1
|
Angage D, Chmielewski J, Maddumage JC, Hesping E, Caiazzo S, Lai KH, Yeoh LM, Menassa J, Opi DH, Cairns C, Puthalakath H, Beeson JG, Kvansakul M, Boddey JA, Wilson DW, Anders RF, Foley M. A broadly cross-reactive i-body to AMA1 potently inhibits blood and liver stages of Plasmodium parasites. Nat Commun 2024; 15:7206. [PMID: 39174515 PMCID: PMC11341838 DOI: 10.1038/s41467-024-50770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/19/2024] [Indexed: 08/24/2024] Open
Abstract
Apical membrane antigen-1 (AMA1) is a conserved malarial vaccine candidate essential for the formation of tight junctions with the rhoptry neck protein (RON) complex, enabling Plasmodium parasites to invade human erythrocytes, hepatocytes, and mosquito salivary glands. Despite its critical role, extensive surface polymorphisms in AMA1 have led to strain-specific protection, limiting the success of AMA1-based interventions beyond initial clinical trials. Here, we identify an i-body, a humanised single-domain antibody-like molecule that recognises a conserved pan-species conformational epitope in AMA1 with low nanomolar affinity and inhibits the binding of the RON2 ligand to AMA1. Structural characterisation indicates that the WD34 i-body epitope spans the centre of the conserved hydrophobic cleft in AMA1, where interacting residues are highly conserved among all Plasmodium species. Furthermore, we show that WD34 inhibits merozoite invasion of erythrocytes by multiple Plasmodium species and hepatocyte invasion by P. falciparum sporozoites. Despite a short half-life in mouse serum, we demonstrate that WD34 transiently suppressed P. berghei infections in female BALB/c mice. Our work describes the first pan-species AMA1 biologic with inhibitory activity against multiple life-cycle stages of Plasmodium. With improved pharmacokinetic characteristics, WD34 could be a potential immunotherapy against multiple species of Plasmodium.
Collapse
Affiliation(s)
- Dimuthu Angage
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Jill Chmielewski
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Janesha C Maddumage
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Eva Hesping
- Infectious Diseases & Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Sabrina Caiazzo
- Infectious Diseases & Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Keng Heng Lai
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Lee Ming Yeoh
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Joseph Menassa
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - D Herbert Opi
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, 3052, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Callum Cairns
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
- Department of Infectious Diseases, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Justin A Boddey
- Infectious Diseases & Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Robin F Anders
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Michael Foley
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia.
- AdAlta, Science Drive, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
2
|
Schmidt S, Wichers-Misterek JS, Behrens HM, Birnbaum J, Henshall IG, Dröge J, Jonscher E, Flemming S, Castro-Peña C, Mesén-Ramírez P, Spielmann T. The Kelch13 compartment contains highly divergent vesicle trafficking proteins in malaria parasites. PLoS Pathog 2023; 19:e1011814. [PMID: 38039338 PMCID: PMC10718435 DOI: 10.1371/journal.ppat.1011814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/13/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Single amino acid changes in the parasite protein Kelch13 (K13) result in reduced susceptibility of P. falciparum parasites to artemisinin and its derivatives (ART). Recent work indicated that K13 and other proteins co-localising with K13 (K13 compartment proteins) are involved in the endocytic uptake of host cell cytosol (HCCU) and that a reduction in HCCU results in reduced susceptibility to ART. HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins among the few proteins so far functionally linked to this process. Here we further defined the composition of the K13 compartment by analysing more hits from a previous BioID, showing that MyoF and MCA2 as well as Kelch13 interaction candidate (KIC) 11 and 12 are found at this site. Functional analyses, tests for ART susceptibility as well as comparisons of structural similarities using AlphaFold2 predictions of these and previously identified proteins showed that vesicle trafficking and endocytosis domains were frequent in proteins involved in resistance or endocytosis (or both), comprising one group of K13 compartment proteins. While this strengthened the link of the K13 compartment to endocytosis, many proteins of this group showed unusual domain combinations and large parasite-specific regions, indicating a high level of taxon-specific adaptation of this process. Another group of K13 compartment proteins did not influence endocytosis or ART susceptibility and lacked detectable vesicle trafficking domains. We here identified the first protein of this group that is important for asexual blood stage development and showed that it likely is involved in invasion. Overall, this work identified novel proteins functioning in endocytosis and at the K13 compartment. Together with comparisons of structural predictions it provides a repertoire of functional domains at the K13 compartment that indicate a high level of adaption of endocytosis in malaria parasites.
Collapse
Affiliation(s)
- Sabine Schmidt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Jakob Birnbaum
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Jana Dröge
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ernst Jonscher
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sven Flemming
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
3
|
Abdelmohsen UR, Bayoumi SAL, Mohamed NM, Mostafa YA, Ngwa CJ, Pradel G, Farag SF. Naturally occurring phenylethanoids and phenylpropanoids: antimalarial potential. RSC Adv 2023; 13:26804-26811. [PMID: 37692342 PMCID: PMC10483269 DOI: 10.1039/d3ra04242a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
Malaria as an infectious disease is one of the world's most dangerous parasitic diseases. There is an urgent need for the development of new antimalarial drugs. Natural products are a very rich source of new bioactive compounds. Our research aims to shed light on the recent studies which demonstrated the antimalarial potential of phenylpropanoids as a major natural-products class. This study involves an in silico analysis of naturally-occurring phenylpropanoids and phenylethanoids which showed 25 compounds with moderate to strong binding affinity to various amino acid residues lining the active site; P. falciparum kinase (PfPK5), P. falciparum cytochrome bc1 complex (cyt bc1), and P. falciparum lysyl-tRNA synthetase (PfKRS1); of Plasmodium falciparum parasite, a unicellular protozoan which causes the most severe and life-threatening malaria. Furthermore, the study was augmented by the assessment of antiplasmodial activity of glandularin, a naturally occurring dibenzylbutyrolactolic lignan, against chloroquine-sensitive 3D7 strain of P. falciparum using SYBR green I-based fluorescence assay, which showed high antimalarial activity with IC50 value of 11.2 μM after 24 hours of incubation. Our results highlight phenylpropanoids and glandularin in particular as a promising chemical lead for development of antimalarial drugs.
Collapse
Affiliation(s)
- Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 7 Universities Zone 61111 New Minia City Egypt
| | - Soad A L Bayoumi
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Assiut Assiut 77771 Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University 71526 Assiut Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut Assiut 77771 Egypt
| | - Che J Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University 52074 Aachen Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University 52074 Aachen Germany
| | - Salwa F Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Department of Pharmacognosy, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| |
Collapse
|
4
|
Basco LK. Cultivation of Asexual Intraerythrocytic Stages of Plasmodium falciparum. Pathogens 2023; 12:900. [PMID: 37513747 PMCID: PMC10384318 DOI: 10.3390/pathogens12070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successfully developed in 1976, the continuous in vitro culture of Plasmodium falciparum has many applications in the field of malaria research. It has become an important experimental model that directly uses a human pathogen responsible for a high prevalence of morbidity and mortality in many parts of the world and is a major source of biological material for immunological, biochemical, molecular, and pharmacological studies. Until present, the basic techniques described by Trager and Jensen and Haynes et al. remain unchanged in many malaria research laboratories. Nonetheless, different factors, including culture media, buffers, serum substitutes and supplements, sources of erythrocytes, and conditions of incubation (especially oxygen concentration), have been modified by different investigators to adapt the original technique in their laboratories or enhance the in vitro growth of the parasites. The possible effects and benefits of these modifications for the continuous cultivation of asexual intraerythrocytic stages of P. falciparum, as well as future challenges in developing a serum-free cultivation system and axenic cultures, are discussed.
Collapse
Affiliation(s)
- Leonardo K Basco
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Unité Mixte de Recherche (UMR) Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Institut Hospitalo-Universitaire-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
5
|
Wichers-Misterek JS, Krumkamp R, Held J, von Thien H, Wittmann I, Höppner YD, Ruge JM, Moser K, Dara A, Strauss J, Esen M, Fendel R, Sulyok Z, Jeninga MD, Kremsner PG, Sim BKL, Hoffman SL, Duffy MF, Otto TD, Gilberger TW, Silva JC, Mordmüller B, Petter M, Bachmann A. The exception that proves the rule: Virulence gene expression at the onset of Plasmodium falciparum blood stage infections. PLoS Pathog 2023; 19:e1011468. [PMID: 37384799 DOI: 10.1371/journal.ppat.1011468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Controlled human malaria infections (CHMI) are a valuable tool to study parasite gene expression in vivo under defined conditions. In previous studies, virulence gene expression was analyzed in samples from volunteers infected with the Plasmodium falciparum (Pf) NF54 isolate, which is of African origin. Here, we provide an in-depth investigation of parasite virulence gene expression in malaria-naïve European volunteers undergoing CHMI with the genetically distinct Pf 7G8 clone, originating in Brazil. Differential expression of var genes, encoding major virulence factors of Pf, PfEMP1s, was assessed in ex vivo parasite samples as well as in parasites from the in vitro cell bank culture that was used to generate the sporozoites (SPZ) for CHMI (Sanaria PfSPZ Challenge (7G8)). We report broad activation of mainly B-type subtelomeric located var genes at the onset of a 7G8 blood stage infection in naïve volunteers, mirroring the NF54 expression study and suggesting that the expression of virulence-associated genes is generally reset during transmission from the mosquito to the human host. However, in 7G8 parasites, we additionally detected a continuously expressed single C-type variant, Pf7G8_040025600, that was most highly expressed in both pre-mosquito cell bank and volunteer samples, suggesting that 7G8, unlike NF54, maintains expression of some previously expressed var variants during transmission. This suggests that in a new host, the parasite may preferentially express the variants that previously allowed successful infection and transmission. Trial registration: ClinicalTrials.gov - NCT02704533; 2018-004523-36.
Collapse
Affiliation(s)
- Jan Stephan Wichers-Misterek
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Ralf Krumkamp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Irene Wittmann
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Yannick Daniel Höppner
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Julia M Ruge
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Kara Moser
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Antoine Dara
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Jan Strauss
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Zita Sulyok
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Myriam D Jeninga
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - B Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, United States of America
| | | | - Michael F Duffy
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas D Otto
- School of Infection & Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Tim-Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Michaela Petter
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| |
Collapse
|
6
|
Ferreira JL, Pražák V, Vasishtan D, Siggel M, Hentzschel F, Binder AM, Pietsch E, Kosinski J, Frischknecht F, Gilberger TW, Grünewald K. Variable microtubule architecture in the malaria parasite. Nat Commun 2023; 14:1216. [PMID: 36869034 PMCID: PMC9984467 DOI: 10.1038/s41467-023-36627-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
Microtubules are a ubiquitous eukaryotic cytoskeletal element typically consisting of 13 protofilaments arranged in a hollow cylinder. This arrangement is considered the canonical form and is adopted by most organisms, with rare exceptions. Here, we use in situ electron cryo-tomography and subvolume averaging to analyse the changing microtubule cytoskeleton of Plasmodium falciparum, the causative agent of malaria, throughout its life cycle. Unexpectedly, different parasite forms have distinct microtubule structures coordinated by unique organising centres. In merozoites, the most widely studied form, we observe canonical microtubules. In migrating mosquito forms, the 13 protofilament structure is further reinforced by interrupted luminal helices. Surprisingly, gametocytes contain a wide distribution of microtubule structures ranging from 13 to 18 protofilaments, doublets and triplets. Such a diversity of microtubule structures has not been observed in any other organism to date and is likely evidence of a distinct role in each life cycle form. This data provides a unique view into an unusual microtubule cytoskeleton of a relevant human pathogen.
Collapse
Affiliation(s)
- Josie L Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Vojtěch Pražák
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marc Siggel
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Franziska Hentzschel
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Annika M Binder
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Emma Pietsch
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Kosinski
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany.
