1
|
Gong Z, Qu Z, Yu Z, Li J, Liu B, Ma X, Cai J. Label-free quantitative detection and comparative analysis of lysine acetylation during the different life stages of Eimeria tenella. J Proteome Res 2023; 22:2785-2802. [PMID: 37562054 DOI: 10.1021/acs.jproteome.2c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Proteome-wide lysine acetylation has been documented in apicomplexan parasite Toxoplasma gondii and Plasmodium falciparum. Here, we conducted the first lysine acetylome in unsporulated oocysts (USO), sporulated 7 h oocysts (SO 7h), sporulated oocysts (SO), sporozoites (S), and the second generation merozoites (SMG) of Eimeria tenella through a 4D label-free quantitative technique. Altogether, 8532 lysine acetylation sites on 2325 proteins were identified in E. tenella, among which 5445 sites on 1493 proteins were quantified. In addition, 557, 339, 478, 248, 241, and 424 differentially expressed proteins were identified in the comparisons SO7h vs USO, SO vs SO7h, SO vs USO, S vs SO, SMG vs S, and USO vs SMG, respectively. The bioinformatics analysis of the acetylome showed that the lysine acetylation is widespread on proteins of diverse functions. Moreover, the dynamic changes of lysine acetylome among E. tenella different life stages revealed significant regulation during the whole process of E. tenella growth and stage conversion. This study provides a beginning for the investigation of the regulate role of lysine acetylation in E. tenella and may provide new strategies for anticoccidiosis drug and vaccine development. Raw data are publicly available at iProX with the data set identifier PXD040368.
Collapse
Affiliation(s)
| | - Zigang Qu
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| | - Zhengqing Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia Province 750021, People's Republic of China
| | - Jidong Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia Province 750021, People's Republic of China
| | - Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| | - Xueting Ma
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| |
Collapse
|
2
|
Abstract
Apicomplexans are important pathogens that cause severe infections in humans and animals. The biology and pathogeneses of these parasites have shown that proteins are intrinsically modulated during developmental transitions, physiological processes and disease progression. Also, proteins are integral components of parasite structural elements and organelles. Among apicomplexan parasites, Eimeria species are an important disease aetiology for economically important animals wherein identification and characterisation of proteins have been long-winded. Nonetheless, this review seeks to give a comprehensive overview of constitutively expressed Eimeria proteins. These molecules are discussed across developmental stages, organelles and sub-cellular components vis-à-vis their biological functions. In addition, hindsight and suggestions are offered with intention to summarise the existing trend of eimerian protein characterisation and to provide a baseline for future studies.
Collapse
|
3
|
Tucker MS, O’Brien CN, Jenkins MC, Rosenthal BM. Dynamically expressed genes provide candidate viability biomarkers in a model coccidian. PLoS One 2021; 16:e0258157. [PMID: 34597342 PMCID: PMC8486141 DOI: 10.1371/journal.pone.0258157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022] Open
Abstract
Eimeria parasites cause enteric disease in livestock and the closely related Cyclosporacayetanensis causes human disease. Oocysts of these coccidian parasites undergo maturation (sporulation) before becoming infectious. Here, we assessed transcription in maturing oocysts of Eimeria acervulina, a widespread chicken parasite, predicted gene functions, and determined which of these genes also occur in C. cayetanensis. RNA-Sequencing yielded ~2 billion paired-end reads, 92% of which mapped to the E. acervulina genome. The ~6,900 annotated genes underwent temporally-coordinated patterns of gene expression. Fifty-three genes each contributed >1,000 transcripts per million (TPM) throughout the study interval, including cation-transporting ATPases, an oocyst wall protein, a palmitoyltransferase, membrane proteins, and hypothetical proteins. These genes were enriched for 285 gene ontology (GO) terms and 13 genes were ascribed to 17 KEGG pathways, defining housekeeping processes and functions important throughout sporulation. Expression differed in mature and immature oocysts for 40% (2,928) of all genes; of these, nearly two-thirds (1,843) increased their expression over time. Eight genes expressed most in immature oocysts, encoding proteins promoting oocyst maturation and development, were assigned to 37 GO terms and 5 KEGG pathways. Fifty-six genes underwent significant upregulation in mature oocysts, each contributing at least 1,000 TPM. Of these, 40 were annotated by 215 GO assignments and 9 were associated with 18 KEGG pathways, encoding products involved in respiration, carbon fixation, energy utilization, invasion, motility, and stress and detoxification responses. Sporulation orchestrates coordinated changes in the expression of many genes, most especially those governing metabolic activity. Establishing the long-term fate of these transcripts in sporulated oocysts and in senescent and deceased oocysts will further elucidate the biology of coccidian development, and may provide tools to assay infectiousness of parasite cohorts. Moreover, because many of these genes have homologues in C. cayetanensis, they may prove useful as biomarkers for risk.
Collapse
Affiliation(s)
- Matthew S. Tucker
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Celia N. O’Brien
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Mark C. Jenkins
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Benjamin M. Rosenthal
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
- * E-mail:
| |
Collapse
|
4
|
Genetic Diversity of Microneme Protein 2 and Surface Antigen 1 of Eimeria tenella. Genes (Basel) 2021; 12:genes12091418. [PMID: 34573400 PMCID: PMC8470435 DOI: 10.3390/genes12091418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
Avian coccidiosis is a disease caused by members of the genus Eimeria. Huge economic losses incurred by the global poultry industry due to coccidiosis have increased the need for cost-effective and easily available recombinant vaccines. Microneme protein 2 (MIC2) and surface antigen 1 (SAG1) of E. tenella have been recognised as potential vaccine candidates. However, the genetic diversity of the antigens in field isolates, which affects vaccine efficacy, has yet to be largely investigated. Here, we analysed genetic diversity and natural selection of etmic2 and etsag1 in Korean E. tenella isolates. Both genes exhibited low levels of genetic diversity in Korean isolates. However, the two genes showed different patterns of nucleotide diversity and amino acid polymorphism involving the E. tenella isolates obtained from different countries including China and India. These results underscore the need to investigate the genetic diversity of the vaccine candidate antigens and warrant monitoring of genetic heterogeneity and evolutionary aspects of the genes in larger numbers of E. tenella field isolates from different geographical areas to design effective coccidial vaccines.
Collapse
|
5
|
Marugan-Hernandez V, Sanchez-Arsuaga G, Vaughan S, Burrell A, Tomley FM. Do All Coccidia Follow the Same Trafficking Rules? Life (Basel) 2021; 11:life11090909. [PMID: 34575057 PMCID: PMC8465013 DOI: 10.3390/life11090909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 01/06/2023] Open
Abstract
The Coccidia are a subclass of the Apicomplexa and include several genera of protozoan parasites that cause important diseases in humans and animals, with Toxoplasma gondii becoming the ‘model organism’ for research into the coccidian molecular and cellular processes. The amenability to the cultivation of T. gondii tachyzoites and the wide availability of molecular tools for this parasite have revealed many mechanisms related to their cellular trafficking and roles of parasite secretory organelles, which are critical in parasite-host interaction. Nevertheless, the extrapolation of the T. gondii mechanisms described in tachyzoites to other coccidian parasites should be done carefully. In this review, we considered published data from Eimeria parasites, a coccidian genus comprising thousands of species whose infections have important consequences in livestock and poultry. These studies suggest that the Coccidia possess both shared and diversified mechanisms of protein trafficking and secretion potentially linked to their lifecycles. Whereas trafficking and secretion appear to be well conversed prior to and during host-cell invasion, important differences emerge once endogenous development commences. Therefore, further studies to validate the mechanisms described in T. gondii tachyzoites should be performed across a broader range of coccidians (including T. gondii sporozoites). In addition, further genus-specific research regarding important disease-causing Coccidia is needed to unveil the individual molecular mechanisms of pathogenesis related to their specific lifecycles and hosts.
Collapse
Affiliation(s)
- Virginia Marugan-Hernandez
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms AL9 7TA, UK; (G.S.-A.); (F.M.T.)
- Correspondence: ; Tel.: +44-(0)-17-0766-9445
| | - Gonzalo Sanchez-Arsuaga
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms AL9 7TA, UK; (G.S.-A.); (F.M.T.)
