1
|
Bagdanoff JT, Smith TM, Allan M, O'Donnell P, Nguyen Z, Moore EA, Baird J, Wang S, Subramanian V, Tigani B, Nettleton DO, Monovich LG, Lewis I, Flyer AN, Granda B, Blankenship JW, Barnes-Seeman D, Clairmont KB. Clearance of plasma PCSK9 via the asialoglycoprotein receptor mediated by heterobifunctional ligands. Cell Chem Biol 2023; 30:97-109.e9. [PMID: 36626903 DOI: 10.1016/j.chembiol.2022.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 09/30/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by promoting the degradation of hepatic LDL receptors (LDLRs). Current therapeutic approaches use antibodies that disrupt PCSK9 binding to LDLR to reduce circulating LDL-C concentrations or siRNA that reduces PCSK9 synthesis and thereby levels in circulation. Recent reports describe small molecules that, like therapeutic antibodies, interfere with PCSK9 binding to LDLR. We report an alternative approach to decrease circulating PCSK9 levels by accelerating PCSK9 clearance and degradation using heterobifunctional molecules that simultaneously bind to PCSK9 and the asialoglycoprotein receptor (ASGPR). Various formats, including bispecific antibodies, antibody-small molecule conjugates, and heterobifunctional small molecules, demonstrate binding in vitro and accelerated PCSK9 clearance in vivo. These molecules showcase a new approach to PCSK9 inhibition, targeted plasma protein degradation (TPPD), and demonstrate the feasibility of heterobifunctional small molecule ligands to accelerate the clearance and degradation of pathogenic proteins in circulation.
Collapse
Affiliation(s)
- Jeffrey T Bagdanoff
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Thomas M Smith
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Martin Allan
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Peter O'Donnell
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Zachary Nguyen
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Elizabeth A Moore
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jason Baird
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Shuangxi Wang
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Vanitha Subramanian
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Bruno Tigani
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2 Novartis Campus, CH-4056 Basel, Switzerland
| | - David O Nettleton
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lauren G Monovich
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ian Lewis
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alec N Flyer
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Brian Granda
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - John W Blankenship
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David Barnes-Seeman
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kevin B Clairmont
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Blom DJ, Marais AD, Moodley R, van der Merwe N, van Tonder A, Raal FJ. RNA-based therapy in the management of lipid disorders: a review. Lipids Health Dis 2022; 21:41. [PMID: 35459248 PMCID: PMC9034497 DOI: 10.1186/s12944-022-01649-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
This review focuses on antisense oligonucleotides and small interfering ribonucleic acid therapies approved or under development for the management of lipid disorders. Recent advances in RNA-based therapeutics allow tissue-specific targeting improving safety. Multiple potential target proteins have been identified and RNA-based therapeutics have the potential to significantly improve outcomes for patients with or at risk for atherosclerotic cardiovascular disease. The advantages of RNA-based lipid modifying therapies include the ability to reduce the concentration of almost any target protein highly selectively, allowing for more precise control of metabolic pathways than can often be achieved with small molecule-based drugs. RNA-based lipid modifying therapies also make it possible to reduce the expression of target proteins for which there are no small molecule inhibitors. RNA-based therapies can also reduce pill burden as their administration schedule typically varies from weekly to twice yearly injections. The safety profile of most current RNA-based lipid therapies is acceptable but adverse events associated with various therapies targeting lipid pathways have included injection site reactions, inflammatory reactions, hepatic steatosis and thrombocytopenia. While the body of evidence for these therapies is expanding, clinical experience with these therapies is currently limited in duration and the results of long-term studies are eagerly awaited.
Collapse
Affiliation(s)
- Dirk Jacobus Blom
- Department of Medicine, Division of Lipidology and Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa.
| | - Adrian David Marais
- Division of Chemical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rajen Moodley
- Netcare Umhlanga Medical Center, Umhlanga, KwaZulu Natal, South Africa
| | | | | | - Frederick Johan Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Bianchera A, Alomari E, Bruno S. Augmentation therapy with alpha 1-antitrypsin: present and future of production, formulation, and delivery. Curr Med Chem 2021; 29:385-410. [PMID: 34036902 DOI: 10.2174/0929867328666210525161942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
Alpha 1-antitrypsin is one of the first protein therapeutics introduced on the market - more than 30 years ago - and, to date, it is indicated only for the treatment of the severe forms of a genetic condition known as alpha-1 antitrypsin deficiency. The only approved preparations are derived from plasma, posing potential problems associated with its limited supply and high processing costs. Moreover, augmentation therapy with alpha 1-antitrypsin is still limited to intravenous infusions, a cumbersome regimen for patients. Here, we review the recent literature on its possible future developments, focusing on i) the recombinant alternatives to the plasma-derived protein, ii) novel formulations, and iii) novel administration routes. Regulatory issues and the still unclear noncanonical functions of alpha 1-antitrypsin - possibly associated with the glycosylation pattern found only in the plasma-derived protein - have hindered the introduction of new products. However, potentially new therapeutic indications other than the treatment of alpha-1 antitrypsin deficiency might open the way to new sources and new formulations.
Collapse
Affiliation(s)
- Annalisa Bianchera
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| | - Esraa Alomari
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Valverde P, Martínez JD, Cañada FJ, Ardá A, Jiménez-Barbero J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. Chembiochem 2020; 21:2999-3025. [PMID: 32426893 PMCID: PMC7276794 DOI: 10.1002/cbic.202000238] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Carbohydrates play a pivotal role in intercellular communication processes. In particular, glycan antigens are key for sustaining homeostasis, helping leukocytes to distinguish damaged tissues and invading pathogens from healthy tissues. From a structural perspective, this cross-talk is fairly complex, and multiple membrane proteins guide these recognition processes, including lectins and Toll-like receptors. Since the beginning of this century, lectins have become potential targets for therapeutics for controlling and/or avoiding the progression of pathologies derived from an incorrect immune outcome, including infectious processes, cancer, or autoimmune diseases. Therefore, a detailed knowledge of these receptors is mandatory for the development of specific treatments. In this review, we summarize the current knowledge about four key C-type lectins whose importance has been steadily growing in recent years, focusing in particular on how glycan recognition takes place at the molecular level, but also looking at recent progresses in the quest for therapeutics.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - J Daniel Martínez
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - F Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940, Leioa, Spain
| |
Collapse
|
5
|
Kobayashi Y, Nirasawa K, Negishi Y, Asayama S. Noncorrelative relation between in vitro and in vivo for plasmid DNA transfection by succinylated polyethylenimine muscular injection. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:405-416. [PMID: 33074050 DOI: 10.1080/09205063.2020.1838045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The polyion complexes (PICs) between plasmid DNA (pDNA) and succinylated branched polyethylenimine (bPEI-Et-COOH) were formed for in vivo pDNA delivery by muscular injection. Transmission electron microscopy (TEM) observation revealed that the PIC between pDNA and bPEI-Et-COOH with higher succinylated degree formed the particle structure with corona-like shell. Furthermore, confocal laser scanning microscopy (CLSM) observation revealed that pDNAs were successfully delivered inside the cells and that the pDNAs were colocalized with the nuclei of the cells after endosomal escape. Although the pDNA/bPEI-Et-COOH PICs mediated significant gene expression in vitro, the PICs did not mediate gene expression in vivo muscular injection. Consequently, the pDNA transfection by bPEI-Et-COOH was noncorrelative between in vitro and in vivo in spite of low toxicity by succinylation both in vitro and in vivo. The noncorrelative relation between in vitro and in vivo for pDNA transfection by bPEI-Et-COOH muscular injection would be considerable design for pDNA carriers in vivo.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Department of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Kei Nirasawa
- Department of Drug Delivery and Molecular Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Shoichiro Asayama
- Department of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
6
|
Abstract
Protein glycosylation is post-translational modification (PTM) which is important for pharmacokinetics and immunogenicity of recombinant glycoprotein therapeutics. As a result of variations in monosaccharide composition, glycosidic linkages and glycan branching, glycosylation introduces considerable complexity and heterogeneity to therapeutics. The host cell line used to produce the glycoprotein has a strong influence on the glycosylation because different host systems may express varying repertoire of glycosylation enzymes and transporters that contributes to specificity and heterogeneity in glycosylation profiles. In this review, we discuss the types of host cell lines currently used for recombinant therapeutic production, their glycosylation potential and the resultant impact on glycoprotein properties. In addition, we compare the reported glycosylation profiles of four recombinant glycoproteins: immunoglobulin G (IgG), coagulation factor VII (FVII), erythropoietin (EPO) and alpha-1 antitrypsin (A1AT) produced in different mammalian cells to establish the influence of mammalian host cell lines on glycosylation.