- Leibniz Institute for Virology (LIV), Hamburg, Germany.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- University of Hamburg, Hamburg, Germany.
| |
Collapse
|
7
|
Wichers-Misterek JS, Binder AM, Mesén-Ramírez P, Dorner LP, Safavi S, Fuchs G, Lenz TL, Bachmann A, Wilson D, Frischknecht F, Gilberger TW. A Microtubule-Associated Protein Is Essential for Malaria Parasite Transmission. mBio 2023; 14:e0331822. [PMID: 36625655 PMCID: PMC9973338 DOI: 10.1128/mbio.03318-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Mature gametocytes of Plasmodium falciparum display a banana (falciform) shape conferred by a complex array of subpellicular microtubules (SPMT) associated with the inner membrane complex (IMC). Microtubule-associated proteins (MAPs) define MT populations and modulate interaction with pellicular components. Several MAPs have been identified in Toxoplasma gondii, and homologues can be found in the genomes of Plasmodium species, but the function of these proteins for asexual and sexual development of malaria parasites is still unknown. Here, we identified a novel subpellicular MAP, termed SPM3, that is conserved within the genus Plasmodium, especially within the subgenus Laverania, but absent in other Apicomplexa. Conditional knockdown and targeted gene disruption of Pfspm3 in Plasmodium falciparum cause severe morphological defects during gametocytogenesis, leading to round, nonfalciform gametocytes with an aberrant SPMT pattern. In contrast, Pbspm3 knockout in Plasmodium berghei, a species with round gametocytes, caused no defect in gametocytogenesis, but sporozoites displayed an aberrant motility and a dramatic defect in invasion of salivary glands, leading to a decreased efficiency in transmission. Electron microscopy revealed a dissociation of the SPMT from the IMC in Pbspm3 knockout parasites, suggesting a function of SPM3 in anchoring MTs to the IMC. Overall, our results highlight SPM3 as a pellicular component with essential functions for malaria parasite transmission. IMPORTANCE A key structural feature driving the transition between different life cycle stages of the malaria parasite is the unique three-membrane pellicle, consisting of the parasite plasma membrane (PPM) and a double membrane structure underlying the PPM termed the inner membrane complex (IMC). Additionally, there are numerous linearly arranged intramembranous particles (IMPs) linked to the IMC, which likely link the IMC to the subpellicular microtubule cytoskeleton. Here, we identified, localized, and characterized a novel subpellicular microtubule-associated protein unique to the genus Plasmodium. The knockout of this protein in the human-pathogenic species P. falciparum resulted in malformed gametocytes and aberrant microtubules. We confirmed the microtubule association in the P. berghei rodent malaria homologue and show that its knockout results in a perturbed microtubule architecture, aberrant sporozoite motility, and decreased transmission efficiency.
Collapse
Affiliation(s)
- Jan Stephan Wichers-Misterek
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Annika M. Binder
- Integrative Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Paolo Mesén-Ramírez
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Lilian Patrick Dorner
- Integrative Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Soraya Safavi
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Gwendolin Fuchs
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Tobias L. Lenz
- Biology Department, University of Hamburg, Hamburg, Germany
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Danny Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Burnet Institute, Melbourne, Victoria, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Friedrich Frischknecht
- Integrative Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Adhikari N, Choudhury AAK, Shakya A, Ghosh SK, Patgiri SJ, Singh UP, Bhat HR. Molecular docking and antimalarial evaluation of novel N-(4-aminobenzoyl)-l-glutamic acid conjugated 1,3,5-triazine derivatives as Pf-DHFR inhibitors. 3 Biotech 2022; 12:347. [PMID: 36386564 PMCID: PMC9649585 DOI: 10.1007/s13205-022-03400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022] Open
Abstract
Malaria has been a source of concern for humans for millennia; therefore in the present study we have utilized in-silico approach to generate diverse anti-malarial hit. Towards this, Molinspiration cheminformatics and Biovia Discovery Studio (DS) 2020 were used to conduct molecular modelling studies on 120 designed compounds. Furthermore, the TOPKAT module was used to evaluate the toxicity of the screened compounds. The CDOCKER docking technology was used to investigate protein-ligand docking against the Pf-DHFR-TS protein (PDB ID: 1J3I and 1J3K). These compounds were synthesized using a conventional and microwave-assisted nucleophilic substitution reaction, and they were characterized using a variety of physicochemical and spectroscopic methods. Among the ten compounds tested, Df3 had the highest antimalarial activity against the chloroquine-resistant (Dd2) strain, with an IC50 value of 9.54 μg mL-1 and further demonstrate, molecular dynamics (MD) simulation studies and estimation of MM-PBSA-based free binding energies of docked complexes with 1J3I and 1J3K were carried out. The discovery of a novel class of Pf-DHFR inhibitors can be accomplished using this hybrid scaffold. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03400-2.
Collapse
Affiliation(s)
- Nayana Adhikari
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | | | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Saurav Jyoti Patgiri
- Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, Assam 786001 India
| | - Udaya Pratap Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh 211007 India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
9
|
The Plasmodium falciparum Nuclear Protein Phosphatase NIF4 Is Required for Efficient Merozoite Invasion and Regulates Artemisinin Sensitivity. mBio 2022; 13:e0189722. [PMID: 35938722 PMCID: PMC9426563 DOI: 10.1128/mbio.01897-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artemisinin resistance in Plasmodium falciparum has been associated with a mutation in the NLI-interacting factor-like phosphatase PfNIF4, in addition to the mutations in the Kelch13 protein as the major determinant. We found that PfNIF4 was predominantly expressed at the schizont stage and localized in the nuclei of the parasite. To elucidate the functions of PfNIF4 in P. falciparum, we performed PfNIF4 knockdown (KD) using the inducible ribozyme system. PfNIF4 KD attenuated merozoite invasion and affected gametocytogenesis. PfNIF4 KD parasites also showed significantly increased in vitro susceptibility to artemisinins. Transcriptomic and proteomic analysis revealed that PfNIF4 KD led to the downregulation of gene categories involved in invasion and artemisinin resistance (e.g., mitochondrial function, membrane, and Kelch13 interactome) at the trophozoite and/or schizont stage. Consistent with PfNIF4 being a protein phosphatase, PfNIF4 KD resulted in an overall upregulation of the phosphoproteome of infected erythrocytes. Quantitative phosphoproteomic profiling identified a set of PfNIF4-regulated phosphoproteins with functional similarity to FCP1 substrates, particularly proteins involved in chromatin organization and transcriptional regulation. Specifically, we observed increased phosphorylation of Ser2/5 of the tandem repeats in the C-terminal domain (CTD) of RNA polymerase II (RNAPII) upon PfNIF4 KD. Furthermore, using the TurboID-based proteomic approach, we identified that PfNIF4 interacted with the RNAPII components, AP2-domain transcription factors, and chromatin-modifiers and binders. These findings suggest that PfNIF4 may act as the RNAPII CTD phosphatase, regulating the expression of general and parasite-specific cellular pathways during the blood-stage development.
Collapse
|
10
|
Microwave synthesis and antimalarial screening of novel 4-amino benzoic acid (PABA)-substituted pyrimidine derivatives as Plasmodium falciparum dihydrofolate reductase inhibitors. 3 Biotech 2022; 12:170. [PMID: 35845109 PMCID: PMC9279537 DOI: 10.1007/s13205-022-03236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022] Open
Abstract
Antimalarial drug resistance is a major threat due to the emerging resistance to all the available drugs in the market. In an approach to develop alternative drugs, a novel class of Pf-DHFR inhibitors was developed using pyrimidine as the core nucleus and substituting the 4- and 6- positions with amines and 4-amino benzoic acid (PABA) to avoid the problem of drug resistance. The resultant compounds 3(a-j) after primary in silico screening and filtering were synthesized using microwave efficiently in high yield and reduced time period compared to conventional synthesis. The antimalarial assay was performed in vitro, against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains of Plasmodium falciparum using chloroquine as a reference standard. The IC50 values were in the range of 5.26-106.76 µg/ml for 3D7 and in Dd2 the value ranges from 4.71 to 112.98 µg/ml. Compounds 3d, 3e, 3f and 3h showed significant antimalarial activity against both the strains of P. falciparum with no cytotoxicity against fibroblast cell line and 3f was found to be the most potent among them. The hemolysis assay of all the compounds in fresh erythrocytes showed insignificant hemolysis below 5% at a higher dose level. Hence, the present study suggests the possible utility of PABA-substituted pyrimidine scaffold for further development of new Pf-DHFR inhibitors. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03236-w.
Collapse
|
11
|
Wichers JS, Mesén-Ramírez P, Fuchs G, Yu-Strzelczyk J, Stäcker J, von Thien H, Alder A, Henshall I, Liffner B, Nagel G, Löw C, Wilson D, Spielmann T, Gao S, Gilberger TW, Bachmann A, Strauss J. PMRT1, a Plasmodium-Specific Parasite Plasma Membrane Transporter, Is Essential for Asexual and Sexual Blood Stage Development. mBio 2022; 13:e0062322. [PMID: 35404116 PMCID: PMC9040750 DOI: 10.1128/mbio.00623-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Membrane transport proteins perform crucial roles in cell physiology. The obligate intracellular parasite Plasmodium falciparum, an agent of human malaria, relies on membrane transport proteins for the uptake of nutrients from the host, disposal of metabolic waste, exchange of metabolites between organelles, and generation and maintenance of transmembrane electrochemical gradients for its growth and replication within human erythrocytes. Despite their importance for Plasmodium cellular physiology, the functional roles of a number of membrane transport proteins remain unclear, which is particularly true for orphan membrane transporters that have no or limited sequence homology to transporter proteins in other evolutionary lineages. Therefore, in the current study, we applied endogenous tagging, targeted gene disruption, conditional knockdown, and knockout approaches to investigate the subcellular localization and essentiality of six membrane transporters during intraerythrocytic development of P. falciparum parasites. They are localized at different subcellular structures-the food vacuole, the apicoplast, and the parasite plasma membrane-and four out of the six membrane transporters are essential during asexual development. Additionally, the plasma membrane resident transporter 1 (PMRT1; PF3D7_1135300), a unique Plasmodium-specific plasma membrane transporter, was shown to be essential for gametocytogenesis and functionally conserved within the genus Plasmodium. Overall, we reveal the importance of four orphan transporters to blood stage P. falciparum development, which have diverse intracellular localizations and putative functions. IMPORTANCE Plasmodium falciparum-infected erythrocytes possess multiple compartments with designated membranes. Transporter proteins embedded in these membranes not only facilitate movement of nutrients, metabolites, and other molecules between these compartments, but also are common therapeutic targets and can confer antimalarial drug resistance. Orphan membrane transporters in P. falciparum without sequence homology to transporters in other evolutionary lineages and divergent from host transporters may constitute attractive targets for novel intervention approaches. Here, we localized six of these putative transporters at different subcellular compartments and probed their importance during asexual parasite growth by using reverse genetic approaches. In total, only two candidates turned out to be dispensable for the parasite, highlighting four candidates as putative targets for therapeutic interventions. This study reveals the importance of several orphan transporters to blood stage P. falciparum development.