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK;
| | - Alana Burrell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK;
| | - Fiona M. Tomley
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms AL9 7TA, UK; (G.S.-A.); (F.M.T.)
| |
Collapse
|
6
|
Wang Q, Zhu S, Zhao Q, Huang B, Yu S, Yu Y, Liang S, Wang H, Zhao H, Han H, Dong H. Identification and Characterization of a Novel Apical Membrane Antigen 3 in Eimeria tenella. J Eukaryot Microbiol 2021; 68:e12836. [PMID: 33289220 DOI: 10.1111/jeu.12836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
Eimeria tenella is an obligate intracellular parasite in the phylum Apicomplexa. As described for other members of Apicomplexa, apical membrane antigen 1 (AMA1) has been shown to be critical for sporozoite invasion of host cells by E. tenella. Recently, an E. tenella paralogue of AMA1 (EtAMA1), dubbed sporoAMA1 (EtAMA3), was identified in proteomic and transcriptomic analyses of E. tenella, but not further characterized. Here, we show that EtAMA3 is a type I integral membrane protein that has 24% -38% identity with other EtAMAs. EtAMA3 has the same pattern of Cys residues in domains I and II of AMA1 orthologs from apicomplexan parasites, but high variance in domain III, with all six invariant Cys residues absent. EtAMA3 expression was developmentally regulated at the mRNA and protein levels. EtAMA3 protein was detected in sporulated oocysts and sporozoites, but not in the unsporulated oocysts or second-generation merozoites. EtAMA3 is secreted by micronemes and is primarily localized to the apical end of sporozoites during host-cell invasion. Additionally, pretreatment of sporozoites with rEtAMA3-specific antibodies substantially impeded their invasion into host cells. These results suggest EtAMA3 is a sporozoite-specific protein that is involved in host-cell sporozoite invasion.
Collapse
Affiliation(s)
- Qingjie Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Shuilan Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Shanshan Liang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Haixia Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Huanzhi Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| |
Collapse
|
7
|
Li W, Wang M, Chen Y, Chen C, Liu X, Sun X, Jing C, Xu L, Yan R, Li X, Song X. EtMIC3 and its receptors BAG1 and ENDOUL are essential for site-specific invasion of Eimeria tenella in chickens. Vet Res 2020; 51:90. [PMID: 32678057 PMCID: PMC7367391 DOI: 10.1186/s13567-020-00809-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Avian coccidian parasites exhibit a high degree of site specificity in different Eimeria species. Although the underlying mechanism is unclear, an increasing body of evidence suggests that site specificity is due to the interaction between microneme proteins (MICs) and their receptors on the surface of target host cells. In this study, the binding ability of E. tenella MICs (EtMICs) to different intestinal tissue was observed by immunofluorescence to identify the key surface molecule on the parasite responsible for the site specificity. Subsequently, we identified the corresponding host-cell receptors by yeast two-hybrid screening and glutathione-S-transferase pull-down experiments and the distribution of these receptors was observed by immunofluorescence in chicken intestinal tissues. Finally, we evaluated the efficacy of receptor antiserum against the infection of E. tenella in chickens. The results showed that EtMIC3 could only bind to the caecum while EtMIC1, EtMIC2, and EtAMA1 did not bind to any other intestinal tissues. Anti-serum to EtMIC3 was able to block the invasion of sporozoites with a blocking rate of 66.3%. The receptors for EtMIC3 were BCL2-associated athanogene 1 (BAG1) and Endonuclease polyU-specific-like (ENDOUL), which were mainly distributed in the caecum. BAG1 and ENDOUL receptor antiserum reduced weight loss and oocyst output following E. tenella infection, showing partial inhibition of E. tenella infection. These data elucidate the mechanism of site specificity for Eimeria infection and reveal a potential therapeutic avenue.
Collapse
Affiliation(s)
- Wenyu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mingyue Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yufeng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chen Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaoqian Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaoting Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chuanxu Jing
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
8
|
Wei W, Shen N, Xiao J, Tao Y, Luo Y, Angel C, Gu X, Xie Y, He R, Jing B, Peng X, Yang G. Expression Analysis and Serodiagnostic Potential of Microneme Proteins 1 and 3 in Eimeria stiedai. Genes (Basel) 2020; 11:E725. [PMID: 32610686 PMCID: PMC7397282 DOI: 10.3390/genes11070725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 01/21/2023] Open
Abstract
Eimeria stiedai is an apicomplexan protozoan parasite that invades the liver and bile duct epithelial cells in rabbits and causes severe hepatic coccidiosis, resulting in significant economic losses in the domestic rabbit industry. Hepatic coccidiosis lacks the typical clinical symptoms and there is a lack of effective premortem tools to timely diagnose this disease. Therefore, in the present study we cloned and expressed the two microneme proteins i.e., microneme protein 1 (EsMIC1) and microneme protein 3 (EsMIC3) from E. stiedai and used them as recombinant antigens to develop a serodiagnostic method for an effective diagnosis of hepatic coccidiosis. The cDNAs encoding EsMIC1 and EsMIC3 were cloned and the mRNA expression levels of these two genes at different developmental stages of E. stiedai were determined by quantitative real-time PCR analysis (qRT-PCR). The immunoreactivity of recombinant EsMIC1 (rEsMIC1) and EsMIC3 (rEsMIC3) proteins were detected by Western blotting, and indirect enzyme-linked immunosorbent assays (ELISAs) based on these two recombinant antigens were established to evaluate their serodiagnostic potential. Our results showed that the proteins encoded by the ORFs of EsMIC1 (711 bp) and EsMIC3 (891 bp) were approximately 25.89 and 32.39 kDa in predicted molecular weight, respectively. Both EsMIC1 and EsMIC3 showed the highest mRNA expression levels in the merozoites stage of E. stiedai. Western blotting analysis revealed that both recombinant proteins were recognized by E. stiedai positive sera, and the indirect ELISAs using rEsMIC1 and rEsMIC3 were developed based on their good immunoreactivity, with 100% (48/48) sensitivity and 97.9% (47/48) specificity for rEsMIC1 with 100% (48/48) sensitivity and 100% (48/48) specificity for rEsMIC3, respectively. Moreover, rEsMIC1- and rEsMIC3-based indirect ELISA were able to detect corresponding antibodies in sera at days 6, 8, and 10 post E. stiedai infection, with the highest positive diagnostic rate (62.5% (30/48) for rEsMIC1 and 66.7% (32/48) for rEsMIC3) observed at day 10 post infection. Therefore, both EsMIC1 and EsMIC3 can be used as potential serodiagnostic candidate antigens for hepatic coccidiosis caused by E. stiedai.
Collapse
Affiliation(s)
- Wenrui Wei
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Yuanyuan Tao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Yuejun Luo
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Christiana Angel
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Sindh, Pakistan
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang 611130, China;
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| |
Collapse
|
9
|
Abstract
Apicomplexans, including species of Eimeria, pose a real threat to the health and wellbeing of animals and humans. Eimeria parasites do not infect humans but cause an important economic impact on livestock, in particular on the poultry industry. Despite its high prevalence and financial costs, little is known about the cell biology of these 'cosmopolitan' parasites found all over the world. In this review, we discuss different aspects of the life cycle and stages of Eimeria species, focusing on cellular structures and organelles typical of the coccidian family as well as genus-specific features, complementing some 'unknowns' with what is described in the closely related coccidian Toxoplasma gondii.
Collapse
|
10
|
Zhao N, Ming S, Lu Y, Wang F, Li H, Zhang X, Zhao X. Identification and Application of Epitopes in EtMIC1 of Eimeria tenella Recognized by the Monoclonal Antibodies 1-A1 and 1-H2. Infect Immun 2019; 87:e00596-19. [PMID: 31427452 PMCID: PMC6803336 DOI: 10.1128/iai.00596-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Eimeria tenella microneme-1 protein (EtMIC1) has been proposed to be a transmembrane protein, but this characteristic has not yet been confirmed experimentally. Furthermore, despite EtMIC1 being an important candidate antigen, its key epitope has not been reported. Here, two linear B-cell epitopes of EtMIC1, 91LITFATRSK99 and 698ESLISAGE705, were identified by Western blotting using specific monoclonal antibodies (MAbs) and were named epitope I (located in the I-domain) and epitope CTR (located in the CTR domain), respectively. Sequence comparative analyses of these epitopes among Eimeria species that infect chickens showed that epitope I differs greatly across species, whereas epitope CTR is relatively conserved. Point mutation assay results indicate that all the amino acid residues of the epitopes recognized by MAb 1-A1 or 1-H2 are key amino acids involved in recognition. Comparative analyses of indirect immunofluorescence assay (IFA) results for MAbs 1-A1 and 1-H2 under both nonpermeabilization and permeabilization conditions indicate that epitope I is located on the outer side of the sporozoite surface membrane whereas epitope CTR is located on the inner side, together providing experimental evidence that EtMIC1 is a transmembrane protein. IFA also labeled the EtMIC1 protein on the parasitophorous vacuole membrane and on the surface of schizonts, which suggests that the EtMIC1 protein may play an important role in parasitophorous vacuole formation and E. tenella development. Immunoprotective efficacy experiments revealed that epitope I has good immunogenicity, as evidenced by its induction of high serum antibody levels, blood lymphocyte proliferation, and CD4+ blood lymphocyte percentage.
