relation to seasonal and food-manipulated reproduction. Gen Comp Endocrinol 2020; 295:113479. [PMID: 32246963 DOI: 10.1016/j.ygcen.2020.113479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/01/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Food availability is a permissive determinant that drives gonadal activity in fish. The present study aimed to clarify the interactions between reproductive and nutritive statuses in the sapphire devil (Chrysiptera cyanea), a tropical damselfish with a long-day preference for reproduction. Insulin-like growth factor 3 (IGF3), a novel IGF that likely plays a role in gonadal maturation, was closely monitored in the sapphire devil. The cDNA of sapphire devil igf3 had an open reading frame of 443 base pairs (146 amino acid residues). Phylogenetic analyses revealed that sapphire devil IGF3 was clustered within the teleost IGF3 family. The transcript levels of sapphire devil igf3 increased in the brain, liver, and ovary of the fish during the late vitellogenic phase, suggesting that it plays a role in reproduction. Immersion of the fish in seawater containing estradiol-17β suppressed transcript levels of sapphire devil igf3 in the liver, but not in the brain, suggesting that intensive protein synthesis in relation to vitellogenesis negatively impacts somatic metabolism in this tissue. When fish were reared with high or low food under conditions of photoperiod (LD = 14:10) and temperature (at 25-28 °C) during the non-reproductive season, ovarian development was induced in high-food fish. Furthermore, prior to ovarian development in the high-food fish, the transcript levels of sapphire devil igf3 increased in the brain, liver, and ovary. These results indicated crosstalk between the reproductive and growth networks and suggested that a metabolic shift, from growth mode to reproductive mode, occurs in peripheral tissues when nutritive status is improved under suitable conditions of photoperiod and water temperature.
Collapse
Affiliation(s)
- Dinda Rizky
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Angka Mahardini
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Junhwan Byun
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
11
|
Galal-Khallaf A, Mohammed-Geba K, Yúfera M, Martínez-Rodríguez G, Mancera JM, López-Olmeda JF. Daily rhythms in endocrine factors of the somatotropic axis and their receptors in gilthead sea bream (Sparus aurata) larvae. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110793. [PMID: 32805414 DOI: 10.1016/j.cbpa.2020.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Living organisms have adapted to environmental oscillations in light and temperature through evolving biological clocks. Biological rhythms are pervasive at all levels of the endocrine system, including the somatotropic (growth) axis. The objective of the present research was to study the existence of daily rhythms on the somatotropic axis of a marine teleost species, specifically, the gilthead sea bream (Sparus aurata). Larvae of S. aurata at 30 dph (days post hatching), kept under a 9 L:15D (light-dark) photoperiod, were collected every 3 h throughout a 36 h cycle. The expression of the following somatotropic axis genes was analyzed by quantitative PCR: pituitary adenylate cyclase-activating polypeptide 1 (adcyap1), prepro-somatostatin-1 (pss1), growth hormone (gh), growth hormone receptor types 1 and 2 (ghr1 and ghr2, respectively), insulin-like growth factor 1 (igf1) and igf1 receptor a (igf1ra). All genes displayed significant differences among time points and, with the exception of adcyap1, all showed statistically significant daily rhythms. The acrophases of gh, ghr1, ghr2, igf1 and igf1ra were located around the end of the dark phase, between ZT19:44 and ZT0:48 h, whereas the highest expression levels of adcyap1 occurred at ZT18 h. On the other hand, the acrophase of pss1, an inhibitor of Gh secretion, was located at ZT10:16 h, hence it was shifted by several hours with respect to the other genes. The present results provide the first thorough description of somatotropic axis rhythms in gilthead sea bream. Such knowledge provides insights into the role of rhythmic regulation of the Gh/Igf1 axis system in larval growth and metabolism, and it can also improve the implementation of more species-specific feeding regimes.
Collapse
Affiliation(s)
- Asmaa Galal-Khallaf
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain; Molecular Biology and Biotechnology Lab, Department of Zoology, College of Science, Menoufia University, Shebin El- Kom, Menoufia, Egypt; Department of Biology, College of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, Campus of International Excellence of the Sea (CEI·MAR), E-11510 Puerto Real, Cádiz, Spain.
| | - Khaled Mohammed-Geba
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain; Molecular Biology and Biotechnology Lab, Department of Zoology, College of Science, Menoufia University, Shebin El- Kom, Menoufia, Egypt; Department of Biology, College of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, Campus of International Excellence of the Sea (CEI·MAR), E-11510 Puerto Real, Cádiz, Spain.
| | - Manuel Yúfera
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain
| | - Juan Miguel Mancera
- Department of Biology, College of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, Campus of International Excellence of the Sea (CEI·MAR), E-11510 Puerto Real, Cádiz, Spain
| | - Jose F López-Olmeda
- Department of Physiology, College of Biology, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
12
|
Herkenhoff ME, Ribeiro AO, Costa JM, Oliveira AC, Dias MAD, Reis Neto RV, Hilsdorf AWS, Pinhal D. Expression profiles of growth-related genes in two Nile tilapia strains and their crossbred provide insights into introgressive breeding effects. Anim Genet 2020; 51:611-616. [PMID: 32378756 DOI: 10.1111/age.12944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 11/28/2022]
Abstract
The Nile tilapia (Oreochromis niloticus) is a prominent farmed fish in aquaculture worldwide. Crossbreeding has recently been carried out between the Red-Stirling and the wt Chitralada strains of Nile tilapia, producing a heterotic hybrid (7/8 Chitralada and 1/8 Red-Stirling) that combines the superior growth performance of the Chitralada with the reddish coloration of the Red-Stirling strain. While classical selective breeding and crossbreeding strategies are well known, the molecular mechanisms underlying the phenotypic expression of economically advantageous traits in tilapia remain largely unknown. Molecular investigations have shown that variable expression of growth hormone (gh), insulin-like growth factors (igf1 and 2) and somatolactin (smtla) - components of the growth hormone/insulin-like growth factor (GH/IGF) axis - and myostatin (mstn) genes can affect traits of economic relevance in farmed animals. The aim of this study was to assess and compare the gene expression signature among Chitralada, Red-Stirling and their backcross hybrid in order to gain insights into the effects of introgressive breeding in modulation of the GH/IGF axis. Gene expression analyses in distinct tissues showed that most genes of the GH/IGF axis were up-regulated and mstn was down-regulated in backcross animals in comparison with Red-Stirling and Chitralada animals. These gene expression profiles revealed that backcross animals displayed a distinctive expression signature, which attests to the effectiveness of the introgressive breeding technique. Our findings also suggest that the GH/IGF axis and mstn genes might be candidate markers for fish performance and prove useful within genetic improvement programs aimed at the production of superior-quality tilapia strains using introgressive breeding.
Collapse
Affiliation(s)
- M E Herkenhoff
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - A O Ribeiro
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - J M Costa
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - A C Oliveira
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - M A D Dias
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, 08780-911, Brazil.,Department of Animal Sciences, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | - R V Reis Neto
- São Paulo State University (UNESP), Registro, SP, 11900-000, Brazil
| | - A W S Hilsdorf
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, 08780-911, Brazil.,Department of Animal Sciences, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | - D Pinhal
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| |
Collapse
|
13
|
Vélez EJ, Unniappan S. A Comparative Update on the Neuroendocrine Regulation of Growth Hormone in Vertebrates. Front Endocrinol (Lausanne) 2020; 11:614981. [PMID: 33708174 PMCID: PMC7940767 DOI: 10.3389/fendo.2020.614981] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/31/2020] [Indexed: 12/22/2022] Open
Abstract
Growth hormone (GH), mainly produced from the pituitary somatotrophs is a key endocrine regulator of somatic growth. GH, a pleiotropic hormone, is also involved in regulating vital processes, including nutrition, reproduction, physical activity, neuroprotection, immunity, and osmotic pressure in vertebrates. The dysregulation of the pituitary GH and hepatic insulin-like growth factors (IGFs) affects many cellular processes associated with growth promotion, including protein synthesis, cell proliferation and metabolism, leading to growth disorders. The metabolic and growth effects of GH have interesting applications in different fields, including the livestock industry and aquaculture. The latest discoveries on new regulators of pituitary GH synthesis and secretion deserve our attention. These novel regulators include the stimulators adropin, klotho, and the fibroblast growth factors, as well as the inhibitors, nucleobindin-encoded peptides (nesfatin-1 and nesfatin-1-like peptide) and irisin. This review aims for a comparative analysis of our current understanding of the endocrine regulation of GH from the pituitary of vertebrates. In addition, we will consider useful pharmacological molecules (i.e. stimulators and inhibitors of the GH signaling pathways) that are important in studying GH and somatotroph biology. The main goal of this review is to provide an overview and update on GH regulators in 2020. While an extensive review of each of the GH regulators and an in-depth analysis of specifics are beyond its scope, we have compiled information on the main endogenous and pharmacological regulators to facilitate an easy access. Overall, this review aims to serve as a resource on GH endocrinology for a beginner to intermediate level knowledge seeker on this topic.