Collapse
Affiliation(s)
- Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | | | - Gwendolin Fuchs
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Jing Yu-Strzelczyk
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jan Stäcker
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Heidrun von Thien
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Arne Alder
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Isabelle Henshall
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Georg Nagel
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Danny Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
- Burnet Institute, Melbourne, Victoria, Australia
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Shiqiang Gao
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| |
Collapse
|
12
|
Gordon PD, De Ville C, Sacchettini JC, Coté GL. A portable brightfield and fluorescence microscope toward automated malarial parasitemia quantification in thin blood smears. PLoS One 2022; 17:e0266441. [PMID: 35390054 PMCID: PMC8989350 DOI: 10.1371/journal.pone.0266441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
Malaria is often most endemic in remote regions where diagnostic microscopy services are unavailable. In such regions, the use of rapid diagnostic tests fails to quantify parasitemia measurements which reflect the concentration of Plasmodium parasites in the bloodstream. Thus, novel diagnostic and monitoring technologies capable of providing such information could improve the quality of treatment, monitoring, and eradication efforts. A low-cost, portable microscope for gathering quantitative parasitemia data from fluorescently stained thin blood smears is presented. The system employs bimodal imaging using components optimized for cost savings, system robustness, and optical performance. The microscope is novel for its use of monochromatic visible illumination paired with a long working distance singlet aspheric objective lens that can image both traditionally mounted and cartridge-based blood smears. Eight dilutions of red blood cells containing laboratory cultured wild-type P. falciparum were used to create thin smears which were stained with SYBR Green-1 fluorescent dye. Two subsequent images are captured for each field-of-view, with brightfield images providing cell counts and fluorescence images providing parasite localization data. Results indicate the successful resolution of sub-micron sized parasites, and parasitemia measurements from the prototype microscope display linear correlation with measurements from a benchtop microscope with a limit of detection of 0.18 parasites per 100 red blood cells.
Collapse
Affiliation(s)
- Paul D. Gordon
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Courtney De Ville
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - James C. Sacchettini
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
- Department of Chemistry, Texas A&M University, College Station, Texas, United States of America
| | - Gerard L. Coté
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, Texas, United States of America
| |
Collapse
|
13
|
Synthesis, Molecular Docking, and Antimalarial Activity of Hybrid 4-Aminoquinoline-pyrano[2,3-c]pyrazole Derivatives. Pharmaceuticals (Basel) 2021; 14:ph14111174. [PMID: 34832956 PMCID: PMC8622706 DOI: 10.3390/ph14111174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Widespread resistance of Plasmodium falciparum to current artemisinin-based combination therapies necessitate the discovery of new medicines. Pharmacophoric hybridization has become an alternative for drug resistance that lowers the risk of drug–drug adverse interactions. In this study, we synthesized a new series of hybrids by covalently linking the scaffolds of pyrano[2,3-c]pyrazole with 4-aminoquinoline via an ethyl linker. All synthesized hybrid molecules were evaluated through in vitro screenings against chloroquine-resistant (K1) and -sensitive (3D7) P. falciparum strains, respectively. Data from in vitro assessments showed that hybrid 4b displayed significant antiplasmodial activities against the 3D7 strain (EC50 = 0.0130 ± 0.0002 μM) and the K1 strain (EC50 = 0.02 ± 0.01 μM), with low cytotoxic effect against Vero mammalian cells. The high selectivity index value on the 3D7 strain (SI > 1000) and the K1 strain (SI > 800) and the low resistance index value from compound 4b suggested that the pharmacological effects of this compound were due to selective inhibition on the 3D7 and K1 strains. Molecular docking analysis also showed that 4b recorded the highest binding energy on P. falciparum lactate dehydrogenase. Thus, P. falciparum lactate dehydrogenase is considered a potential molecular target for the synthesized compound.
Collapse
|
14
|
Characterization of Apicomplexan Amino Acid Transporters (ApiATs) in the Malaria Parasite Plasmodium falciparum. mSphere 2021; 6:e0074321. [PMID: 34756057 PMCID: PMC8579892 DOI: 10.1128/msphere.00743-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the symptomatic human blood phase, malaria parasites replicate within red blood cells. Parasite proliferation relies on the uptake of nutrients, such as amino acids, from the host cell and blood plasma, requiring transport across multiple membranes. Amino acids are delivered to the parasite through the parasite-surrounding vacuolar compartment by specialized nutrient-permeable channels of the erythrocyte membrane and the parasitophorous vacuole membrane (PVM). However, further transport of amino acids across the parasite plasma membrane (PPM) is currently not well characterized. In this study, we focused on a family of Apicomplexan amino acid transporters (ApiATs) that comprises five members in Plasmodium falciparum. First, we localized four of the P. falciparum ApiATs (PfApiATs) at the PPM using endogenous green fluorescent protein (GFP) tagging. Next, we applied reverse genetic approaches to probe into their essentiality during asexual replication and gametocytogenesis. Upon inducible knockdown and targeted gene disruption, a reduced asexual parasite proliferation was detected for PfApiAT2 and PfApiAT4. Functional inactivation of individual PfApiATs targeted in this study had no effect on gametocyte development. Our data suggest that individual PfApiATs are partially redundant during asexual in vitro proliferation and fully redundant during gametocytogenesis of P. falciparum parasites. IMPORTANCE Malaria parasites live and multiply inside cells. To facilitate their extremely fast intracellular proliferation, they hijack and transform their host cells. This also requires the active uptake of nutrients, such as amino acids, from the host cell and the surrounding environment through various membranes that are the consequence of the parasite’s intracellular lifestyle. In this paper, we focus on a family of putative amino acid transporters termed ApiAT. We show expression and localization of four transporters in the parasite plasma membrane of Plasmodium falciparum-infected erythrocytes that represent one interface of the pathogen to its host cell. We probed into the impact of functional inactivation of individual transporters on parasite growth in asexual and sexual blood stages of P. falciparum and reveal that only two of them show a modest but significant reduction in parasite proliferation but no impact on gametocytogenesis, pointing toward dispensability within this transporter family.
Collapse
|
15
|
De Jesús RC, Coronado L, Izos R, Pineda L, Lavergne J, Victor De Franco-Levi, Spadafora C. Evaluation of the in vitro and in vivo antiplasmodial effect of water treated with Photonic Multiphase Modulators (PMM) designed with Advanced Physics System Engineering (APSE™) and BioPhoton-X™ technology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112283. [PMID: 34537542 DOI: 10.1016/j.jphotobiol.2021.112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND In vitro and in vivo testing of new technology was performed to evaluate the antiplasmodial activity of Photonic Multiphase Modulators (PMM) in cultures and in mice previously infected with Plasmodium falciparum and Plasmodium berghei parasites. METHODS Cultures of P. falciparum infected-erythrocytes were exposed overnight to two generations of different APSE™ and BioPhoton-X™ PMM (C#1, R#1, R#2, D8 and D9). Growth of parasites was determined through flow cytometry or microscopy. Mice of the strain C57BL/6 were infected and treated with water exposed to second-generation APSE™ and BioPhoton-X™ PMM plus one previously untested first-generation PMM (AGN10). Parasitemia and weight loss were monitored throughout the infection until death or point of euthanasia was reached. After death, necropsy was performed on all animals and the number of days each survived was recorded. RESULTS In vitro and in vivo testing using different APSE™- and BioPhoton-X™-designed PMM revealed an effect of D8 in lowering the growth of the parasite in vitro, while the best effect in mice was observed with D9 PMM, with a reduced weight loss and an increase in survival, although the results in lowering the parasitemia were inconclusive. D9 PMM did not generate ROS in vitro. CONCLUSIONS APSE™ and BioPhoton-X™ optic circuit technologies can affect the growth of parasites and show protective effects in mice drinking from water treated with their PMM.
Collapse
Affiliation(s)
- Rosa Coromoto De Jesús
- Bioterio, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Panama
| | - Lorena Coronado
- Biomedical Physics and Engineering Unit, Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Panama
| | - Rocío Izos
- Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Panama
| | - Laura Pineda
- Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Panama
| | - Julio Lavergne
- Engeenuity S.A. and Engeenuity Life Sciences S.A Financial Tower, 35th floor, Calle 50, Panama City, Panama
| | - Victor De Franco-Levi
- Engeenuity S.A. and Engeenuity Life Sciences S.A Financial Tower, 35th floor, Calle 50, Panama City, Panama
| | - Carmenza Spadafora
- Biomedical Physics and Engineering Unit, Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Panama.
| |
Collapse
|
16
|
Wichers JS, Wunderlich J, Heincke D, Pazicky S, Strauss J, Schmitt M, Kimmel J, Wilcke L, Scharf S, von Thien H, Burda PC, Spielmann T, Löw C, Filarsky M, Bachmann A, Gilberger TW. Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum. Cell Microbiol 2021; 23:e13341. [PMID: 33830607 DOI: 10.1111/cmi.13341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The inner membrane complex (IMC) is a defining feature of apicomplexan parasites, which confers stability and shape to the cell, functions as a scaffolding compartment during the formation of daughter cells and plays an important role in motility and invasion during different life cycle stages of these single-celled organisms. To explore the IMC proteome of the malaria parasite Plasmodium falciparum we applied a proximity-dependent biotin identification (BioID)-based proteomics approach, using the established IMC marker protein Photosensitized INA-Labelled protein 1 (PhIL1) as bait in asexual blood-stage parasites. Subsequent mass spectrometry-based peptide identification revealed enrichment of 12 known IMC proteins and several uncharacterized candidate proteins. We validated nine of these previously uncharacterized proteins by endogenous GFP-tagging. Six of these represent new IMC proteins, while three proteins have a distinct apical localization that most likely represents structures described as apical annuli in Toxoplasma gondii. Additionally, various Kelch13 interacting candidates were identified, suggesting an association of the Kelch13 compartment and the IMC in schizont and merozoite stages. This work extends the number of validated IMC proteins in the malaria parasite and reveals for the first time the existence of apical annuli proteins in P. falciparum. Additionally, it provides evidence for a spatial association between the Kelch13 compartment and the IMC in late blood-stage parasites.
Collapse
Affiliation(s)
- Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Juliane Wunderlich
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Dorothee Heincke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Samuel Pazicky
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Marius Schmitt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Kimmel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Louisa Wilcke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Sarah Scharf
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Heidrun von Thien
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Michael Filarsky
- Centre for Structural Systems Biology, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Braunschweig, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| |
Collapse
|
17
|
Shaikh I, Jadeja R, Patel R, Mevada V, Gupta VK. 4-Acylhydrazone-5-Pyrazolones and their Zinc(II) Metal Complexes: Synthesis, Characterization, Crystal Feature and Antimalarial Activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Lactic Acid Supplementation Increases Quantity and Quality of Gametocytes in Plasmodium falciparum Culture. Infect Immun 2020; 89:IAI.00635-20. [PMID: 33077626 DOI: 10.1128/iai.00635-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023] Open
Abstract
Malaria infection by Plasmodium falciparum continues to afflict millions of people worldwide, with transmission being dependent upon mosquito ingestion of the parasite gametocyte stage. These sexually committed stages develop from the asexual stages, yet the factors behind this transition are not completely understood. Here, we found that lactic acid increases gametocyte quantity and quality in P. falciparum culture. Low-passage-number NF54 parasites exposed to 8.2 mM lactic acid for various times were monitored using blood film gametocyte counts and RNA analysis throughout 2 weeks of gametocyte development in vitro for a total of 5 biological cohorts. We found that daily continuous medium exchange and 8.2 mM lactic acid supplementation increased gametocytemia approximately 2- to 6-fold relative to controls after 5 days. In membrane feeding mosquito infection experiments, we found that gametocytes continuously exposed to 8.2 mM lactic acid supplementations were more infectious to Anopheles stephensi mosquitoes, essentially doubling prevalence of infected midguts and oocyst density. Supplementation on days 9 to 16 did not increase the quantity of gametocytes but did increase quality, as measured by oocyst density, by 2.4-fold. Lactic acid did not impact asexual growth, as measured by blood film counts and luciferase quantification, as well as radioactive hypoxanthine incorporation assays. These data indicate a novel role for lactic acid in sexual development of the parasite.