Collapse
Affiliation(s)
- Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Shuzhen Ming
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Yaru Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| |
Collapse
|
11
|
Yan M, Cui X, Zhao Q, Zhu S, Huang B, Wang L, Zhao H, Liu G, Li Z, Han H, Dong H. Molecular characterization and protective efficacy of the microneme 2 protein from Eimeria tenella. ACTA ACUST UNITED AC 2018; 25:60. [PMID: 30474601 PMCID: PMC6254105 DOI: 10.1051/parasite/2018061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/12/2018] [Indexed: 11/14/2022]
Abstract
Microneme proteins play an important role in the adherence of apicomplexan parasites to host cells during the invasion process. In this study, the microneme 2 protein from the protozoan parasite Eimeria tenella (EtMIC2) was cloned, characterized, and its protective efficacy as a DNA vaccine investigated. The EtMIC2 gene, which codes for a 35.07 kDa protein in E. tenella sporulated oocysts, was cloned and recombinant EtMIC2 protein (rEtMIC2) was produced in an Escherichia coli expression system. Immunostaining with an anti-rEtMIC2 antibody showed that the EtMIC2 protein mainly localized in the anterior region and membrane of sporozoites, in the cytoplasm of first- and second-generation merozoites, and was strongly expressed during first-stage schizogony. In addition, incubation with specific antibodies against EtMIC2 was found to efficiently reduce the ability of E. tenella sporozoites to invade host cells. Furthermore, animal-challenge experiments demonstrated that immunization with pcDNA3.1(+)-EtMIC2 significantly increased average body weight gain, while decreasing the mean lesion score and oocyst output in chickens. Taken together, these results suggest that EtMIC2 plays an important role in parasite cell invasion and may be a viable candidate for the development of new vaccines against E. tenella infection in chickens.
Collapse
Affiliation(s)
- Ming Yan
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, PR China - College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Xiaoxia Cui
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, PR China - Qingdao Yebio Biological Engineering Co., Ltd, Qingdao 266114, PR China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, PR China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, PR China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, PR China
| | - Lu Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, PR China
| | - Huanzhi Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, PR China
| | - Guiling Liu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, PR China
| | - Zhihang Li
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, PR China - College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, PR China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, PR China
| |
Collapse
|
12
|
Ehret T, Spork S, Dieterich C, Lucius R, Heitlinger E. Dual RNA-seq reveals no plastic transcriptional response of the coccidian parasite Eimeria falciformis to host immune defenses. BMC Genomics 2017; 18:686. [PMID: 28870168 PMCID: PMC5584376 DOI: 10.1186/s12864-017-4095-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/29/2017] [Indexed: 01/10/2023] Open
Abstract
Background Parasites can either respond to differences in immune defenses that exist between individual hosts plastically or, alternatively, follow a genetically canalized (“hard wired”) program of infection. Assuming that large-scale functional plasticity would be discernible in the parasite transcriptome we have performed a dual RNA-seq study of the lifecycle of Eimeria falciformis using infected mice with different immune status as models for coccidian infections. Results We compared parasite and host transcriptomes (dual transcriptome) between naïve and challenge infected mice, as well as between immune competent and immune deficient ones. Mice with different immune competence show transcriptional differences as well as differences in parasite reproduction (oocyst shedding). Broad gene categories represented by differently abundant host genes indicate enrichments for immune reaction and tissue repair functions. More specifically, TGF-beta, EGF, TNF and IL-1 and IL-6 are examples of functional annotations represented differently depending on host immune status. Much in contrast, parasite transcriptomes were neither different between Coccidia isolated from immune competent and immune deficient mice, nor between those harvested from naïve and challenge infected mice. Instead, parasite transcriptomes have distinct profiles early and late in infection, characterized largely by biosynthesis or motility associated functional gene groups, respectively. Extracellular sporozoite and oocyst stages showed distinct transcriptional profiles and sporozoite transcriptomes were found enriched for species specific genes and likely pathogenicity factors. Conclusion We propose that the niche and host-specific parasite E. falciformis uses a genetically canalized program of infection. This program is likely fixed in an evolutionary process rather than employing phenotypic plasticity to interact with its host. This in turn might limit the potential of the parasite to adapt to new host species or niches, forcing it to coevolve with its host. Electronic supplementary material The online version of this article (10.1186/s12864-017-4095-6) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Wang XQ, Wu LL, Gao Y, Zhang Y, Weng YB, Lin RQ. Evaluation of the protective effect of pVAX-EtMIC3-recombined plasmid against E. tenella in chicken. Parasitol Res 2017; 116:1023-1028. [PMID: 28124135 DOI: 10.1007/s00436-017-5383-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/16/2017] [Indexed: 11/25/2022]
Abstract
Coccidiosis caused by protozoan parasites of the genus Eimeria has a severe economic impact on commercial production worldwide. Micronemes of Eimeria play important roles in invading intestinal cell processes. In this study, the DNA vaccine expressing Eimeria tenella microneme protein 3 (EtMIC3) was constructed to evaluate its immune protective effect against E. tenella infection in chickens. The results demonstrated that chickens immunized with pVAX-EtMIC3 produced strong immune responses in the body, as shown by significant lymphocyte proliferation, cytokine production, and antibody responses. The average body weight gains of chickens in all the vaccinated groups were higher than those of non-vaccinated and challenged groups. In general, oocyst shedding was reduced, and bloody feces and gut lesion scores decreased. In addition, the survival rate of the immunized chickens increased compared to that of the unvaccinated and challenged control chickens. In summary, this study indicated that pVAX-EtMIC3 could induce protective immune effects against coccidiosis and that EtMIC3 is a potential vaccine candidate against coccidiosis.
Collapse
Affiliation(s)
- Xin-Qiu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
- Foshan Standard Bio-Tech Co. Ltd., Foshan, 528138, People's Republic of China
| | - Lin-Lin Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Yan Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Yuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Ya-Biao Weng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Rui-Qing Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, Guangdong Province, 510642, People's Republic of China.
| |
Collapse
|
14
|
Huang J, Zhang Z, Li M, Song X, Yan R, Xu L, Li X. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge. Parasitol Int 2015; 64:408-16. [PMID: 26072304 DOI: 10.1016/j.parint.2015.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/29/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
E. maxima is one of the seven species of Eimeria that infects chicken. Until now, only a few antigenic genes of E. maxima have been reported. In the present study, the immune protective effects against E. maxima challenge of recombinant protein and DNA vaccine encoding EmMIC2 were evaluated. Two-week-old chickens were randomly divided into five groups. The experimental group of chickens was immunized with 100 μg DNA vaccine pVAX1-MIC2 or 200 μg rEmMIC2 protein while the control group of chickens was injected with pVAX1 plasmid or sterile PBS. The results showed that the anti-EmMIC2 antibody titers of both rEmMIC2 protein and pVAX1-MIC2 groups were significantly higher as compared to PBS and pVAX1 control (P<0.05). The splenocytes from both vaccinated groups of chickens displayed significantly greater proliferation compared with the controls (P<0.05). Serum from chickens immunized with pVAX1-MIC2 and rEmMIC2 protein displayed significantly high levels of IL-2, IFN-γ, IL-10, IL-17, TGF-β and IL-4 (P<0.05) compared to those of negative controls. The challenge experiment results showed that both the recombinant protein and the DNA vaccine could obviously alleviate jejunum lesions, body weight loss, increase oocyst, decrease ratio and provide ACIs of more than 165. All the above results suggested that immunization with EmMIC2 was effective in imparting partial protection against E. maxima challenge and it could be an effective antigen candidate for the development of new vaccines against E. maxima.
