1
|
Lo WC, Krasnopeeva E, Pilizota T. Bacterial Electrophysiology. Annu Rev Biophys 2024; 53:487-510. [PMID: 38382113 DOI: 10.1146/annurev-biophys-030822-032215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial ion fluxes are involved in the generation of energy, transport, and motility. As such, bacterial electrophysiology is fundamentally important for the bacterial life cycle, but it is often neglected and consequently, by and large, not understood. Arguably, the two main reasons for this are the complexity of measuring relevant variables in small cells with a cell envelope that contains the cell wall and the fact that, in a unicellular organism, relevant variables become intertwined in a nontrivial manner. To help give bacterial electrophysiology studies a firm footing, in this review, we go back to basics. We look first at the biophysics of bacterial membrane potential, and then at the approaches and models developed mostly for the study of neurons and eukaryotic mitochondria. We discuss their applicability to bacterial cells. Finally, we connect bacterial membrane potential with other relevant (electro)physiological variables and summarize methods that can be used to both measure and influence bacterial electrophysiology.
Collapse
Affiliation(s)
- Wei-Chang Lo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | | | - Teuta Pilizota
- School of Biological Sciences, Centre for Engineering Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
2
|
Chiang WT, Chang YK, Hui WH, Chang SW, Liao CY, Chang YC, Chen CJ, Wang WC, Lai CC, Wang CH, Luo SY, Huang YP, Chou SH, Horng TL, Hou MH, Muench SP, Chen RS, Tsai MD, Hu NJ. Structural basis and synergism of ATP and Na + activation in bacterial K + uptake system KtrAB. Nat Commun 2024; 15:3850. [PMID: 38719864 PMCID: PMC11078986 DOI: 10.1038/s41467-024-48057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
The K+ uptake system KtrAB is essential for bacterial survival in low K+ environments. The activity of KtrAB is regulated by nucleotides and Na+. Previous studies proposed a putative gating mechanism of KtrB regulated by KtrA upon binding to ATP or ADP. However, how Na+ activates KtrAB and the Na+ binding site remain unknown. Here we present the cryo-EM structures of ATP- and ADP-bound KtrAB from Bacillus subtilis (BsKtrAB) both solved at 2.8 Å. A cryo-EM density at the intra-dimer interface of ATP-KtrA was identified as Na+, as supported by X-ray crystallography and ICP-MS. Thermostability assays and functional studies demonstrated that Na+ binding stabilizes the ATP-bound BsKtrAB complex and enhances its K+ flux activity. Comparing ATP- and ADP-BsKtrAB structures suggests that BsKtrB Arg417 and Phe91 serve as a channel gate. The synergism of ATP and Na+ in activating BsKtrAB is likely applicable to Na+-activated K+ channels in central nervous system.
Collapse
Affiliation(s)
- Wesley Tien Chiang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Yao-Kai Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Wei-Han Hui
- Department of Civil Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Shu-Wei Chang
- Department of Civil Engineering, National Taiwan University, Taipei, 106319, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei, 10663, Taiwan
| | - Chen-Yi Liao
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Yi-Chuan Chang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30092, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402202, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, 406040, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Siou-Ying Luo
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Ya-Ping Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Shan-Ho Chou
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Tzyy-Leng Horng
- Department of Applied Mathematics, Feng Chia University, Taichung, 407102, Taiwan
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Ren-Shiang Chen
- Department of Life Science, Tunghai University, Taichung, 407224, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106319, Taiwan.
| | - Nien-Jen Hu
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, 402202, Taiwan.
- Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, 402202, Taiwan.
| |
Collapse
|
3
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Abstract
Type I Baeyer–Villiger monooxygenases (BVMOs) are flavin-dependent monooxygenases that catalyze the oxidation of ketones to esters or lactones, a reaction otherwise performed in chemical processes by employing hazardous and toxic peracids. Even though various BVMOs are extensively studied for their promising role in industrial biotechnology, there is still a demand for enzymes that are able to retain activity at high saline concentrations. To this aim, and based on comparative in silico analyses, we cloned HtBVMO from the extremely halophilic archaeon Haloterrigena turkmenica DSM 5511. When expressed in standard mesophilic cell factories, proteins adapted to hypersaline environments often behave similarly to intrinsically disordered polypeptides. Nevertheless, we managed to express HtBVMO in Escherichia coli and could purify it as active enzyme. The enzyme was characterized in terms of its salt-dependent activity and resistance to some water–organic-solvent mixtures. Although HtBVMO does not seem suitable for industrial applications, it provides a peculiar example of an alkalophilic and halophilic BVMO characterized by an extremely negative charge. Insights into the behavior and structural properties of such salt-requiring may contribute to more efficient strategies for engineering the tuned stability and solubility of existing BVMOs.
Collapse
|
5
|
Correa W, Brandenburg J, Behrends J, Heinbockel L, Reiling N, Paulowski L, Schwudke D, Stephan K, Martinez-de-Tejada G, Brandenburg K, Gutsmann T. Inactivation of Bacteria by γ-Irradiation to Investigate the Interaction with Antimicrobial Peptides. Biophys J 2019; 117:1805-1819. [PMID: 31676134 DOI: 10.1016/j.bpj.2019.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 11/27/2022] Open
Abstract
The activity of antimicrobial peptides (AMPs) has been investigated extensively using model membranes composed of phospholipids or lipopolysaccharides in aqueous environments. However, from a biophysical perspective, there is a large scientific interest regarding the direct interaction of membrane-active peptides with whole bacteria. Working with living bacteria limits the usability of experimental setups and the interpretation of the resulting data because of safety risks and the overlap of active and passive effects induced by AMPs. We killed or inactivated metabolic-active bacteria using γ-irradiation or sodium azide, respectively. Microscopy, flow cytometry, and SYTOX green assays showed that the cell envelope remained intact to a high degree at the minimal bactericidal dose. Furthermore, the tumor-necrosis-factor-α-inducing activity of the lipopolysaccharides and the chemical lipid composition was unchanged. Determining the binding capacity of AMPs to the bacterial cell envelope by calorimetry is difficult because of an overlapping of the binding heat and metabolic activities of the bacteria-induced by the AMPs. The inactivation of all active processes helps to decipher the complex thermodynamic information. From the isothermal titration calorimetry (ITC) results, we propose that the bacterial membrane potential (Δψ) is possibly an underestimated modulator of the AMP activity. The negative surface charge of the outer leaflet of the outer membrane of Gram-negative bacteria is already neutralized by peptide concentrations below the minimal inhibitory concentration. This proves that peptide aggregation on the bacterial membrane surface plays a decisive role in the degree of antimicrobial activity. This will not only enable many biophysical approaches for the investigation between bacteria and membrane-active peptides in the future but will also make it possible to compare biophysical parameters of active and inactive bacteria. This opens up new possibilities to better understand the active and passive interaction processes between AMPs and bacteria.