Collapse
|
14
|
Non‑toxic sulfur enhances growth hormone signaling through the JAK2/STAT5b/IGF‑1 pathway in C2C12 cells. Int J Mol Med 2019; 45:931-938. [PMID: 31894268 DOI: 10.3892/ijmm.2019.4451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/27/2019] [Indexed: 11/05/2022] Open
Abstract
Insulin‑like growth factor‑1 (IGF‑1) regulates cell growth, glucose uptake and protein metabolism, and is required for growth hormone (GH) signaling‑mediated insulin production and secretion. IGF1 expression is associated with STAT5, which binds to a region (TTCNNNGAA) of the gene. Although sulfur is used in various fields, the toxicity of this element is a significant disadvantage as it causes indigestion, vomiting, diarrhea, pain and migraine. Therefore, it is difficult to conduct in vitro experiments to directly determine the effects of dietary sulfur. Additionally, it is difficult to dissolve non‑toxic sulfur (NTS). The present study aimed to identify the role of NTS in GH signaling as a Jak2/STAT5b/IGF‑1 pathway regulator. MTT assay was used to identify an optimum NTS concentration for C2C12 mouse muscle cells. Western blotting, RT‑PCR, chromatin immunoprecipitation, overexpression and small interfering RNA analyses were performed. NTS was dissolved in 1 mg/ml DMSO and could be used in vitro. Therefore, the present study determined whether NTS induced mouse muscle cell growth via GH signaling. NTS notably increased STAT5b binding to the Igf1 promoter. NTS also promoted GH signaling by upregulating GH receptor expression, similar to GH treatment. NTS enhanced GH signaling by regulating Jak2/STAT5b/IGF‑1 signaling pathway factor expression in C2C12 mouse muscle cells. Thus, NTS may be used as a GH‑enhancing growth stimulator.
Collapse
|
15
|
Modulation of Pituitary Response by Dietary Lipids and Throughout a Temperature Fluctuation Challenge in Gilthead Sea Bream. FISHES 2019. [DOI: 10.3390/fishes4040055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Low temperatures provoke drastic reductions in gilthead sea bream (Sparus aurata) activity and nourishment, leading to growth arrest and a halt in production. However, scarce data exist concerning the implications of central core control during the cold season. The aim of this work was to study the effects of low temperature and recovery from such exposure on the pituitary activity of sea bream juveniles fed 18% or 14% dietary lipid. A controlled indoor trial was performed to simulate natural temperature fluctuation (22 °C to 14 °C to 22 °C). Meanwhile, we determined the regulatory role of the pituitary by analyzing the gene expression of some pituitary hormones and hormone receptors via qPCR, as well as plasma levels of thyroidal hormones. In response to higher dietary lipids, hormone pituitary expressions were up-regulated. Induced low temperatures and lower ingesta modulated pituitary function up-regulating GH and TSH and thyroid and glucocorticoid receptors. All these findings demonstrate the capacity of the pituitary to recognize both external conditions and to modulate its response accordingly. However, growth, peripheral tissues and metabolism were not linked or connected to pituitary function at low temperatures, which opens an interesting field of study to interpret the hypothalamus–pituitary–target axis during temperature fluctuations in fish.
Collapse
|
16
|
Hack NL, Cordova KL, Glaser FL, Journey ML, Resner EJ, Hardy KM, Beckman BR, Lema SC. Interactions of long-term food ration variation and short-term fasting on insulin-like growth factor-1 (IGF-1) pathways in copper rockfish (Sebastes caurinus). Gen Comp Endocrinol 2019; 280:168-184. [PMID: 31022390 DOI: 10.1016/j.ygcen.2019.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/13/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022]
Abstract
Variation in food intake affects somatic growth by altering the expression of hormones in the somatotropic endocrine axis including insulin-like growth factor-1 (IGF-1). Here, we examined IGF-1 pathway responses to long- and short-term variation in food availability in copper rockfish (Sebastes caurinus), a nearshore Pacific rockfish important for commercial and recreational fisheries. Juvenile copper rockfish were raised under differing ration amounts (3% or 9% mass feed·g-1 fish wet mass·day-1) for 140 d to simulate 'long-term' feeding variation, after which some fish from both rations were fasted for 12 d to generate 'short-term' conditions of food deprivation. Rockfish on the 9% ration treatment grew more quickly than those on the 3% ration and were larger in mass, length, and body condition (k) after 152 d. Fish on the 9% ration had higher blood glucose than those on the 3% ration, with fasting decreasing blood glucose in both ration treatments, indicating that both long-term and short-term feed treatments altered energy status. Plasma IGF-1 was higher in rockfish from the 9% ration than those in the 3% ration and was also higher in fed fish than fasted fish. Additionally, plasma IGF-1 related positively to individual variation in specific growth rate (SGR). The positive association between IGF-1 and SGR showed discordance in fish that had experienced different levels of food and growth over the long-term but not short-term, suggesting that long-term nutritional experience can influence the relationship between IGF-1 and growth in this species. Rockfish on the 3% ration showed a lower relative abundance of gene transcripts encoding igf1 in the liver, but higher hepatic mRNAs for IGF binding proteins igfbp1a and igfbp1b. Fasting similarly decreased the abundance of igf1 mRNAs in the liver of fish reared under both the 9% and 3% rations, while concurrently increasing mRNAs encoding the IGF binding proteins igfbp1a, -1b, and -3a. Hepatic mRNAs for igfbp2b, -5a, and -5b were lower with long-term ration variation (3% ration) and fasting. Fish that experienced long-term reduced rations also had higher mRNA levels for igfbp3a, -3b, and IGF receptors isoforms A (igf1rA) and B (igf1rB) in skeletal muscle, but lower mRNA levels for igf1. Fasting increased muscle mRNA abundance for igfbp3a, igf1rA, and igf1rB, and decreased levels for igfbp2a and igf1. These data show that a positive relationship between circulating IGF-1 and individual growth rate is maintained in copper rockfish even when that growth variation relates to differences in food consumption across varying time scales, but that long- and short-term variation in food quantity can shift basal concentrations of circulating IGF-1 in this species.
Collapse
Affiliation(s)
- Nicole L Hack
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Frances L Glaser
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Emily J Resner
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kristin M Hardy
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
17
|
Martínez R, Herrero-Nogareda L, Van Antro M, Campos MP, Casado M, Barata C, Piña B, Navarro-Martín L. Morphometric signatures of exposure to endocrine disrupting chemicals in zebrafish eleutheroembryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105232. [PMID: 31271907 DOI: 10.1016/j.aquatox.2019.105232] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Understanding the mode of action of the different pollutants in human and wildlife health is a key step in environmental risk assessment. The aim of this study was to determine signatures that could link morphological phenotypes to the toxicity mechanisms of four Endocrine Disrupting Chemicals (EDCs): bisphenol A (BPA), perfluorooctanesulfonate potassium salt (PFOS), tributyltin chloride (TBT), and 17-ß-estradiol (E2). Zebrafish (Danio rerio) eleutheroembryos were exposed from 2 to 5 dpf to a wide range of BPA, PFOS, TBT and E2 concentrations. At the end of the exposures several morphometric features were assessed. Common and non-specific effects on larvae pigmentation or swim bladder area were observed after exposures to all compounds. BPA specifically induced yolk sac malabsorption syndrome and altered craniofacial parameters, whereas PFOS had specific effects on the notochord formation presenting higher rates of scoliosis and kyphosis. The main effect of E2 was an increase in the body length of the exposed eleutheroembryos. In the case of TBT, main alterations on the morphological traits were related to developmental delays. When integrating all morphometrical parameters, BPA showed the highest rates of malformations in terms of equilethality, followed by PFOS and, distantly, by TBT and E2. In the case of BPA and PFOS, we were able to relate our results with effects on the transcriptome and metabolome, previously reported. We propose that methodized morphometric analyses in zebrafish embryo model can be used as an inexpensive and easy screening tool to predict modes of action of a wide-range number of contaminants.
Collapse
Affiliation(s)
- Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain; Universitat de Barcelona (UB), Barcelona, Catalunya, 08007, Spain.
| | - Laia Herrero-Nogareda
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Morgane Van Antro
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 61 Rue de Bruxelles, B5000, Namur, Belgium.
| | - Maria Pilar Campos
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Marta Casado
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| |
Collapse
|
18
|
Xu M, Wang T, Wang J, Wan W, Wang Z, Guan D, Sun H. An evaluation of mixed plant protein in the diet of Yellow River carp (Cyprinus carpio): growth, body composition, biochemical parameters, and growth hormone/insulin-like growth factor 1. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1331-1342. [PMID: 31011873 DOI: 10.1007/s10695-019-00641-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
The aim of this work is to evaluate the effects of dietary inclusion of mixed plant protein (MP) (rapeseed meal:cottonseed meal:peanut meal = 1:1:1) on growth, body composition, blood biochemical parameters, growth hormone/insulin-like growth factor 1, and relative non-specific immune response in Yellow River carp Cyprinus carpio. Five isonitrogenous and isoenergetic trial diets were formulated to replace fish meal at 0 (MP0, control), 25% (MP25), 50% (MP50), 75% (MP75), and 100% (MP100) mixed plant protein, respectively. The 25% mixed plant protein did not affect the weight gain, specific growth rate, and protein efficiency ratio, whereas these parameters were depressed by 50% and above mixed plant protein. The whole body protein content gradually decreased with increasing dietary MP; meanwhile, the whole body lipid content is the opposite. The MP75 and MP100 diets adversely affected the glucose level, total cholesterol value, alanine transaminase, and aspartate transaminase activity of serum. Fish fed MP75 and MP100 diets showed higher growth hormone level than that of MP0 diet; however, the insulin-like growth factor 1 level got the opposite result. The 50% and above inclusion of MP decreased lysozyme activity and increased malondialdehyde content. In conclusion, no more than 50% of fish meal could be replaced by mixed plant protein in diet. However, 50% and above inclusion of mixed plant protein in diet could depress the growth, insulin-like growth factor 1 level, and non-specific immune response, and significantly affect the whole body composition and serum biochemical parameters in Yellow River carp.