Collapse
Affiliation(s)
- Jingwei Huang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu 210095, PR China
| | - Zhenchao Zhang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu 210095, PR China
| | - Menghui Li
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu 210095, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu 210095, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu 210095, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu 210095, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
15
|
Liu Q, Chen Z, Shi W, Sun H, Zhang J, Li H, Xiao Y, Wang F, Zhao X. Preparation and initial application of monoclonal antibodies that recognize Eimeria tenella microneme proteins 1 and 2. Parasitol Res 2014; 113:4151-61. [DOI: 10.1007/s00436-014-4087-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 08/18/2014] [Indexed: 11/30/2022]
|
16
|
Dalloul RA, Lillehoj HS. Poultry coccidiosis: recent advancements in control measures and vaccine development. Expert Rev Vaccines 2014; 5:143-63. [PMID: 16451116 DOI: 10.1586/14760584.5.1.143] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coccidiosis is recognized as the major parasitic disease of poultry and is caused by the apicomplexan protozoan Eimeria. Coccidiosis seriously impairs the growth and feed utilization of infected animals resulting in loss of productivity. Conventional disease control strategies rely heavily on chemoprophylaxis and, to a certain extent, live vaccines. Combined, these factors inflict tremendous economic losses to the world poultry industry in excess of USD 3 billion annually. Increasing regulations and bans on the use of anticoccidial drugs coupled with the associated costs in developing new drugs and live vaccines increases the need for the development of novel approaches and alternative control strategies for coccidiosis. This paper aims to review the current progress in understanding the host immune response to Eimeria and discuss current and potential strategies being developed for coccidiosis control in poultry.
Collapse
Affiliation(s)
- Rami A Dalloul
- Animal & Natural Resources Institute, BARC-East, Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | | |
Collapse
|
17
|
Matsubayashi M, Hatta T, Miyoshi T, Anisuzzaman, Sasai K, Yamaji K, Shimura K, Isobe T, Kita K, Tsuji N. Localization of eimeripain, an Eimeria tenella cathepsin B-like cysteine protease, during asexual and sexual intracellular development in chicken ceca. J Vet Med Sci 2013; 76:531-7. [PMID: 24366155 PMCID: PMC4064137 DOI: 10.1292/jvms.13-0509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hemorrhagic diarrhea in poultry is caused by Eimeria tenella, the most pathogenic avian coccidian parasite, and new approaches to treat the disease are continually being sought. Although eimeripain, a cathepsin B-like cysteine protease from E. tenella, has recently been identified as a novel anticoccidial drug target, its localization during the intracellular development of parasites remains unclear. Here, we demonstrate the expression of eimeripain during asexual and sexual development of E. tenella in vivo. Promature eimeripain was detected only in the early immature second generation of schizonts. In contrast, the mature eimeripain was most strongly detected in the middle-sized immature second generation of schizonts. Both promature and mature eimeripain disappeared depending on the maturation level of second generation of schizonts, but were strongly expressed again in the third generation of schizonts. In the sexual stage, both promature and mature eimeripain were detected in the cytoplasm of micro- and macro-gametocytes and zygotes, but expression became weak in zoites forming oocysts. Collectively, our findings suggest that eimeripain might play a key role in the differentiation of intracellular zoites in the ceca and could be an interesting candidate to develop a novel, effective anti-coccidian drug.
Collapse
Affiliation(s)
- Makoto Matsubayashi
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Characterization and localization of an Eimeria-specific protein in Eimeria maxima. Parasitol Res 2013; 112:3401-8. [DOI: 10.1007/s00436-013-3518-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/21/2013] [Indexed: 12/23/2022]
|
19
|
Synchronous development of Eimeria tenella in chicken caeca and utility of laser microdissection for purification of single stage schizont RNA. Parasitology 2012; 139:1553-61. [PMID: 22906745 DOI: 10.1017/s0031182012001072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Eimeria tenella is recognized worldwide as a significant pathogen in the poultry industry. However, a lack of methods for isolating developing schizonts has hindered the use of transcriptome analyses to discover novel and developmentally regulated genes. In the present study, we characterized the long-term successive development of E. tenella in infected chicken caeca and assessed the utility of laser microdissection (LMD) for the isolation of schizont RNA. Developmental stages, including those of the first, second, and third-generation schizonts and gametocytes, were synchronous. Using LMD, only the mature second-generation schizonts were successfully excised from the lamina propria, and non-degraded RNA was purified from the schizonts. E. tenella-specific genes were amplified by reverse transcription polymerase chain reaction (RT-PCR). These results augment our understanding of the E. tenella life cycle, and reveal LMD as a potentially useful tool for gene expression analyses of the intracellular stages of E. tenella.
Collapse
|
20
|
Lim LS, Tay YL, Alias H, Wan KL, Dear PH. Insights into the genome structure and copy-number variation of Eimeria tenella. BMC Genomics 2012; 13:389. [PMID: 22889016 PMCID: PMC3505466 DOI: 10.1186/1471-2164-13-389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 08/01/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Eimeria is a genus of parasites in the same phylum (Apicomplexa) as human parasites such as Toxoplasma, Cryptosporidium and the malaria parasite Plasmodium. As an apicomplexan whose life-cycle involves a single host, Eimeria is a convenient model for understanding this group of organisms. Although the genomes of the Apicomplexa are diverse, that of Eimeria is unique in being composed of large alternating blocks of sequence with very different characteristics - an arrangement seen in no other organism. This arrangement has impeded efforts to fully sequence the genome of Eimeria, which remains the last of the major apicomplexans to be fully analyzed. In order to increase the value of the genome sequence data and aid in the effort to gain a better understanding of the Eimeria tenella genome, we constructed a whole genome map for the parasite. RESULTS A total of 1245 contigs representing 70.0% of the whole genome assembly sequences (Wellcome Trust Sanger Institute) were selected and subjected to marker selection. Subsequently, 2482 HAPPY markers were developed and typed. Of these, 795 were considered as usable markers, and utilized in the construction of a HAPPY map. Markers developed from chromosomally-assigned genes were then integrated into the HAPPY map and this aided the assignment of a number of linkage groups to their respective chromosomes. BAC-end sequences and contigs from whole genome sequencing were also integrated to improve and validate the HAPPY map. This resulted in an integrated HAPPY map consisting of 60 linkage groups that covers approximately half of the estimated 60 Mb genome. Further analysis suggests that the segmental organization first seen in Chromosome 1 is present throughout the genome, with repeat-poor (P) regions alternating with repeat-rich (R) regions. Evidence of copy-number variation between strains was also uncovered. CONCLUSIONS This paper describes the application of a whole genome mapping method to improve the assembly of the genome of E. tenella from shotgun data, and to help reveal its overall structure. A preliminary assessment of copy-number variation (extra or missing copies of genomic segments) between strains of E. tenella was also carried out. The emerging picture is of a very unusual genome architecture displaying inter-strain copy-number variation. We suggest that these features may be related to the known ability of this parasite to rapidly develop drug resistance.