Collapse
Affiliation(s)
- Justin Bryan Goh
- a Bioprocessing Technology Institute , Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore
| | - Say Kong Ng
- a Bioprocessing Technology Institute , Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore
| |
Collapse
|
7
|
Sajeesh S, Choe JY, Lee DK. Core-shell hybrid nanostructured delivery platforms for advanced RNAi therapeutics. Nanomedicine (Lond) 2017; 12:2271-2286. [PMID: 28868966 DOI: 10.2217/nnm-2017-0174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM Study was aimed at combining the advantages of nonclassical RNAi-triggering oligonucleotides with nanoparticle-based advanced delivery platforms for developing efficient therapeutic systems. MATERIALS & METHODS We utilized a core-shell hybrid nanostructured platform for effectively delivering nonclassical RNAi triggers, namely long double stranded interfering RNA and tripodal interfering RNA. Core-shell structure was prepared by stably anchoring thiol-modified cationic polymer on the surface of growing crystal gold (Au) seeds, and the resulting particles were further complexed with nonclassical RNAi candidates via electrostatic interactions. RESULTS Our studies clearly demonstrated that the unique combination of nonclassical RNAi structures with an advanced core-shell hybrid nanostructured platform is an effective module for advanced RNAi-based therapeutic development.
Collapse
Affiliation(s)
- S Sajeesh
- Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jeong Yong Choe
- Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Dong Ki Lee
- Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
8
|
Crowley ST, Rice KG. "Evolving nanoparticle gene delivery vectors for the liver: What has been learned in 30 years". J Control Release 2015; 219:457-470. [PMID: 26439664 DOI: 10.1016/j.jconrel.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022]
Abstract
Nonviral gene delivery to the liver has been under evolution for nearly 30years. Early demonstrations established relatively simple nonviral vectors could mediate gene expression in HepG2 cells which understandably led to speculation that these same vectors would be immediately successful at transfecting primary hepatocytes in vivo. However, it was soon recognized that the properties of a nonviral vector resulting in efficient transfection in vitro were uncorrelated with those needed to achieve efficient nonviral transfection in vivo. The discovery of major barriers to liver gene transfer has set the field on a course to design biocompatible vectors that demonstrate increased DNA stability in the circulation with correlating expression in liver. The improved understanding of what limits nonviral vector gene transfer efficiency in vivo has resulted in more sophisticated, low molecular weight vectors that allow systematic optimization of nanoparticle size, charge and ligand presentation. While the field has evolved DNA nanoparticles that are stable in the circulation, target hepatocytes, and deliver DNA to the cytosol, breaching the nucleus remains the last major barrier to a fully successful nonviral gene transfer system for the liver. The lessons learned along the way are fundamentally important to the design of all systemically delivered nanoparticle nonviral gene delivery systems.
Collapse
Affiliation(s)
- Samuel T Crowley
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA.
| |
Collapse
|
9
|
Bonar D, Hanisch FG. Trefoil factor family domains represent highly efficient conformational determinants for N-linked N,N'-di-N-acetyllactosediamine (LacdiNAc) synthesis. J Biol Chem 2014; 289:29677-90. [PMID: 25210040 DOI: 10.1074/jbc.m114.596049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The disaccharide N,N'-di-N-acetyllactose diamine (LacdiNAc, GalNAcβ1-4GlcNAcβ) is found in a limited number of extracellular matrix glycoproteins and neuropeptide hormones indicating a protein-specific transfer of GalNAc by the glycosyltransferases β4GalNAc-T3/T4. Whereas previous studies have revealed evidence for peptide determinants as controlling elements in LacdiNAc biosynthesis, we report here on an entirely independent conformational control of GalNAc transfer by single TFF (Trefoil factor) domains as high stringency determinants. Human TFF2 was recombinantly expressed in HEK-293 cells as a wild type full-length probe (TFF2-Fl, containing TFF domains P1 and P2), as single P1 or P2 domain probes, as a series of Cys/Gly mutant forms with aberrant domain structures, and as a double point-mutated probe (T68Q/F59Q) lacking aromatic residues within a hydrophobic patch. The N-glycosylation probes were analyzed by mass spectrometry for their glycoprofiles. In agreement with natural gastric TFF2, the recombinant full-length and single domain probes expressed nearly exclusively fucosylated LacdiNAc on bi-antennary complex-type chains indicating that a single TFF domain was sufficient to induce transfer of this modification. Contrasting to this, the Cys/Gly mutants showed strongly reduced LacdiNAc levels and instead preponderant LacNAc expression. The probe with point mutations of two highly conserved aromatic residues in loop 3 (T68Q/F59Q) revealed that these are essential determinant components, as the probe lacked LacdiNAc expression. The structural features of the LacdiNAc-inducing determinant on human TFF2 are discussed on the basis of crystal structures of porcine TFF2, and a series of extracellular matrix-related LacdiNAc-positive glycoproteins detected as novel candidate proteins in the secretome of HEK-293 cells.
Collapse
Affiliation(s)
- David Bonar
- From the Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany and
| | - Franz-Georg Hanisch
- From the Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany and Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Köln, Germany
| |
Collapse
|
10
|
Chevreux G, Faid V, Scohyers JM, Bihoreau N. N-/O-glycosylation analysis of human FVIIa produced in the milk of transgenic rabbits. Glycobiology 2013; 23:1531-46. [PMID: 24092837 PMCID: PMC3816631 DOI: 10.1093/glycob/cwt085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human coagulation factor VIIa is a glycoprotein that promotes haemostasis through activation of the coagulation cascade extrinsic pathway. Most haemophilia A/B patients with inhibitors are treated by injection of plasma-derived or recombinant FVIIa. The use of recombinant products raises questions about the ability of the host cell to produce efficiently post-translationally modified proteins. Glycosylation is especially critical considering that it can modulate protein safety and efficacy. The present paper reports the N-/O-glycosylation pattern of a new recombinant human factor VIIa expressed in the mammary glands of transgenic rabbits. Glycosylation was investigated by chromatography and advanced mass spectrometry techniques for glycan identification and quantitation. Mass spectrometry (MS)/MS analyses were performed to confirm the glycan structures as well as the position and branching of specific monosaccharides or substituents. The two N-glycosylation sites were found to be fully occupied mostly by mono- and bi-sialylated biantennary complex-type structures, the major form being A2G2S1. Some oligomannose/hybrid structures were retrieved in lower abundance, the major ones being GlcNAcα1,O-phosphorylated at the C6-position of a Man residue (Man-6-(GlcNAcα1,O-)phosphate motif) as commonly observed on lysosomal proteins. No immunogenic glycotopes such as Galili (Galα1,3Gal) and HD antigens (N-glycolylneuraminic acid (NeuGc)) were detected. Concerning O-glycosylation, the product exhibited O-fucose and O-glucose-(xylose)0, 1, 2 motifs as expected. The N-glycosylation consistency was also investigated by varying production parameters such as the period of lactation, the number of consecutive lactations and rabbit generations. Results show that the transgenesis technology is suitable for the long-term production of rhFVIIa with a reproducible glycosylation pattern.
Collapse
Affiliation(s)
- Guillaume Chevreux
- Analytical Department, LFB Biotechnologies, 3 Avenue des Tropiques, Les Ulis, 91942 Courtaboeuf, France
| | | | | | | |
Collapse
|
11
|
Lusch A, Kaup M, Marx U, Tauber R, Blanchard V, Berger M. Development and analysis of alpha 1-antitrypsin neoglycoproteins: the impact of additional N-glycosylation sites on serum half-life. Mol Pharm 2013; 10:2616-29. [PMID: 23668542 DOI: 10.1021/mp400043r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Therapeutic efficacy of glycoproteins is affected by many factors, including molecular size and net charge; both are influenced by the presence and composition of glycan structures. Human alpha 1-antitrypsin (A1AT) was cloned and expressed in human embryonic kidney cells (HEK293) that are capable of mammalian glycosylation. Utilizing PCR-based site-directed mutagenesis, new A1AT variants were created with single, double, or triple additional N-glycosylation sites to the three naturally occurring N-glycosylation sites. Because of the supplementary N-glycans, the A1AT variants exhibited an increased molecular weight. Retention of inhibitory activity was shown via trypsin inhibitory assay. The A1AT variants were treated with PNGase F, and the resulting N-glycans were analyzed by MALDI-TOF mass spectrometry. The N-glycan profile of the recombinant A1AT variants was mostly composed of monofucosylated bi-, tri-, and tetraantennary complex-type N-glycans, with a tendency toward higher antennary structures compared to the wild-type. The relevance of N-glycosylation in A1AT for the circulatory serum half-life was demonstrated in CD1 mice. The A1AT neoglycoprotein with an additional N-glycosylation site at position N123 exhibited a 62% increase in serum half-life. Additionally, using a two-compartment model, the A1AT variants exhibited increased α-phase values, especially N123 (223%) and N201 (255%). The results suggest the recombinant A1AT neoglycoprotein as a serious alternative to A1AT derived from human plasma.