Collapse
Affiliation(s)
- Mengmeng Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Lab of Aquatic Animal Nutrition and Environmental Health, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China
| | - Tingting Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Lab of Aquatic Animal Nutrition and Environmental Health, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China
| | - Jiting Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Lab of Aquatic Animal Nutrition and Environmental Health, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China.
| | - Wenju Wan
- Department of Basic Medicine, Taishan Medical University, 2 Yingsheng East Road, Tai'an, Shandong Province, Tai'an, 271018, Shandong Province, China
| | - Zhen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Lab of Aquatic Animal Nutrition and Environmental Health, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China
| | - Dongyan Guan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Lab of Aquatic Animal Nutrition and Environmental Health, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China
| | - Huiwen Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Lab of Aquatic Animal Nutrition and Environmental Health, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China
| |
Collapse
|
19
|
Amenyogbe E, Chen G, Wang Z. Identification, characterization, and expressions profile analysis of growth hormone receptors (GHR1 and GHR2) in Hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus polyphekadion ♂). Genomics 2019; 112:1-9. [PMID: 31121246 DOI: 10.1016/j.ygeno.2019.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 01/31/2023]
Abstract
Growth hormone is an essential hormone that plays essential roles in growth, metabolism, cellular differentiation, immunity and reproduction in fish, by means of the growth hormone receptors. The encoding cDNA growth hormone receptors (GHR1 and GHR2) were cloned and characterized from Hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus polyphekadion♂). Sequence analysis of the cloned GHR1 was observed as containing 2176, which comprised an ORF of 1842 bp, 5 UTR of 6 bp and 3 UTR of 328 bp, with 612 amino acids encoding proteins, while GHR2 was observed as containing 1824 bp that encompassed an ORF of 708 bp, 5 UTR of 48 bp and 3 UTR of 1068 bp with 235 amino acids encoding proteins. Relative mRNA expression of GHR1 and GHR2 in the liver and muscle was found to be highest respectively. Our findings provide vital statistics of GHRs likely to play a significant role in the growth of the fish.
Collapse
Affiliation(s)
- Eric Amenyogbe
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Laboratory of Fish Aquaculture, Zhanjiang 524025, China.
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Laboratory of Fish Aquaculture, Zhanjiang 524025, China.
| | - Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Laboratory of Fish Aquaculture, Zhanjiang 524025, China
| |
Collapse
|
20
|
Hack NL, Strobel JS, Journey ML, Beckman BR, Lema SC. Response of the insulin-like growth factor-1 (Igf1) system to nutritional status and growth rate variation in olive rockfish (Sebastes serranoides). Comp Biochem Physiol A Mol Integr Physiol 2018; 224:42-52. [DOI: 10.1016/j.cbpa.2018.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
|
21
|
Balseiro P, Moe Ø, Gamlem I, Shimizu M, Sveier H, Nilsen TO, Kaneko N, Ebbesson L, Pedrosa C, Tronci V, Nylund A, Handeland SO. Comparison between Atlantic salmon Salmo salar post-smolts reared in open sea cages and in the Preline raceway semi-closed containment aquaculture system. JOURNAL OF FISH BIOLOGY 2018; 93:567-579. [PMID: 29952001 DOI: 10.1111/jfb.13659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
The use of closed containment (CCS) or semi-closed containment systems (S-CCS) for Atlantic salmon Salmo salar aquaculture is under evaluation in Norway. One such system is the Preline S-CCS, a floating raceway system that pumps water from 35 m depth creating a constant current through the system. Exposing fish to moderate water currents is considered aerobic exercise and it is often perceived as positive for fish welfare, growth, food utilization, muscle development and cardiac health. The present study compared fish reared in the Preline S-CCS and in a reference open pen. Samples were taken in fresh water before being transferred to the seawater systems and after 1, 2 and 4 months in seawater and analysed for growth, mortality, muscle development and plasma insulin-like growth factor I (IGF-I) levels. Moreover, gene transcription were determined in the skeletal muscle [igf-I, insulin-like growth factor 1 receptor a (igf1ra) and insulin-like growth factor 1 binding protein 1a (igf1bp1a)] and cardiac transcription factors [myocyte-specific enhancer factor 2C (mef2c), gata4 and vascular endothelial growth factor (vegf)]. While the results suggest that post-smolts in Preline S-CCS were smaller than reference fish, fish from Preline S-CCS have less accumulated mortality at the end of the experiment and showed 2.44 times more small muscle fibres than the reference group fish after 4 months in seawater. These results confirmed what was previously observed in the second generation of Preline. Similar levels of big muscle fibres between Preline S-CCS and reference suggest a similar hypertrophy of muscle fibres even with lower IGF-I expression in the Preline S-CCS. Cardiac gene transcription suggests cardiac hypertrophy was observed after 4 months in seawater in the Preline S-CCS group. Altogether, Preline S-CCS is a promising technology able to produce more robust S. salar with a faster growth and lower mortality in the subsequent standard open cage system growth period.
Collapse
Affiliation(s)
- Pablo Balseiro
- Uni Research Environment, Uni Research AS, Bergen, Norway
| | - Øyvind Moe
- Uni Research Environment, Uni Research AS, Bergen, Norway
| | - Ingrid Gamlem
- Uni Research Environment, Uni Research AS, Bergen, Norway
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | | | - Tom O Nilsen
- Uni Research Environment, Uni Research AS, Bergen, Norway
| | - Nobuto Kaneko
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Lars Ebbesson
- Uni Research Environment, Uni Research AS, Bergen, Norway
| | - Cindy Pedrosa
- Uni Research Environment, Uni Research AS, Bergen, Norway
| | | | - Are Nylund
- Department of Biology, University of Bergen, Bergen, Norway
| | | |
Collapse
|
22
|
Simó-Mirabet P, Perera E, Calduch-Giner JA, Afonso JM, Pérez-Sánchez J. Co-expression Analysis of Sirtuins and Related Metabolic Biomarkers in Juveniles of Gilthead Sea Bream ( Sparus aurata) With Differences in Growth Performance. Front Physiol 2018; 9:608. [PMID: 29922168 PMCID: PMC5996159 DOI: 10.3389/fphys.2018.00608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
Sirtuins (SIRTs) represent a conserved protein family of deacetylases that act as master regulators of metabolism, but little is known about their roles in fish and livestock animals in general. The present study aimed to assess the value of SIRTs for the metabolic phenotyping of fish by assessing their co-expression with a wide-representation of markers of energy and lipid metabolism and intestinal function and health in two genetically different gilthead sea bream strains with differences in growth performance. Fish from the fast-growing strain exhibited higher feed intake, feed efficiency and plasma IGF-I levels, along with higher hepatosomatic index and lower mesenteric fat (lean phenotype). These observations suggest differences in tissue energy partitioning with an increased flux of fatty acids from adipose tissue toward the liver. The resulting increased risk of hepatic steatosis may be counteracted in the liver by reduced lipogenesis and enhanced triglyceride catabolism, in combination with a higher and more efficient oxidative metabolism in white skeletal muscle. These effects were supported by co-regulated changes in the expression profile of SIRTs (liver, sirt1; skeletal muscle, sirt2; adipose tissue, sirt5-6) and markers of oxidative metabolism (pgc1α, cpt1a, cs, nd2, cox1), mitochondrial respiration uncoupling (ucp3) and fatty acid and triglyceride metabolism (pparα, pparγ, elovl5, scd1a, lpl, atgl) that were specific to each strain and tissue. The anterior intestine of the fast-growing strain was better suited to cope with improved growth by increased expression of markers of nutrient absorption (fabp2), epithelial barrier integrity (cdh1, cdh17) and immunity (il1β, cd8b, lgals1, lgals8, sIgT, mIgT), which were correlated with low expression levels of sirt4 and markers of fatty acid oxidation (cpt1a). In the posterior intestine, the fast-growing strain showed a consistent up-regulation of sirt2, sirt3, sirt5 and sirt7 concurrently with increased expression levels of markers of cell proliferation (pcna), oxidative metabolism (nd2) and immunity (sIgT, mIgT). Together, these findings indicate that SIRTs may play different roles in the regulation of metabolism, inflammatory tone and growth in farmed fish, arising as powerful biomarkers for a reliable metabolic phenotyping of fish at the tissue-specific level.