Collapse
Affiliation(s)
- Lik-Sin Lim
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | | | | | | | | |
Collapse
|
21
|
A comparative transcriptome analysis reveals expression profiles conserved across three Eimeria spp. of domestic fowl and associated with multiple developmental stages. Int J Parasitol 2012; 42:39-48. [DOI: 10.1016/j.ijpara.2011.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/15/2011] [Accepted: 10/19/2011] [Indexed: 11/22/2022]
|
22
|
Sathish K, Sriraman R, Subramanian BM, Rao NH, Balaji K, Narasu ML, Srinivasan VA. Plant expressed EtMIC2 is an effective immunogen in conferring protection against chicken coccidiosis. Vaccine 2011; 29:9201-8. [PMID: 21986219 DOI: 10.1016/j.vaccine.2011.09.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 10/16/2022]
Abstract
Coccidiosis is an economically important disease affecting poultry industry and remains one of the major problems globally. Developing a cost effective sub-unit vaccine may help mitigate loss in the industry. Here, we report expressing one of the microneme proteins, EtMIC2 from Eimeria tenella in tobacco using Agrobacterium-mediated transient expression. The ability of plant expressed recombinant EtMIC2 in eliciting both humoral and cell-mediated immune responses were measured in the immunized birds. The protective efficacy in the vaccinated birds against a homologous challenge was also evaluated. Birds immunized with plant expressed EtMIC2 showed good sero-conversion, reduced oocyst output and increased weight gain when compared to control birds. Our data indicate that use of plant expressed recombinant EtMIC2 in birds was safe and had the potential in imparting partial protection in chickens against homologous challenge.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Chickens/immunology
- Cloning, Molecular
- Coccidiosis/immunology
- Coccidiosis/prevention & control
- Coccidiosis/veterinary
- Eimeria tenella/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunization/veterinary
- Interferon-gamma/immunology
- Oocysts
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Poultry Diseases/immunology
- Poultry Diseases/prevention & control
- Protozoan Vaccines/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Nicotiana/genetics
- Nicotiana/immunology
- Vaccines, Subunit/immunology
- Weight Gain
Collapse
Affiliation(s)
- K Sathish
- Research & Development Centre, Indian Immunologicals Limited, Rakshapuram, Gachibowli, Hyderabad 500032, Andhra Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
23
|
Tewari AK, Maharana BR. Control of poultry coccidiosis: changing trends. J Parasit Dis 2011; 35:10-7. [PMID: 22654309 DOI: 10.1007/s12639-011-0034-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 04/09/2011] [Indexed: 11/26/2022] Open
Abstract
Coccidiosis is the most important protozoan disease affecting the poultry industry worldwide. Control of poultry coccidiosis is presently based on managerial skills and the use of prophylactic coccidiostatic drugs. With the emergence of drug resistant Eimeria strains, emphasis has been laid on development and use of safer vaccines; some of them have been commercialized successfully. The present review deals with the various factors responsible for the development of clinical coccidiosis in poultry as well as an overview of the currently available inducers and boosters of immunity against coccidiosis. There are three groups of vaccines currently available against coccidiosis which can be distinguished on the basis of characteristics of the Eimeria species included in the respective products, viz. vaccines based on live virulent strains, vaccines based on live attenuated strains, and vaccines based on live strains that are relatively tolerant to the ionophore compounds. The latter vaccine combines the early chemotherapeutic effect of ionophores with the late prophylactic effect of vaccination. Although in the near future more varieties of oocyst based live vaccines are expected, identification of selective coccidian-specific immunoprotective molecules is likely to get more attention to facilitate the sustainable control of poultry coccidiosis.
Collapse
Affiliation(s)
- A K Tewari
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, 243122 Uttar Pradesh India
| | | |
Collapse
|
24
|
Inhibitory effect of S-nitroso-glutathione on Eimeria tenella oocysts was mainly limited to the early stages of sporogony. Vet Parasitol 2010; 173:64-9. [PMID: 20638798 DOI: 10.1016/j.vetpar.2010.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 06/13/2010] [Accepted: 06/17/2010] [Indexed: 11/21/2022]
Abstract
The objective of this study was to evaluate the action of S-nitroso-glutathione (GSNO) on the sporogony and the mRNA expression for EtCRK2 (a cyclin-dependent kinase related protein-2 in Eimeria tenella) during oocyst sporulation. Meanwhile, the effects of GSNO on the sporozoite excystability and infectivity to chickens were also investigated. The results showed that within 10 h after the initial sporulation, the sporulation process could be interrupted by GSNO treatment, and most of the oocysts failed to continue to sporulate. However, if the sporulation lasted more than 12 h, the sporogony process could not be blocked by GSNO. RT-PCR assay suggested that in the early stage of sporulation, the mRNA expression of EtCRK2 was completely inhibited by GSNO. For the infective oocysts or sporocysts treated by GSNO, the proportion of sporozoite excystation decreased significantly by about 20% and 40%, respectively. However, clinical coccidiosis could be observed in all experimental broilers inoculated with the oocysts or sporocysts treated by GSNO or not. The animal test showed that GSNO treatment reduced the infectivity of sporocysts, whereas it did not alleviate that of oocysts to broilers. Taken together, the data indicated that the viability of sporulated E. tenella oocysts could not be inactivated in vitro by GSNO. The inhibiting action of GSNO on oocysts was mainly limited to the early stages of sporulation, and this may partially associate with the inhibition of EtCRK2 mRNA expression.
Collapse
|
25
|
Zhou BH, Wang HW, Wang XY, Zhang LF, Zhang KY, Xue FQ. Eimeria tenella: effects of diclazuril treatment on microneme genes expression in second-generation merozoites and pathological changes of caeca in parasitized chickens. Exp Parasitol 2010; 125:264-70. [PMID: 20138868 DOI: 10.1016/j.exppara.2010.01.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 01/09/2023]
Abstract
The effects of diclazuril on mRNA expression levels of invasion-related microneme genes were examined in second-generation merozoites of Eimeria tenella (E. tenella) by quantitative real-time (QRT) PCR. Diclazruil treatment of infected chickens significantly decreased the number of second-generation merozoites by 65.13%, and resulted in downregulation of EtMIC genes: EtMIC1 by 65.63%, EtMIC2 by 64.12%, EtMIC3 by 56.82%, EtMIC4 by 73.48%, and EtMIC5 by 78.17%. SEM images of caecum tissue from uninfected chickens showed regular intestinal villus structure. In infected chickens, a distinct loss of the superficial epithelium, with a flattened mucosa and large-area necrosis and anabrosis, was evident. In diclazruil-treated chickens, a decrease in merozoite number and a visibly improved appearance of the caeca were noted. These improvements appeared to be mediated in part by downregulation of the expression of invasion-related EtMIC genes in response to diclazuril.
Collapse
Affiliation(s)
- Bian-hua Zhou
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Lal K, Bromley E, Oakes R, Prieto JH, Sanderson SJ, Kurian D, Hunt L, Yates JR, Wastling JM, Sinden RE, Tomley FM. Proteomic comparison of four Eimeria tenella life-cycle stages: unsporulated oocyst, sporulated oocyst, sporozoite and second-generation merozoite. Proteomics 2009; 9:4566-76. [PMID: 19795439 DOI: 10.1002/pmic.200900305] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report the proteomes of four life-cycle stages of the Apicomplexan parasite Eimeria tenella. A total of 1868 proteins were identified, with 630, 699, 845 and 1532 found in early oocysts (unsporulated), late oocysts (sporulated), sporozoites and second-generation merozoites, respectively. A multidimensional protein identification technology shotgun approach identified 812 sporozoites, 1528 merozoites and all of the oocyst proteins, whereas 2-D gel proteomics identified 230 sporozoites and 98 merozoite proteins. Comparing the invasive stages, we find moving junction components RON2 in both, whereas AMA-1 and RON4 are found only in merozoites and AMA-2 and RON5 are only found in sporozoites, suggesting stage-specific moving junction proteins. During early oocyst to sporozoite development, refractile body and most "glideosome" proteins are found throughout, whereas microneme and most rhoptry proteins are only found after sporulation. Quantitative analysis indicates glycolysis and gluconeogenesis are the most abundant metabolic groups detected in all stages. The mannitol cycle "off shoot" of glycolysis was not detected in merozoites but was well represented in the other stages. However, in merozoites we find more protein associated with oxidative phosphorylation, suggesting a metabolic shift mobilising greater energy production. We find a greater abundance of protein linked to transcription, protein synthesis and cell cycle in merozoites than in sporozoites, which may be residual protein from the preceding massive replication during schizogony.