Collapse
|
19
|
Matthews KA, Senagbe KM, Nötzel C, Gonzales CA, Tong X, Rijo-Ferreira F, Bhanu NV, Miguel-Blanco C, Lafuente-Monasterio MJ, Garcia BA, Kafsack BFC, Martinez ED. Disruption of the Plasmodium falciparum Life Cycle through Transcriptional Reprogramming by Inhibitors of Jumonji Demethylases. ACS Infect Dis 2020; 6:1058-1075. [PMID: 32272012 PMCID: PMC7748244 DOI: 10.1021/acsinfecdis.9b00455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Little
is known about the role of the three Jumonji C (JmjC) enzymes
in Plasmodium falciparum (Pf). Here,
we show that JIB-04 and other established inhibitors of mammalian
JmjC histone demethylases kill asexual blood stage parasites and are
even more potent at blocking gametocyte development and gamete formation.
In late stage parasites, JIB-04 increased levels of trimethylated
lysine residues on histones, suggesting the inhibition of P. falciparum Jumonji demethylase activity. These epigenetic
defects coincide with deregulation of invasion, cell motor, and sexual
development gene programs, including gene targets coregulated by the
PfAP2-I transcription factor and chromatin-binding factor, PfBDP1.
Mechanistically, we demonstrate that PfJmj3 converts 2-oxoglutarate
to succinate in an iron-dependent manner consistent with mammalian
Jumonji enzymes, and this catalytic activity is inhibited by JIB-04
and other Jumonji inhibitors. Our pharmacological studies of Jumonji
activity in the malaria parasite provide evidence that inhibition
of these enzymatic activities is detrimental to the parasite.
Collapse
Affiliation(s)
- Krista A. Matthews
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Kossi M. Senagbe
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Christopher Nötzel
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
- Biochemistry, Cell & Molecular Biology Graduate Program, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
| | - Christopher A. Gonzales
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Xinran Tong
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Natarajan V. Bhanu
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, Pennsylvania 19104, United States
| | - Celia Miguel-Blanco
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, P.T.M. Severo Ochoa, Tres Cantos, Madrid 28760, Spain
| | | | - Benjamin A. Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, Pennsylvania 19104, United States
| | - Björn F. C. Kafsack
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
- Biochemistry, Cell & Molecular Biology Graduate Program, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
| | - Elisabeth D. Martinez
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| |
Collapse
|
20
|
Geiger M, Brown C, Wichers JS, Strauss J, Lill A, Thuenauer R, Liffner B, Wilcke L, Lemcke S, Heincke D, Pazicky S, Bachmann A, Löw C, Wilson DW, Filarsky M, Burda PC, Zhang K, Junop M, Gilberger TW. Structural Insights Into PfARO and Characterization of its Interaction With PfAIP. J Mol Biol 2019; 432:878-896. [PMID: 31877322 DOI: 10.1016/j.jmb.2019.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Apicomplexan parasites contain rhoptries, which are specialized secretory organelles that coordinate host cell invasion. During the process of invasion, rhoptries secrete their contents to facilitate interaction with, and entry into, the host cell. Here, we report the crystal structure of the rhoptry protein Armadillo Repeats-Only (ARO) from the human malaria parasite, Plasmodium falciparum (PfARO). The structure of PfARO comprises five tandem Armadillo-like (ARM) repeats, with adjacent ARM repeats stacked in a head-to-tail orientation resulting in PfARO adopting an elongated curved shape. Interestingly, the concave face of PfARO contains two distinct patches of highly conserved residues that appear to play an important role in protein-protein interaction. We functionally characterized the P. falciparum homolog of ARO interacting protein (PfAIP) and demonstrate that it localizes to the rhoptries. We show that conditional mislocalization of PfAIP leads to deficient red blood cell invasion. Guided by the structure, we identified mutations of PfARO that lead to mislocalization of PfAIP. Using proximity-based biotinylation we probe into PfAIP interacting proteins.
Collapse
Affiliation(s)
- Michael Geiger
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Chris Brown
- Western University, Department of Biochemistry, London, ON, Canada
| | - Jan Stephan Wichers
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Andrés Lill
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Roland Thuenauer
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Louisa Wilcke
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany
| | - Sarah Lemcke
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Dorothee Heincke
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Samuel Pazicky
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Danny William Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia; Burnet Institute, 85 Commercial Road, Melbourne, 3004, Victoria, Australia
| | - Michael Filarsky
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Kun Zhang
- Western University, Department of Biochemistry, London, ON, Canada
| | - Murray Junop
- Western University, Department of Biochemistry, London, ON, Canada.
| | - Tim Wolf Gilberger
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
21
|
Highly Sensitive and Rapid Characterization of the Development of Synchronized Blood Stage Malaria Parasites Via Magneto-Optical Hemozoin Quantification. Biomolecules 2019; 9:biom9100579. [PMID: 31591333 PMCID: PMC6843464 DOI: 10.3390/biom9100579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/23/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
The rotating-crystal magneto-optical diagnostic (RMOD) technique was developed as a sensitive and rapid platform for malaria diagnosis. Herein, we report a detailed in vivo assessment of the synchronized Plasmodium vinckei lentum strain blood-stage infections by the RMOD method and comparing the results to the unsynchronized Plasmodium yoelii 17X-NL (non-lethal) infections. Furthermore, we assess the hemozoin production and clearance dynamics in chloroquine-treated compared to untreated self-resolving infections by RMOD. The findings of the study suggest that the RMOD signal is directly proportional to the hemozoin content and closely follows the actual parasitemia level. The lack of long-term accumulation of hemozoin in peripheral blood implies a dynamic equilibrium between the hemozoin production rate of the parasites and the immune system’s clearing mechanism. Using parasites with synchronous blood stage cycle, which resemble human malaria parasite infections with Plasmodium falciparum and Plasmodium vivax, we are demonstrating that the RMOD detects both hemozoin production and clearance rates with high sensitivity and temporal resolution. Thus, RMOD technique offers a quantitative tool to follow the maturation of the malaria parasites even on sub-cycle timescales.
Collapse
|
22
|
Wichers JS, Scholz JAM, Strauss J, Witt S, Lill A, Ehnold LI, Neupert N, Liffner B, Lühken R, Petter M, Lorenzen S, Wilson DW, Löw C, Lavazec C, Bruchhaus I, Tannich E, Gilberger TW, Bachmann A. Dissecting the Gene Expression, Localization, Membrane Topology, and Function of the Plasmodium falciparum STEVOR Protein Family. mBio 2019; 10:e01500-19. [PMID: 31363031 PMCID: PMC6667621 DOI: 10.1128/mbio.01500-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 01/22/2023] Open
Abstract
During its intraerythrocytic development, the malaria parasite Plasmodium falciparum exposes variant surface antigens (VSAs) on infected erythrocytes to establish and maintain an infection. One family of small VSAs is the polymorphic STEVOR proteins, which are marked for export to the host cell surface through their PEXEL signal peptide. Interestingly, some STEVORs have also been reported to localize to the parasite plasma membrane and apical organelles, pointing toward a putative function in host cell egress or invasion. Using deep RNA sequencing analysis, we characterized P. falciparumstevor gene expression across the intraerythrocytic development cycle, including free merozoites, in detail and used the resulting stevor expression profiles for hierarchical clustering. We found that most stevor genes show biphasic expression oscillation, with maximum expression during trophozoite stages and a second peak in late schizonts. We selected four STEVOR variants, confirmed the expected export of these proteins to the host cell membrane, and tracked them to a secondary location, either to the parasite plasma membrane or the secretory organelles of merozoites in late schizont stages. We investigated the function of a particular STEVOR that showed rhoptry localization and demonstrated its role at the parasite-host interface during host cell invasion by specific antisera and targeted gene disruption. Experimentally determined membrane topology of this STEVOR revealed a single transmembrane domain exposing the semiconserved as well as variable protein regions to the cell surface.IMPORTANCE Malaria claims about half a million lives each year. Plasmodium falciparum, the causative agent of the most severe form of the disease, uses proteins that are translocated to the surface of infected erythrocytes for immune evasion. To circumvent the detection of these gene products by the immune system, the parasite evolved a complex strategy that includes gene duplications and elaborate sequence polymorphism. STEVORs are one family of these variant surface antigens and are encoded by about 40 genes. Using deep RNA sequencing of blood-stage parasites, including free merozoites, we first established stevor expression of the cultured isolate and compared it with published transcriptomes. We reveal a biphasic expression of most stevor genes and confirm this for individual STEVORs at the protein level. The membrane topology of a rhoptry-associated variant was experimentally elucidated and linked to host cell invasion, underlining the importance of this multifunctional protein family for parasite proliferation.
Collapse
Affiliation(s)
- J Stephan Wichers
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | | | - Jan Strauss
- Centre for Structural Systems Biology (CSSB), DESY, and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Susanne Witt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Andrés Lill
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | | | | | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michaela Petter
- Institute of Microbiology, University Hospital Erlangen, Erlangen, Germany
| | - Stephan Lorenzen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Burnet Institute, Melbourne, Victoria, Australia
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), DESY, and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | | | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tim W Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| |
Collapse
|
23
|
Singh S, Rajendran V, He J, Singh AK, Achieng AO, Vandana, Pant A, Nasamu AS, Pandit M, Singh J, Quadiri A, Gupta N, Poonam, Ghosh PC, Singh BK, Narayanan L, Kempaiah P, Chandra R, Dunn BM, Pandey KC, Goldberg DE, Singh AP, Rathi B. Fast-Acting Small Molecules Targeting Malarial Aspartyl Proteases, Plasmepsins, Inhibit Malaria Infection at Multiple Life Stages. ACS Infect Dis 2019; 5:184-198. [PMID: 30554511 DOI: 10.1021/acsinfecdis.8b00197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The eradication of malaria remains challenging due to the complex life cycle of Plasmodium and the rapid emergence of drug-resistant forms of Plasmodium falciparum and Plasmodium vivax. New, effective, and inexpensive antimalarials against multiple life stages of the parasite are urgently needed to combat the spread of malaria. Here, we synthesized a set of novel hydroxyethylamines and investigated their activities in vitro and in vivo. All of the compounds tested had an inhibitory effect on the blood stage of P. falciparum at submicromolar concentrations, with the best showing 50% inhibitory concentrations (IC50) of around 500 nM against drug-resistant P. falciparum parasites. These compounds showed inhibitory actions against plasmepsins, a family of malarial aspartyl proteases, and exhibited a marked killing effect on blood stage Plasmodium. In chloroquine-resistant Plasmodium berghei and P. berghei ANKA infected mouse models, treating mice with both compounds led to a significant decrease in blood parasite load. Importantly, two of the compounds displayed an inhibitory effect on the gametocyte stages (III-V) of P. falciparum in culture and the liver-stage infection of P. berghei both in in vitro and in vivo. Altogether, our findings suggest that fast-acting hydroxyethylamine-phthalimide analogs targeting multiple life stages of the parasite could be a valuable chemical lead for the development of novel antimalarial drugs.