Collapse
Affiliation(s)
- Wilmar Correa
- Division of Biophysics, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
| | - Julius Brandenburg
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Jochen Behrends
- Fluorescence Cytometry Department, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | | | - Norbert Reiling
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Laura Paulowski
- Division of Biophysics, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Dominik Schwudke
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Kerstin Stephan
- Division of Biophysics, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | | | - Klaus Brandenburg
- Brandenburg Antiinfektiva GmbH, c/o Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
6
|
Zhang J, Wei X, Wang Y, Ren B, Zhao L, Wang Z, Pu Q. Rapid quantitation of multiple ions released from HeLa cells during emodin induced apoptosis by low-cost capillary electrophoresis with capacitively coupled contactless conductivity detection. RSC Adv 2018; 8:18266-18271. [PMID: 35541120 PMCID: PMC9080565 DOI: 10.1039/c8ra00492g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022] Open
Abstract
Change in cation concentration, including that of potassium and sodium, is characteristic of apoptosis, therefore it is significant to detect cation concentration changes.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Xuan Wei
- Department of Chemistry
- Tonghua Normal University
- Tonghua
- China
| | - Yuanhang Wang
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Bo Ren
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Litao Zhao
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Zhaoyan Wang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Qiaosheng Pu
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
7
|
Crane JM, Randall LL. The Sec System: Protein Export in Escherichia coli. EcoSal Plus 2017; 7:10.1128/ecosalplus.ESP-0002-2017. [PMID: 29165233 PMCID: PMC5807066 DOI: 10.1128/ecosalplus.esp-0002-2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, proteins found in the periplasm or the outer membrane are exported from the cytoplasm by the general secretory, Sec, system before they acquire stably folded structure. This dynamic process involves intricate interactions among cytoplasmic and membrane proteins, both peripheral and integral, as well as lipids. In vivo, both ATP hydrolysis and proton motive force are required. Here, we review the Sec system from the inception of the field through early 2016, including biochemical, genetic, and structural data.
Collapse
Affiliation(s)
- Jennine M. Crane
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| |
Collapse
|
8
|
Abstract
Some anaerobic archaea and bacteria live on substrates that do not allow the synthesis of one mol of ATP per mol of substrate via substrate level phosphorylation (SLP). Energy conservation in these cases is only possible by a chemiosmotic mechanism that involves the generation of an electrochemical ion gradient across the cytoplasmic membrane that then drives ATP synthesis via an ATP synthase. The minimal amount of energy required for ATP synthesis is thus dependent on the magnitude of the electrochemical ion gradient, the phosphorylation potential in the cell and the ion/ATP ratio of the ATP synthase. It was always thought that the minimum biological energy quantum is defined as the amount of energy required to translocate one ion across the cytoplasmic membrane. We will discuss the thermodynamics of the reactions involved in chemiosmosis and describe the limitations for ion transport and ATP synthesis that led to the proposal that at least −20 kJ/mol are required for ATP synthesis. We will challenge this hypothesis by arguing that the enzyme energizing the membrane may translocate net less than one ion: By using a primary pump connected to an antiporter module a stoichiometry below one can be obtained, implying that the minimum biological energy quantum that sustains life is even lower than assumed to date.
Collapse
Affiliation(s)
- Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Verena Hess
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
9
|
Wheatley RW, Juers DH, Lev BB, Huber RE, Noskov SY. Elucidating factors important for monovalent cation selectivity in enzymes: E. coli β-galactosidase as a model. Phys Chem Chem Phys 2016; 17:10899-909. [PMID: 25820412 DOI: 10.1039/c4cp04952g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many enzymes require a specific monovalent cation (M(+)), that is either Na(+) or K(+), for optimal activity. While high selectivity M(+) sites in transport proteins have been extensively studied, enzyme M(+) binding sites generally have lower selectivity and are less characterized. Here we study the M(+) binding site of the model enzyme E. coli β-galactosidase, which is about 10 fold selective for Na(+) over K(+). Combining data from X-ray crystallography and computational models, we find the electrostatic environment predominates in defining the Na(+) selectivity. In this lower selectivity site rather subtle influences on the electrostatic environment become significant, including the induced polarization effects of the M(+) on the coordinating ligands and the effect of second coordination shell residues on the charge distribution of the primary ligands. This work expands the knowledge of ion selectivity in proteins to denote novel mechanisms important for the selectivity of M(+) sites in enzymes.
Collapse
Affiliation(s)
- Robert W Wheatley
- Division of Biochemistry, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | | | | | | | | |
Collapse
|
10
|
Regulation of Bacterial DNA Packaging in Early Stationary Phase by Competitive DNA Binding of Dps and IHF. Sci Rep 2015; 5:18146. [PMID: 26657062 PMCID: PMC4677351 DOI: 10.1038/srep18146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/12/2015] [Indexed: 02/01/2023] Open
Abstract
The bacterial nucleoid, a bacterial genome packed by nucleoid binding proteins, forms the physical basis for cellular processes such as gene transcription and DNA replication. Bacteria need to dynamically modulate their nucleoid structures at different growth phases and in response to environmental changes. At the nutrients deficient stationary phase, DNA-binding proteins from starved cells (Dps) and Integration host factors (IHF) are the two most abundant nucleoid associated proteins in E. coli. Yet, it remains unclear how the nucleoid architecture is controlled by the interplay between these two proteins, as well as the nucleoid's response to environmental changes. This question is addressed here using single DNA manipulation approach. Our results reveal that the two proteins are differentially selected for DNA binding, which can be tuned by changing environmental factors over physiological ranges including KCl (50-300 mM), MgCl2 (0-10 mM), pH (6.5-8.5) and temperature (23-37 °C). Increasing pH and MgCl2 concentrations switch from Dps-binding to IHF-binding. Stable Dps-DNA and IHF-DNA complexes are insensitive to temperature changes for the range tested. The environment dependent selection between IHF and Dps results in different physical organizations of DNA. Overall, our findings provide important insights into E. coli nucleoid architecture.
Collapse
|
11
|
Eykyn TR, Aksentijević D, Aughton KL, Southworth R, Fuller W, Shattock MJ. Multiple quantum filtered (23)Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i. J Mol Cell Cardiol 2015. [PMID: 26196304 PMCID: PMC4564289 DOI: 10.1016/j.yjmcc.2015.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. Intracellular Na concentration [Na]i is a key modulator of cardiac cell function. We developed an NMR-compatible Langendorff mouse heart perfusion system. The ratio of triple/double quantum filtered 23Na NMR signals correlates with [Na]i. Intracellular [Na]i can be quantified under physiological perfusion conditions. The PLM3SA transgenic mouse model has a measurable elevation of [Na]i at baseline.