Collapse
Affiliation(s)
- Astrid Lusch
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Roggenbuck D, Mytilinaiou MG, Lapin SV, Reinhold D, Conrad K. Asialoglycoprotein receptor (ASGPR): a peculiar target of liver-specific autoimmunity. AUTO- IMMUNITY HIGHLIGHTS 2012; 3:119-25. [PMID: 26000135 PMCID: PMC4389076 DOI: 10.1007/s13317-012-0041-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/11/2012] [Indexed: 12/11/2022]
Abstract
Asialoglycoprotein receptor (ASGPR) autoantibodies have been considered specific markers of autoimmune hepatitis (AIH). The exact mechanisms responsible for the development of these autoantibodies and leading to autoimmunity to this peculiar liver receptor remain elusive. Furthermore, loss of T cell tolerance to ASGPR has been demonstrated in patients with AIH, but it is poorly understood whether such liver-specific T cell responses bear a pathogenic potential and/or participate in the precipitation of AIH. Newly developed enzyme-linked immunosorbent assays have led to the investigation of the sensitivity and specificity of anti-ASGPR antibodies for AIH. The present review provides an overview of the diagnostic and clinical relevance of anti-ASGPR antibodies. A thorough investigation of the autoreactivity against ASGPR may assist efforts to understand liver autoimmunity in susceptible individuals.
Collapse
Affiliation(s)
- Dirk Roggenbuck
- Faculty of Natural Sciences, University of Applied Sciences, Großenhainer Str. 57, 01968 Senftenberg, Germany
- GA Generic Assays GmbH, 15827 Dahlewitz/Berlin, Germany
| | - Maria G. Mytilinaiou
- Division of Transplantation Immunology and Mucosal Biology, Institute of Liver Studies, King’s College London School of Medicine at King’s College Hospital, London, UK
| | - Sergey V. Lapin
- Laboratory of Autoimmune Diagnostics, St. Petersburg Pavlov State Medical University, St.Petersburg, Russia
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Karsten Conrad
- Institute of Immunology, Technical University Dresden, Dresden, Germany
| |
Collapse
|
13
|
Rigopoulou EI, Roggenbuck D, Smyk DS, Liaskos C, Mytilinaiou MG, Feist E, Conrad K, Bogdanos DP. Asialoglycoprotein receptor (ASGPR) as target autoantigen in liver autoimmunity: lost and found. Autoimmun Rev 2012; 12:260-9. [PMID: 22571878 DOI: 10.1016/j.autrev.2012.04.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022]
Abstract
Asialoglycoprotein receptor (ASGPR) has attracted the attention of liver immunologists for many years. This liver-specific lectin was found to be a major B and T cell autoantigenic target in patients with autoimmune liver diseases, and in particular in autoimmune hepatitis (AIH). This review discusses the biological significance of ASGPR and its relevance to the pathogenesis of autoimmune and virus-triggered liver diseases. We also discuss emerging data on the diagnostic and clinical relevance of anti-ASGPR antibodies in light of recent reports based on commercially available anti-ASGPR enzyme-linked immunosorbent assays. Finally, we critically revisit the data reporting on disease-specific cellular immune responses against ASGPR and their relevance in relation to the pathogenesis of AIH.
Collapse
Affiliation(s)
- Eirini I Rigopoulou
- Department of Medicine, University Hospital of Larissa, University of Thessaly Medical School, Viopolis 41110, Larissa, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Berger M, Kaup M, Blanchard V. Protein glycosylation and its impact on biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 127:165-85. [PMID: 21975953 DOI: 10.1007/10_2011_101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glycosylation is a post-translational modification that is of paramount importance in the production of recombinant pharmaceuticals as most recombinantly produced therapeutics are N- and/or O-glycosylated. Being a cell-system-dependent process, it also varies with expression systems and growth conditions, which result in glycan microheterogeneity and macroheterogeneity. Glycans have an effect on drug stability, serum half-life, and immunogenicity; it is therefore important to analyze and optimize the glycan decoration of pharmaceuticals. This review summarizes the aspects of protein glycosylation that are of interest to biotechnologists, namely, biosynthesis and biological relevance, as well as the tools to optimize and to analyze protein glycosylation.
Collapse
|
15
|
Song X, Xia B, Stowell SR, Lasanajak Y, Smith DF, Cummings RD. Novel fluorescent glycan microarray strategy reveals ligands for galectins. ACTA ACUST UNITED AC 2009; 16:36-47. [PMID: 19171304 DOI: 10.1016/j.chembiol.2008.11.004] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 10/23/2008] [Accepted: 11/07/2008] [Indexed: 01/21/2023]
Abstract
Galectin-1 (Gal-1) and galectin-3 (Gal-3) are widely expressed galectins with immunoregulatory functions in animals. To explore their glycan specificity, we developed microarrays of naturally occurring glycans using a bifunctional fluorescent linker, 2-amino-N-(2-aminoethyl)-benzamide (AEAB), directly conjugated through its arylamine group by reductive amination to free glycans to form glycan-AEABs (GAEABs). Glycans from natural sources were used to prepare over 200 GAEABs, which were purified by multidimensional high-pressure liquid chromatography and covalently immobilized onto N-hydroxysuccinimide-activated glass slides via their free alkylamine. Fluorescence-based screening demonstrated that Gal-1 recognizes a wide variety of complex N-glycans, whereas Gal-3 primarily recognizes poly-N-acetyllactosamine-containing glycans independent of N-glycan presentation. GAEABs provide a general solution to glycan microarray preparation from natural sources for defining the specificity of glycan-binding proteins.
Collapse
Affiliation(s)
- Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
16
|
Iskratsch T, Braun A, Paschinger K, Wilson IBH. Specificity analysis of lectins and antibodies using remodeled glycoproteins. Anal Biochem 2008; 386:133-46. [PMID: 19123999 DOI: 10.1016/j.ab.2008.12.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 12/01/2008] [Accepted: 12/08/2008] [Indexed: 11/19/2022]
Abstract
Due to their ability to bind specifically to certain carbohydrate sequences, lectins are a frequently used tool in cytology, histology, and glycan analysis but also offer new options for drug targeting and drug delivery systems. For these and other potential applications, it is necessary to be certain as to the carbohydrate structures interacting with the lectin. Therefore, we used glycoproteins remodeled with glycosyltransferases and glycosidases for testing specificities of lectins from Aleuria aurantia (AAL), Erythrina cristagalli (ECL), Griffonia simplicifolia (GSL I-B(4)), Helix pomatia agglutinin (HPA), Lens culinaris (LCA), Lotus tetragonolobus (LTA), peanut (Arachis hypogaeae) (PNA), Ricinus communis (RCA I), Sambucus nigra (SNA), Vicia villosa (VVA), and wheat germ (Triticum vulgaris) (WGA) as well as reactivities of anti-carbohydrate antibodies (anti-bee venom, anti-horseradish peroxidase [anti-HRP], and anti-Lewis(x)). After enzymatic remodeling, the resulting neoglycoforms display defined carbohydrate sequences and can be used, when spotted on nitrocellulose or in enzyme-linked lectinosorbent assays, to identify the sugar moieties bound by the lectins. Transferrin with its two biantennary complex N-glycans was used as scaffold for gaining diverse N-glycosidic structures, whereas fetuin was modified using glycosidases to test the specificities of lectins toward both N- and O-glycans. In addition, alpha(1)-acid glycoprotein and Schistosoma mansoni egg extract were chosen as controls for lectin interactions with fucosylated glycans (Lewis(x) and core alpha1,3-fucose). Our data complement and expand the existing knowledge about the binding specificity of a range of commercially available lectins.