Collapse
Affiliation(s)
- Kalpana Lal
- The Division of Cell and Molecular Biology, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Immunoproteomic analysis of the second-generation merozoite proteins of Eimeria tenella. Vet Parasitol 2009; 164:173-82. [DOI: 10.1016/j.vetpar.2009.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 05/06/2009] [Accepted: 05/14/2009] [Indexed: 11/18/2022]
|
28
|
Li J, Gu W, Tao J, Liu Z. The effects of S-nitroso-glutathione on the activities of some isoenzymes in Eimeria tenella oocysts. Vet Parasitol 2009; 162:236-40. [PMID: 19349119 DOI: 10.1016/j.vetpar.2009.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 03/01/2009] [Accepted: 03/03/2009] [Indexed: 11/26/2022]
Abstract
A preliminary study showed that the sporogony process of Eimeria tenella oocysts could be irreversibly inhibited by the S-nitrosothiols, such as S-nitroso-glutathione (GSNO), S-nitroso-N-acetyl-penicillamine. However, the mechanism is unclear at present. In this study the polyacrylamide gel electrophoresis (PAGE) and nitroblue tetrazolium (NBT) photoreduction methods were used to analyze the effects of GSNO on the activities of lactate dehydrogenase (LDH), glucose-6-phosphate dehydrogenase (G6PD), aconitase and superoxide dismutase (SOD). Methods of specific substrate staining were employed to display the enzymes after PAGE. The results showed that the activities of LDH, G6PD, aconitase and SOD in fresh unsporulated and sporulated oocysts could be distinctly detected after treatment by GSNO or without treatment. However, there were no obvious alterations of the tested enzymes' activities in all oocysts treated by GSNO or not. This indicated that the inhibitory effects of GSNO on the sporulation of E. tenella oocysts did not work through inactivating the activities of LDH, G6PD, aconitase and SOD, and the activities of these enzymes in sporulated oocysts were also not inactivated by GSNO.
Collapse
Affiliation(s)
- Jingui Li
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China.
| | | | | | | |
Collapse
|
29
|
Sasai K, Fetterer RH, Lillehoj H, Matusra S, Constantinoiu CC, Matsubayashi M, Tani H, Baba E. Characterization of monoclonal antibodies that recognize the Eimeria tenella microneme protein MIC2. J Parasitol 2009; 94:1432-4. [PMID: 18576850 DOI: 10.1645/ge-1558.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 03/14/2008] [Indexed: 11/10/2022] Open
Abstract
The apicomplexan pathogens of Eimeria cause coccidiosis, an intestinal disease of chickens, which has a major economic impact on the poultry industry. Members of the Apicomplexa share an assortment of unique secretory organelles (rhoptries, micronemes and dense granules) that mediate invasion of host cells and formation and modification of the parasitophorous vacuole. Among these, microneme protein 2 from Eimeria tenella(EtMIC2) has a putative function in parasite adhesion to the host cell to initiate the invasion process. To investigate the role of EtMIC2 in host parasite interactions, the production and characterization of 12 monoclonal antibodies (mabs) produced against recombinant EtMIC2 proteins is described. All mabs reacted with molecules belonging to the apical complex of sporozoites and merozoites of E. tenella, E. acervulina and E. maxima in an immunofluorescence assay. By Western blot analysis, the mabs identified a developmentally regulated protein of 42 kDa corresponding to EtMIC 2 and cross-reacted with proteins in developmental stages of E. acervulina. Collectively, these mabs are useful tools for the detailed investigation of the characterization of EtMIC2 related proteins in Eimeria species.
Collapse
Affiliation(s)
- Kazumi Sasai
- Department of Beterinary Internal Medicine, Division of beterinary Science, Graduate School of life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Fetterer RH, Miska KB, Jenkins MC, Barfield RC, Lillehoj H. Identification and characterization of a serpin from Eimeria acervulina. J Parasitol 2009; 94:1269-74. [PMID: 18576851 DOI: 10.1645/ge-1559.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 04/08/2008] [Indexed: 11/10/2022] Open
Abstract
Serpins are serine protease inhibitors that are widely distributed in metazoans but have not been previously characterized in Eimeria spp. A serpin from Eimeria acervulina was cloned, expressed and characterized. Random screening of an E.acervulina sporozoite cDNA library identified a single clone (D14) whose coding region shared high similarity to consensus structure of serpins. Clone D14 contained an entire open reading frame (ORF) consisting of 1,245 nts that encode a peptide 413 amino acids in length with a predicted molecular weight of 45.5 kDa and containing a signal peptide 28 residues in length. By Western blot analysis, polyclonal antiserum to the recombinant serpin (rbSp) recognized a major 55 kDa protein band in unsporulated oocysts and in oocysts sporulated up to 24 hr (fully sporulated). The anti-rbSp detected bands of 55 kDa and 48 kDa in sporozoites (SZ) and merozoites (MZ) respectively. Analysis of MZ secretion products revealed a single protein of 48 kDa which may correspond to secreted serpin. By immuno-staining the serpin was located in granules distributed throughout both the SZ and MZ but granules appeared to be concentrated in the parasite's anterior. Analysis of the structure predicts that the E. acervulina serpin should be an active inhibitor. However, rbSp was without inhibitory activity against common serine proteases. By Western blot analysis the endogenous serpin in MZ extracts did not form the expected high molecular weight complex when coincubated with either trypsin or subtilisin. The results demonstrate that E. acervulina contains a serpin gene and expresses a protein with structural properties similar to an active serine protease inhibitor. Although the function of the E. acervulina serpin remains unknown the results further suggest that serpin is secreted by the parasite where it may be involved in cell invasion and other basic developmental processes.
Collapse
Affiliation(s)
- R H Fetterer
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, U.S. Department of Agriculture, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, Maryland, USA.
| | | | | | | | | |
Collapse
|
31
|
Mohana Subramanian B, Sriraman R, Hanumantha Rao N, Raghul J, Thiagarajan D, Srinivasan V. Cloning, expression and evaluation of the efficacy of a recombinant Eimeria tenella sporozoite antigen in birds. Vaccine 2008; 26:3489-96. [DOI: 10.1016/j.vaccine.2008.04.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 04/05/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
|
32
|
Li MH, Ooi HK. Effect of chromium compounds on sporulation of Eimeria piriformis oocysts. Exp Anim 2008; 57:79-83. [PMID: 18256522 DOI: 10.1538/expanim.57.79] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Freshly defecated unsporulated oocysts of Eimeria piriformis from rabbit were treated with various concentrations (1%, 2.5%, 5%, and 10%) of chromium compounds, potassium dichromate, potassium chromate, chromium oxide and chromium nitrate, to examine their effect on sporulation. The sporulation time of oocysts treated with 1 to 10% K(2)Cr(2)O(7) was 28 h. However, much longer sporulation times of about 60 h were required for oocysts treated with 2.5% CrO(3) and Cr(NO(3))(3). Moreover, for oocysts treated with distilled water, 1% K(2)CrO(4) and 10% K(2)CrO(4), the sporulation times required were 216, 156 and 96 h, respectively. Thus, potassium dichromate was found to have higher catalytic activity for the sporulation of E. piriformis oocysts than other chromium compounds.
Collapse
Affiliation(s)
- Ming-Hsien Li
- Graduate Institute of Veterinary Microbiology, National Chung Hsing University
| | | |
Collapse
|
33
|
Fetterer RH, Jenkins MC, Miska KB, Barfield RC. Characterization of the antigen SO7 during development of Eimeria tenella. J Parasitol 2008; 93:1107-13. [PMID: 18163345 DOI: 10.1645/ge-1171r.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The developmental expression of the antigen SO7, which has been previously shown to protect chickens against infection by several Eimeria species, was investigated. Using RT-PCR, mRNA for SO7 was found to be restricted primarily to unsporulated oocysts (0 hr). Western blot (WB) analysis with an antibody to recombinant SO7 (rbSO7) revealed expression of the protein from 6 to 72 hr (fully sporulated) of sporulation and in sporozoites (SZ). SO7 was absent in host-derived second-stage merozoites (MZ) and was present in culture-derived first-stage MZ but at a level of only 25% of that exhibited by SZ. During invasion of Madin-Darby bovine kidney (MDBK) cells by SZ in vitro, the level of SO7 within cells, as determined by WB analysis, remained relatively constant until 48 hr of development and then decreased by about 40% at the next time point (72 hr). The SO7 secreted into the culture media during in vitro development increased to a relative maximum at 48 hr and then decreased to about 20% of maximum at 72 hr. Immunostaining with anti-rbSO7 indicates that SO7 is highly concentrated in both refractile bodies (RB) of SZ, with some limited distribution in the apical complex. Anti-rbSO7 intensively stained the intracellular parasites and the first-stage schizonts during in vitro development of E. tenella in MDBK cells. Upon release from the schizonts, the first-stage merozoites stained with 1 or 2 bright spots typically at each end. The results suggest that SO7 is closely associated with the SZ RB and is developmentally regulated but may not play a direct role in cellular invasion.