Collapse
Affiliation(s)
- Thomas R Eykyn
- Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom; The British Heart Foundation Centre of Research Excellence, The Rayne Institute, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom.
| | - Dunja Aksentijević
- The British Heart Foundation Centre of Research Excellence, The Rayne Institute, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Karen L Aughton
- The British Heart Foundation Centre of Research Excellence, The Rayne Institute, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Richard Southworth
- Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom; The British Heart Foundation Centre of Research Excellence, The Rayne Institute, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - William Fuller
- Division of Cardiovascular and Diabetes Medicine, University of Dundee, Dundee, United Kingdom
| | - Michael J Shattock
- The British Heart Foundation Centre of Research Excellence, The Rayne Institute, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
12
|
Li L, Li P, Fang J, Li Q, Xiao H, Zhou H, Tang B. Simultaneous Quantitation of Na+ and K+ in Single Normal and Cancer Cells Using a New Near-Infrared Fluorescent Probe. Anal Chem 2015; 87:6057-63. [DOI: 10.1021/acs.analchem.5b00571] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lu Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Ping Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Juan Fang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Qingling Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Haibin Xiao
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Hui Zhou
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| |
Collapse
|
13
|
Krishnakumari V, Packiyanathan KK, Nagaraj R. Human-β-defensins-1-3 and analogs do not require proton motive force for antibacterial activity against Escherichia coli. FEMS Microbiol Lett 2013; 348:52-7. [PMID: 23980689 DOI: 10.1111/1574-6968.12242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 01/06/2023] Open
Abstract
Human-β-defensins 1-3 (HBD-1-3) and their C-terminal analogs Phd-1-3 do not show antibacterial activity against Escherichia coli in the presence of mono- and divalent cations. Activity of peptides was examined against E. coli pretreated with carbonyl cyanide m-chlorophenylhydrazone (CCCP) and salt remedial Escherichia coli ftsEX, a deletion mutant of FtsEX complex [an ATP-binding cassette (ABC) transporter protein], in the presence of Na(+), Ca(2+), and Mg(2+). Activity was observed in the presence of Na(+) and Ca(2+), although not in the presence of Mg(2+) against E. coli, when proton motive force (PMF) was dissipated by CCCP. The peptides exhibited antibacterial activity against E. coli ftsEX even in the presence of Na(+) and Ca(2+). Our results indicate that HBD-1-3 and Phd-1-3 do not require PMF for their antibacterial activity. The absence of activity against E. coli in the presence of Na(+) and Ca(2+) ions is due to not only weakened electrostatic interactions with anionic membrane components, but also involvement of electrochemical gradients. However, Mg(2+) prevents electrostatic interaction of the peptides with the outer membrane resulting in loss of activity.
Collapse
|
14
|
Liu G, Lut MC, Verberk JQJC, Van Dijk JC. A comparison of additional treatment processes to limit particle accumulation and microbial growth during drinking water distribution. WATER RESEARCH 2013; 47:2719-2728. [PMID: 23510692 DOI: 10.1016/j.watres.2013.02.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/24/2013] [Accepted: 02/10/2013] [Indexed: 06/01/2023]
Abstract
Water quality changes, particle accumulation and microbial growth occurring in pilot-scale water distribution systems fed with normally treated and additional treated groundwater were monitored over a period of almost one year. The treatment processes were ranked in the following order: nanofiltration (NF) > (better than) ultrafiltration (UF) > ion exchange (IEX) for limiting particle accumulation. A different order was found for limiting overall microbial growth: NF > IEX > UF. There were strong correlations between particle load and particle accumulation, and between nutrient load and microbial growth. It was concluded that particle accumulation can be controlled by reducing the particle load in water treatment plants; and the microbial growth can be better controlled by limiting organic nutrients rather than removing biomass in water treatment plants. The major focus of this study was on microbial growth. The results demonstrated that growth occurred in all types of treated water, including the phases of bulk water, biofilm and loose deposits. Considering the growth in different phases, similar growth in bulk water was observed for all treatments; NF strongly reduced growth both in loose deposits and in biofilm; UF promoted growth in biofilm, while strongly limiting growth in loose deposits. IEX had good efficiency in between UF and NF, limiting both growths in loose deposits and in biofilm. Significant growth was found in loose deposits, suggesting that loose deposit biomass should be taken into account for growth evaluation and/or prediction. Strong correlations were found between microbial growth and pressure drop in a membrane fouling simulator which proved that a membrane fouling simulator can be a fast growth predictor (within a week). Different results obtained by adenosine triphosphate and flow cytometry cell counts revealed that ATP can accurately describe both suspended and particle-associated biomass, and flow cytometry files of TCC measurements needs to be further processed for particle loaded samples and/or a pretreatment protocol should be developed.
Collapse
Affiliation(s)
- G Liu
- Section Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands.
| | | | | | | |
Collapse
|
15
|
Batista AP, Marreiros BC, Louro RO, Pereira MM. Study of ion translocation by respiratory complex I. A new insight using (23)Na NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1810-6. [PMID: 22445719 DOI: 10.1016/j.bbabio.2012.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022]
Abstract
The research on complex I has gained recently a new enthusiasm, especially after the resolution of the crystallographic structures of bacterial and mitochondrial complexes. Most attention is now dedicated to the investigation of the energy coupling mechanism(s). The proton has been identified as the coupling ion, although in the case of some bacterial complexes I Na(+) has been proposed to have that role. We have addressed the relation of some complexes I with Na(+) and developed an innovative methodology using (23)Na NMR spectroscopy. This allowed the investigation of Na(+) transport taking the advantage of directly monitoring changes in Na(+) concentration. Methodological aspects concerning the use of (23)Na NMR spectroscopy to measure accurately sodium transport in bacterial membrane vesicles are discussed here. External-vesicle Na(+) concentrations were determined by two different methods: 1) by integration of the resonance frequency peak and 2) using calibration curves of resonance frequency shift dependence on Na(+) concentration. Although the calibration curves are a suitable way to determine Na(+) concentration changes under conditions of fast exchange, it was shown not to be applicable to the bacterial membrane vesicle systems. In this case, the integration of the resonance frequency peak is the most appropriate analysis for the quantification of external-vesicle Na(+) concentration. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
16
|
Ganguly A, Rajdev P, Williams SM, Chatterji D. Nonspecific Interaction between DNA and Protein allows for Cooperativity: A Case Study with Mycobacterium DNA Binding Protein. J Phys Chem B 2011; 116:621-32. [DOI: 10.1021/jp209423n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abantika Ganguly
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Jia X, Ozawa K, Loscha K, Otting G. Glutarate and N-acetyl-L-glutamate buffers for cell-free synthesis of selectively 15N-labelled proteins. JOURNAL OF BIOMOLECULAR NMR 2009; 44:59-67. [PMID: 19399372 DOI: 10.1007/s10858-009-9315-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 04/01/2009] [Indexed: 05/27/2023]
Abstract
Cell-free protein synthesis provides rapid and economical access to selectively 15N-labelled proteins, greatly facilitating the assignment of 15N-HSQC spectra. While the best yields are usually obtained with buffers containing high concentrations of potassium L-glutamate, preparation of selectively 15N-Glu labelled samples requires non-standard conditions. Among many compounds tested to replace the L-Glu buffer, potassium N-acetyl-L-glutamate and potassium glutarate were found to perform best, delivering high yields for all proteins tested, with preserved selectivity of 15N-Glu labelling. Assessment of amino-transferase activity by combinatorial 15N-labelling revealed that glutarate and N-acetyl-L-glutamate suppress the transfer of the 15N-alpha-amino groups between amino acids less well than the conventional L-Glu buffer. On balance, the glutarate buffer appears most suitable for the preparation of samples containing 15N-L-Glu while the conventional L-Glu buffer is advantageous for all other samples.