Collapse
Affiliation(s)
- Thomas Iskratsch
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | | | | | | |
Collapse
|
17
|
|
18
|
Hato M, Nakagawa H, Kurogochi M, Akama TO, Marth JD, Fukuda MN, Nishimura SI. Unusual N-Glycan Structures in α-Mannosidase II/IIx Double Null Embryos Identified by a Systematic Glycomics Approach Based on Two-dimensional LC Mapping and Matrix-dependent Selective Fragmentation Method in MALDI-TOF/TOF Mass Spectrometry. Mol Cell Proteomics 2006; 5:2146-57. [PMID: 16899540 DOI: 10.1074/mcp.m600213-mcp200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
alpha-Mannosidase IIx (MX) is an enzyme closely related to alpha-mannosidase II (MII), a key enzyme in N-glycan biosynthesis that catalyzes the first step in conversion of hybrid- to complex-type N-glycans in Golgi apparatus. Recently we generated MII/MX double knock-out mice and found that double nulls completely lack the complex-type N-glycans (Akama, T. O., Nakagawa, H., Wong, N. K., Sutton-Smith, M., Dell, A., Morris, H. R., Nakayama, J., Nishimura, S.-I., Pai, A., Moremen, K. W., Marth, J. D., and Fukuda, M. N. (2006) Essential and mutually compensatory roles of alpha-mannosidase II and alpha-mannosidase IIx in N-glycan processing in vivo in mice. Proc. Natl. Acad. Sci. U. S. A. 103, 8983-8988). In the present study, we determined minor but unusual N-glycan structures found in MII/MX double knock-out mice. We identified such N-glycans by a systematic glycomics approach applying a two-dimensional LC mapping database and matrix-dependent selective fragmentation technique in MALDI-TOF/TOF MS, a highly sensitive and reliable technique that provides specific fragmentations enabling the determination of precise oligosaccharide structures including regioisomers (Kurogochi, M., and Nishimura, S.-I. (2004) Structural characterization of N-glycopeptides by matrix-dependent selective fragmentation of MALDI-TOF/TOF tandem mass spectrometry. Anal. Chem. 76, 6097-6101). Quantitative profiling of all N-glycan structures including minor components from MII/MX nulls, MII nulls, MX nulls, and wild-type mice at embryonic day 15.5 yielded a total of 37 species when structural heterogeneity was reduced by the removal of the sialic acids. Among six unusual N-glycan structures, two glycoforms were novel and were found only in MII/MX double nulls. We characterize such structure as pseudocomplex-type N-glycans. The present study demonstrated that use of the versatile matrix-dependent selective fragmentation method in MALDI-TOF/TOF MS greatly accelerates detailed structural analysis of a trace amount of N-glycans.
Collapse
Affiliation(s)
- Megumi Hato
- Laboratory of Advanced Chemical Biology, Graduate School of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, N21, W11, Sapporo 001-0021, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Kawar ZS, Haslam SM, Morris HR, Dell A, Cummings RD. Novel Poly-GalNAcβ1–4GlcNAc (LacdiNAc) and Fucosylated Poly-LacdiNAc N-Glycans from Mammalian Cells Expressing β1,4-N-Acetylgalactosaminyltransferase and α1,3-Fucosyltransferase. J Biol Chem 2005; 280:12810-9. [PMID: 15653684 DOI: 10.1074/jbc.m414273200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycans containing the GalNAcbeta1-4GlcNAc (LacdiNAc or LDN) motif are expressed by many invertebrates, but this motif also occurs in vertebrates and is found on several mammalian glycoprotein hormones. This motif contrasts with the more commonly occurring Galbeta1-4GlcNAc (LacNAc or LN) motif. To better understand LDN biosynthesis and regulation, we stably expressed the cDNA encoding the Caenorhabditis elegans beta1,4-N-acetylgalactosaminyltransferase (GalNAcT), which generates LDN in vitro, in Chinese hamster ovary (CHO) Lec8 cells, to establish L8-GalNAcT CHO cells. The glycan structures from these cells were determined by mass spectrometry and linkage analysis. The L8-GalNAcT cell line produces complex-type N-glycans quantitatively bearing LDN structures on their antennae. Unexpectedly, most of these complex-type N-glycans contain novel "poly-LDN" structures consisting of repeating LDN motifs (-3GalNAcbeta1-4GlcNAcbeta1-)n. These novel structures are in contrast to the well known poly-LN structures consisting of repeating LN motifs (-3Galbeta1-4GlcNAcbeta1-)n. We also stably expressed human alpha1,3-fucosyltransferase IX in the L8-GalNAcT cells to establish a new cell line, L8-GalNAcT-FucT. These cells produce complex-type N-glycans with alpha1,3-fucosylated LDN (LDNF) GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-R as well as novel "poly-LDNF" structures (-3GalNAcbeta1-4(Fucalpha 1-3)GlcNAcbeta1-)n. The ability of these cell lines to generate glycoprotein hormones with LDN-containing N-glycans was studied by expressing a recombinant form of the common alpha-subunit in L8-GalNAcT cells. The alpha-subunit N-glycans carried LDN structures, which were further modified by co-expression of the human GalNAc 4-sulfotransferase I, which generates SO4-4GalNAcbeta1-4GlcNAc-R. Thus, the generation of these stable mammalian cells will facilitate future studies on the biological activities and properties of LDN-related structures in glycoproteins.
Collapse
Affiliation(s)
- Ziad S Kawar
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
20
|
Mucha J, Domlatil J, Lochnit G, Rendić D, Paschinger K, HINTERKöRNER G, Hofinger A, Kosma P, Wilson I. The Drosophila melanogaster homologue of the human histo-blood group Pk gene encodes a glycolipid-modifying alpha1,4-N-acetylgalactosaminyltransferase. Biochem J 2005; 382:67-74. [PMID: 15130086 PMCID: PMC1133916 DOI: 10.1042/bj20040535] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 04/29/2004] [Accepted: 05/07/2004] [Indexed: 11/17/2022]
Abstract
Insects express arthro-series glycosphingolipids, which contain an alpha1,4-linked GalNAc residue. To determine the genetic basis for this linkage, we cloned a cDNA (CG17223) from Drosophila melanogaster encoding a protein with homology to mammalian alpha1,4-glycosyltransferases and expressed it in the yeast Pichia pastoris. Culture supernatants from the transformed yeast were found to display a novel UDP-GalNAc:GalNAcbeta1,4GlcNAcbeta1-R alpha-N-acetylgalactosaminyltransferase activity when using either a glycolipid, p-nitrophenylglycoside or an N-glycan carrying one or two terminal beta-N-acetylgalactosamine residues. NMR and MS in combination with glycosidase digestion and methylation analysis indicate that the cloned cDNA encodes an alpha1,4-N-acetylgalactosaminyltransferase. We hypothesize that this enzyme and its orthologues in other insects are required for the biosynthesis of the N5a and subsequent members of the arthro-series of glycolipids as well as of N-glycan receptors for Bacillus thuringiensis crystal toxin Cry1Ac.
Collapse
Affiliation(s)
- Ján Mucha
- *Chemický ústav, Slovenská akadémia vied, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Jiří Domlatil
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Günter Lochnit
- ‡Institut für Biochemie, Justus-Liebig-Universität Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany
| | - Dubravko Rendić
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Katharina Paschinger
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Georg HINTERKöRNER
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Andreas Hofinger
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Paul Kosma
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - Iain B. H. Wilson
- †Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
- To whom correspondence should be addressed (email )
| |
Collapse
|
21
|
Gabor F, Bogner E, Weissenboeck A, Wirth M. The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv Drug Deliv Rev 2004; 56:459-80. [PMID: 14969753 DOI: 10.1016/j.addr.2003.10.015] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 10/14/2003] [Indexed: 01/09/2023]
Abstract
Based on the fact that oligosaccharides encode biological information, the biorecognition between lectinised drug delivery systems and glycosylated structures in the intestine can be exploited for improved peroral therapy. Basic research revealed that some lectins can mediate mucoadhesion, cytoadhesion, and cytoinvasion of drugs. Entering the vesicular pathway by receptor mediated endocytosis, part of the conjugated drug is accumulated within the lysosomes. Additionally, part of the drug is supposed to be transported across the epithelium. Moreover, factors probably adversely influencing feasibility of the concept such as toxicity, immunogenicity, and intestinal stability of plant lectins are discussed. As exemplified by lectin-grafted prodrug and carrier systems, this strategy is expected to improve absorption and probably bioavailability of poorly absorbable drugs, peptides and proteins as well as therapeutic DNA.
Collapse
Affiliation(s)
- Franz Gabor
- Institute of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, University of Iowa College of Pharmacy, 115 South Grand Avenue, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
23
|
André S, Unverzagt C, Kojima S, Frank M, Seifert J, Fink C, Kayser K, von der Lieth CW, Gabius HJ. Determination of modulation of ligand properties of synthetic complex-type biantennary N-glycans by introduction of bisecting GlcNAcin silico,in vitroandin vivo. ACTA ACUST UNITED AC 2003; 271:118-34. [PMID: 14686925 DOI: 10.1046/j.1432-1033.2003.03910.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the consequences of introducing a bisecting GlcNAc moiety into biantennary N-glycans. Computational analysis of glycan conformation with prolonged simulation periods in vacuo and in a solvent box revealed two main effects: backfolding of the alpha1-6 arm and stacking of the bisecting GlcNAc and the neighboring Man/GlcNAc residues of both antennae. Chemoenzymatic synthesis produced the bisecting biantennary decasaccharide N-glycan and its alpha2-3(6)-sialylated variants. They were conjugated to BSA to probe the ligand properties of N-glycans with bisecting GlcNAc. To assess affinity alterations in glycan binding to receptors, testing was performed with purified lectins, cultured cells, tissue sections and animals. The panel of lectins, including an adhesion/growth-regulatory galectin, revealed up to a sixfold difference in affinity constants for these neoglycoproteins relative to data on the unsubstituted glycans reported previously [André, S., Unverzagt, C., Kojima, S., Dong, X., Fink, C., Kayser, K. & Gabius, H.-J. (1997) Bioconjugate Chem. 8, 845-855]. The enhanced affinity for galectin-1 is in accord with the increased percentage of cell positivity in cytofluorimetric and histochemical analysis of carbohydrate-dependent binding of labeled neoglycoproteins to cultured tumor cells and routinely processed lung cancer sections. Intravenous injection of iodinated neoglycoproteins carrying galactose-terminated N-glycans into mice revealed the highest uptake in liver and spleen for the bisecting compound compared with the unsubstituted or core-fucosylated N-glycans. Thus, this substitution modulates ligand properties in interactions with lectins, a key finding of this report. Synthetic glycan tailoring provides a versatile approach to the preparation of newly substituted glycans with favorable ligand properties for medical applications.