Collapse
Affiliation(s)
- Snigdha Singh
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Vinoth Rajendran
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Jiang He
- Institute for Medical Engineering and Science, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Amit K. Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Angela O. Achieng
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Vandana
- Host−Parasite Interaction Biology Group, National Institute of Malaria Research, Lab. No. 219, Sector-8 Dwarka, New Delhi 110077, India
| | - Akansha Pant
- Host−Parasite Interaction Biology Group, National Institute of Malaria Research, Lab. No. 219, Sector-8 Dwarka, New Delhi 110077, India
| | - Armiyaw S. Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Mansi Pandit
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, University of Delhi South Campus, New Delhi 110021, India
| | - Jyoti Singh
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Afshana Quadiri
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nikesh Gupta
- Special Centre for Nanosciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi North Campus, Delhi 110007, India
| | - Prahlad C. Ghosh
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | | | - Latha Narayanan
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, University of Delhi South Campus, New Delhi 110021, India
| | - Prakasha Kempaiah
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
- Department of Medicine, Loyola University Stritch School of Medicine, 2160 South First Avenue, Chicago, Illinois 60153, United States
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ben M. Dunn
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, P.O. Box 100245, Gainesville, Florida 32610, United States
| | - Kailash C. Pandey
- Host−Parasite Interaction Biology Group, National Institute of Malaria Research, Lab. No. 219, Sector-8 Dwarka, New Delhi 110077, India
- Department of Biochemistry, National Institute for Research in Environmental Health, ICMR, Bhopal 462001, India
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Agam P. Singh
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Reiss T, Rosa TFDA, Blaesius K, Bobbert RP, Zipfel PF, Skerka C, Pradel G. Cutting Edge: FHR-1 Binding Impairs Factor H-Mediated Complement Evasion by the Malaria Parasite Plasmodium falciparum. THE JOURNAL OF IMMUNOLOGY 2018; 201:3497-3502. [PMID: 30455399 DOI: 10.4049/jimmunol.1800662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Human complement is the first line of defense against invading pathogens, including the malaria parasite Plasmodium falciparum We previously demonstrated that human complement represents a particular threat for the clinically relevant blood stages of the parasite. To evade complement-mediated destruction, the parasites acquire factor H (FH) via specific receptors. We now report that the FH-related protein FHR-1 competes with FH for binding to the parasites. FHR-1, which is composed of five complement control protein domains with variable homology to FH but lacks C3b regulatory activity, accumulates on the surfaces of intraerythrocytic schizonts and free merozoites. Although binding of FH to schizont-infected RBCs and merozoites is increased in FHR-1-deficient human serum, the addition of recombinant FHR-1 decreases FH binding. The presence of FHR-1 consequently impairs C3b inactivation and parasite viability. We conclude that FHR-1 acts as a protective factor in human immunity by counteracting FH-mediated microbial complement evasion.
Collapse
Affiliation(s)
- Timo Reiss
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, 52074 Aachen, Germany; and
| | - Thiago F de A Rosa
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, 52074 Aachen, Germany; and
| | - Katharina Blaesius
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, 52074 Aachen, Germany; and
| | - Rebecca P Bobbert
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, 52074 Aachen, Germany; and
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, 52074 Aachen, Germany; and
| |
Collapse
|
25
|
Essuman E, Grabias B, Verma N, Chorazeczewski JK, Tripathi AK, Mlambo G, Addison EA, Amoah AGB, Quakyi I, Oakley MS, Kumar S. A Novel Gametocyte Biomarker for Superior Molecular Detection of the Plasmodium falciparum Infectious Reservoirs. J Infect Dis 2017; 216:1264-1272. [PMID: 28968664 DOI: 10.1093/infdis/jix442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/22/2017] [Indexed: 01/15/2023] Open
Abstract
Background Complete malaria eradication and optimal use of transmission-reducing interventions require knowledge of submicroscopic infectious reservoirs among asymptomatic individuals. Even submicroscopic levels of Plasmodium falciparum gametocytes can infect mosquitoes and promote onward transmission. Most efforts to identify gametocyte carriers use polymerase chain reaction amplification of the gametocyte-specific transcript Pfs25. Methods To expand the repertoire of biomarkers available for superior gametocyte detection, we compared the gene expression profiles of gametocytes and asynchronous blood-stage P. falciparum parasites by microarray technology. This allowed the identification of 56 molecules abundantly expressed in the gametocyte stage of the parasite. The analytical sensitivity for gametocyte detection was evaluated for 25 genes with the highest expression levels. Results One candidate, Pfg17, exhibited superior analytical sensitivity against a panel of gametocyte-spiked whole blood, detecting 10 gametocytes/mL; in comparison, Pfs25 detected only 25.3 gametocytes/mL. Pfg17 also exhibited superior clinical sensitivity, identifying 19.1% more samples from blood-film microscopy-negative Ghanaian children and 40% more samples from asymptomatic adults as gametocyte positive. Conclusions Cumulatively, our results suggest Pfg17 is an excellent biomarker for detecting asymptomatic infectious reservoirs otherwise missed by the most sensitive molecular method available. Our study has also improved the repertoire of transmission-stage antigens available for evaluation as candidate vaccines.
Collapse
Affiliation(s)
- Edward Essuman
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases
| | - Bryan Grabias
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases
| | - Nitin Verma
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases
| | - Joanna K Chorazeczewski
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Abhai K Tripathi
- Johns Hopkins Malaria Research Institute.,Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland
| | - Godfree Mlambo
- Johns Hopkins Malaria Research Institute.,Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland
| | - Ebenezer A Addison
- School of Public Health, College of Health Sciences, University of Ghana, Legon
| | - Albert G B Amoah
- School of Public Health, College of Health Sciences, University of Ghana, Legon
| | - Isabella Quakyi
- School of Public Health, College of Health Sciences, University of Ghana, Legon
| | - Miranda S Oakley
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Sanjai Kumar
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases
| |
Collapse
|
26
|
Modulation of transmission success of Plasmodium falciparum gametocytes (sexual stages) in various species of Anopheles by erythrocytic asexual stage parasites. Acta Trop 2017; 176:263-269. [PMID: 28859956 DOI: 10.1016/j.actatropica.2017.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 12/15/2022]
Abstract
During malaria infection, a small proportion of erythrocytic asexual stages undergo sexual differentiation. Male and female gametocytes ingested in the blood meal initiate the sexual development of malaria parasites in the mosquito midgut. During blood feeding on a host, a mosquito ingests, in addition to mature gametocytes, host immune factors present in the blood, as well as large excess of erythrocytic asexual stages. In the current study we addressed the impact of the presence of large excess of asexual stages, hitherto not known or even suspected to influence, on the infectivity of gametocytes in the mosquito. Asexual stages resulted in a dose-dependent inhibition of infectiousness of gametocytes, and some of this could be explained by the presumed effect of hemozoin and other unknown asexual-stage components on the mosquito immune system, affecting survival and maturation of parasites in the mosquito midgut. Interactions between asexual and sexual stages, maturity and ratio of male and female gametocytes, host immune factors and mosquito innate immune factors are some of the variables that determine the infectiousness of gametocytes in the mosquitoes and ultimately malaria transmission success. Understanding of determinants affecting malaria transmission will be critical to approaches directly targeting the transmission process for malaria elimination.
Collapse
|
27
|
Medicinal plants for in vitro antiplasmodial activities: A systematic review of literature. Parasitol Int 2017; 66:713-720. [PMID: 28890153 DOI: 10.1016/j.parint.2017.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/25/2017] [Accepted: 09/06/2017] [Indexed: 01/24/2023]
Abstract
The increasing resistance of malaria to drugs raise the need to new antimalarial agents. Antiplasmodial herbs and their active compounds are the most promising source the new antimalarial agents. This study aimed to identify the medicinal plants with very good in vitro antiplasmodial activities, with half-maximal inhibitory concentration (IC50)≤1μg/ml, and to determine trends in the process of screening their antiplasmodial activities. A total of 58 reports published in the English language were retrieved from the bibliographical databases. Screening and data extraction were performed by two independent reviewers. The herbs were categorized as very good, good, moderate and inactive if the IC50 values were <0.1μg/ml, 0.1-1μg/ml, >1-5μg/ml and >5μg/ml respectively. We documented 752 medicinal plants belonging to 254 genera. The majority of the plants were reported from Africa followed by Asia. The traditional use for malaria treatment was the most common reason for the selection of the plants for investigation. About 80% of the plants experimented were reported to be inactive. Among plants identified as having very good to good antiplasmodial crude extracts are Harungana madagascariensis, Quassia africana, and Brucea javanica, while Picrolemma spruce, Aspidosperma vargasi, Aspidosperma desmanthum, and Artemisia annua were reported to have individual compound isolates with very good antiplasmodial activities. In conclusion, the number of plant species assessed so far is still small compared with the stock in nature's plant library. A mechanism of systematically approaching and exploring the untouched plant genera needs to be designed.
Collapse
|
28
|
Kumar P, Achieng AO, Rajendran V, Ghosh PC, Singh BK, Rawat M, Perkins DJ, Kempaiah P, Rathi B. Synergistic blending of high-valued heterocycles inhibits growth of Plasmodium falciparum in culture and P. berghei infection in mouse model. Sci Rep 2017; 7:6724. [PMID: 28751747 PMCID: PMC5532363 DOI: 10.1038/s41598-017-06097-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/07/2017] [Indexed: 11/09/2022] Open
Abstract
A series of phthalimide analogues, novelized with high-valued bioactive scaffolds was synthesized by means of click-chemistry under non-conventional microwave heating and evaluated as noteworthy growth inhibitors of Plasmodium falciparum (3D7 and W2) in culture. Analogues 6a, 6h and 6 u showed highest activity to inhibit the growth of the parasite with IC50 values in submicromolar range. Structure-activity correlation indicated the necessity of unsubstituted triazoles and leucine linker to obtain maximal growth inhibition of the parasite. Notably, phthalimide 6a and 6u selectively inhibited the ring-stage growth and parasite maturation. On other hand, phthalimide 6h displayed selective schizonticidal activity. Besides, they displayed synergistic interactions with chloroquine and dihydroartemisinin against parasite. Additional in vivo experiments using P. berghei infected mice showed that administration of 6h and 6u alone, as well as in combination with dihydroartemisinin, substantially reduced the parasite load. The high antimalarial activity of 6h and 6u, coupled with low toxicity advocate their potential role as novel antimalarial agents, either as standalone or combination therapies.
Collapse
Affiliation(s)
- Prashant Kumar
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Angela O Achieng
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America.,Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Vinoth Rajendran
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Prahlad C Ghosh
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Brajendra K Singh
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Manmeet Rawat
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Douglas J Perkins
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Prakasha Kempaiah
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America.
| | - Brijesh Rathi
- Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, 110007, India. .,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA-02139, United States of America.
| |
Collapse
|
29
|
Sierra-Miranda M, Vembar SS, Delgadillo DM, Ávila-López PA, Herrera-Solorio AM, Lozano Amado D, Vargas M, Hernandez-Rivas R. PfAP2Tel, harbouring a non-canonical DNA-binding AP2 domain, binds to Plasmodium falciparum telomeres. Cell Microbiol 2017; 19. [PMID: 28376558 DOI: 10.1111/cmi.12742] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/18/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
The telomeres of the malaria parasite Plasmodium falciparum are essential not only for chromosome end maintenance during blood stage development in humans but also to generate genetic diversity by facilitating homologous recombination of subtelomeric, multigene virulence families such as var and rifin. However, other than the telomerase PfTERT, proteins that act at P. falciparum telomeres are poorly characterised. To isolate components that bind to telomeres, we performed oligonucleotide pulldowns and electromobility shift assays with a telomeric DNA probe and identified a non-canonical member of the ApiAP2 family of transcription factors, PfAP2Tel (encoded by PF3D7_0622900), as a component of the P. falciparum telomere-binding protein complex. PfAP2Tel is expressed throughout the intra-erythrocytic life cycle and localises to the nuclear periphery, co-localising with telomeric clusters. Furthermore, EMSAs using the recombinant protein demonstrated direct binding of PfAP2Tel to telomeric repeats in vitro, while genome-wide chromatin immunoprecipitation followed by next generation sequencing corroborated the high specificity of this protein to telomeric ends of all 14 chromosomes in vivo. Taken together, our data describe a novel function for ApiAP2 proteins at chromosome ends and open new avenues to study the molecular machinery that regulates telomere function in P. falciparum.