Collapse
Affiliation(s)
- Xinying Jia
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
18
|
Yang Y, Hu L, Chen X, Ottow EA, Polle A, Jiang X. A novel method to quantify H+-ATPase-dependent Na+ transport across plasma membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2078-88. [PMID: 17706940 DOI: 10.1016/j.bbamem.2007.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 06/09/2007] [Accepted: 06/27/2007] [Indexed: 10/23/2022]
Abstract
To prevent sodium toxicity in plants, Na(+) is excluded from the cytosol to the apoplast or the vacuole by Na(+)/H(+) antiporters. The secondary active transport of Na(+) to apoplast against its electrochemical gradient is driven by plasma membrane H(+)-ATPases that hydrolyze ATP and pump H(+) across the plasma membrane. Current methods to determine Na(+) flux rely either on the use of Na-isotopes ((22)Na) which require special working permission or sophisticated equipment or on indirect methods estimating changes in the H(+) gradient due to H(+)-ATPase in the presence or absence of Na(+) by pH-sensitive probes. To date, there are no methods that can directly quantify H(+)-ATPase-dependent Na(+) transport in plasma membrane vesicles. We developed a method to measure bidirectional H(+)-ATPase-dependent Na(+) transport in isolated membrane vesicle systems using atomic absorption spectrometry (AAS). The experiments were performed using plasma membrane-enriched vesicles isolated by aqueous two-phase partitioning from leaves of Populus tomentosa. Since most of the plasma membrane vesicles have a sealed right-side-out orientation after repeated aqueous two-phase partitioning, the ATP-binding sites of H(+)-ATPases are exposed towards inner side. Leaky vesicles were preloaded with Na(+) sealed for the study of H(+)-ATPase-dependent Na(+) transport. Our data implicate that Na(+) movement across vesicle membranes is highly dependent on H(+)-ATPase activity requiring ATP and Mg(2+) and displays optimum rates of 2.50 microM Na(+) mg(-1) membrane protein min(-1) at pH 6.5 and 25 degrees C. In this study, for the first time, we establish new protocols for the preparation of sealed preloaded right-side-out vesicles for the study of H(+)-ATPase-dependent Na(+) transport. The results demonstrate that the Na(+) content of various types of plasma membrane vesicle can be directly quantified by AAS, and the results measured using AAS method were consistent with those determined by the previous established fluorescence probe method. The method is a convenient system for the study of bidirectional H(+)-ATPase-dependent Na(+) transport with membrane vesicles.
Collapse
Affiliation(s)
- Yongqing Yang
- College of Life Sciences and Biotechnology, Beijing Forestry University, Nr 35, Qinghua Donglu, Beijing 100083, P.R. China
| | | | | | | | | | | |
Collapse
|
19
|
ERIKSON U, VELIYULIN E, SINGSTAD TE, AURSAND M. Salting and Desalting of Fresh and Frozen-thawed Cod (Gadus morhua) Fillets: A Comparative Study Using 23Na NMR, 23Na MRI, Low-field 1H NMR, and Physicochemical Analytical Methods. J Food Sci 2006. [DOI: 10.1111/j.1365-2621.2004.tb13362.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Lo CJ, Leake MC, Berry RM. Fluorescence measurement of intracellular sodium concentration in single Escherichia coli cells. Biophys J 2005; 90:357-65. [PMID: 16227503 PMCID: PMC1367033 DOI: 10.1529/biophysj.105.071332] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The energy-transducing cytoplasmic membrane of bacteria contains pumps and antiports maintaining the membrane potential and ion gradients. We have developed a method for rapid, single-cell measurement of the internal sodium concentration ([Na(+)](in)) in Escherichia coli using the sodium ion fluorescence indicator, Sodium Green. The bacterial flagellar motor is a molecular machine that couples the transmembrane flow of ions, either protons (H(+)) or sodium ions (Na(+)), to flagellar rotation. We used an E. coli strain containing a chimeric flagellar motor with H(+)- and Na(+)-driven components that functions as a sodium motor. Changing external sodium concentration ([Na(+)](ex)) in the range 1-85 mM resulted in changes in [Na(+)](in) between 5-14 mM, indicating a partial homeostasis of internal sodium concentration. There were significant intercell variations in the relationship between [Na(+)](in) and [Na(+)](ex), and the internal sodium concentration in cells not expressing chimeric flagellar motors was 2-3 times lower, indicating that the sodium flux through these motors is a significant fraction of the total sodium flux into the cell.
Collapse
Affiliation(s)
- Chien-Jung Lo
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | | | | |
Collapse
|
21
|
23Na-MRI quantification of sodium and water mobility in pork during brine curing. Meat Sci 2005; 69:663-72. [DOI: 10.1016/j.meatsci.2004.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 10/07/2004] [Accepted: 10/29/2004] [Indexed: 11/21/2022]
|
22
|
Delort AM, Gaudet G, Forano E. 23Na NMR study of Fibrobacter succinogenes S85: comparison of three chemical shift reagents and calculation of sodium concentration using ionophores. Anal Biochem 2002; 306:171-80. [PMID: 12123653 DOI: 10.1006/abio.2002.5685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to measure intracellular sodium concentrations in resting cells of Fibrobacter succinogenes S85 by (23)Na NMR spectrometry, two methodological aspects were studied. First, three different shift reagents (Dy(PPP(i))(7-)(2), Tm(DOTP)(5-), and Dy(TTHA)(3-)) were tested for their ability to separate internal and external (23)Na NMR resonances. Their toxicity toward F. succinogenes cells was evaluated by in vivo(13)C NMR experiments. Tm(DOTP)(5-) was found to be the most efficient shift reagent while being nontoxic. Second, a new methodology was developed to calculate intracellular sodium concentration in F. succinogenes by using ionophores. This approach avoided the problem of intracellular volume measurement and that of sodium visibility determination.