Collapse
Affiliation(s)
- Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Unger FM. The chemistry of oligosaccharide ligands of selectins: significance for the development of new immunomodulatory medicines. Adv Carbohydr Chem Biochem 2002; 57:207-435. [PMID: 11836943 DOI: 10.1016/s0065-2318(01)57018-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- F M Unger
- Institute of Chemistry and Center for Ultrastructure Research, Agricultural University, Vienna, Austria
| |
Collapse
|
25
|
Oliveira PFD, Doná F, Marcelli M, Cardoso M, Silva MDLCD. Obtenção de oligossacarídeos N-ligados às glicoproteínas dos líquens Sticta tomentosa e Sticta damaecornis. ECLÉTICA QUÍMICA 2002. [DOI: 10.1590/s0100-46702002000200018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As glicoproteínas dos líquens Sticta tomentosa e Sticta damaecornis foram extraídas utilizando-se tampão específico e fracionadas pela adição crescente de sulfato de amônio. Dentre os diferentes cortes de saturação obtidos, as frações 30-80% de ambos os líquens foram eleitas objeto de estudo desta pesquisa. Métodos químicos e enzimáticos foram aplicados para a obtenção de oligossacarídeos N-ligados, que em seguida, foram derivatizados resultando em tirosinamida-oligossacarídeos. Após inserção do grupo cromóforo nas estruturas oligossacarídicas, os mesmos foram purificados por HPLC com detecção em 280 nm. Em relação ao líquen Sticta tomentosa, os cromatogramas revelaram a presença de dois picos com tempos de retenção de aproximadamente 11 e 18 minutos sugerindo a presença de dois diferentes oligossacarídeos N-ligados. O líquen Sticta damaecornis, seguindo as mesmas condições de purificação, apresentou em cromatografia quatro picos distintos com tempos de 11, 13, 18,2 e 18,4 minutos, respectivamente, sugerindo por sua vez a presença de quatro oligossacarídeos N-ligados diferentes.
Collapse
|
26
|
Abstract
Lipovitellin II (Lv II), the major yolk protein of the anomuran crab Emerita asiatica, was purified using heparin-sepharose affinity column chromatography. The purified Lv II was a glycoprotein as it was stainable with periodic acid-Schiff's reagent. Quantitative analysis of sugars showed the presence of fucose, mannose, galactosamine, N-linked oligosaccharides, as well as O-linked oligosaccharides containing N-acetyl hexosamine as the terminal residue. The amount of N-linked oligosaccharides is higher than that of the O-linked oligosaccharides. Biogel P-4 column chromatographic separation of the radiolabeled oligosaccharides of Lv II showed the presence of five different O-linked oligosaccharides and four different N-linked oligosaccharide species. HPTLC separation of the neoglycolipids prepared from the O-linked oligosaccharides also showed the presence of five different O-linked oligosaccharide species. N-linked oligosaccharides contain significant quantities of mannose. Unisil column chromatographic purification in conjunction with HPTLC separation revealed three neutral glycolipid species such as monoglycosylceramide, diglycosylceramide, and triglycosylceramide in the Lv II. The functional significance of these carbohydrate components of the major yolk protein during embryogenesis of the sand crab is discussed.
Collapse
Affiliation(s)
- R Tirumalai
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|
27
|
Yang Y, Thomas VH, Man S, Rice KG. Tissue targeting of multivalent GalNAc Le(x) terminated N-glycans in mice. Glycobiology 2000; 10:1341-5. [PMID: 11159926 DOI: 10.1093/glycob/10.12.1341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
N-Linked biantennary and triantennary oligosaccharides containing multiple terminal GalNAc Le(x) (GalNAcss1-4[Fuc-alpha1-3]GlcNAc) determinants were radioiodinated and their pharmacokinetics, biodistribution, and hepatic cellular localization were determined in mice. Pharmacokinetic analysis revealed GalNAc Le(x) biantennary and triantennary oligosaccharides had a similar mean residence time and steady-state volume of distribution but differed in their total body clearance rate due a shorter alpha half-life for GalNAc Le(x) triantennary. Biodistribution and whole-body-autoradiography studies revealed that both GalNAc Le(x) terminated biantennary and triantennary oligosaccharides predominately targeted to the liver, which accumulated 72% and 79% of the dose 30 min after administration, respectively. Separation of mouse liver parenchymal from non-parenchymal cells demonstrated both N-glycans were almost exclusively (94%) taken up by the parenchymal cells. By comparison, GalNAc terminated biantennary and triantennary N-glycans accumulated in the liver with a targeting efficiency of 73% and 81%, respectively. It is concluded that GalNAc and GalNAc Le(x) terminated N-glycans are recognized in vivo with equivalent affinity by the murine hepatic asialoglycoprotein receptor.
Collapse
Affiliation(s)
- Y Yang
- College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- K G Rice
- Division of Medicinal Chemistry and Pharmaceutics, College of Pharmacy, University of Michigan, Ann Arbor 48109-1065, USA
| |
Collapse
|
29
|
Collard WT, Yang Y, Kwok KY, Park Y, Rice KG. Biodistribution, metabolism, and in vivo gene expression of low molecular weight glycopeptide polyethylene glycol peptide DNA co-condensates. J Pharm Sci 2000; 89:499-512. [PMID: 10737911 DOI: 10.1002/(sici)1520-6017(200004)89:4<499::aid-jps7>3.0.co;2-v] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The biodistribution, metabolism, cellular targeting, and gene expression of a nonviral peptide DNA gene delivery system was examined. (125)I-labeled plasmid DNA was condensed with low molecular weight peptide conjugates and dosed i.v. in mice to determine the influence of peptide DNA formulation parameters on specific gene targeting to hepatocytes. Optimal targeting to hepatocytes required the combined use of a triantennary glycopeptide (Tri-CWK(18)) and a polyethylene glycol-peptide (PEG-CWK(18)) to mediate specific recognition by the asialoglycoprotein receptor and to reduce nonspecific uptake by Kupffer cells. Tri-CWK(18)/PEG-CWK(18) DNA co-condensates were stabilized and protected from metabolism by glutaraldehyde crosslinking. An optimized formulation targeted 60% of the dose to the liver with 80% of the liver targeted DNA localized to hepatocytes. Glutaraldehyde crosslinking of DNA condensates reduced the liver elimination rate from a t((1/2)) of 0.8 to 3.6 h. An optimized gene delivery formulation produced detectable levels of human alpha1-antitrypsin in mouse serum which peaked at day 7 compared to no expression using control formulations. The results demonstrate the application of formulation optimization to improve the targeting selectivity and gene expression of a peptide DNA delivery system.
Collapse
Affiliation(s)
- W T Collard
- Divisions of Pharmaceutics and Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor 48109-1065, USA
| | | | | | | | | |
Collapse
|
30
|
Bailey D, Renouf DV, Large DG, Warren CD, Hounsell EF. Conformational studies of the glycopeptide Ac-Tyr-[Man5GlcNAc-beta-(1-->4)GlcNAc-beta-(1-->Ndelta)]-Asn-Leu-Thr-Se r-OBz and the constituent peptide and oligosaccharide. Carbohydr Res 2000; 324:242-54. [PMID: 10744333 DOI: 10.1016/s0008-6215(99)00247-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glycopeptides of desired structure can be conveniently prepared by the coupling of reducing oligosaccharides to aspartic acid of peptides via their glycosylamines formed in the presence of saturated aqueous ammonium hydrogen carbonate. The resulting oligosaccharide chains are N-linked to asparagine as in natural glycoproteins, allowing different peptide oligosaccharide combinations to be analysed for conformational effects. In the present paper, a pentapeptide of ovalbumin was coupled to Man5GlcNAc2 oligosaccharide and the glycopeptide and the two parent compounds compared by NMR ROESY experiments and molecular dynamics simulations. Despite the small size of the peptide, conformational effects were observed suggestive of the oligosaccharide stabilising the peptide in solution and of the peptide influencing oligosaccharide conformation. These effects are relevant to the function of glycosylation and the enzymic processing of oligosaccharide chains.