Collapse
Affiliation(s)
- Miguel Sierra-Miranda
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Shruthi-Sridhar Vembar
- Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 2581, Institut Pasteur Paris, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France
| | - Dulce María Delgadillo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Pedro A Ávila-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Abril-Marcela Herrera-Solorio
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Daniela Lozano Amado
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Miguel Vargas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Rosaura Hernandez-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| |
Collapse
|
30
|
Sake CS, Ngu L, Ambada G, Chedjou JP, Nji N, Tchadji JC, Lissom A, Tchouangueu TF, Djukouo L, Njambe G, Garcia R, Gutierrez A, Bopda Waffo A, Park CG, Mbacham W, Etoa FX, Nchinda GW. The Effect of Antiretroviral Naïve HIV-1 Infection on the Ability of Natural Killer Cells to Produce IFN-γ upon Exposure to Plasmodium falciparum-Infected Erythrocytes. Biomed Hub 2017; 2:1-13. [PMID: 31988903 PMCID: PMC6945957 DOI: 10.1159/000467386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background In sub-Saharan Africa, intense perennial Plasmodium species transmission coincides with areas of high prevalence of the human immunodeficiency virus type 1 (HIV) infection. This implies that antiretroviral naïve HIV-infected people living within these regions are repeatedly exposed to Plasmodium species infection and consequently malaria. Natural killer (NK) cells are known to contribute to malaria immunity through the production of IFN-γ after exposure to Plasmodium falciparum-infected erythrocytes (infected red blood cells [iRBC]). However, in antiretroviral naïve HIV-1 infection, these functions could be impaired. In this study we assess the ability of NK cells from antiretroviral naïve HIV-1-infected people to respond to iRBC. Method Magnetically sorted NK cells from antiretroviral naïve HIV-1-infected people were tested for their ability to respond to iRBC following in vitro coculture. NK cell IFN-γ production after coculture was measured through multiparametric flow cytometry analysis. Results Our data show a significant reduction (p = 0.03) in IFN-γ production by NK cells from antiretroviral naïve HIV-1-infected people after coculture with iRBCs. This was in contrast to the NK cell response from healthy controls, which demonstrated elevated IFN-γ production. NK cell IFN-γ production from untreated HIV-1-infected participants correlated inversely with the viral load (r = −0.5, p = 0.02) and positively with total helper CD4+ T-cell count (r = 0.4, p = 0.04). Thus, antiretroviral naïve HIV-1 infection can dampen NK cell-mediated immunity to P. falciparum infection in malaria-intense regions. This could in effect escalate morbidity and mortality in people chronically infected with HIV-1.
Collapse
Affiliation(s)
- Carole Stéphanie Sake
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Microbiology, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Loveline Ngu
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Georgia Ambada
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Paul Chedjou
- Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaounde I, Yaoundé, Cameroon
| | - Nadesh Nji
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon
| | - Jules Colince Tchadji
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Abel Lissom
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Thibau Flaurant Tchouangueu
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Biochemistry, University of Dschang, Dschang, Cameroon
| | - Larissa Djukouo
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Ghislain Njambe
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon
| | - Rosario Garcia
- CSCB (Centre de santé catholique de Bikop), Bikop, Cameroon
| | - Anna Gutierrez
- CSCB (Centre de santé catholique de Bikop), Bikop, Cameroon.,Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Alain Bopda Waffo
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Chae Gyu Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Wilfried Mbacham
- Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaounde I, Yaoundé, Cameroon.,The Department of Biochemistry and Physiology, Faculty of Medicine, University of Yaounde I, Yaoundé, Cameroon
| | - François-Xavier Etoa
- Department of Microbiology, University of Yaoundé I, Yaoundé, Cameroon.,University of Douala, Douala, Cameroon
| | - Godwin W Nchinda
- Laboratory of Vaccinology/Biobanking, CIRCB, Messa Yaounde, Cameroon
| |
Collapse
|
31
|
Asahi H, Kobayashi F, Inoue SI, Niikura M, Yagita K, Tolba MEM. Copper Homeostasis for the Developmental Progression of Intraerythrocytic Malarial Parasite. Curr Top Med Chem 2017; 16:3048-3057. [PMID: 26881705 PMCID: PMC5068492 DOI: 10.2174/1568026616999160215151704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/10/2016] [Accepted: 02/20/2016] [Indexed: 01/22/2023]
Abstract
Malaria is one of the world’s most devastating diseases, particularly in the tropics. In humans, Plasmodium falciparum lives mainly within red blood cells, and malaria pathogenesis depends on the red blood cells being infected with the parasite. Non-esterified fatty acids (NEFAs), including cis-9-octadecenoic acid, and phospholipids have been critical for complete parasite growth in serum-free culture, although the efficacy of NEFAs in sustaining the growth of P. falciparum has varied markedly. Hexadecanoic acid and trans-9-octadecenoic acid have arrested development of the parasite, in association with down-regulation of genes encoding copper-binding proteins. Selective removal of Cu+ ions has blockaded completely the ring–trophozoite–schizont progression of the parasite. The importance of copper homeostasis for the developmental progression of P. falciparum has been confirmed by inhibition of copper-binding proteins that regulate copper physiology and function by associating with copper ions. These data have provided strong evidence for a link between healthy copper homeostasis and successive developmental progression of P. falciparum. Perturbation of copper homeostasis may be, thus, instrumental in drug and vaccine development for the malaria medication. We review the importance of copper homeostasis in the asexual growth of P. falciparum in relation to NEFAs, copper-binding proteins, apoptosis, mitochondria, and gene expression.
Collapse
Affiliation(s)
- Hiroko Asahi
- Division of Tropical Diseases and Parasitology, Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181 8611, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Kasetsirikul S, Buranapong J, Srituravanich W, Kaewthamasorn M, Pimpin A. The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods. Malar J 2016; 15:358. [PMID: 27405995 PMCID: PMC4942956 DOI: 10.1186/s12936-016-1400-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/17/2016] [Indexed: 11/10/2022] Open
Abstract
The large number of deaths caused by malaria each year has increased interest in the development of effective malaria diagnoses. At the early-stage of infection, patients show non-specific symptoms or are asymptomatic, which makes it difficult for clinical diagnosis, especially in non-endemic areas. Alternative diagnostic methods that are timely and effective are required to identify infections, particularly in field settings. This article reviews conventional malaria diagnostic methods together with recently developed techniques for both malaria detection and infected erythrocyte separation. Although many alternative techniques have recently been proposed and studied, dielectrophoretic and magnetophoretic approaches are among the promising new techniques due to their high specificity for malaria parasite-infected red blood cells. The two approaches are discussed in detail, including their principles, types, applications and limitations. In addition, other recently developed techniques, such as cell deformability and morphology, are also overviewed in this article.
Collapse
Affiliation(s)
- Surasak Kasetsirikul
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jirayut Buranapong
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Werayut Srituravanich
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Morakot Kaewthamasorn
- Animal Vector-Borne Diseases Research Group, The Veterinary Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Alongkorn Pimpin
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
33
|
The Genotypic and Phenotypic Stability of Plasmodium falciparum Field Isolates in Continuous In Vitro Culture. PLoS One 2016; 11:e0143565. [PMID: 26751382 PMCID: PMC4713440 DOI: 10.1371/journal.pone.0143565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 11/08/2015] [Indexed: 11/19/2022] Open
Abstract
The Plasmodium falciparum in vitro culture system is critical for genotypic and phenotypic analyses of the parasites. For genotypic analysis, the genomic DNA can be obtained directly from the patient blood sample or from culture adapted parasites whereas for phenotypic analysis, immediate ex vivo or in vitro culture adapted parasites are used. However, parasite biology studies have not investigated whether culture adaptation process affects genotypic and/or phenotypic characteristics of the parasites in short- or long-term cultures. Here, we set out to study the dynamics and stability of parasite genetic and phenotypic profiles as field isolate parasites were adapted in continuous cultures. Parasites collected from three different patients presenting with uncomplicated malaria were adapted and maintained in drug-free continuous cultures. Aliquots from the continuous cultures were collected every 24–48 hours for analyses. Each aliquot was treated as a separate parasite sample. For genetic analysis, microsatellite (MS) typing and single nucleotide polymorphism (SNP) analyses of 23 drug resistance markers were done. The 50% inhibitory concentrations (IC50) for some of the samples were also established for four antimalarial drugs. Samples from each patient (parasite-line) were compared as they were passed through the continuous culture. Data revealed genotypic and phenotypic profiles for the three parasite-lines fluctuated from one generation to the next with no specific pattern or periodicity. With few exceptions, multilocus analysis revealed samples from each parasite-line had high genetic diversity with unique haplotypes. Interestingly, changes in MS and SNP profiles occurred simultaneously. The difference in the IC50s of samples in each parasite-line reached statistical significance. However, phenotypic changes did not correspond or correlate to genotypic changes. Our study revealed parasite genetic and phenotypic characteristics fluctuates in short- and long-term cultures, which indicates parasite genetic information obtained even in short cultures is likely to be different from the natural infection parasites.
Collapse
|
34
|
Pathak V, Colah R, Ghosh K. Tyrosine kinase inhibitors: New class of antimalarials on the horizon? Blood Cells Mol Dis 2015; 55:119-26. [PMID: 26142327 DOI: 10.1016/j.bcmd.2015.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/25/2015] [Indexed: 11/15/2022]
Abstract
Development of the antimalarial drug resistant strains has currently become a major public health challenge. There is an urgent need to develop new antimalarial drugs. Tyrosine kinase inhibitors (TKIs) are receiving increasing attention as anticancer therapy. It has revolutionarised the management of CML to say the least. TKIs are also increasingly being implicated in complicated but vital life cycle of malaria parasite. Hence we tested two commonly used but different classes of TKIs (imatinib and sorafenib) in-vitro for their antimalarial activity and possible synergistic activity with existing antimalarial drug. Antimalarial activity was tested with the help of modified WHO microtest technique in-vitro for five different Plasmodium falciparum laboratory strains (3D7, Dd2, 7G8, MRC2, PKL9). Imatinib and sorafenib showed a promising antimalarial activity with all the strains. These compounds caused dose dependent inhibition of parasite maturation. The isobologram analysis of the interactions of these TKIs with standard antimalarial drug, artesunate revealed distinct patterns of synergism, additivity and antagonism at different ratios. Imatinib showed worthwhile synergism with artesunate indicating imatinib and other tyrosine kinase inhibitors may have significant antimalarial activity and can be used in combination therapy.
Collapse
Affiliation(s)
- Vrushali Pathak
- Department of Haematogenetics, National Institute of Immunohaematology (ICMR), KEM Hospital, Parel, Mumbai, India
| | - Roshan Colah
- Department of Haematogenetics, National Institute of Immunohaematology (ICMR), KEM Hospital, Parel, Mumbai, India
| | - Kanjaksha Ghosh
- Department of Haematogenetics, National Institute of Immunohaematology (ICMR), KEM Hospital, Parel, Mumbai, India.
| |
Collapse
|
35
|
Njunge JM, Mandal P, Przyborski JM, Boshoff A, Pesce ER, Blatch GL. PFB0595w is a Plasmodium falciparum J protein that co-localizes with PfHsp70-1 and can stimulate its in vitro ATP hydrolysis activity. Int J Biochem Cell Biol 2015; 62:47-53. [PMID: 25701168 DOI: 10.1016/j.biocel.2015.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/05/2015] [Accepted: 02/10/2015] [Indexed: 12/01/2022]
Abstract
Heat shock proteins, many of which function as molecular chaperones, play important roles in the lifecycle and pathogenesis of the malaria parasite, Plasmodium falciparum. The P. falciparum heat shock protein 70 (PfHsp70) family of chaperones is potentially regulated by a large complement of J proteins that localize to various intracellular compartments including the infected erythrocyte cytosol. While PfHsp70-1 has been shown to be an abundant cytosolic chaperone, its regulation by J proteins is poorly understood. In this study, we characterized the J protein PFB0595w, a homologue of the well-studied yeast cytosolic J protein, Sis1. PFB0595w, similarly to PfHsp70-1, was localized to the parasite cytosol and its expression was upregulated by heat shock. Additionally, recombinant PFB0595w was shown to be dimeric and to stimulate the in vitro ATPase activity of PfHsp70-1. Overall, the expression, localization and biochemical data for PFB0595w suggest that it may function as a cochaperone of PfHsp70-1, and advances current knowledge on the chaperone machinery of the parasite.