Collapse
Affiliation(s)
- Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| | - Erick Perera
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| | - Juan M Afonso
- Aquaculture Research Group, Institute of Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria (GIA), Las Palmas, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| |
Collapse
|
23
|
Vélez EJ, Perelló M, Azizi S, Moya A, Lutfi E, Pérez-Sánchez J, Calduch-Giner JA, Navarro I, Blasco J, Fernández-Borràs J, Capilla E, Gutiérrez J. Recombinant bovine growth hormone (rBGH) enhances somatic growth by regulating the GH-IGF axis in fingerlings of gilthead sea bream (Sparus aurata). Gen Comp Endocrinol 2018; 257:192-202. [PMID: 28666853 DOI: 10.1016/j.ygcen.2017.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
The growth hormone (GH)/insulin-like growth factors (IGFs) endocrine axis is the main growth-regulator system in vertebrates. Some authors have demonstrated the positive effects on growth of a sustained-release formulation of a recombinant bovine GH (rBGH) in different fish species. The aim of this work was to characterize the effects of a single injection of rBGH in fingerlings of gilthead sea bream on growth, GH-IGF axis, and both myogenic and osteogenic processes. Thus, body weight and specific growth rate were significantly increased in rBGH-treated fish respect to control fish at 6weeks post-injection, whereas the hepatosomatic index was decreased and the condition factor and mesenteric fat index were unchanged, altogether indicating enhanced somatic growth. Moreover, rBGH injection increased the plasma IGF-I levels in parallel with a rise of hepatic mRNA from total IGF-I, IGF-Ic and IGF-II, the binding proteins IGFBP-1a and IGFBP-2b, and also the receptors IGF-IRb, GHR-I and GHR-II. In skeletal muscle, the expression of IGF-Ib and GHR-I was significantly increased but that of IGF-IRb was reduced; the mRNA levels of myogenic regulatory factors, proliferation and differentiation markers (PCNA and MHC, respectively), or that of different molecules of the signaling pathway (TOR/AKT) were unaltered. Besides, the growth inhibitor myostatin (MSTN1 and MSTN2) and the hypertrophic marker (MLC2B) expression resulted significantly enhanced, suggesting altogether that the muscle is in a non-proliferative stage of development. Contrarily in bone, although the expression of most molecules of the GH/IGF axis was decreased, the mRNA levels of several osteogenic genes were increased. The histology analysis showed a GH induced lipolytic effect with a clear decrease in the subcutaneous fat layer. Overall, these results reveal that a better growth potential can be achieved on this species and supports the possibility to improve growth and quality through the optimization of its culture conditions.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Miquel Perelló
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sheida Azizi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alberto Moya
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Esmail Lutfi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefina Blasco
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
24
|
Perelló-Amorós M, Vélez EJ, Vela-Albesa J, Sánchez-Moya A, Riera-Heredia N, Hedén I, Fernández-Borràs J, Blasco J, Calduch-Giner JA, Navarro I, Capilla E, Jönsson E, Pérez-Sánchez J, Gutiérrez J. Ghrelin and Its Receptors in Gilthead Sea Bream: Nutritional Regulation. Front Endocrinol (Lausanne) 2018; 9:399. [PMID: 30105002 PMCID: PMC6077198 DOI: 10.3389/fendo.2018.00399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Ghrelin is involved in the regulation of growth in vertebrates through controlling different functions, such as feed intake, metabolism, intestinal activity or growth hormone (Gh) secretion. The aim of this work was to identify the sequences of preproghrelin and Ghrelin receptors (ghsrs), and to study their responses to different nutritional conditions in gilthead sea bream (Sparus aurata) juveniles. The structure and phylogeny of S. aurata preproghrelin was analyzed, and a tissue screening was performed. The effects of 21 days of fasting and 2, 5, 24 h, and 7 days of refeeding on plasma levels of Ghrelin, Gh and Igf-1, and the gene expression of preproghrelin, ghsrs and members of the Gh/Igf-1 system were determined in key tissues. preproghrelin and the receptors are well conserved, being expressed mainly in stomach, and in the pituitary and brain, respectively. Twenty-one days of fasting resulted in a decrease in growth while Ghrelin plasma levels were elevated to decrease at 5 h post-prandial when pituitary ghsrs expression was minimum. Gh in plasma increased during fasting and slowly felt upon refeeding, while plasma Igf-1 showed an inverse profile. Pituitary gh expression augmented during fasting reaching maximum levels at 1 day post-feeding while liver igf-1 expression and that of its splice variants decreased to lowest levels. Liver Gh receptors expression was down-regulated during fasting and recovered after refeeding. This study demonstrates the important role of Ghrelin during fasting, its acute down-regulation in the post-prandial stage and its interaction with pituitary Ghsrs and Gh/Igf-1 axis.
Collapse
Affiliation(s)
- Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Emilio J. Vélez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jaume Vela-Albesa
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Albert Sánchez-Moya
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Natàlia Riera-Heredia
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ida Hedén
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jaume Fernández-Borràs
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Josep A. Calduch-Giner
- Nutrition and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Elisabeth Jönsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jaume Pérez-Sánchez
- Nutrition and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- *Correspondence: Joaquim Gutiérrez
| |
Collapse
|
25
|
Pérez-Sánchez J, Simó-Mirabet P, Naya-Català F, Martos-Sitcha JA, Perera E, Bermejo-Nogales A, Benedito-Palos L, Calduch-Giner JA. Somatotropic Axis Regulation Unravels the Differential Effects of Nutritional and Environmental Factors in Growth Performance of Marine Farmed Fishes. Front Endocrinol (Lausanne) 2018; 9:687. [PMID: 30538673 PMCID: PMC6277588 DOI: 10.3389/fendo.2018.00687] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/02/2018] [Indexed: 12/23/2022] Open
Abstract
The Gh/Prl/Sl family has evolved differentially through evolution, resulting in varying relationships between the somatotropic axis and growth rates within and across fish species. This is due to a wide range of endogenous and exogenous factors that make this association variable throughout season and life cycle, and the present minireview aims to better define the nutritional and environmental regulation of the endocrine growth cascade over precisely defined groups of fishes, focusing on Mediterranean farmed fishes. As a result, circulating Gh and Igf-i are revitalized as reliable growth markers, with a close association with growth rates of gilthead sea bream juveniles with deficiency signs in both macro- or micro-nutrients. This, together with other regulated responses, promotes the use of Gh and Igf-i as key performance indicators of growth, aerobic scope, and nutritional condition in gilthead sea bream. Moreover, the sirtuin-energy sensors might modulate the growth-promoting action of somatotropic axis. In this scenario, transcripts of igf-i and gh receptors mirror changes in plasma Gh and Igf-i levels, with the ghr-i/ghr-ii expression ratio mostly unaltered over season. However, this ratio is nutritionally regulated, and enriched plant-based diets or diets with specific nutrient deficiencies downregulate hepatic ghr-i, decreasing the ghr-i/ghr-ii ratio. The same trend, due to a ghr-ii increase, is found in skeletal muscle, whereas impaired growth during overwintering is related to increase in the ghr-i/ghr-ii and igf-ii/igf-i ratios in liver and skeletal muscle, respectively. Overall, expression of insulin receptors and igf receptors is less regulated, though the expression quotient is especially high in the liver and muscle of sea bream. Nutritional and environmental regulation of the full Igf binding protein 1-6 repertoire remains to be understood. However, tissue-specific expression profiling highlights an enhanced and nutritionally regulated expression of the igfbp-1/-2/-4 clade in liver, whereas the igfbp-3/-5/-6 clade is overexpressed and regulated in skeletal muscle. The somatotropic axis is, therefore, highly informative of a wide-range of growth-disturbing and stressful stimuli, and multivariate analysis supports its use as a reliable toolset for the assessment of growth potentiality and nutrient deficiencies and requirements, especially in combination with selected panels of other nutritionally regulated metabolic biomarkers.
Collapse
|
26
|
Wang M, Xu D, Liu K, Yang J, Xu P. Molecular cloning and expression analysis on LPL of Coilia nasus. Gene 2016; 583:147-159. [DOI: 10.1016/j.gene.2016.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/22/2015] [Accepted: 02/10/2016] [Indexed: 11/29/2022]
|
27
|
Kim BH, Hur SP, Hur SW, Lee CH, Lee YD. Relevance of Light Spectra to Growth of the Rearing Tiger Puffer Takifugu rubripes. Dev Reprod 2016; 20:23-9. [PMID: 27294208 PMCID: PMC4899556 DOI: 10.12717/dr.2016.20.1.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 01/15/2023]
Abstract
In fish, light (photoperiod, intensity and spectra) is main regulator in many physiological actions includinggrowth. We investigate the effect of light spectra on the somatic growth and growth-related gene expression in the rearing tiger puffer. Fish was reared under different light spectra (blue, green and red) for 8 weeks. Fish body weight and total length were promoted when reared under green light condition than red light condition. Expression of somatostatins (ss1 and ss2) in brain were showed higher expression under red light condition than green light condition. The ss3 mRNA was observed only higher expression in blue light condition. Expression of growth hormone (gh) in pituitary was detected no different levels between experimental groups. However, the fish of green light condition group was showed more high weight gain and feed efficiency than other light condition groups. Our present results suggest that somatic growth of tiger puffer is induced under green light condition because of inhibiting ss mRNA expression in brain by effect of green wavelength.