Collapse
Affiliation(s)
- D Bailey
- School of Biological and Chemical Sciences, Birkbeck University of London, UK
| | | | | | | | | |
Collapse
|
31
|
Collard WT, Evers DL, McKenzie DL, Rice KG. Synthesis of homogeneous glycopeptides and their utility as DNA condensing agents. Carbohydr Res 2000; 323:176-84. [PMID: 10782299 DOI: 10.1016/s0008-6215(99)00245-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two glycopeptides were synthesized by attaching purified glycosylamines (N-glycans) to a 20 amino acid peptide. Triantennary and Man9 Boc-tyrosinamide N-glycans were treated with trifluoroacetic acid to remove the Boc group and expose a tyrosinamide amine. The amine group was coupled with iodoacetic acid to produce N-iodoacetyl-oligosaccharides. These were reacted with the sulfhydryl group of a cysteine-containing peptide (CWK18), resulting in the formation of glycopeptides in good yield that were characterized by 1H NMR and ESIMS. Both glycopeptides were able to bind to plasmid DNA and form DNA condensates of approximately 110 nm mean diameter with zeta potential of +31 mV. The resulting homogeneous glycopeptide DNA condensates will be valuable as receptor-mediated gene-delivery agents.
Collapse
Affiliation(s)
- W T Collard
- Division of Pharmaceutics, College of Pharmacy, University of Michigan, Ann Arbor 48109-1065, USA
| | | | | | | |
Collapse
|
32
|
Schmauser B, Kilian C, Reutter W, Tauber R. Sialoforms of dipeptidylpeptidase IV from rat kidney and liver. Glycobiology 1999; 9:1295-305. [PMID: 10561454 DOI: 10.1093/glycob/9.12.1295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dipeptidylpeptidase IV (DPP IV, CD26), a serine-type exo- and endopeptidase found in the cell surface membrane of many tissues, was employed as a model membrane glycoprotein to study the expression of sialoforms on cell surface glycoproteins. Native, enzymatically active DPP IV was purified from plasma membranes of kidney and liver by lectin affinity chromatography in conjunction with crown ether anion exchange chromatography. The enzyme was gradient-eluted in continuous fractions, all showing a single polypeptide band of about 100 kDa when separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing, denaturing conditions. Analysis of the purified DPP IV by isoelectric focusing (IEF) showed that it consists of several polypeptides of different isoelectric points (IP) ranging from 5.5 to 7.0. In vitro- desialylation of the enzyme and subsequent isoelectric focusing revealed that the differences in isoelectric points were due to differences in the degree of sialylation. Differences in the degree of sialylation between the fractions were also demonstrated by SDS-PAGE under nonreducing and nondenaturing conditions. Increased sialylation of the enzyme as demonstrated by isoelectric focusing resulted in increased migration velocity in nonreducing and nondenaturing SDS-polyacrylamide gels. In vitro -desialylation of the enzyme and its resialylation confirmed that sialylation was responsible for this extraordinary migration behavior. The native enzyme was predominantly sialylated via alpha 2, 6-linkage, as shown by lectin affinity blotting employing Sambucus nigra agglutinin (SNA) and Maackia amurensis agglutinin (MAA). These findings demonstrate that a distinct membrane glycoprotein may exist in various sialoforms, distinguished from each other by a different number of sialic acid residues. Moreover, these sialoforms can be individually purified by crown ether anion exchange chromatography.
Collapse
Affiliation(s)
- B Schmauser
- Institut für Molekularbiologie und Biochemie der Freien Universität Berlin, Arnimallee 22, D-14195 Berlin-Dahlem, Germany
| | | | | | | |
Collapse
|
33
|
Biessen EA, Vietsch H, Rump ET, Fluiter K, Bijsterbosch MK, van Berkel TJ. Targeted delivery of antisense oligonucleotides to parenchymal liver cells in vivo. Methods Enzymol 1999; 314:324-42. [PMID: 10565023 DOI: 10.1016/s0076-6879(99)14113-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- E A Biessen
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Mo H, Rice KG, Evers DL, Winter HC, Peumans WJ, Van Damme EJ, Goldstein IJ. Xanthosoma sagittifolium tubers contain a lectin with two different types of carbohydrate-binding sites. J Biol Chem 1999; 274:33300-5. [PMID: 10559206 DOI: 10.1074/jbc.274.47.33300] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An unusual lectin possessing two distinctly different types of carbohydrate-combining sites was purified from tubers of Xanthosoma sagittifolium L. by consecutive passage through two affinity columns, i.e. asialofetuin-Sepharose and invertase-Sepharose. SDS-polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and gel filtration chromatography of the purified lectin showed that the X. sagittifolium lectin is a heterotetrameric protein composed of four 12-kDa subunits (alpha(2)beta(2)) linked by noncovalent bonds. The results obtained by quantitative precipitation and hapten inhibition assays revealed that the lectin has two different types of carbohydrate-combining sites: one type for oligomannoses, which preferentially binds to a cluster of nonreducing terminal alpha1,3-linked mannosyl residues, and the other type for complex N-linked carbohydrates, which best accommodates a non-sialylated, triantennary oligosaccharide with N-acetyllactosamine (i.e. Galbeta1,4GlcNAc-) or lacto-N-biose (i.e. Galbeta1,3GlcNAc-) groups at its three nonreducing termini.
Collapse
Affiliation(s)
- H Mo
- Department of Biological Chemistry, University of Michigan, Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Nimtz M, Grabenhorst E, Conradt HS, Sanz L, Calvete JJ. Structural characterization of the oligosaccharide chains of native and crystallized boar seminal plasma spermadhesin PSP-I and PSP-II glycoforms. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:703-18. [PMID: 10504403 DOI: 10.1046/j.1432-1327.1999.00766.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The PSP-I/PSP-II heterodimer is the major protein of boar seminal plasma. Both subunits are glycoproteins of the spermadhesin family and each contains a single N-glycosylation site. After enzymatic release of the oligosaccharides from isolated PSP-I and PSP-II, mainly neutral and monosialylated oligosaccharides, and small amounts of disialylated oligosaccharides, were recovered from both proteins. Twenty-two neutral oligosaccharides, 11 monosialylated glycans and three disialylated carbohydrate chains were characterized using mass spectrometric and NMR techniques. PSP-I and PSP-II share the same glycans but differ in their relative molar ratios. Most glycan structures are proximally alpha1-6-fucosylated, diantennary complex-type bearing nonsialylated or alpha2-6-sialylated N-acetyllactosamine or di-N-acetyllactosamine antennae. The majority of nonsialylated N-acetyllactosamine antennae bear terminal alpha1-3-linked Gal residues. In addition, the N-acetylglucosamine residue of nonsialylated N-acetyl and di-N-acetyllactosamine antennae can be modified by an alpha1-3-linked fucose residue. Structures of higher antennarity, as well as structures 3,6-branched at galactose residues, were found in smaller amounts. In one oligosaccharide, N-acetylneuraminic acid is substituted by N-glycolylneuraminic acid. Mass spectrometric analysis of PSP-I and PSP-II glycoforms isolated from crystallized PSP-I/PSP-II heterodimer showed the coexistence of major PSP-I and PSP-II glycoforms in the hexagonal crystals. Oligosaccharides with the NeuNAcalpha2-6GalNAcbeta1-4GlcNAc-R motif block adhesive and activation-related events mediated by CD22, suggesting a possible immunoregulatory activity for PSP-I/PSP-II.
