1
|
Neural substrates involved in the cognitive information processing in teleost fish. Anim Cogn 2021; 24:923-946. [PMID: 33907938 PMCID: PMC8360893 DOI: 10.1007/s10071-021-01514-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 02/04/2023]
Abstract
Over the last few decades, it has been shown that fish, comprising the largest group of vertebrates and in many respects one of the least well studied, possess many cognitive abilities comparable to those of birds and mammals. Despite a plethora of behavioural studies assessing cognition abilities and an abundance of neuroanatomical studies, only few studies have aimed to or in fact identified the neural substrates involved in the processing of cognitive information. In this review, an overview of the currently available studies addressing the joint research topics of cognitive behaviour and neuroscience in teleosts (and elasmobranchs wherever possible) is provided, primarily focusing on two fundamentally different but complementary approaches, i.e. ablation studies and Immediate Early Gene (IEG) analyses. More recently, the latter technique has become one of the most promising methods to visualize neuronal populations activated in specific brain areas, both during a variety of cognitive as well as non-cognition-related tasks. While IEG studies may be more elegant and potentially easier to conduct, only lesion studies can help researchers find out what information animals can learn or recall prior to and following ablation of a particular brain area.
Collapse
|
2
|
Wang SE, Ko SY, Jo S, Jo HR, Han J, Kim YS, Son H. Downregulation of SIRT2 by Chronic Stress Reduces Expression of Synaptic Plasticity-related Genes through the Upregulation of Ehmt2. Exp Neurobiol 2019; 28:537-546. [PMID: 31495082 PMCID: PMC6751865 DOI: 10.5607/en.2019.28.4.537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Silent information regulator 2 (Sirtuin2 / SIRT2) is a NAD+-dependent deacetylase that regulates the cellular oxidative stress response. It modulates transcriptional silencing and protein stability through deacetylation of target proteins including histones. Previous studies have shown that SIRT2 plays a role in mood disorders and hippocampus-dependent cognitive function, but the underlying neurobiological mechanism is poorly understood. Here, we report that chronic stress suppresses SIRT2 expression in the hippocampus. Molecular and biochemical analyses indicate that the stress-induced decrease in the SIRT2 expression downregulates synaptic plasticity-related genes in the hippocampus through the increase of euchromatic histone-lysine N-methyltransferase 2 (Ehmt2) (also known as G9a). shRNA-mediated knockdown of SIRT2 in the dentate gyrus alters the expression of synaptic plasticity- related genes in a way similar to those induced by chronic stress, and produces depression-like behaviors. Our results indicate that SIRT2 plays an important role in the response to stress, thereby modulating depression-like behaviors.
Collapse
Affiliation(s)
- Sung Eun Wang
- Hanyang Biomedical Research Institute, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Seung Yeon Ko
- Hanyang Biomedical Research Institute, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Sungsin Jo
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Hye-Ryeong Jo
- Hanyang Biomedical Research Institute, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Jinil Han
- Gencurix, Inc, Hanhwan Bizmetro 1, Seoul 08394, Korea
| | - Yong-Seok Kim
- Hanyang Biomedical Research Institute, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Hyeon Son
- Hanyang Biomedical Research Institute, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
3
|
Sommerlandt FMJ, Brockmann A, Rössler W, Spaethe J. Immediate early genes in social insects: a tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity. Cell Mol Life Sci 2019; 76:637-651. [PMID: 30349993 PMCID: PMC6514070 DOI: 10.1007/s00018-018-2948-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/31/2023]
Abstract
Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying complex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research directions.