Collapse
Affiliation(s)
- Byeong-Hoon Kim
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Sung-Pyo Hur
- Jeju International Marine Science Research & Logistics Center, Korea Institute of Ocean Science & Technology,
| | - Sang-Woo Hur
- Aquaculture Management Division, National Institute of Fisheries Science, Busan 46083, Korea
| | - Chi-Hoon Lee
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Young-Don Lee
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
28
|
Vélez EJ, Lutfi E, Azizi S, Montserrat N, Riera-Codina M, Capilla E, Navarro I, Gutiérrez J. Contribution of in vitro myocytes studies to understanding fish muscle physiology. Comp Biochem Physiol B Biochem Mol Biol 2015; 199:67-73. [PMID: 26688542 DOI: 10.1016/j.cbpb.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/04/2015] [Accepted: 12/06/2015] [Indexed: 11/25/2022]
Abstract
Research on the regulation of fish muscle physiology and growth was addressed originally by classical in vivo approaches; however, systemic interactions resulted in many questions that could be better considered through in vitro myocyte studies. The first paper published by our group in this field was with Tom Moon on brown trout cardiomyocytes, where the insulin and IGF-I receptors were characterized and the down-regulatory effects of an excess of peptides demonstrated. We followed the research on cultured skeletal muscle cells through the collaboration with INRA focused on the characterization of IGF-I receptors and its signaling pathways through in vitro development. Later on, we showed the important metabolic role of IGFs, although these studies were only the first stage of a prolific area of work that has offered a useful tool to advance in our knowledge of the endocrine and nutritional regulation of fish growth and metabolism. Obviously, the findings obtained in vitro serve the purpose to propose the scenario that will need confirmation in vivo, but this technique has made possible many different, easy, fast and better controlled studies. In this review, we have summarized the main advances that the use of cultured muscle cells has permitted, focusing mainly in the role of IGFs regulating fish metabolism and growth. Although many articles have already appeared using this model system in salmonids, gilthead sea bream or zebrafish, it is reasonable to expect new studies with cultured cells using innovative approaches that will help to understand fish physiology and its regulation.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Esmail Lutfi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Sheida Azizi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Núria Montserrat
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Miquel Riera-Codina
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Isabel Navarro
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
29
|
Growth-promoting effects of sustained swimming in fingerlings of gilthead sea bream (Sparus aurata L.). J Comp Physiol B 2015; 185:859-68. [PMID: 26391594 DOI: 10.1007/s00360-015-0933-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 10/24/2022]
Abstract
Fish growth is strongly influenced by environmental and nutritional factors and changing culture conditions can help optimize it. The importance of early-life experience on the muscle phenotype later in life is well known. Here, we study the effects of 5 weeks of moderate and sustained swimming activity (5 BL s(-1)) in gilthead sea bream during early development. We analysed growth and body indexes, plasma IGF-I and GH levels, feed conversion, composition [proximate and isotopic ((15)N/(13)C)] and metabolic key enzymes (COX, CS, LDH, HOAD, HK, ALAT, ASAT) of white muscle. Moderate and continuous exercise in fingerlings of gilthead sea bream increased plasma IGF-I, whereas it reduced plasma GH. Under these conditions, growth rate improved without any modification to feed intake through an increase in muscle mass and a reduction in mesenteric fat deposits. There were no changes in the content and turnover of muscle proteins and lipid reserves. Glycogen stores were maintained, but glycogen turnover was higher in white muscle of exercised fish. A lower LDH/CS ratio demonstrated an improvement in the aerobic capacity of white muscle, while a reduction in the COX/CS ratio possibly indicated a functional adaptation of mitochondria to adjust to the tissue-specific energy demand and metabolic fuel availability in exercised fish. We discuss the synergistic effects of dietary nutrients and sustained exercise on the different mitochondrial responses.
Collapse
|
30
|
Pujolar JM, Jacobsen MW, Bekkevold D, Lobón-Cervià J, Jónsson B, Bernatchez L, Hansen MM. Signatures of natural selection between life cycle stages separated by metamorphosis in European eel. BMC Genomics 2015; 16:600. [PMID: 26268725 PMCID: PMC4535825 DOI: 10.1186/s12864-015-1754-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/06/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Species showing complex life cycles provide excellent opportunities to study the genetic associations between life cycle stages, as selective pressures may differ before and after metamorphosis. The European eel presents a complex life cycle with two metamorphoses, a first metamorphosis from larvae into glass eels (juvenile stage) and a second metamorphosis into silver eels (adult stage). We tested the hypothesis that different genes and gene pathways will be under selection at different life stages when comparing the genetic associations between glass eels and silver eels. RESULTS We used two sets of markers to test for selection: first, we genotyped individuals using a panel of 80 coding-gene single nucleotide polymorphisms (SNPs) developed in American eel; second, we investigated selection at the genome level using a total of 153,423 RAD-sequencing generated SNPs widely distributed across the genome. Using the RAD approach, outlier tests identified a total of 2413 (1.57%) potentially selected SNPs. Functional annotation analysis identified signal transduction pathways as the most over-represented group of genes, including MAPK/Erk signalling, calcium signalling and GnRH (gonadotropin-releasing hormone) signalling. Many of the over-represented pathways were related to growth, while others could result from the different conditions that eels inhabit during their life cycle. CONCLUSIONS The observation of different genes and gene pathways under selection when comparing glass eels vs. silver eels supports the adaptive decoupling hypothesis for the benefits of metamorphosis. Partitioning the life cycle into discrete morphological phases may be overall beneficial since it allows the different life stages to respond independently to their unique selection pressures. This might translate into a more effective use of food and niche resources and/or performance of phase-specific tasks (e.g. feeding in the case of glass eels, migrating and reproducing in the case of silver eels).
Collapse
Affiliation(s)
- J M Pujolar
- Department of Bioscience, Aarhus University, Aarhus C, Aarhus, Denmark.
| | - M W Jacobsen
- Department of Bioscience, Aarhus University, Aarhus C, Aarhus, Denmark.
| | - D Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark.
| | - J Lobón-Cervià
- National Museum of Natural Sciences (CSIC), Madrid, Spain.
| | - B Jónsson
- Biopol, Marine Biology and Biotechnology Center, Skagastrond, Iceland.
| | - L Bernatchez
- IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, Canada.
| | - M M Hansen
- Department of Bioscience, Aarhus University, Aarhus C, Aarhus, Denmark.
| |
Collapse
|
31
|
Georgiou S, Alami-Durante H, Power DM, Sarropoulou E, Mamuris Z, Moutou KA. Transient up- and down-regulation of expression of myosin light chain 2 and myostatin mRNA mark the changes from stratified hyperplasia to muscle fiber hypertrophy in larvae of gilthead sea bream (Sparus aurata L.). Cell Tissue Res 2015; 363:541-54. [PMID: 26246399 DOI: 10.1007/s00441-015-2254-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/06/2015] [Indexed: 01/17/2023]
Abstract
Hyperplasia and hypertrophy are the two mechanisms by which muscle develops and grows. We study these two mechanisms, during the early development of white muscle in Sparus aurata, by means of histology and the expression of structural and regulatory genes. A clear stage of stratified hyperplasia was identified early in the development of gilthead sea bream but ceased by 35 dph when hypertrophy took over. Mosaic recruitment of new white fibers began as soon as 60 dph. The genes mlc2a and mlc2b were expressed at various levels during the main phases of hyperplasia and hypertrophy. The genes myog and mlc2a were significantly up-regulated during the intensive stratified formation of new fibers and their expression was significantly correlated. Expression of mstn1 and igf1 increased at 35 dph, appeared to regulate the hyperplasia-to-hypertrophy transition, and may have stimulated the expression of mlc2a, mlc2b and col1a1 at the onset of mosaic hyperplasia. The up-regulation of mstn1 at transitional phases in muscle development indicates a dual regulatory role of myostatin in fish larval muscle growth.
Collapse
Affiliation(s)
- Stella Georgiou
- Department of Biochemistry & Biotechnology, University of Thessaly, Ploutonos 26, Larissa, Greece
| | - Hélène Alami-Durante
- UR 1067 Nutrition Métabolisme Aquaculture, INRA, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Deborah M Power
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Faro, Portugal
| | - Elena Sarropoulou
- Institute of Marine Biology & Genetics, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
| | - Zissis Mamuris
- Department of Biochemistry & Biotechnology, University of Thessaly, Ploutonos 26, Larissa, Greece
| | - Katerina A Moutou
- Department of Biochemistry & Biotechnology, University of Thessaly, Ploutonos 26, Larissa, Greece.