Collapse
Affiliation(s)
- M Nimtz
- Gesellschaft für Biotechnologische Forschung (GBF) mbH, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
36
|
Thomas VH, Yang Y, Rice KG. In vivo ligand specificity of E-selectin binding to multivalent sialyl Lewisx N-linked oligosaccharides. J Biol Chem 1999; 274:19035-40. [PMID: 10383404 DOI: 10.1074/jbc.274.27.19035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The in vivo specificity for E-selectin binding to a panel of N-linked oligosaccharides containing a clustered array of one to four sialyl Lewisx (SLex; NeuAcalpha2-3Gal[Fucalpha1-3]beta1-4GlcNAc) determinants was studied in mice. Following intraperitoneal dosing with lipopolysaccharide, radioiodinated tyrosinamide N-linked oligosaccharides were dosed i.v. and analyzed for their pharmacokinetics and biodistribution. Specific targeting was determined from the degree of SLex oligosaccharide targeting relative to a sialyl oligosaccharide control. Oligosaccharides targeted the kidney with the greatest selectivity after a 4-h induction period following lipopolysaccharide dosing. Unique pharmacokinetic profiles were identified for SLex biantennary and triantennary oligosaccharides but not for monovalent and tetraantennary SLex oligosaccharides or sialyl oligosaccharide controls. Biodistribution studies established that both SLex biantennary and triantennary oligosaccharides distributed to the kidney with 2-3-fold selectivity over sialyl oligosaccharide controls, whereas monovalent and tetraantennary SLex oligosaccharides failed to mediate specific kidney targeting. Simultaneous dosing of SLex biantennary or triantennary oligosaccharide with a mouse anti-E-selectin monoclonal antibody blocked kidney targeting, whereas co-administration with anti-P-selectin monoclonal antibody did not significantly block kidney targeting. The results suggest that SLex biantennary and triantennary are N-linked oligosaccharide ligands for E-selectin and implicate E-selectin as a bivalent receptor in the murine kidney endothelium.
Collapse
Affiliation(s)
- V H Thomas
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | | | | |
Collapse
|
37
|
|
38
|
Evers DL, Hung RL, Thomas VH, Rice KG. Preparative purification of a high-mannose type N-glycan from soy bean agglutinin by hydrazinolysis and tyrosinamide derivatization. Anal Biochem 1998; 265:313-6. [PMID: 9882408 DOI: 10.1006/abio.1998.2895] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The N-linked oligosaccharide from soy bean agglutinin (Man9) was isolated on a preparative scale following derivatization with Boc-tyrosine. The procedure utilized preparative hydrazinolysis to release the oligosaccharide and yielded multi-micromol quantities of Boc-tyrosine-Man9 which was characterized by 1H NMR and ES-MS.
Collapse
Affiliation(s)
- D L Evers
- Division of Medicinal Chemistry and Division of Pharmaceutics, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109-1065, USA
| | | | | | | |
Collapse
|
39
|
DeBose-Boyd RA, Nyame AK, Cummings RD. Molecular cloning and characterization of an alpha1,3 fucosyltransferase, CEFT-1, from Caenorhabditis elegans. Glycobiology 1998; 8:905-17. [PMID: 9675224 DOI: 10.1093/glycob/8.9.905] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report on the identification, molecular cloning, and characterization of an alpha1,3 fucosyltransferase (alpha1,3FT) expressed by the nematode, Caenorhabditis elegans . Although C. elegans glycoconjugates do not express the Lewis x antigen Galbeta1-->4[Fucalpha1-->3]GlcNAcbeta-->R, detergent extracts of adult C.elegans contain an alpha1,3FT that can fucosylate both nonsialylated and sialylated acceptor glycans to generate the Lexand sialyl Lexantigens, as well as the lacdiNAc-containing acceptor GalNAcbeta1-->4GlcNAcbeta1-->R to generate GalNAcbeta1-->4 [Fucalpha1-->3]GlcNAcbeta1-->R. A search of the C.elegans genome database revealed the existence of a gene with 20-23% overall identity to all five cloned human alpha1,3FTs. The putative cDNA for the C.elegans alpha1,3FT (CEFT-1) was amplified by PCR from a cDNA lambdaZAP library, cloned, and sequenced. COS7 cells transiently transfected with cDNA encoding CEFT-1 express the Lex, but not sLexantigen. The CEFT-1 in the transfected cell extracts can synthesize Lex, but not sialyl Lex, using exogenous acceptors. A second fucosyltransferase activity was detected in extracts of C. elegans that transfers Fuc in alpha1,2 linkage to Gal specifically on type-1 chains. The discovery of alpha-fucosyltransferases in C. elegans opens the possibility of using this well-characterized nematode as a model system for studying the role of fucosylated glycans in the development and survival of C.elegans and possibly other helminths.
Collapse
Affiliation(s)
- R A DeBose-Boyd
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, BRC 417, 975 N.E. 10th Street, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
40
|
Monsigny M, Quétard C, Bourgerie S, Delay D, Pichon C, Midoux P, Mayer R, Roche AC. Glycotargeting: the preparation of glyco-amino acids and derivatives from unprotected reducing sugars. Biochimie 1998; 80:99-108. [PMID: 9587667 DOI: 10.1016/s0300-9084(98)80016-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lectins are present on the surface of many cells. Many lectins actively recycle from membrane to endosomes and efficiently take up glycoconjugates in a sugar-dependent manner. On this basis, glycoconjugates, specially those obtained by chemical means, are good candidates as carriers of drugs, oligonucleotides or genes. In this paper, we present a panel of methods suitable to transform unprotected reducing oligosaccharides into glycosynthons designed to be easily linked to therapeutic agents. All the glycosynthons presented here are glycosylamines or derivatives, mainly glyco-amino acids or glycopeptides. Glycosylamines are easy to obtain, but they are very labile in slightly acidic or neutral medium; they must be stabilized, by acylation for instance. The coupling efficiency of a reducing sugar with ammonia as well as an alkylamine or an arylamine is higher at high temperature, however, because of the Amadori rearrangement, special conditions have to be selected to prepare the expected glycosylamine derivative with a high yield. Glycosylamines are easily acylated by N-protected amino acids, or by halogeno acids which can then be transformed into amino acids. Alternatively, unprotected reducing oligosaccharides may very efficiently be transformed into N-glycosyl-amino acids and then protected by N-acylation. With a glutamyl derivative having both the alpha-amino and the gamma-carboxylic groups free, the coupling and the acylation, which is intramolecular, are roughly quantitative. N-oligosaccharyl-amino acid derivatives are interesting glycosynthons, because their sugar moiety bears the specificity towards membrane lectins while the amino acid part has the capacity to easily substitute a therapeutic agent.
Collapse
Affiliation(s)
- M Monsigny
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
A partial structure of many glycoproteins, a glycosylated asparagine carrying a complex type undecasaccharide N-glycan (Neu5Ac(alpha 2-6)Gal(beta 1-4)GlcNAc(beta 1-2)Man alpha 1-3) [Neu5Ac(alpha 2-6)Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-6)]Man(beta 1-4) GlcNAc(beta 1-4)GlcNAc-Asn) was obtained by total synthesis. As a starting material served a chemically synthesized diantennary heptasaccharide azide which was deprotected in a three-step sequence in high yield. The reduction of the anomeric azide was accomplished with propanedithiol in methanol-ethyldiisopropylamine. Coupling of the glycosyl amine to an activated aspartic acid gave the benzyl protected asparagine conjugate. After removal of the six benzyl functions the resulting free heptasaccharide asparagine was elongated enzymatically in the oligosaccharide part. The use of beta-1,4-galactosyltransferase and alpha-2,6-sialytransferase in the presence of alkaline phosphatase allowed the efficient transfer of four sugar units to the acceptor resulting in a full length N-glycan, a sialyated diantennary undecasaccharide-asparagine of the complex type.