Collapse
Affiliation(s)
- Anne-Marie Delort
- Laboratoire de Synthèse et Etude de Systèmes à Intérêt Biologique, UMR 6504 Université Blaise Pascal-CNRS, 63177 Aubière Cedex, France.
| | | | | |
Collapse
|
23
|
Shijuku T, Saito H, Kakegawa T, Kobayashi H. Expression of sodium/proton antiporter NhaA at various pH values in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:212-7. [PMID: 11779554 DOI: 10.1016/s0005-2728(01)00215-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It was reported that NhaA, one of sodium/proton antiporters in Escherichia coli, was expressed at alkaline pH [J. Biol. Chem. 266 (1991) 21753]. In disagreement with their results, expression of an nhaA-lacZ fusion gene was found to be very low in an E. coli strain derived from MC4100 within the wide pH range from 5 to 9. When nhaB was deleted, the fusion gene was expressed at pH values below 8, while the expression was observed at alkaline pH after chaA was deleted. The internal level of sodium ions was increased by deletion of nhaA in strains deficient in nhaB and chaA at low and high pH values, respectively. These results suggested that nhaA is induced only when a low level of internal sodium ions is not kept by NhaB and ChaA. Strains used in the previous study may have low active ChaA.
Collapse
Affiliation(s)
- T Shijuku
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | |
Collapse
|
24
|
Schwaab V, Matheron C, Delort AM, Gaudet G, Forano E. In vivo 23Na nuclear magnetic resonance study of maintenance of a sodium gradient in the ruminal bacterium Fibrobacter succinogenes S85. Appl Environ Microbiol 2001; 67:4390-2. [PMID: 11526055 PMCID: PMC93179 DOI: 10.1128/aem.67.9.4390-4392.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sodium gradients (DeltapNa) were measured in resting cells of Fibrobacter succinogenes by in vivo 23Na nuclear magnetic resonance using Tm(DOTP)5- [thulium(III) 1,4,7,10-tetraazacyclododecane-N',N",N"'-tetramethylenephosphonate] as the shift reagent. This bacterium was able to maintain a DeltapNa of -55 to -40 mV for extracellular sodium concentrations ranging from 30 to 200 mM. Depletion of Na+ ions during the washing steps led to irreversible damage (modification of glucose metabolism and inability to maintain a sodium gradient).
Collapse
Affiliation(s)
- V Schwaab
- Laboratoire de Synthèse, Electrosynthèse et Etude de Systèmes à Intérêt Biologique, UMR 6504, Université Blaise Pascal-CNRS, 63177 Aubière cedex, France
| | | | | | | | | |
Collapse
|
25
|
Kobayashi H, Saito H, Kakegawa T. Bacterial strategies to inhabit acidic environments. J GEN APPL MICROBIOL 2000; 46:235-243. [PMID: 12483574 DOI: 10.2323/jgam.46.235] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacteria can inhabit a wide range of environmental conditions, including extremes in pH ranging from 1 to 11. The primary strategy employed by bacteria in acidic environments is to maintain a constant cytoplasmic pH value. However, many data demonstrate that bacteria can grow under conditions in which pH values are out of the range in which cytoplasmic pH is kept constant. Based on these observations, a novel notion was proposed that bacteria have strategies to survive even if the cytoplasm is acidified by low external pH. Under these conditions, bacteria are obliged to use acid-resistant systems, implying that multiple systems having the same physiological role are operating at different cytoplasmic pH values. If this is true, it is quite likely that bacteria have genes that are induced by environmental stimuli under different pH conditions. In fact, acid-inducible genes often respond to another factor(s) besides pH. Furthermore, distinct genes might be required for growth or survival at acid pH under different environmental conditions because functions of many systems are dependent on external conditions. Systems operating at acid pH have been described to date, but numerous genes remain to be identified that function to protect bacteria from an acid challenge. Identification and analysis of these genes is critical, not only to elucidate bacterial physiology, but also to increase the understanding of bacterial pathogenesis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Faculty of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | | | | |
Collapse
|
26
|
Abstract
Bacteria can survive dramatic osmotic shifts. Osmoregulatory responses mitigate the passive adjustments in cell structure and the growth inhibition that may ensue. The levels of certain cytoplasmic solutes rise and fall in response to increases and decreases, respectively, in extracellular osmolality. Certain organic compounds are favored over ions as osmoregulatory solutes, although K+ fluxes are intrinsic to the osmoregulatory response for at least some organisms. Osmosensors must undergo transitions between "off" and "on" conformations in response to changes in extracellular water activity (direct osmosensing) or resulting changes in cell structure (indirect osmosensing). Those located in the cytoplasmic membranes and nucleoids of bacteria are positioned for indirect osmosensing. Cytoplasmic membrane-based osmosensors may detect changes in the periplasmic and/or cytoplasmic solvent by experiencing changes in preferential interactions with particular solvent constituents, cosolvent-induced hydration changes, and/or macromolecular crowding. Alternatively, the membrane may act as an antenna and osmosensors may detect changes in membrane structure. Cosolvents may modulate intrinsic biomembrane strain and/or topologically closed membrane systems may experience changes in mechanical strain in response to imposed osmotic shifts. The osmosensory mechanisms controlling membrane-based K+ transporters, transcriptional regulators, osmoprotectant transporters, and mechanosensitive channels intrinsic to the cytoplasmic membrane of Escherichia coli are under intensive investigation. The osmoprotectant transporter ProP and channel MscL act as osmosensors after purification and reconstitution in proteoliposomes. Evidence that sensor kinase KdpD receives multiple sensory inputs is consistent with the effects of K+ fluxes on nucleoid structure, cellular energetics, cytoplasmic ionic strength, and ion composition as well as on cytoplasmic osmolality. Thus, osmoregulatory responses accommodate and exploit the effects of individual cosolvents on cell structure and function as well as the collective contribution of cosolvents to intracellular osmolality.