Collapse
Affiliation(s)
- James M Njunge
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes, Rhodes University, Grahamstown 6140, South Africa
| | - Pradipta Mandal
- Parasitology, Philipps University Marburg, 35043 Marburg, Germany
| | | | - Aileen Boshoff
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes, Rhodes University, Grahamstown 6140, South Africa
| | - Eva-Rachele Pesce
- College of Health and Biomedicine, Victoria University, Melbourne 8001, VIC, Australia
| | - Gregory L Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes, Rhodes University, Grahamstown 6140, South Africa; College of Health and Biomedicine, Victoria University, Melbourne 8001, VIC, Australia.
| |
Collapse
|
36
|
Kerlin DH, Gatton ML. A simulation model of the within-host dynamics of Plasmodium vivax infection. Malar J 2015; 14:51. [PMID: 25652017 PMCID: PMC4323116 DOI: 10.1186/s12936-015-0580-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/25/2015] [Indexed: 12/28/2022] Open
Abstract
Background The benign reputation of Plasmodium vivax is at odds with the burden and severity of the disease. This reputation, combined with restricted in vitro techniques, has slowed efforts to gain an understanding of the parasite biology and interaction with its human host. Methods A simulation model of the within-host dynamics of P. vivax infection is described, incorporating distinctive characteristics of the parasite such as the preferential invasion of reticulocytes and hypnozoite production. The developed model is fitted using digitized time-series’ from historic neurosyphilis studies, and subsequently validated against summary statistics from a larger study of the same population. The Chesson relapse pattern was used to demonstrate the impact of released hypnozoites. Results The typical pattern for dynamics of the parasite population is a rapid exponential increase in the first 10 days, followed by a gradual decline. Gametocyte counts follow a similar trend, but are approximately two orders of magnitude lower. The model predicts that, on average, an infected naïve host in the absence of treatment becomes infectious 7.9 days post patency and is infectious for a mean of 34.4 days. In the absence of treatment, the effect of hypnozoite release was not apparent as newly released parasites were obscured by the existing infection. Conclusions The results from the model provides useful insights into the dynamics of P. vivax infection in human hosts, in particular the timing of host infectiousness and the role of the hypnozoite in perpetuating infection.
Collapse
Affiliation(s)
- Douglas H Kerlin
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Michelle L Gatton
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,School of Public Health and Social Work, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| |
Collapse
|
37
|
Afanador GA, Matthews KA, Bartee D, Gisselberg JE, Walters MS, Freel Meyers CL, Prigge ST. Redox-dependent lipoylation of mitochondrial proteins in Plasmodium falciparum. Mol Microbiol 2014; 94:156-71. [PMID: 25116855 PMCID: PMC4177315 DOI: 10.1111/mmi.12753] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 11/26/2022]
Abstract
Lipoate scavenging from the human host is essential for malaria parasite survival. Scavenged lipoate is covalently attached to three parasite proteins: the H-protein and the E2 subunits of branched chain amino acid dehydrogenase (BCDH) and α-ketoglutarate dehydrogenase (KDH). We show mitochondrial localization for the E2 subunits of BCDH and KDH, similar to previously localized H-protein, demonstrating that all three lipoylated proteins reside in the parasite mitochondrion. The lipoate ligase 1, LipL1, has been shown to reside in the mitochondrion and it catalyses the lipoylation of the H-protein; however, we show that LipL1 alone cannot lipoylate BCDH or KDH. A second mitochondrial protein with homology to lipoate ligases, LipL2, does not show ligase activity and is not capable of lipoylating any of the mitochondrial substrates. Instead, BCDH and KDH are lipoylated through a novel mechanism requiring both LipL1 and LipL2. This mechanism is sensitive to redox conditions where BCDH and KDH are exclusively lipoylated under strong reducing conditions in contrast to the H-protein which is preferentially lipoylated under less reducing conditions. Thus, malaria parasites contain two different routes of mitochondrial lipoylation, an arrangement that has not been described for any other organism.
Collapse
Affiliation(s)
- Gustavo A Afanador
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Synthetic indole and melatonin derivatives exhibit antimalarial activity on the cell cycle of the human malaria parasite Plasmodium falciparum. Eur J Med Chem 2014; 78:375-82. [DOI: 10.1016/j.ejmech.2014.03.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 11/21/2022]
|
39
|
Mata-Cantero L, Lafuente MJ, Sanz L, Rodriguez MS. Magnetic isolation of Plasmodium falciparum schizonts iRBCs to generate a high parasitaemia and synchronized in vitro culture. Malar J 2014; 13:112. [PMID: 24655321 PMCID: PMC3994429 DOI: 10.1186/1475-2875-13-112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/14/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The establishment of methods for an in vitro continuous culture of Plasmodium falciparum is essential for gaining knowledge into its biology and for the development of new treatments. Previously, several techniques have been used to synchronize, enrich and concentrate P. falciparum, although obtaining cultures with high parasitaemia continues being a challenging process. Current methods produce high parasitaemia levels of synchronized P. falciparum cultures by frequent changes of culture medium or reducing the haematocrit. However, these methods are time consuming and sometimes lead to the loss of synchrony. METHODS A procedure that combines Percoll and sorbitol treatments, the use of magnetic columns, and the optimization of the in vitro culture conditions to reach high parasitaemia levels for synchronized Plasmodium falciparum cultures is described. RESULTS A new procedure has been established using P. falciparum 3D7, combining previous reported methodologies to achieve in vitro parasite cultures that reach parasitaemia up to 40% at any intra-erythrocytic stage. High parasitaemia levels are obtained only one day after magnetic column purification without compromising the parasite viability and synchrony. CONCLUSIONS The described procedure allows obtaining a large scale synchronized parasite culture at a high parasitaemia with less manipulations than other methods previously described.
Collapse
Affiliation(s)
- Lydia Mata-Cantero
- Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
- Proteomics Unit, CICbioGUNE Ed. 801A Parque Tecnológico de Bizkaia, 48160 Derio, Spain
| | - Maria J Lafuente
- Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Laura Sanz
- Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Manuel S Rodriguez
- Proteomics Unit, CICbioGUNE Ed. 801A Parque Tecnológico de Bizkaia, 48160 Derio, Spain
- Ubiquitylation and Cancer Molecular Biology, Inbiomed, Mikeletegi 81, 20009 San Sebastian, Spain
| |
Collapse
|
40
|
Frevert U, Nacer A. Immunobiology of Plasmodium in liver and brain. Parasite Immunol 2014; 35:267-82. [PMID: 23631610 DOI: 10.1111/pim.12039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/17/2013] [Indexed: 12/11/2022]
Abstract
Malaria remains one of the most serious health problems globally, but our understanding of the biology of the parasite and the pathogenesis of severe disease is still limited. Multiple cellular effector mechanisms that mediate parasite elimination from the liver have been described, but how effector cells use classical granule-mediated cytotoxicity to attack infected hepatocytes and how cytokines and chemokines spread via the unique fluid pathways of the liver to reach the parasites over considerable distances remains unknown. Similarly, a wealth of information on cerebral malaria (CM), one of the most severe manifestations of the disease, was gained from post-mortem analyses of human brain and murine disease models, but the cellular processes that ultimately cause disease are not fully understood. Here, we discuss how imaging of the local dynamics of parasite infection and host response as well as consideration of anatomical and physiological features of liver and brain can provide a better understanding of the initial asymptomatic hepatic phase of the infection and the cascade of events leading to CM. Given the increasing drug resistance of both parasite and vector and the unavailability of a protective vaccine, the urgency to reduce the tremendous morbidity and mortality associated with severe malaria is obvious.
Collapse
Affiliation(s)
- U Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA.
| | | |
Collapse
|
41
|
Hijazi H, Waggiallah H, Alagib A. Oxidative Low Density Lipoprotien Prohibited Plasmodium Falciparum Clearance in type 2 Diabetes Mellitus Via Cluster Differentiation 36. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2014; 5:703-6. [PMID: 24404553 PMCID: PMC3877532 DOI: 10.4103/1947-2714.123255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background: Cluster of differentiation 36 (CD36) is reported to function as a receptor of erythrocytes infected with Plasmodium falciparum (PF) and as an oxidized low-density lipoprotein (oxLDL). Aim: The aim of this study was to investigate the impact of CD36 in PF parasitized red blood cells in high concentration of oxLDL of T2 diabetes mellitus patients. Material and Methods: This cross-sectional study was conducted among diabetic patients. A total of 45 samples were collected from diabetic patients with more than 8% of HbA1c and more than 170 mg/dL of oxLDL. Results: The mean difference between CD36 negative and positive controls was found to be statistically significant (P ≤ 0.001). The mean difference between CD36 positive control and CD36 in diabetic patients with oxLDL ≥ 170 mg/dL also was statistically significant. Conclusion: High concentration of oxidative low density of lipoprotein more than 170 mg/dL leads to block CD36 receptor on infected red blood. This process believed to contribute in parasite survival by avoiding phagocytic clearance in the spleen.
Collapse
Affiliation(s)
- Hassan Hijazi
- AL-Ghad International Colleges for Applied Health Science, Qassim, Saudi Arabia
| | - Hisham Waggiallah
- Department of Medical Laboratory, Faculty of Medical Applied Science, Taibah University, Almadenah Almonawarah, Saudi Arabia
| | - Atif Alagib
- Tropical Medicine Research Institute, National Centre for Research, Ministry of Science and Technology, Sudan
| |
Collapse
|
42
|
Filisetti D, Théobald-Dietrich A, Mahmoudi N, Rudinger-Thirion J, Candolfi E, Frugier M. Aminoacylation of Plasmodium falciparum tRNA(Asn) and insights in the synthesis of asparagine repeats. J Biol Chem 2013; 288:36361-71. [PMID: 24196969 DOI: 10.1074/jbc.m113.522896] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genome sequencing revealed an extreme AT-rich genome and a profusion of asparagine repeats associated with low complexity regions (LCRs) in proteins of the malarial parasite Plasmodium falciparum. Despite their abundance, the function of these LCRs remains unclear. Because they occur in almost all families of plasmodial proteins, the occurrence of LCRs cannot be associated with any specific metabolic pathway; yet their accumulation must have given selective advantages to the parasite. Translation of these asparagine-rich LCRs demands extraordinarily high amounts of asparaginylated tRNA(Asn). However, unlike other organisms, Plasmodium codon bias is not correlated to tRNA gene copy number. Here, we studied tRNA(Asn) accumulation as well as the catalytic capacities of the asparaginyl-tRNA synthetase of the parasite in vitro. We observed that asparaginylation in this parasite can be considered standard, which is expected to limit the availability of asparaginylated tRNA(Asn) in the cell and, in turn, slow down the ribosomal translation rate when decoding asparagine repeats. This observation strengthens our earlier hypothesis considering that asparagine rich sequences act as "tRNA sponges" and help cotranslational folding of parasite proteins. However, it also raises many questions about the mechanistic aspects of the synthesis of asparagine repeats and about their implications in the global control of protein expression throughout Plasmodium life cycle.