Collapse
Affiliation(s)
- C Unverzagt
- Institut für Organische Chemie und Biochemie, TU München, Garching, Germany
| |
Collapse
|
42
|
|
43
|
Hangeland JJ, Flesher JE, Deamond SF, Lee YC, Ts'O PO, Frost JJ. Tissue distribution and metabolism of the [32P]-labeled oligodeoxynucleoside methylphosphonate-neoglycopeptide conjugate, [YEE(ah-GalNAc)3]-SMCC-AET-pUmpT7, in the mouse. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1997; 7:141-9. [PMID: 9212904 DOI: 10.1089/oli.1.1997.7.141] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Development of oligodeoxynucleotides (oligo-dNs) and their analogs as therapeutic agents is complicated by their low rate of transport across cellular membranes, which is required for interaction with the intracellular complementary nucleic acid sequences, and the lack of tissue-specific delivery. To overcome these obstacles, bioconjugates between cell surface receptor ligands and oligodeoxynucleoside methylphosphonates (oligo-MPs) have been constructed containing homogeneous, chemically defined covalent linkages. We have previously established that a model conjugate, [32P]-labeled [YEE(ah-GalNAc)3]-SMCC-AET-pUmpT7 (1), is delivered to Hep G2 cells in a ligand-specific manner, reaching a peak value of 26 pmol per 10(6) cells after 24 hours incubation at 37 degrees C (Hangeland et al., 1995). In this work, the in vivo behavior of this conjugate is explored. Administration of this conjugate to mice via tail vein injection demonstrates rapid uptake in liver to the extent of 69.9 +/- 9.9% of the injected dose after 15 minutes. Thereafter, the conjugate and its metabolites are rapidly cleared via the kidney and urine. Polyacrylamide gel electrophoresis analysis of extracts of Hep G2 cells and mouse liver reveal the conjugate 1 to be extensively metabolized. In contrast, the conjugate found in mouse urine is largely intact. These data show that this novel, biodegradable delivery vehicle represents a viable approach for the delivery of antisense oligo-MPs and other oligo-dN analogs to the liver for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- J J Hangeland
- Department of Biochemistry, Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
44
|
Collard WT, el Halaby JM, Rice KG. A novel approach to 14C label N-linked oligosaccharides. Anal Biochem 1997; 247:448-50. [PMID: 9177713 DOI: 10.1006/abio.1997.2071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- W T Collard
- Division of Pharmaceutics, College of Pharmacy, University of Michigan, Ann Arbor 48109, USA
| | | | | |
Collapse
|
45
|
Fu Q, Satyaswaroop PG, Gowda DC. Tissue targeting and plasma clearance of cobra venom factor in mice. Biochem Biophys Res Commun 1997; 231:316-20. [PMID: 9070270 DOI: 10.1006/bbrc.1997.6078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The tissue targeting and rate of clearance of cobra venom factor (CVF) from the circulation was studied in mice by intravenous or intraperitoneal injection of radioiodinated CVF. In both modes of administrations, CVF was targeted mainly to liver. CVF injected directly into the blood was cleared from the circulation with a plasma half life of about 10 h, whereas CVF injected into the peritoneal cavity was slowly absorbed into the blood stream reaching a maximum level at approximately 6 h, and it was then cleared from the circulation with a plasma half life of about 18 h. The rate of plasma clearance of CVF was markedly decreased upon removal of the terminal alpha-galactosyl residues of the oligosaccharide chains; the plasma half lives for intravenously and intraperitoneally administered de-alpha-galactosylated CVF were approximately 5 and approximately 10 h, respectively. However, the clearance rate was not affected by complete deglycosylation using N-glycanase or by chemical modification of the terminal galactosyl residues. Together, these data demonstrate that the terminal alpha-galactosyl residues of CVF mask the Lewis X-dependent uptake of CVF by liver.
Collapse
Affiliation(s)
- Q Fu
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
46
|
Mortensen B, Huseby NE. Clearance of circulating gamma-glutamyltransferase by the asialoglycoprotein receptor. Enzyme forms with different sialic acid content are eliminated at different clearance rates and without apparent desialylation. Clin Chim Acta 1997; 258:47-58. [PMID: 9049442 DOI: 10.1016/s0009-8981(96)06427-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
gamma-Glutamyltransferase is eliminated from the circulation via the asialoglycoprotein receptor in liver. After purifying the enzyme from human liver, a subfractionation into differently sialylated forms was obtained using MonoQ ion exchange chromatography. The uptake of such forms from rat circulation was studied and the slowest rate was measured for the most sialylated form. To test if the uptake of the sialylated enzymes was dependent on prior desialylation in the circulation the enzyme was recovered from liver after uptake and from serum after inhibiting the uptake with asialofetuin. Analysis of these recovered forms showed no apparent alteration in charge. The enzyme is apparently eliminated without prior desialylation through available galactose units which bind with low affinity to the receptor.
Collapse
Affiliation(s)
- B Mortensen
- Department of Medical Biochemistry, University of Tromsø, Norway
| | | |
Collapse
|
47
|
Braun JR, Willnow TE, Ishibashi S, Ashwell G, Herz J. The major subunit of the asialoglycoprotein receptor is expressed on the hepatocellular surface in mice lacking the minor receptor subunit. J Biol Chem 1996; 271:21160-6. [PMID: 8702886 DOI: 10.1074/jbc.271.35.21160] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mammalian asialoglycoprotein receptor (ASGPR) is located on the sinusoidal membrane of hepatocytes where it binds and endocytoses galactose-terminated glycoproteins (asialoglycoproteins). ASGPR is composed of two highly homologous subunits, termed hepatic lectin 1 and 2. Despite numerous studies the contribution of both subunits to biosynthesis and functional activity of ASGPR in vivo has remained controversial. Mice lacking the murine hepatic lectin (MHL)-2 subunit are viable and fertile without obvious phenotypic abnormalities. In the absence of MHL-2, knockout mice express MHL-1 protein at reduced levels. Here, we examine the intracellular fate and function of this remaining subunit. The results show that MHL-1 reaches the hepatocellular surface in knockout mice but is unable to effectively remove any one of three different radiolabeled ligands within 30 min. A small but detectable residual ligand clearance in knockout mice at 4 h is apparently not mediated by remaining MHL-1. Serum concentrations of galactose-terminating glycoproteins are not elevated in these ASGPR-deficient mice. However, competitive in vitro degradation experiments suggest that other endogenous ASGPR ligands, the nature of which remain to be determined, accumulate in serum of knockout animals.
Collapse
Affiliation(s)
- J R Braun
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas Texas 75235, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
N-linked oligosaccharides from glycoproteins can be either analyzed on a sub-nanomole scale or preparatively purified on a multi-micromole scale. Each goal necessitates a unique analytical strategy often involving oligosaccharide derivatization to enhance separation and detection. Tyrosinamide-oligosaccharides were developed to facilitate the preparative purification of N-linked oligosaccharides. These have found many uses in oligosaccharide remodeling, in the preparation of neoglycoconjugates, in developing receptor probes, and even as analytical standards in chromatography. This review discusses progress in the preparation of tyrosinamide-oligosaccharides from different glycoproteins and their utility in glycobiology research.
Collapse
Affiliation(s)
- K G Rice
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
49
|
Schechter B, Arnon R, Freedman YE, Chen L, Wilchek M. Liver accumulation of TNP-modified streptavidin and avidin: potential use for targeted radio- and chemotherapy. J Drug Target 1996; 4:171-9. [PMID: 8959489 DOI: 10.3109/10611869609015974] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hepatic metastases of malignant tumors is a major problem in the treatment of cancers for which the liver is the most common site for recurrences. In the present study we describe a selective delivery system to the liver which may facilitate specific hepatic targeting of anti-cancer agents. Avidin and streptavidin are two biotin-binding proteins with extreme resistance to proteolytic activity. Trinitrophenyl (TNP) modification of these two proteins resulted in specific accumulation in mouse liver with levels of 40-50 percent per gram tissue (%/g) during a period of several days. The two modified proteins could target to the liver high doses of covalently bound radionuclide iodine-125, a biotinylated ligand such as biotinyl-tyrosine (BT) or large biotinylated carriers such as carboxymethyl dextran (CMdex, 40kDa). Appropriately derivatized dextrans serve as carriers for various chemotherapeutic drugs, as demonstrated here for cis-dichlorodiammineplatinum (CDDP). Specific liver targeting of CDDP complexed to CMdex-TNP-streptavidin could be monitored by flame atomic absorption spectrometry of the Pt metal: High levels of the Pt drug were concentrated in the liver for at least 15hr following its targeted delivery as compared to essentially undetectable levels after administration of the free drug.
Collapse
Affiliation(s)
- B Schechter
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
50
|
Chiu MH, Thomas VH, Stubbs HJ, Rice KG. Tissue targeting of multivalent Le(x)-terminated N-linked oligosaccharides in mice. J Biol Chem 1995; 270:24024-31. [PMID: 7592600 DOI: 10.1074/jbc.270.41.24024] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The target site for N-linked biantennary and triantennary oligosaccharides containing multiple terminal Le(x) determinants was analyzed in mice. N-linked oligosaccharides containing a single tert-butoxycarbonyl-tyrosine attached to the reducing end were used as synthons for human milk alpha-3/4-fucosyltransferase to prepare multivalent Le(x) (Gal beta 1-4[Fuc alpha 1-3]GlcNAc) terminated tyrosinamide oligosaccharides. The oligosaccharides were radioiodinated and examined for their pharmacokinetics and biodistribution in mice. The liver was the major target site in mice at 30 min, which accumulated 18% of the dose for Le(x) biantennary compared with 6% for a nonfucosylated Gal biantennary. By comparison, Le(x)- and Gal-terminated triantennary accumulated in the liver with a targeting efficiency of 66 and 59%, respectively. The liver targeting of Le(x)-biantennary was partially blocked by co-administration with either galactose or L-fucose whereas Le(x) triantennary targeting was only reduced by co-administration with galactose. In contrast to these results in mice, in vivo experiments performed in rats established that both Le(x) and Gal terminated biantennary target the liver with nearly identical efficiency (6-7%). It is concluded that the asialoglycoprotein receptor in mice preferentially recognize Le(x) biantennary over Gal biantennary, whereas little or no differentiation exists in rats. Thereby, the mouse asialoglycoprotein receptor apparently possesses additional binding pockets that accommodate a fucose residue when presented as Le(x).
Collapse
Affiliation(s)
- M H Chiu
- College of Pharmacy, University of Michigan, Ann Arbor 48109-1065, USA
| | | | | | | |
Collapse
|