Collapse
Affiliation(s)
- J M Wood
- Department of Microbiology and Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Guelph, Guelph, Ontario, Canada N1G
| |
Collapse
|
27
|
Chapter 22 Bacterial Na+/H+ antiporters — Molecular biology, biochemistry and physiology. HANDBOOK OF BIOLOGICAL PHYSICS 1996. [DOI: 10.1016/s1383-8121(96)80063-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Na+ as coupling ion in energy transduction in extremophilic Bacteria and Archaea. World J Microbiol Biotechnol 1995; 11:58-70. [DOI: 10.1007/bf00339136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Van Veen HW, Abee T, Kleefsman AW, Melgers B, Kortstee GJ, Konings WN, Zehnder AJ. Energetics of alanine, lysine, and proline transport in cytoplasmic membranes of the polyphosphate-accumulating Acinetobacter johnsonii strain 210A. J Bacteriol 1994; 176:2670-6. [PMID: 8169217 PMCID: PMC205407 DOI: 10.1128/jb.176.9.2670-2676.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Amino acid transport in right-side-out membrane vesicles of Acinetobacter johnsonii 210A was studied. L-Alanine, L-lysine, and L-proline were actively transported when a proton motive force of -76 mV was generated by the oxidation of glucose via the membrane-bound glucose dehydrogenase. Kinetic analysis of amino acid uptake at concentrations of up to 80 microM revealed the presence of a single transport system for each of these amino acids with a Kt of less than 4 microM. The mode of energy coupling to solute uptake was analyzed by imposition of artificial ion diffusion gradients. The uptake of alanine and lysine was driven by a membrane potential and a transmembrane pH gradient. In contrast, the uptake of proline was driven by a membrane potential and a transmembrane chemical gradient of sodium ions. The mechanistic stoichiometry for the solute and the coupling ion was close to unity for all three amino acids. The Na+ dependence of the proline carrier was studied in greater detail. Membrane potential-driven uptake of proline was stimulated by Na+, with a half-maximal Na+ concentration of 26 microM. At Na+ concentrations above 250 microM, proline uptake was strongly inhibited. Generation of a sodium motive force and maintenance of a low internal Na+ concentration are most likely mediated by a sodium/proton antiporter, the presence of which was suggested by the Na(+)-dependent alkalinization of the intravesicular pH in inside-out membrane vesicles. The results show that both H+ and Na+ can function as coupling ions in amino acid transport in Acinetobacter spp.
Collapse
Affiliation(s)
- H W Van Veen
- Department of Microbiology, Agricultural University Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Padan E, Schuldiner S. Molecular physiology of Na+/H+ antiporters, key transporters in circulation of Na+ and H+ in cells. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1185:129-51. [PMID: 8167133 DOI: 10.1016/0005-2728(94)90204-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E Padan
- Department of Microbial and Molecular Ecology, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
31
|
Ivanics T, Blum H, Wroblewski K, Wang DJ, Osbakken M. Intracellular sodium in cardiomyocytes using 23Na nuclear magnetic resonance. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1221:133-44. [PMID: 8148390 DOI: 10.1016/0167-4889(94)90005-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Intracellular sodium content in superfused isolated rat cardiomyocytes was measured using 23Na nuclear magnetic resonance. The shift reagent dysprosium tripolyphosphate was added to the buffer to distinguish between NMR signals from the intracellular region and the extracellular buffer. The NMR visibility of the intracellular sodium signal was experimentally determined by measuring the changes induced in the sodium NMR signals by application of ischemia as an intervention. Intracellular volume was accounted for by determining the change in the sodium signal upon adding cells (in beads) to the buffer solution at the beginning of each experiment and by killing the cells (in beads) with Triton X-100 at the end of each experiment. The visibility of intracellular sodium (relative to extracellular) was 0.47 +/- 0.12 (mean +/- S.D., n = 12). The average intracellular sodium concentration using this visibility is 29 +/- 4.5 mM (n = 12). This value is much higher than results obtained by some investigators using NMR techniques and by others using different standard methods, with the exception of those methods which evaluate the total intracellular sodium (atomic absorption spectroscopy and X-ray microanalysis). We conclude that total Nai is higher than generally reported, using other accepted techniques such as ion-specific electrodes, and that 23Na-NMR analysis can be used to accurately determine Nai in intact cells.
Collapse
Affiliation(s)
- T Ivanics
- Department of Medicine (Cardiology), University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- P W Kuchel
- Department of Biochemistry, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
33
|
Taglicht D, Padan E, Schuldiner S. Proton-sodium stoichiometry of NhaA, an electrogenic antiporter from Escherichia coli. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53333-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
34
|
Ohyama T, Imaizumi R, Igarashi K, Kobayashi H. Escherichia coli is able to grow with negligible sodium ion extrusion activity at alkaline pH. J Bacteriol 1992; 174:7743-9. [PMID: 1332943 PMCID: PMC207488 DOI: 10.1128/jb.174.23.7743-7749.1992] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Escherichia coli mutant NM81, which is deficient in the nhaA gene for the sodium/proton antiporter, still has a sodium ion extrusion activity because of a second antiporter encoded by nhaB (E. Padan, N. Maisler, D. Taglicht, R. Karpel, and S. Schuldiner, J. Biol. Chem. 264:20297-20302, 1989). By chance, we have found that E. coli pop6810 already contains a mutation affecting the sodium ion circulation, probably in or near nhaB, and that its delta nhaA mutant, designated RS1, has no sodium ion extrusion activity at alkaline pH. The growth of RS1 was inhibited completely by 0.1 M sodium, whereas growth inhibition of NM81 was observed only at sodium concentrations greater than 0.2 M. RS1 grew at a normal rate in an alkaline medium containing a low sodium concentration. Furthermore, RS1 grew with a negligible proton motive force in the alkaline medium containing carbonyl cyanide m-chlorophenylhydrazone. The transport activities for proline and serine were not impaired in RS1, suggesting that these transport systems could be driven by the proton motive force at alkaline pH. These findings led us to conclude that the operation of the sodium/proton antiporter is not essential for growth at alkaline pH but that the antiporter is required for maintaining a low internal sodium concentration when the growth medium contains a high concentration of these ions.
Collapse
Affiliation(s)
- T Ohyama
- Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | |
Collapse
|
35
|
Shift-Reagent-Aided 23Na NMR Spectroscopy in Cellular, Tissue, and Whole-Organ Systems. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/978-1-4757-9477-9_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
36
|
|
37
|
Dibrov PA. The role of sodium ion transport in Escherichia coli energetics. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1056:209-24. [PMID: 1848102 DOI: 10.1016/s0005-2728(05)80052-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- P A Dibrov
- Department of Bioenergetics, A.N. Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State University, U.S.S.R
| |
Collapse
|
38
|
Powell D, Burstein D, Fossel ET. Nuclear magnetic resonance studies of sodium/calcium exchange in frog perfused, beating hearts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:887-9. [PMID: 2249699 DOI: 10.1111/j.1432-1033.1990.tb19413.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study explores the effect of extracellular Ca2+ concentration ([Ca2+]o), on the intracellular Na+ concentration ([Na+]i), in frog intact hearts using nuclear magnetic resonance spectroscopy, which allows for the measurement of [Na+]i in perfused, beating hearts. Decreases in [Ca2+]o yielded marked increases in [Na+]i. A similar effect was seen during inhibition of the Na+/K+ pump and was fully reversible. This sensitivity of [Na+]i to [Ca2+]o, previously observed using microelectrodes, supports a crucial physiological role for Na+/Ca2+ exchange in frog intact, beating hearts.