| |
Collapse
|
32
|
Calduch-Giner JA, Echasseriau Y, Crespo D, Baron D, Planas JV, Prunet P, Pérez-Sánchez J. Transcriptional assessment by microarray analysis and large-scale meta-analysis of the metabolic capacity of cardiac and skeletal muscle tissues to cope with reduced nutrient availability in Gilthead Sea Bream (Sparus aurata L.). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:423-435. [PMID: 24626932 DOI: 10.1007/s10126-014-9562-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/06/2014] [Indexed: 06/03/2023]
Abstract
The effects of nutrient availability on the transcriptome of cardiac and skeletal muscle tissues were assessed in juvenile gilthead sea bream fed with a standard diet at two feeding levels: (1) full ration size and (2) 70 % satiation followed by a finishing phase at the maintenance ration. Microarray analysis evidenced a characteristic transcriptomic profile for each muscle tissue following changes in oxidative capacity (heart > red skeletal muscle > white skeletal muscle). The transcriptome of heart and secondly that of red skeletal muscle were highly responsive to nutritional changes, whereas that of glycolytic white skeletal muscle showed less ability to respond. The highly expressed and nutritionally regulated genes of heart were mainly related to signal transduction and transcriptional regulation. In contrast, those of white muscle were enriched in gene ontology (GO) terms related to proteolysis and protein ubiquitination. Microarray meta-analysis using the bioinformatic tool Fish and Chips ( http://fishandchips.genouest.org/index.php ) showed the close association of a representative cluster of white skeletal muscle with some of cardiac and red skeletal muscle, and many GO terms related to mitochondrial function appeared to be common links between them. A second round of cluster comparisons revealed that mitochondria-related GOs also linked differentially expressed genes of heart with those of liver from cortisol-treated gilthead sea bream. These results show that mitochondria are among the first responders to environmental and nutritional stress stimuli in gilthead sea bream, and functional phenotyping of this cellular organelle is highly promising to obtain reliable markers of growth performance and well-being in this fish species.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Honji RM, Nóbrega RH, Pandolfi M, Shimizu A, Borella MI, Moreira RG. Immunohistochemical study of pituitary cells in wild and captive Salminus hilarii (Characiformes: Characidae) females during the annual reproductive cycle. SPRINGERPLUS 2013; 2:460. [PMID: 24083107 PMCID: PMC3786080 DOI: 10.1186/2193-1801-2-460] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/10/2013] [Indexed: 01/11/2023]
Abstract
Freshwater fish that live exclusively in rivers are at particular risk from fragmentation of the aquatic system, mainly the species that migrate upriver for reproduction. That is the case of Salminus hilarii, an important migratory species currently classified as "almost threatened" in the São Paulo State (Brazil), facing water pollution, dam construction, riparian habitat destruction and environmental changes that are even more serious in this State. Additionally, this species show ovulation dysfunction in captivity. Our studies focused on the identification and distribution of the pituitary cell types in the adenohypophysis of S. hilarii females, including a morphometric analysis that compares pituitary cells from wild and captive broodstocks during the reproductive annual cycle. The morphology of adenohypophysial cells showed differences following the reproductive cycle and the environment. In general, optical density suggested a higher cellular activity during the previtellogenic (growth hormone) and vitellogenic (somatolactin) stages in both environments. Additionally, the nucleus/cell ratio analysis suggested that growth hormone and somatolactin cells were larger in wild than in captive females in most reproductive stages of the annual cycle. In contrast, prolactin hormone showed no variation throughout the reproductive cycle (in both environments). Morphometrical analyses related to reproduction of S. hilarii in different environmental conditions, suggest that somatolactin and growth hormone play an important role in reproduction in teleost and can be responsible for the regulation of associated processes that indirectly affect reproductive status.
Collapse
Affiliation(s)
- Renato Massaaki Honji
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, N° 321, 05508-090 São Paulo, SP Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Jiménez-Amilburu V, Salmerón C, Codina M, Navarro I, Capilla E, Gutiérrez J. Insulin-like growth factors effects on the expression of myogenic regulatory factors in gilthead sea bream muscle cells. Gen Comp Endocrinol 2013; 188:151-8. [PMID: 23500676 DOI: 10.1016/j.ygcen.2013.02.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/19/2013] [Indexed: 11/22/2022]
Abstract
Gilthead sea bream (Sparus aurata) is a widely cultured fish; however, muscle development regulation is poorly known. Myogenesis can be activated by the myogenic regulatory factors (MRFs: MyoD, Myf5, myogenin and MRF4) and by endocrine signals from the growth hormone (GH)/insulin-like growth factors (IGFs) axis. We cultured gilthead sea bream myocytes to better understand the role of IGFs in muscle growth and differentiation through the regulation of MRFs expression. First, we studied the expression pattern during culture development of IGFs and IGF-I splice variants. The expression of igf-II was highest at the beginning of the culture and decreased when the cells started to differentiate, similarly to that observed for total igf-I. Igf-Ib showed a paralleled expression pattern as that of total igf-I, whereas igf-Ic was more stable during culture progression. Next, we analyzed the expression of IGFs and MRFs after incubation of cells at day 4 with GH, IGF-I, IGF-II and combinations of them at 3, 6 and 18 h. IGF-II increased myod2 and myf5 expression, genes involved in early muscle cell proliferation. Moreover, IGF-I caused an increase on mrf4 and myogenin expression, both involved in the later stages of development corresponding to differentiation. Regarding the regulation of IGFs expression, igf-I was stimulated by GH and IGF-II alone and combined, whereas igf-II expression was increased in response to IGF-I, suggesting a nice model of crossed regulation. Overall, the present model could be very useful to understand the different regulatory roles of these endocrine and transcription factors on fish myogenesis.
Collapse
Affiliation(s)
- Vanesa Jiménez-Amilburu
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Barcelona Knowledge Campus, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Won ET, Borski RJ. Endocrine regulation of compensatory growth in fish. Front Endocrinol (Lausanne) 2013; 4:74. [PMID: 23847591 PMCID: PMC3696842 DOI: 10.3389/fendo.2013.00074] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/06/2013] [Indexed: 01/06/2023] Open
Abstract
Compensatory growth (CG) is a period of accelerated growth that occurs following the alleviation of growth-stunting conditions during which an organism can make up for lost growth opportunity and potentially catch up in size with non-stunted cohorts. Fish show a particularly robust capacity for the response and have been the focus of numerous studies that demonstrate their ability to compensate for periods of fasting once food is made available again. CG is characterized by an elevated growth rate resulting from enhanced feed intake, mitogen production, and feed conversion efficiency. Because little is known about the underlying mechanisms that drive the response, this review describes the sequential endocrine adaptations that lead to CG; namely during the precedent catabolic phase (fasting) that taps endogenous energy reserves, and the following hyperanabolic phase (refeeding) when accelerated growth occurs. In order to elicit a CG response, endogenous energy reserves must first be moderately depleted, which alters endocrine profiles that enhance appetite and growth potential. During this catabolic phase, elevated ghrelin and growth hormone (GH) production increase appetite and protein-sparing lipolysis, while insulin-like growth factors (IGFs) are suppressed, primarily due to hepatic GH resistance. During refeeding, temporal hyperphagia provides an influx of energy and metabolic substrates that are then allocated to somatic growth by resumed IGF signaling. Under the right conditions, refeeding results in hyperanabolism and a steepened growth trajectory relative to constantly fed controls. The response wanes as energy reserves are re-accumulated and homeostasis is restored. We ascribe possible roles for select appetite and growth-regulatory hormones in the context of the prerequisite of these catabolic and hyperanabolic phases of the CG response in teleosts, with emphasis on GH, IGFs, cortisol, somatostatin, neuropeptide Y, ghrelin, and leptin.
Collapse
Affiliation(s)
- Eugene T. Won
- Department of Biology, North Carolina State University, Raleigh, NC, USA
| | - Russell J. Borski
- Department of Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
36
|
Qiang J, Yang H, Wang H, Kpundeh M, Xu P. Growth and IGF-I response of juvenile Nile tilapia (Oreochromis niloticus) to changes in water temperature and dietary protein level. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2012.07.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Pierce AL, Breves JP, Moriyama S, Uchida K, Grau EG. Regulation of growth hormone (GH) receptor (GHR1 and GHR2) mRNA level by GH and metabolic hormones in primary cultured tilapia hepatocytes. Gen Comp Endocrinol 2012; 179:22-9. [PMID: 22820350 DOI: 10.1016/j.ygcen.2012.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/07/2012] [Accepted: 07/12/2012] [Indexed: 01/28/2023]
Abstract
Growth hormone (GH) regulates essential physiological functions in teleost fishes, including growth, metabolism, and osmoregulation. Recent studies have identified two clades of putative receptors for GH (GHR1 clade and GHR2 clade) in fishes, both of which are highly expressed in the liver. Moreover, the liver is an important target for the anabolic effects of GH via endocrine IGFs, and liver sensitivity to GH is modulated by metabolic hormones. We investigated the effects of GH, insulin, glucagon, cortisol and triiodothyronine on GHR1 and GHR2 mRNA levels in primary cultured tilapia hepatocytes. Physiological concentrations of GH strongly stimulated GHR2 mRNA level (0.5-50×10(-9) M), but did not affect GHR1 mRNA level. Insulin suppressed stimulation of GHR2 mRNA level by GH (10(-8)-10(-6) M). Insulin increased basal GHR1 mRNA level (10(-8)-10(-6) M). Cortisol increased basal GHR2 mRNA level (10(-7)-10(-6) M), but did not consistently affect GH-stimulated GHR2 mRNA level. Cortisol increased basal GHR1 mRNA level (10(-9)-10(-6) M). Glucagon suppressed GH-stimulated GHR2 mRNA level and increased basal GHR1 mRNA level at a supraphysiological concentration (10(-6) M). A single injection of GH (5 μg/g) increased liver GHR2 mRNA level, and insulin injection (5 μg/g) decreased both basal and GH-stimulated GHR2 mRNA levels after 6 h. In contrast, insulin and GH injection had little effect on liver GHR1 mRNA level. This study shows that GHR1 and GHR2 gene expression are differentially regulated by physiological levels of GH and insulin in tilapia primary hepatocytes.