Collapse
Affiliation(s)
- R H Fetterer
- Animal Parasitic Diseases Laboratory, Henry A. Wallace Beltsville Agricultural Research Center USDA/ARS, Beltsville, Maryland 20750, USA.
| | | | | | | |
Collapse
|
34
|
Periz J, Gill AC, Hunt L, Brown P, Tomley FM. The Microneme Proteins EtMIC4 and EtMIC5 of Eimeria tenella Form a Novel, Ultra-high Molecular Mass Protein Complex That Binds Target Host Cells. J Biol Chem 2007; 282:16891-8. [PMID: 17426025 DOI: 10.1074/jbc.m702407200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eimeria tenella, in common with other parasitic protozoa of the phylum Apicomplexa, invades host cells using an actinomyosin-powered "glideosome" complex and requires the secretion of adhesive proteins from the microneme organelles onto the parasite surface. Microneme proteins of E. tenella include EtMIC4, a transmembrane protein that has multiple thrombospondin type I domains and calcium-binding epidermal growth factor-like domains in its extracellular domain, and EtMIC5, a soluble protein composed of 11 tandemly repeated domains that belong to the plasminogen-apple-nematode superfamily. We show here that EtMIC4 and EtMIC5 interact to form an oligomeric, ultrahigh molecular mass protein complex. The complex was purified from lysed parasites by non-denaturing techniques, and the stoichiometry was shown to be [EtMIC4](2):[EtMIC5](1), with an octamer of EtMIC4 bound non-covalently to a tetramer of EtMIC5. The complex is formed within the parasite secretory pathway and is maintained after secretion onto the surface of the parasite. The purified complex binds to a number of epithelial cell lines in culture. Identification and characterization of this complex contributes to an overall understanding of the role of multimolecular protein complexes in specific interactions between pathogens and their hosts during infection.
Collapse
Affiliation(s)
- Javier Periz
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Innes EA, Vermeulen AN. Vaccination as a control strategy against the coccidial parasitesEimeria,ToxoplasmaandNeospora. Parasitology 2007; 133 Suppl:S145-68. [PMID: 17274844 DOI: 10.1017/s0031182006001855] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The protozoan parasitesEimeriaspp.Toxoplasma gondiiandNeospora caninumare significant causes of disease in livestock worldwide andT. gondiiis also an important human pathogen. Drugs have been used with varying success to help control aspects of these diseases and commercial vaccines are available for all three groups of parasites. However, there are issues with increasing development of resistance to many of the anti-coccidial drugs used to help control avian eimeriosis and public concerns about the use of drugs in food animals. In addition there are no drugs available that can act against the tissue cyst stage of eitherT. gondiiorN. caninumand thus cure animals or people of infection. All three groups of parasites multiply within the cells of their host species and therefore cell mediated immune mechanisms are thought to be an important component of host protective immunity. Successful vaccination strategies for bothEimeriaandToxoplasmahave relied on using a live vaccination approach using attenuated parasites which allows correct processing and presentation of antigen to the host immune system to stimulate appropriate cell mediated immune responses. However, live vaccines can have problems with safety, short shelf-life and large-scale production; therefore there is continued interest in devising new vaccines using defined recombinant antigens. The major challenges in devising novel vaccines are to select relevant antigens and then present them to the immune system in an appropriate manner to enable the induction of protective immune responses. With all three groups of parasites, vaccine preparations comprising antigens from the different life cycle stages may also be advantageous. In the case ofEimeriaparasites there are also problems with strain-specific immunity therefore a cocktail of antigens from different parasite strains may be required. Improving our knowledge of the different parasite transmission routes, host-parasite relationships, disease pathogenesis and determining the various roles of the host immune response being at times host-protective, parasite protective and in causing immunopathology will help to tailor a vaccination strategy against a particular disease target. This paper discusses current vaccination strategies to help combat infections withEimeria,ToxoplasmaandNeosporaand recent research looking towards developing new vaccine targets and approaches.
Collapse
Affiliation(s)
- E A Innes
- Moredun Research Institute, Pentlands Science Park, Edinburgh EH26 OPZ, UK.
| | | |
Collapse
|
36
|
Miska KB, Fetterer RH, Barfield RC. Analysis of transcripts expressed by Eimeria tenella oocysts using subtractive hybridization methods. J Parasitol 2005; 90:1245-52. [PMID: 15715213 DOI: 10.1645/ge-309r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To characterize the genes expressed by Eimeria tenella oocysts, the sequence of 499 expressed sequence tags (ESTs) was obtained from complementary DNA (cDNAs) enriched for transcripts expressed by unsporulated or sporulated oocysts. Of these, 225 clones were isolated from cDNA of sporulated oocysts and 274 from unsporulated oocysts. A total of 163 unique sequences were found, and the majority of these (64%) represent novel genes with no significant homology to the proteins in GenBank. Approximately half of the unique transcripts generated from sporulated oocysts are also expressed by sporozoites and merozoites, whereas the expression of most (79%) of the transcripts from unsporulated oocysts has not yet been detected at other stages of development. The expression of 4 transcripts obtained from the subtracted cDNAs was confirmed by quantitative reverse transcriptase-polymerase chain reaction. The results confirmed that these transcripts are in fact differentially expressed between sporulated and unsporulated oocysts.
Collapse
Affiliation(s)
- K B Miska
- USDA-ARS, Animal Parasitic Diseases Laboratory, 10300 Baltimore Avenue, Building 1042 BARC-East, Beltsville, Maryland 20705, USA.
| | | | | |
Collapse
|
37
|
Labbé M, de Venevelles P, Girard-Misguich F, Bourdieu C, Guillaume A, Péry P. Eimeria tenella microneme protein EtMIC3: identification, localisation and role in host cell infection. Mol Biochem Parasitol 2005; 140:43-53. [PMID: 15694485 DOI: 10.1016/j.molbiopara.2004.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/26/2004] [Accepted: 12/08/2004] [Indexed: 11/26/2022]
Abstract
The gene coding for Eimeria tenella protein EtMIC3 was cloned by screening a sporozoite cDNA library with two independent monoclonal antibodies raised against the oocyst stage. The deduced sequence of EtMIC3 is 988 amino acids long. The protein presents seven repeats in tandem, with four highly conserved internal repeats and three more divergent external repeats. Each repeat is characterised by a tyrosine kinase phosphorylation site, WRCY, and a reminiscent motif of the thrombospondin1 (TSP1)-type I domain, CXXXCG. The protein EtMIC3 is localised at the apex of free parasite stages. It is not detected in the early intracellular parasite stage but is synthesised in mature schizonts. Secretion of the protein is induced when sporozoites are incubated in complete medium at 41 degrees C. Strangely enough, the two independent mAb that allow cloning of EtMIC3 interfere with parasitic growth in different ways. One is able to inhibit parasite invasion whereas the other inhibits development. Expression and localisation of the protein EtMIC3 are consistent with a protein involved in the invasion process as is expected for a microneme protein.
Collapse
Affiliation(s)
- M Labbé
- Laboratoire de Virologie et Immunologie Moléculaires INRA, 78352 Jouy-en-Josas, France.