Collapse
Affiliation(s)
- D Powell
- Department of Radiology, Charles A. Dana Research Institute, Beth Israel Hospital and Harvard Medical School, Boston, MA 02215
| | | | | |
Collapse
|
39
|
Pfeffer PE, Rolin DB, Brauer D, Tu SI, Kumosinski TF. In vivo 133Cs-NMR a probe for studying subcellular compartmentation and ion uptake in maize root tissue. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1054:169-75. [PMID: 2400781 DOI: 10.1016/0167-4889(90)90238-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Three 133Cs-NMR signals were observed in the spectra of CsCl-perfused and CsCl-grown maize seedling root tips. Two relatively broad lower field resonances were assigned to the subcellular, compartmented Cs+ in the cytoplasm and vacuole, respectively. The rate of area increase of the broader cytoplasmic Cs resonance was about 9-times faster than that of the vacuolar signal during the first 300 min of tissue perfusion with CsCl. In addition, the spin lattice relaxation time of the cytoplasmic Cs resonance was approx. 3-times shorter than that of the extracellular resonance, while the Cs+ signal associated with the metabolically less active vacuolar compartment exhibited a relaxation time comparable to that of the extracellular signal. 133Cs spectra of excised, maize root tips and excised top sections of the root adjacent to the kernel, each grown in 10 mM CsCl showed a difference in the relative areas of the Cs resonance corresponding to the distinct cytoplasm/vacuole volume ratio of these well differentiated sections of the root. The high correlation of counterion concentration with 133Cs chemical shifts suggested that the larger downfield shift exhibited by the cytoplasmic confined Cs+ was due principally to the higher ionic strength and protein content in this compartment. Such observations indicate that 133Cs-NMR might be employed for studying ionic strength, and osmotic pressure associated chemical shifts and the transport properties of Cs+ (perhaps as an analogue for K+) in subcellular compartments of plant tissues.
Collapse
Affiliation(s)
- P E Pfeffer
- U.S. Department of Agriculture, ARS Eastern Regional Research Center, Philadelphia, PA 19118
| | | | | | | | | |
Collapse
|
40
|
Abstract
The marine bacterium, Vibrio alginolyticus, normally requires sodium for motility. We found that lithium will substitute for sodium. In neutral pH buffers, the membrane potential and swimming speed of glycolyzing bacteria reached maximal values as sodium or lithium concentration was increased. While the maximal potentials obtained in the two cations were comparable, the maximal swimming speed was substantially lower in lithium. Over a wide range of sodium concentration, the bacteria maintained an invariant sodium electrochemical potential as determined by membrane potential and intracellular sodium measurements. Over this range the increase of swimming speed took Michaelis-Menten form. Artificial energization of swimming motility required imposition of a voltage difference in concert with a sodium pulse. The cation selectivity and concentration dependence exhibited by the motile apparatus depended on the viscosity of the medium. In high-viscosity media, swimming speeds were relatively independent of either ion type or concentration. These facts parallel and extend observations of the swimming behavior of bacteria propelled by proton-powered flagella. In particular, they show that ion transfers limit unloaded motor speed in this bacterium and imply that the coupling between ion transfers and force generation must be fairly tight.
Collapse
|
41
|
Hutchison R, Malhotra D, Hendrick R, Chan L, Shapiro J. Evaluation of the double-quantum filter for the measurement of intracellular sodium concentration. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)55425-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Malloy CR, Buster DC, Castro MM, Geraldes CF, Jeffrey FM, Sherry AD. Influence of global ischemia on intracellular sodium in the perfused rat heart. Magn Reson Med 1990; 15:33-44. [PMID: 2374498 DOI: 10.1002/mrm.1910150105] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intracellular [Na+], [H+], and [ATP] and mechanical performance were measured in the isovolumic perfused rat heart during ischemia. The concentration of intracellular sodium, [Na+]i, was determined by atomic absorption spectroscopy under control conditions, and [Na+]i was monitored by 23Na NMR spectroscopy at 1-min intervals under control conditions and during global ischemia. [ATP], [H+], and [Pi] were measured by 31P NMR in a separate group under identical conditions. The control [Na+]i measured by atomic absorption was 30.7 +/- 3.3 mM (mean +/- SD, n = 6), and [Na+]i measured by NMR was 6.2 +/- 0.5 mM (n = 3). Brief ischemia (10 min) was associated with a 54% increase in [Na+]i which reversed completely with reperfusion. Developed pressure also returned to control values upon reperfusion. Prolonged ischemia (30 min) produced continuous further accumulation of sodium (0.53 mM/min, r2 = 0.99). [H+] also increased approximately linearly early in ischemia (0.084 microM/min, r2 = 0.97). The rate of increase in [Na+]i was more than 4000 times greater than the increase in [H+] on a molar basis. Nevertheless, [H+]/[Na+]i increased early in ischemia because the proportional change in [H+] was greater than that in [Na+]i. These results indicate that (1) intracellular sodium measured by NMR in the functioning heart is about 20% of total intracellular sodium; (2) intracellular acidosis and accumulation of sodium develop simultaneously during global ischemia; (3) increased intracellular sodium content is not in itself an indicator of irreversible injury; and (4) recovery of mechanical performance is associated with return of [Na+]i (measured by NMR) to baseline after brief ischemia. The mechanism of the increase in sodium content detected by NMR is unknown.
Collapse
Affiliation(s)
- C R Malloy
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas 75235-9047
| | | | | | | | | | | |
Collapse
|
43
|
Greenfield NJ, Cherapak CN, Adebodun F, Jordan F, Lenard J. Intracellular sodium content of a wall-less strain of Neurospora crassa and effects of insulin: a 23Na-NMR study. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1025:15-20. [PMID: 2142438 DOI: 10.1016/0005-2736(90)90185-q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
23Na-NMR has been used to investigate some factors influencing the sodium content of a wall-less strains of Neurospora crassa. The shift reagent Tm(DOTP)H2(NH4)3 proved useful for this purpose, while several other reagents, previously used by others, were found to be unsuitable for use with these cells. When the cells were grown, washed and resuspended in medium containing sodium (25.3 mM), the intracellular sodium concentration was calculated to be 11.9 +/- 1.4 mM. This value rose within two minutes of addition of glucose (100 mM), to greater than 14 mM. Preincubation of cells with insulin (100 nM) had a significant effect on the subsequent rate of sodium accumulation during the period 3-12 minutes following glucose addition. Insulin-treated cells showed a slow, continued accumulation of sodium during this period (+1.14 +/- 0.39%/min), while control cells lost sodium very slowly (-0.63 +/- 0.29%/min; P of difference = 0.005).