Collapse
Affiliation(s)
- A L Pierce
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | | | | | | | | |
Collapse
|
38
|
Zhong H, Zhou Y, Liu S, Tao M, Long Y, Liu Z, Zhang C, Duan W, Hu J, Song C, Liu Y. Elevated expressions of GH/IGF axis genes in triploid crucian carp. Gen Comp Endocrinol 2012; 178:291-300. [PMID: 22713693 DOI: 10.1016/j.ygcen.2012.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/11/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
Growth hormone (GH), growth hormone receptor (GHR) and insulin-like growth factor 1 (IGF-1) are pivotal signaling factors of the GH/IGF axis, which plays a crucial role in regulating growth in vertebrates. In this study, GH, GHR and IGF-1 cDNAs were cloned from triploid and tetraploid crucian carp. In addition, mRNA expression levels were characterized in diploid red crucian carp, triploids and tetraploids. Reverse transcriptase PCR indicated that GH genes were only expressed in the pituitary, while GHR and IGF-1 were widely expressed in all tested tissues. Real-time PCR study of different seasonal profiles showed that triploids had significantly higher expression of the studied genes during both the prespawning and the spawning season. Although different temperatures (22, 26 and 30°C) showed no significant effects on GH, GHR and IGF-1 mRNA expression in either diploids or triploids, triploids had higher expression levels than diploids at each temperature. After 1 week of fasting, the expression of all studied genes was reduced in both diploids and triploids, while the expressions levels were higher in triploids than in diploids. These results suggest that the elevated expression of GH/IGF axis genes in triploids plays a crucial role in the faster growth rate of triploids.
Collapse
Affiliation(s)
- Huan Zhong
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of the Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sasano Y, Yoshimura A, Fukamachi S. Reassessment of the function of somatolactin alpha in lipid metabolism using medaka mutant and transgenic strains. BMC Genet 2012; 13:64. [PMID: 22827540 PMCID: PMC3467165 DOI: 10.1186/1471-2156-13-64] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/09/2012] [Indexed: 01/12/2023] Open
Abstract
Background Somatolactin alpha (SLa) is a fish-specific peptide hormone secreted from the pituitary. In medaka, SLa functions to darken the skin color and lack of SLa makes it pale. Transcription of SLa is enhanced or suppressed when fish are kept in dark or bright conditions, respectively, indicating SLa’s important role in background acclimation of the skin color. Bizarrely, however, the lack of SLa seems to cause the additional defect of increased triglycerides in organs, which could not be rescued (decreased) by its overexpression. Results To assess this enigmatic result, we investigated genetic (the SLa, Slc45a2, r, and Y genes) and nongenetic (age, fasting, water temperature, and background color) effects on hepatic triglycerides. These experiments found that percent hepatic triglycerides quickly change in response to external/internal environments. Effects of SLa seemed to be much less obvious, although it may increase the proportion of hepatic triglycerides at least during certain breeding conditions or under certain genetic backgrounds. Conclusions The present results do not exclude the possibility that SLa takes part in lipid metabolism or other physiological processes. However, we suggest that skin-color regulation is the only definite role of SLa so far demonstrated in this species.
Collapse
Affiliation(s)
- Yuko Sasano
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-ku, Tokyo, 112-8681, Japan
| | | | | |
Collapse
|
40
|
Abstract
In general, there is a relationship between growth and reproduction, and gonads are known to be important organs for growth, but direct evidence for their role is lacking. Here, using a fish model, we report direct evidence that gonads are endocrine organs equal to the pituitary in controlling body growth. Gonadal loss of function, gain of function, and rescue of growth were investigated in tilapia. Gonadectomy experiments were carried out in juvenile males and females. Gonadectomy significantly retarded growth compared with controls; however, this retardation was rescued by the implantation of extirpated gonads. Because gonads express growth hormone, it is possible that gonads control body growth through the secretion of growth hormone and/or other endocrine factors. We propose that gonads are integral players in the dynamic regulation of growth in teleosts.
Collapse
|
41
|
Montserrat N, Capilla E, Navarro I, Gutiérrez J. Metabolic Effects of Insulin and IGFs on Gilthead Sea Bream (Sparus aurata) Muscle Cells. Front Endocrinol (Lausanne) 2012; 3:55. [PMID: 22654873 PMCID: PMC3356123 DOI: 10.3389/fendo.2012.00055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 03/30/2012] [Indexed: 11/15/2022] Open
Abstract
Primary cultures of gilthead sea bream myocytes were performed in order to examine the relative metabolic function of insulin compared with IGF-I and IGF-II (insulin-like growth factors, IGFs) at different stages in the cell culture. In these cells, the in vitro effects of insulin and IGFs on 2-deoxyglucose (2-DG) and l-alanine uptake were studied in both myocytes (day 4) and small myotubes (day 9). 2-DG uptake in gilthead sea bream muscle cells was increased in the presence of insulin and IGFs in a time dependent manner and along with muscle cell differentiation. On the contrary, l-alanine uptake was also stimulated by insulin and IGFs but showed an inverse pattern, being the uptake higher in small myocytes than in large myotubes. The results of preincubation with inhibitors (PD-98059, wortmannin, and cytochalasin B) on 2-DG uptake indicated that insulin and IGFs stimulate glucose uptake through the same mechanisms, and evidenced that mitogenesis activator protein kinase (MAPK) and PI3K-Akt transduction pathways mediate the metabolic function of these peptides. In the same way, we observed that GLUT4 protein synthesis was stimulated in the presence of insulin and IGFs in gilthead sea bream muscle cells in a different manner at days 4 or 9 of the culture. In summary we describe here, for the first time, the effects of insulin and IGFs on 2-DG and l-alanine uptake in primary culture of gilthead sea bream muscle cells. We show that both MAPK and PI3K-Akt transduction pathways are needed in order to control insulin and IGFs actions in these cells. Moreover, changes in glucose uptake can be explained by the action of the GLUT4 transporter, which is stimulated in the presence of insulin and IGFs throughout the cell culture.
Collapse
Affiliation(s)
- Núria Montserrat
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain
| | - Encarnación Capilla
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain
| | - Isabel Navarro
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain
- *Correspondence: Joaquim Gutiérrez, Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain. e-mail:
| |
Collapse
|
42
|
Ding X, Guo X, Yan P, Liang C, Bao P, Chu M. Seasonal and nutrients intake regulation of lipoprotein lipase (LPL) activity in grazing yak (Bos grunniens) in the Alpine Regions around Qinghai Lake. Livest Sci 2012. [DOI: 10.1016/j.livsci.2011.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Kumar V, Khalil WKB, Weiler U, Becker K. Influences of incorporating detoxifiedJatropha curcaskernel meal in common carp (Cyprinus carpioL.) diet on the expression of growth hormone- and insulin-like growth factor-1-encoding genes. J Anim Physiol Anim Nutr (Berl) 2011; 97:97-108. [DOI: 10.1111/j.1439-0396.2011.01247.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Cruz-Garcia L, Sánchez-Gurmaches J, Gutiérrez J, Navarro I. Regulation of LXR by fatty acids, insulin, growth hormone and tumor necrosis factor-α in rainbow trout myocytes. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:125-36. [DOI: 10.1016/j.cbpa.2011.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/15/2011] [Accepted: 05/17/2011] [Indexed: 01/27/2023]
|
45
|
Lynn SG, Wallat GK, Malison JA, Shepherd BS. Developmental expression and estrogen responses of endocrine genes in juvenile yellow perch (Perca flavescens). Gen Comp Endocrinol 2011; 171:151-9. [PMID: 21216244 DOI: 10.1016/j.ygcen.2011.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 11/24/2010] [Accepted: 01/03/2011] [Indexed: 12/13/2022]
Abstract
The present study examines the expression of growth-regulating genes (gh, prl, smtl and igf1b), the estrogen receptors (esr1 and esr2a) and aromatase (cyp19a1a) in developing yellow perch. To gain an initial understanding into the endocrine control of growth preceding and involved with sexual size dimorphism (SSD), where females have been reported to grow faster and larger than males, young of the year fish were sampled for length, weight and tissues at several time points (102-421 days post-hatch (dph)). Positive growth was seen in both sexes over the sampling interval, but SSD was not manifested. Using real-time quantitative PCR, we found that pituitary growth hormone (gh) and liver insulin-like growth factor-1b (igf1b) mRNA levels were significantly affected by dph and levels were found to be correlated with growth in both sexes. Liver cyp19a1a, esr1 and esr2a mRNA levels were significantly influenced by dph, whereas there was a significant dph*sex interaction on liver esr2a mRNA levels with males having higher levels than females at 379 and 421 dph. Ovarian cyp19a1a decreased with dph, but there were no changes in esr1 or esr2a mRNA levels. Dietary treatment of juvenile (∼300 dph) females with 20 mg/kg diet 17β-estradiol resulted in significantly higher liver esr1 mRNA levels and a sustained hepatosomatic index (I(H)). Across all data sets liver esr2a mRNA levels showed the most significant positive correlation with liver igf1b mRNA levels. These findings show that growth is accompanied by increases in pituitary gh, liver igf1b and liver esr1 and esr2a mRNAs in juvenile yellow perch.