Collapse
Affiliation(s)
- Denis Filisetti
- From the Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France and
| | | | | | | | | | | |
Collapse
|
43
|
Gisselberg JE, Dellibovi-Ragheb TA, Matthews KA, Bosch G, Prigge ST. The suf iron-sulfur cluster synthesis pathway is required for apicoplast maintenance in malaria parasites. PLoS Pathog 2013; 9:e1003655. [PMID: 24086138 PMCID: PMC3784473 DOI: 10.1371/journal.ppat.1003655] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 08/12/2013] [Indexed: 11/19/2022] Open
Abstract
The apicoplast organelle of the malaria parasite Plasmodium falciparum contains metabolic pathways critical for liver-stage and blood-stage development. During the blood stages, parasites lacking an apicoplast can grow in the presence of isopentenyl pyrophosphate (IPP), demonstrating that isoprenoids are the only metabolites produced in the apicoplast which are needed outside of the organelle. Two of the isoprenoid biosynthesis enzymes are predicted to rely on iron-sulfur (FeS) cluster cofactors, however, little is known about FeS cluster synthesis in the parasite or the roles that FeS cluster proteins play in parasite biology. We investigated two putative FeS cluster synthesis pathways (Isc and Suf) focusing on the initial step of sulfur acquisition. In other eukaryotes, these proteins can be located in multiple subcellular compartments, raising the possibility of cross-talk between the pathways or redundant functions. In P. falciparum, SufS and its partner SufE were found exclusively the apicoplast and SufS was shown to have cysteine desulfurase activity in a complementation assay. IscS and its effector Isd11 were solely mitochondrial, suggesting that the Isc pathway cannot contribute to apicoplast FeS cluster synthesis. The Suf pathway was disrupted with a dominant negative mutant resulting in parasites that were only viable when supplemented with IPP. These parasites lacked the apicoplast organelle and its organellar genome--a phenotype not observed when isoprenoid biosynthesis was specifically inhibited with fosmidomycin. Taken together, these results demonstrate that the Suf pathway is essential for parasite survival and has a fundamental role in maintaining the apicoplast organelle in addition to any role in isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Jolyn E. Gisselberg
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Teegan A. Dellibovi-Ragheb
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Krista A. Matthews
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Gundula Bosch
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Sean T. Prigge
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
44
|
Kwansa-Bentum B, Izumiyama S, Kitamura K, Obata-Ninomiya K, Ohta N, Asahi H. Comparative studies of serum-free media and detection techniques for <i>in vitro</i> drug sensitivity assessment of <i>Plasmodium falciparum</i>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojcd.2013.33020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Jangpatarapongsa K, Xia H, Fang Q, Hu K, Yuan Y, Peng M, Gao Q, Sattabongkot J, Cui L, Li B, Udomsangpetch R. Immunity to malaria in Plasmodium vivax infection: a study in central China. PLoS One 2012; 7:e45971. [PMID: 23049909 PMCID: PMC3457974 DOI: 10.1371/journal.pone.0045971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/23/2012] [Indexed: 12/03/2022] Open
Abstract
Background P. vivax infection is characterised by relapsing fever, indicating reinfection by previously hidden parasites in the host. Relapsed infection can lead to the activation of the memory T cell pool, which may lead to protective immunity. This study aims to characterise immune responses in acute P. vivax-infected patients living in an area of central China characterised by only P. vivax infection. Methodology/Principal Findings We conducted a cross-sectional immune-phenotypic analysis of adults using the following inclusion criteria: acute P. vivax infection (N = 37), a history of P. vivax infection (N = 17), and no known history of P. vivax infection (N = 21). We also conducted a 2-week longitudinal analysis following acute P. vivax infection, in which PBMC proliferation was measured in response to P. vivax and P. falciparum blood stage lysates. Using flow cytometry, we showed elevated memory T cells in the blood during acute P. vivax infection. The levels of γδ T cells were two-fold higher than those measured in naive controls. This result suggested that in the two populations, memory and γδ T cells promptly responded to P. vivax parasites. Interestingly, P. falciparum antigens stimulated T cells obtained from P. vivax-infected patients during a day 14-convalescence, whereas lymphocytes from the naïve control group responded to a lower degree of convalescence. Conclusions/Significance Cell-mediated immunity during the convalescent period of the P. vivax-infected hosts was comprised of T cells that were specifically able to recognise P. falciparum antigens. Although the magnitude of the response was only half that measured after stimulation with P. vivax antigens, the matter of cross-antigenic stimulation is of great interest.
Collapse
Affiliation(s)
- Kulachart Jangpatarapongsa
- Center for Innovation Development and Technology Transfer, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Hui Xia
- Department of Parasitology, Bengbu Medical College, Anhui, China
- Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, China
| | - Qiang Fang
- Department of Parasitology, Bengbu Medical College, Anhui, China
- Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, China
| | - Kaiming Hu
- Department of Parasitology, Bengbu Medical College, Anhui, China
| | - Yuanying Yuan
- Department of Parasitology, Bengbu Medical College, Anhui, China
| | - Meiyu Peng
- Department of Immunology, Bengbu Medical College, Anhui, China
| | - Qi Gao
- Jiangsu Institute of Parasitic Disease, Wuxi, China
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Center, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Baiqing Li
- Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, China
- Department of Immunology, Bengbu Medical College, Anhui, China
- * E-mail: (RU); (BL)
| | - Rachanee Udomsangpetch
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
- * E-mail: (RU); (BL)
| |
Collapse
|
46
|
Schlarman MS, Roberts RN, Kariuki MM, LaCrue AN, Ou R, Beerntsen BT. PFE0565w, a Plasmodium falciparum protein expressed in salivary gland sporozoites. Am J Trop Med Hyg 2012; 86:943-54. [PMID: 22665598 DOI: 10.4269/ajtmh.2012.11-0797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Because malaria is still a significant problem worldwide, additional control methods need to be developed. The Plasmodium sporozoite is a good target for control measures because it displays dual infectivity for both mosquito and vertebrate host tissues. The Plasmodium falciparum gene, PFE0565w, was chosen as a candidate for study based on data from PlasmoDB, the Plasmodium database, indicating that it is expressed both at the transcriptional and protein levels in sporozoites, likely encodes a putative surface protein, and may have a potential role in the invasion of host tissues. Additional sequence analysis shows that the PFE0565w protein has orthologs in other Plasmodium species, but none outside of the genus Plasmodium. PFE0565w expresses transcript during both the sporozoite and erythrocytic stages of the parasite life cycle, where an alternative transcript was discovered during the erythrocytic stages. Data show that transcript is not present during axenic exoerythrocytic stages. Despite transcript being present in several life cycle stages, the PFE0565w protein is present only during the salivary gland sporozoite stage. Because the PFE0565w protein is present in salivary gland sporozoites, it could be a novel candidate for a pre-erythrocytic stage vaccine.
Collapse
Affiliation(s)
- Maggie S Schlarman
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Quantification of Plasmodium falciparum malaria from complex infections in the Peruvian Amazon using quantitative PCR of the merozoite surface protein 1, block 2 (PfMSP1-B2): in vitro dynamics reveal density-dependent interactions. Parasitology 2012; 139:701-8. [PMID: 22339946 DOI: 10.1017/s0031182011002393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The majority of Plasmodium falciparum field isolates are defined as complex infections because they contain multiple genetically distinct clones. Studying interactions between clones in complex infections in vivo and in vitro could elucidate important phenomena in malaria infection, transmission and treatment. Using quantitative PCR (qPCR) of the P. falciparum merozoite surface protein 1, block 2 (PfMSP1-B2), we provide a sensitive and efficient genotyping method. This is important for epidemiological studies because it makes it possible to study genotype-specific growth dynamics. We compared 3 PfMSP1-B2 genotyping methods by analysing 79 field isolates from the Peruvian Amazon. In vivo observations from other studies using these techniques led to the hypothesis that clones within complex infections interact. By co-culturing clones with different PfMSP1-B2 genotypes, and measuring parasitaemia using qPCR, we found that suppression of clonal expansion was a factor of the collective density of all clones present in a culture. PfMSP1-B2 qPCR enabled us to find in vitro evidence for parasite-parasite interactions and could facilitate future investigations of growth trends in naturally occurring complex infections.
Collapse
|
48
|
Abstract
The in vitro cultivation of Plasmodium falciparum is absolutely essential for the molecular dissection of parasite biology and still poses several challenges. The dependence on, and interaction with host red blood cells, the tightly regulated stage-specific expression of proteins, and the parasite peculiar demands on nutrients and gaseous environments are only a few aspects that need to be addressed to successfully cultivate P. falciparum in vitro. In this chapter, we present techniques for normal maintenance of the erythrocytic stages of P. falciparum cultures, their synchronization and the generation of clonal cell lines.
Collapse
|
49
|
Mideo N, Savill NJ, Chadwick W, Schneider P, Read AF, Day T, Reece SE. Causes of variation in malaria infection dynamics: insights from theory and data. Am Nat 2011; 178:E174-E188. [PMID: 22089879 PMCID: PMC3937740 DOI: 10.1086/662670] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Parasite strategies for exploiting host resources are key determinants of disease severity (i.e., virulence) and infectiousness (i.e., transmission between hosts). By iterating the development of theory and empirical tests, we investigated whether variation in parasite traits across two genetically distinct clones of the rodent malaria parasite, Plasmodium chabaudi, explains differences in within-host infection dynamics and virulence. First, we experimentally tested key predictions of our earlier modeling work. As predicted, the more virulent genotype produced more progeny parasites per infected cell (burst size), but in contrast to predictions, invasion rates of red blood cells (RBCs) did not differ between the genotypes studied. Second, we further developed theory by confronting our earlier model with these new data, testing a new set of models that incorporate more biological realism, and developing novel theoretical tools for identifying differences between parasite genotypes. Overall, we found robust evidence that differences in burst sizes contribute to variation in dynamics and that differential interactions between parasites and host immune responses also play a role. In contrast to previous work, our model predicts that RBC age structure is not important for explaining dynamics. Integrating theory and empirical tests is a potentially powerful way of progressing understanding of disease biology.
Collapse
Affiliation(s)
- Nicole Mideo
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Nicholas J. Savill
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
- Institute of Immunity and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - William Chadwick
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Petra Schneider
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Andrew F. Read
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania 16802; and Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Troy Day
- Departments of Biology and Mathematics and Statistics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Sarah E. Reece
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
- Institute of Immunity and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| |
Collapse
|
50
|
Functional analysis of the exported type IV HSP40 protein PfGECO in Plasmodium falciparum gametocytes. EUKARYOTIC CELL 2011; 10:1492-503. [PMID: 21965515 DOI: 10.1128/ec.05155-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During Plasmodium falciparum infection, host red blood cell (RBC) remodeling is required for the parasite's survival. Such modifications are mediated by the export of parasite proteins into the RBC that alter the architecture of the RBC membrane and enable cytoadherence. It is probable that some exported proteins also play a protective role against the host defense response. This may be of particular importance for the gametocyte stage of the life cycle that is responsible for malaria transmission, since the gametocyte remains in contact with blood as it proceeds through five morphological stages (I to V) during its 12-day maturation. Using microarray analysis, we identified several genes with encoded secretory or export sequences that were differentially expressed during early gametocytogenesis. One of these, PfGECO, encodes a predicted type IV heat shock protein 40 (HSP40) that we show is expressed in gametocyte stages I to IV and is exported to the RBC cytoplasm. HSPs are traditionally induced under stressful conditions to maintain homeostasis, but PfGECO expression was not increased upon heat shock, suggesting an alternate function. Targeted disruption of PfGECO indicated that the gene is not essential for gametocytogenesis in vitro, and quantitative reverse transcriptase PCR (RT-PCR) showed that there was no compensatory expression of the other type IV HSP40 genes. Although P. falciparum HSP40 members are implicated in the trafficking of proteins to the RBC surface, removal of PfGECO did not affect the targeting of other exported gametocyte proteins. This work has expanded the repertoire of known gametocyte-exported proteins to include a type IV HSP40, PfGECO.
Collapse
|