| | | | | | | | | | | |
Collapse
|
38
|
Shirley MW, Smith AL, Tomley FM. The Biology of Avian Eimeria with an Emphasis on their Control by Vaccination. ADVANCES IN PARASITOLOGY 2005; 60:285-330. [PMID: 16230106 DOI: 10.1016/s0065-308x(05)60005-x] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies on the biology of the avian species of Eimeria are currently benefiting from the availability of a comprehensive sequence for the nuclear genome of Eimeria tenella. Allied to some recent advances in transgenic technologies and genetic approaches to identify protective antigens, some elements are now being assembled that should be helpful for the development of a new generation of vaccines. In the meantime, control of avian coccidiosis by vaccination represents a major success in the fight against infections caused by parasitic protozoa. Live vaccines that comprise defined populations of oocysts are used routinely and this form of vaccination is based upon the long-established fact that chickens infected with coccidial parasites rapidly develop protective immunity against challenge infections with the same species. Populations of wild-type Eimeria parasites were the basis of the first live vaccines introduced around 50 years ago and the more recent introduction of safer, live-attenuated, vaccines has had a significant impact on coccidiosis control in many areas of the world. In Europe the introduction of vaccination has coincided with declining drug efficacy (on account of drug resistance) and increasing concerns by consumers about the inclusion of in-feed medication and prospects for drug residues in meat. The use of attenuated vaccines throughout the world has also stimulated a greater interest in the vaccines that comprise wild-type parasites and, during the past 3 years worldwide, around 3x10(9) doses of each type of vaccine have been used. The need for only small numbers of live parasites to induce effective protective immunity and the recognition that Eimeria spp. are generally very potent immunogens has stimulated efforts to develop other types of vaccines. None has succeeded except for the licensing, within several countries in 2002, of a vaccine (CoxAbic vaccine; Abic, Israel) that protects via the maternal transfer of immunoglobulin to the young chick. Building on the success of viral vaccines that are delivered via the embryonating egg, an in ovo coccidiosis vaccine (Inovocox, Embrex Inc.) is currently in development. Following successful field trials in 2001, the product will be ready for Food and Drug Administration approval in 2005 and a manufacturing plant will begin production for sale in late 2005. Limited progress has been achieved towards the development of subunit or recombinant vaccines. No products are available and studies to identify potential antigens remain compromised by an absence of effective in vitro assays that correlate with the induction of protective immunity in the host. To date, only a relatively small portfolio of molecules has been evaluated for an ability to induce protection in vivo. Although Eimeria are effective immunogens, it is probable that to date none of the antigens that induce potent protective immune responses during the course of natural infection has been isolated.
Collapse
Affiliation(s)
- Martin W Shirley
- Institute for Animal Health, Compton Laboratory, Compton Nr Newbury, Berks RG20 7NN, UK.
| | | | | |
Collapse
|
39
|
Kinnaird JH, Bumstead JM, Mann DJ, Ryan R, Shirley MW, Shiels BR, Tomley FM. EtCRK2, a cyclin-dependent kinase gene expressed during the sexual and asexual phases of the Eimeria tenella life cycle. Int J Parasitol 2004; 34:683-92. [PMID: 15111090 DOI: 10.1016/j.ijpara.2004.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 01/05/2004] [Accepted: 01/07/2004] [Indexed: 11/24/2022]
Abstract
EtCRK2, a cyclin-dependent kinase from the coccidian parasite, Eimeria tenella is closely related to eukaryotic cyclin-dependent kinases that regulate progression of the cell cycle and to several cyclin-dependent kinases identified in the Apicomplexa. Northern blot analyses revealed that EtCRK2 is transcribed during both asexual (first-generation schizogony) and sexual (oocyst sporulation) replicative phases of the parasite life cycle. In addition, it appears to be transcriptionally regulated during meiosis. Recombinant EtCRK2 produced in Escherichia coli has kinase activity which is significantly stimulated by the addition of vertebrate cyclin A. This cyclin-dependent kinase may play a significant role in regulating critical cell cycle events during both asexual proliferation and sexual development of the parasite.
Collapse
Affiliation(s)
- J H Kinnaird
- Veterinary Parasitology, Institute of Comparative Medicine, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | | | | | | | | | |
Collapse
|
40
|
Fetterer RH, Barfield RC. Characterization of a developmentally regulated oocyst protein from Eimeria tenella. J Parasitol 2003; 89:553-64. [PMID: 12892046 DOI: 10.1645/ge-3159] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Changes in proteins during sporulation of Eimeria tenella oocysts were investigated. Unsporulated E. tenella oocysts collected from cecal tissue at 7 days postinoculation were sporulated in aerated media at 28 C for 0-48 hr. Gel analysis of soluble protein extracts prepared from oocysts from their respective time points indicated the presence of 2 prominent bands with relative molecular weight (Mr) in the range of 30 kDa and making up 20% of the total protein. These 2 bands, designated as major oocyst proteins (MOPs), were absent or barely detectable by 21 hr of sporulation. MOP bands were weakly reactive with glycoprotein stain but showed no mobility shift on deglycosylation. By gel analysis it was shown that the purified MOPs consisted of 2 bands of Mr 28.7 and 30.1 kDa. However, by matrix-assisted laser deabsorption-time of flight analysis it was shown that masses were about 17% lower. Internal sequence analysis of the 28.7-kDa protein generated 2 peptides of 17 and 14 amino acids in length, consistent with a recently described protein coded by the gam56 gene and expressed in E. maxima gametocytes. Rabbit antibodies made against MOPs were localized to outer portions of sporocysts before excystment and to the apical end of in vitro-derived sporozoites. These same antibodies were found to react with bands of Mr 101 and 65 kDa by Western blot but did not recognize MOPs in soluble or insoluble sporozoite extracts. The data suggest that the MOPs are derived from part of a gametocyte protein similar to that coded by gam56 and are processed during sporulation into sporocyst and sporozoite proteins. Alternatively, the binding of anti-MOP to 101- and 65-kDa proteins may result from alternatively spliced genes as the development of parasite proceeds.
Collapse
Affiliation(s)
- R H Fetterer
- Parasite Biology, Epidemiology, and Systematics Laboratory, Animal and Natural Resources Institute, United States Department of Agriculture, Beltsville, Maryland 20705, USA.
| | | |
Collapse
|
41
|
Abstract
Exposure to Cryptosporidium parvum in healthy individuals results in transient infection that may be asymptomatic or can result in self-limited diarrhoea. In contrast, acquired immune deficiency syndrome patients with cryptosporidiosis can experience severe manifestations of disease. Volunteer studies have demonstrated that as few as 10 oocysts can cause infection in otherwise healthy adults and that isolates from geographically diverse regions differ in infectivity and, perhaps, virulence. Variability in isolate pathogenicity and infectivity has also been seen in bovine and murine models, respectively. Furthermore, isolate specific differences in protein composition and in host immunoreactivity have been observed. The molecular basis for differences in pathogenicity is not understood. Determining which factors are responsible for host selectivity and for the initiation, establishment, and perpetuation of infection with Cryptosporidium is key to rational drug design and vaccine development. To date, no specific virulence factors have been unequivocally shown to individually cause direct or indirect damage to host tissues nor have mutant strains been produced that could prove that particular deletions result in less virulent strains. Nevertheless, a number of candidate molecules have been identified by immunological and molecular methods. Here, we review the salient characteristics of some of these putative virulence determinants, including molecules that are involved in adhesion, protein degradation and the modulation of the host responses.
Collapse
Affiliation(s)
- Pablo C Okhuysen
- Department of Medicine, Division of Infectious Diseases and The School of Public Health, The University of Texas Health Science Center at Houston Medical School, 6431 Fannin, 1.728 JFB, Houston, TX 77030, USA.
| | | |
Collapse
|
42
|
Tomley FM, Billington KJ, Bumstead JM, Clark JD, Monaghan P. EtMIC4: a microneme protein from Eimeria tenella that contains tandem arrays of epidermal growth factor-like repeats and thrombospondin type-I repeats. Int J Parasitol 2001; 31:1303-10. [PMID: 11566298 DOI: 10.1016/s0020-7519(01)00255-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Micronemes are specialised secretory organelles that release their proteins by a stimulus-coupled exocytosis that occurs when apicomplexan parasites make contact with target host cells. These proteins play crucial roles in motility and invasion, most likely by mediating adhesion between parasite and host cell surfaces and facilitating the transmission of dynamic forces generated by the parasite actinomyosin cytoskeleton. Members of the TRAP family of microneme proteins are characterised by having extracellular domains containing one or more types of cysteine-rich, adhesive modules, highly-conserved transmembrane regions and cytosolic tails that contain one or more tyrosines, stretches of acidic residues and a single tryptophan. In this paper, we describe a novel member of the TRAP family, EtMIC4, a 218 kDa microneme protein from Eimeria tenella. EtMIC4 contains 31 epidermal growth factor (EGF) modules, 12 thrombospondin type-1 (TSP-1) modules and a highly acidic, proline and glycine-rich region in its extracellular region, plus the conserved transmembrane and cytosolic tail. Like EtMIC1, another TRAP family member from E. tenella, EtMIC4 is expressed in sporozoites and all the merozoite stages of the parasite, suggesting that this parasite has a strong requirement for TSP-1 modules. Unlike the other microneme proteins so far studied in E. tenella, EtMIC4 appears to be found constitutively on the sporozoite surface as well as within the micronemes.
Collapse
Affiliation(s)
- F M Tomley
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, RG20 7NN, UK.
| | | | | | | | | |
Collapse
|