Collapse
Affiliation(s)
- Scott G Lynn
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | |
Collapse
|
46
|
Olivotto I, Di Stefano M, Rosetti S, Cossignani L, Pugnaloni A, Giantomassi F, Carnevali O. Live prey enrichment, with particular emphasis on HUFAs, as limiting factor in false percula clownfish (Amphiprion ocellaris, Pomacentridae) larval development and metamorphosis: molecular and biochemical implications. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:207-18. [PMID: 21320627 DOI: 10.1016/j.cbpa.2011.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/01/2011] [Accepted: 02/05/2011] [Indexed: 12/21/2022]
Abstract
In fast growing organisms, like fish larvae, fatty acids provided through live prey are essential to satisfy high energy demand and are required to promote growth. Therefore, in recent decades, a great amount of research has been directed towards the development of lipid enrichment in order to improve larval fish survival and growth. However, in fish, the biochemical and molecular processes related to highly unsaturated fatty acid (HUFA) administration are still poorly understood. In the current study, the false percula clownfish, a short larval phase marine species, was used as an experimental model and the effects of a standard and a HUFAs-enriched diet were tested through a molecular, biochemical, ultrastructural and morphometric approach. Our results support the hypothesis that HUFA administration may improve larval development through the presence of better structured mitochondria, a higher synthesis of energy compounds and coenzymes with a central position in the metabolism, with respect to controls. This higher energy status was confirmed by better growth performance and a shorter larval phase in larvae fed with an enriched diet with respect to the control. This strategy of rapid growth and early energy storage may be considered positively adaptive and beneficial to the survival of this species.
Collapse
Affiliation(s)
- Ike Olivotto
- Dipartimento di Scienze del Mare, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
47
|
Beckman BR. Perspectives on concordant and discordant relations between insulin-like growth factor 1 (IGF1) and growth in fishes. Gen Comp Endocrinol 2011; 170:233-52. [PMID: 20800595 DOI: 10.1016/j.ygcen.2010.08.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 12/11/2022]
Abstract
Many physiological processes are modulated by the endocrine system, including growth. Insulin-like growth factor 1 is one of the primary hormones involved in growth regulation in vertebrates, including fishes. Current work on IGF1 in fishes is driven both by a desire to better understand mechanisms of growth as well as to develop a reliable index of growth rate. A review of studies relating IGF1 to growth broadly reveals positive and significant relations between IGF1 and growth; however, relations found in individual studies range from no correlation to highly significant correlations. Potential sources for this variation include both biological and methodological issues and range from differences in how growth is defined (changes in length or weight), the duration of growth assessed (weeks to months) and how growth is calculated (total change, rate, percent change); yet, these methodological concerns cannot account for all the variation found. A further review of the literature reveals a number of physiological conditions and environmental factors that might influence IGF1 level and the subsequent relation of that IGF1 level to growth rate. The term concordance is introduced to categorize factors that influence IGF1 and growth in a similar fashion, such that positive and significant relations between IGF1 and growth are maintained even though the factor stimulates changes in IGF1 level. Conversely, the term discordance is introduced to categorize factors that stimulate changes in the relations between IGF1 and growth, such that IGF1 is not an efficacious index of growth for both pre and post-stimulus fish combined. IGF1 and growth relations generally remain concordant after changes in nutrition (consumption rate or diet). Differences in IGF1 level of juvenile, maturing male and maturing female fish are common and IGF1-growth relations appear discordant between these groups. Acute changes in temperature and salinity induce discordant relations between IGF1 and growth but acclimation to persistent differences in environmental condition generally result in concordant relations. Overall, by discriminating between fish of differing physiological status and discerning and categorizing differences among environments one may effectively use IGF1 as a growth index for fishes.
Collapse
Affiliation(s)
- Brian R Beckman
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA.
| |
Collapse
|
48
|
Insulin stimulates lipogenesis and attenuates Beta-oxidation in white adipose tissue of fed rainbow trout. Lipids 2011; 46:189-99. [PMID: 21240564 DOI: 10.1007/s11745-010-3521-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/20/2010] [Indexed: 02/04/2023]
Abstract
As lipid deposition tissue in fish, the white adipose tissue (WAT) has important functions related to reproduction and the challenges of long-term fasting. In the study reported here, we infused fish fed a high-carbohydrate diet with two doses of insulin for 5 days in order to explore the effects of this hormone on lipogenesis and beta-oxidation-related enzymes. We demonstrated the presence of some of the main lipogenic enzymes at molecular, protein and activity levels (ATP-citrate lyase and fatty acid synthase). However, while ATP-citrate lyase was unexpectedly down-regulated, fatty acid synthase was up-regulated (at protein and activity levels) in an insulin dose-dependent manner. The main enzymes acting as NADPH donors for lipogenesis were also characterized at biochemical and molecular levels, although there was no evidence of their regulation by insulin. On the other hand, lipid oxidation potential was found in this tissue through the measurement of gene expression of enzymes involved in β-oxidation, highlighting two carnitine palmitoyltransferase isoforms, both down-regulated by insulin infusion. We found that insulin acts as an important regulator of trout WAT lipid metabolism, inducing the final stage of lipogenesis at molecular, protein and enzyme activity levels and suppressing β-oxidation at least at a molecular level. These results suggest that WAT in fish may have a role that is important not only as a lipid deposition tissue but also as a lipogenic organ (with possible involvement in glucose homeostasis) that could also be able to utilize the lipids stored as a local energy source.
Collapse
|
49
|
Meador JP, Sommers FC, Cooper KA, Yanagida G. Tributyltin and the obesogen metabolic syndrome in a salmonid. ENVIRONMENTAL RESEARCH 2011; 111:50-6. [PMID: 21167482 DOI: 10.1016/j.envres.2010.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/13/2010] [Accepted: 11/29/2010] [Indexed: 05/20/2023]
Abstract
We conducted a dietary feeding study with juvenile chinook salmon (Oncorhynchus tshawytscha) to assess the potential for tributyltin (TBT) to elicit the obesogen response that has been described for mammals. The results show increases in whole-body lipid content, which is consistent with the obesogen response; however, we also observed associated parameters that were dissimilar. We found increases in body mass and alterations to several physiological parameters at doses between 0.4 and 3.5 ng/g fish/day (1.4-12 pmol/g fish/day) and reduced body mass at the highest dose after 55 days of exposure. Lipid related plasma parameters (plasma triacylglycerols, cholesterol, and lipase) exhibited monotonic increases over all doses while other values (glucose and insulin-like growth factor (IGF)) exhibited increases only for the low-dose treatments. The increases noted for several parameters in fish were opposite to those reported for the obesogen metabolic syndrome, which is characterized by a reduction in serum glucose, free fatty acids, and triglycerides. This is the first report of growth stimulation resulting from low-dose exposure to this pesticide, which is an unusual response for any animal exposed to an organic or organometallic xenobiotic. Because a number of environmental contaminants act as metabolic disruptors at very low doses, these results are noteworthy for a variety of species. Intuitively, enhanced growth and lipid storage may appear beneficial; however, for salmonids there are numerous potentially negative consequences for populations.
Collapse
Affiliation(s)
- James P Meador
- Ecotoxicology and Environmental Fish Health Program, Environmental Conservation Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. East, Seattle, WA 98112, USA.
| | | | | | | |
Collapse
|
50
|
Leung LY, Woo NYS. Effects of growth hormone, insulin-like growth factor I, triiodothyronine, thyroxine, and cortisol on gene expression of carbohydrate metabolic enzymes in sea bream hepatocytes. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:272-82. [PMID: 20647047 DOI: 10.1016/j.cbpa.2010.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/07/2010] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
Abstract
The present study investigated the regulatory effects of growth hormone (GH), human insulin-like growth factor I (hIGF-I), thyroxine (T(4)), triiodothyronine (T(3)) and cortisol, on mRNA expression of key enzymes involved in carbohydrate metabolism, including glucokinase (GK), glucose-6-phosphatase (G6Pase), glycogen synthase (GS), glycogen phosphorylase (GP) and glucose-6-phosphate dehydrogenase (G6PDH) in hepatocytes isolated from silver sea bream. Genes encoding GK, G6Pase, GS and GP were partially cloned and characterized from silver sea bream liver and real-time PCR assays were developed for the quantification of the mRNA expression profiles of these genes in order to evaluate the potential of these carbohydrate metabolic pathways. GK mRNA level was elevated by GH and hIGF-I, implying that GH-induced stimulation of GK expression may be mediated via IGF-I. GH was found to elevate GS and G6Pase expression, but reduce G6PDH mRNA expression. However, hIGF-I did not affect mRNA levels of GS, G6Pase and G6PDH, suggesting that GH-induced modulation of GS, G6Pase and G6PDH expression levels is direct, and occurs independently of the action of IGF-I. T(3) and T(4) directly upregulated transcript abundance of GK, G6Pase, GS and GP. Cortisol significantly increased transcript amounts of G6Pase and GS but markedly decreased transcript abundance of GK and G6PDH. These changes in transcript abundance indicate that (1) the potential of glycolysis is stimulated by GH and thyroid hormones, but attenuated by cortisol, (2) gluconeogenic and glycogenic potential are augmented by GH, thyroid hormones and cortisol, (3) glycogenolytic potential is upregulated by thyroid hormones but not affected by GH or cortisol, and (4) the potential of the pentose phosphate pathway is attenuated by GH and cortisol but unaffected by thyroid hormones.
Collapse
Affiliation(s)
- L Y Leung
- Department of Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | |
Collapse
|