Collapse
Affiliation(s)
- N J Greenfield
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School (at Rutgers), Piscataway 08854-5635
| | | | | | | | | |
Collapse
|
44
|
Pan JW, Macnab RM. Steady-state measurements of Escherichia coli sodium and proton potentials at alkaline pH support the hypothesis of electrogenic antiport. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38839-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Regev R, Peri I, Gilboa H, Avi-Dor Y. 13C NMR study of the interrelation between synthesis and uptake of compatible solutes in two moderately halophilic eubacteria. Bacterium Ba1 and Vibro costicola. Arch Biochem Biophys 1990; 278:106-12. [PMID: 2321951 DOI: 10.1016/0003-9861(90)90237-s] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The synthesis and uptake of intracellular organic osmolytes (compatible solutes) were studied with the aid of natural abundance 13C NMR spectroscopy in two unrelated, moderately halophilic eubacteria: Ba1 and Vibrio costicola. In minimal media containing 1 M NaCl, both microorganisms synthesized the cyclic amino acid, 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (trivial name, ectoine) as the predominant compatible solute, provided that no glycine betaine was present in the growth medium. When, however, the minimal medium was supplemented with glycine betaine or the latter was a component of a complex medium, it was transported into the cells and the accumulating glycine betaine replaced the ectoine. In Ba1, grown in a defined medium containing glucose as the single carbon source, ectoine could only be detected if the NaCl concentration in the medium was higher than 0.6 M; the ectoine content increased with the external salt concentration. At NaCl concentrations below 0.6 M, alpha,alpha-trehalose was the major organic osmolyte. The concentration of ectoine reached its peak during the exponential phase and declined subsequently. In contrast, the accumulation of glycine betaine continued during the stationary phase. The results presented here indicate that, at least in the two microorganisms studied, ectoine plays an important role in haloadaptation.
Collapse
Affiliation(s)
- R Regev
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
46
|
Padan E, Maisler N, Taglicht D, Karpel R, Schuldiner S. Deletion of ant in Escherichia coli Reveals Its Function in Adaptation to High Salinity and an Alternative Na+/H+ Antiporter System(s). J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47061-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
47
|
Delort AM, Dauphin G, Guyot J, Jeminet G. Study by NMR of the mode of action of monensin on Streptococcus faecalis de-energized and energized cells. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1013:11-20. [PMID: 2551382 DOI: 10.1016/0167-4889(89)90121-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Streptococcus faecalis was used as a bacterial model for studying the mode of action of monensin by NMR investigations. Experiments were carried out in two states, characterized by several complementary methods: (i) the resting (de-energized) cell which was considered as an inert biological membrane, on which cationic transport induced by the ionophore alone can be investigated; (ii) the active (energized) cell where the ionophore-sensitive response of the living organism, particularly the cation pumps and the glycolysis, is probed. Studies of resting cells were performed, with changing external ionic concentrations, in the presence of monensin, which is preferentially a sodium carrier. Internal and external Na+ and H+ were followed by corresponding 23Na and 31P (inorganic phosphate) NMR resonances, K+ fluxes were measured by atomic absorption. It was shown that the induced cationic movements were linked to the existing ionic gradients for K+ and Na+. 31P and 13C NMR spectra for the intermediary metabolites detected in active cells showed that glycolysis is dramatically modified in the presence of monensin.
Collapse
Affiliation(s)
- A M Delort
- Laboratoire de Chimie Organique Biologique, U.R.A. 485 du CNRS, Université Blaise Pascal Aubière, France
| | | | | | | |
Collapse
|
48
|
McMorrow I, Shuman HA, Sze D, Wilson DM, Wilson TH. Sodium/proton antiport is required for growth of Escherichia coli at alkaline pH. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 981:21-6. [PMID: 2541789 DOI: 10.1016/0005-2736(89)90077-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Evidence is presented indicating that Escherichia coli requires the Na+/H+ antiporter and external sodium (or lithium) ion to grow at high pH. Cells were grown in plastic tubes containing medium with a very low Na+ content (5-15 microM). Normal cells grew at pH 7 or 8 with or without added Na+, but at pH 8.5 external Na was required for growth. A mutant with low antiporter activity failed to grow at pH 8.5 with or without Na+. On the other hand, another mutant with elevated antiporter activity grew at a higher pH than normal (pH 9) in the presence of added Na+ or Li+. Amiloride, an inhibitor of the antiporter, prevented cells from growing at pH 8.5 (plus Na+), although it had no effect on growth in media of lower pH values.
Collapse
Affiliation(s)
- I McMorrow
- Department of Cellular and Molecular Physiology, Harvard Medical School, Boston, MA 02115
| | | | | | | | | |
Collapse
|
49
|
Knubovets TL, Revazov AV, Sibeldina LA, Eichhoff U. 23Na NMR measurement of the maximal rate of active sodium efflux from human red blood cells. Magn Reson Med 1989; 9:261-72. [PMID: 2541305 DOI: 10.1002/mrm.1910090211] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The method for 23Na NMR measurement of the maximal rate of active Na+ efflux from human red blood cells (RBC) is proposed. The nonpenetrating paramagnetic shift reagent (SR) bis(tripolyphosphate)dysprosium(III) complex is used to distinguish extracellular Na+ ions from intracellular. RBC are proved to retain their physiological activity in the presence of SR. Intracellular Na+ is shown to be 100% NMR visible. The levels of intracellular and extracellular Na+ and K+ ions are changed to decrease their concentration gradients across the erythrocyte membrane to make active Na+ efflux the only 23Na NMR measurable process; so the integrated areas of intra- and extracellular Na+ peaks remain invariant throughout the incubation period in the presence of 0.25 mM ouabain, a specific inhibitor of Na+, K+-ATPase. The accuracy of the proposed technique is evaluated to be 10%. The maximal Na+ efflux is determined to be 10.1 +/- 1.0 mM/h/liter of cells.
Collapse
Affiliation(s)
- T L Knubovets
- Institute of Chemical Physics, Academy of Science USSR, Moscow
| | | | | | | |
Collapse
|
50
|
|