Collapse
Affiliation(s)
- Frank M J Sommerlandt
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Wu X, Li Z, Chen K, Yin P, Zheng L, Sun S, Chen X. Egr-1 transactivates WNT5A gene expression to inhibit glucose-induced β-cell proliferation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30218-9. [PMID: 30025875 DOI: 10.1016/j.bbagrm.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023]
Abstract
Selective β-cell loss is a characteristic of type 2 diabetes mellitus (T2DM). Inhibition of glucose-stimulated β-cell proliferation is one of the in vivo results of the lipotoxicity of saturated fatty acids (SFAs). However, the mechanism by which lipotoxicity inhibits β-cell proliferation is still unclear. In this study, we found palmitate, a saturated fatty acid, inhibited the β-cell proliferation induced by high glucose through the induction of Wnt5a expression in vitro and in vivo. We also found that Wnt5a was both sufficient and necessary for inhibition of β-cell proliferation. Additionally, Egr-1, but not NF-κB, FOXO1, Smad2, Smad3, SP1 or SP3 mediated the expression of Wnt5a. Deletion and site-directed mutagenesis of the WNT5A promoter revealed that activation of WNT5A gene transcription depends primarily on a putative Egr-binding sequence between nucleotides -52 to -44, upstream of the transcription start site. Furthermore, Egr-1 bound directly to this sequence in response to palmitate treatment, both in vitro and in vivo. Moreover, after mice islets were treated with Egr inhibitors, the expression of Wnt5a decreased significantly and the glucose-induced β-cell proliferation inhibited by palmitate was resumed. These findings establish Wnt5a as an Egr-1 target gene in β-cells, uncovering a novel Egr-1/Wnt5a pathway by which saturated free fatty acids block glucose-induced β-cell proliferation. Our study lends support for the potential of Egr-1 inhibitors or Wnt5a antibodies as therapeutics for the treatment of T2DM.
Collapse
Affiliation(s)
- XingEr Wu
- The Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China; Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - ZeHong Li
- Guzhen Sub-bureau, Zhongshan Public Security Bureau, Zhongshan 528400, Guangdong, China
| | - Kang Chen
- Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China
| | - PeiHong Yin
- Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - ShiJun Sun
- The Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China.
| | - XiaoYu Chen
- The Eighth Affiliated Hospital of Sun Yat-Sen University, Futian, 518000 Shenzhen, China.
| |
Collapse
|
5
|
González-Salinas S, Medina AC, Alvarado-Ortiz E, Antaramian A, Quirarte GL, Prado-Alcalá RA. Retrieval of Inhibitory Avoidance Memory Induces Differential Transcription of arc in Striatum, Hippocampus, and Amygdala. Neuroscience 2018; 382:48-58. [PMID: 29723575 DOI: 10.1016/j.neuroscience.2018.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/27/2018] [Accepted: 04/20/2018] [Indexed: 12/29/2022]
Abstract
Similar to the hippocampus and amygdala, the dorsal striatum is involved in memory retrieval of inhibitory avoidance, a task commonly used to study memory processes. It has been reported that memory retrieval of fear conditioning regulates gene expression of arc and zif268 in the amygdala and the hippocampus, and it is surprising that only limited effort has been made to study the molecular events caused by retrieval in the striatum. To further explore the involvement of immediate early genes in retrieval, we used real-time PCR to analyze arc and zif268 transcription in dorsal striatum, dorsal hippocampus, and amygdala at different time intervals after retrieval of step-through inhibitory avoidance memory. We found that arc expression in the striatum increased 30 min after retrieval while no changes were observed in zif268 in this region. Expression of arc and zif268 also increased in the dorsal hippocampus but the changes were attributed to context re-exposure. Control procedures indicated that in the amygdala, arc and zif268 expression was not dependent on retrieval. Our data indicate that memory retrieval of inhibitory avoidance induces arc gene expression in the dorsal striatum, caused, very likely, by the instrumental component of the task. Striatal arc expression after retrieval may induce structural and functional changes in the neurons involved in this process.
Collapse
Affiliation(s)
- Sofía González-Salinas
- Escuela Superior Tepeji del Río, Universidad Autónoma del Estado de Hidalgo, Tepeji del Río, Hidalgo 42850, México.
| | - Andrea C Medina
- Laboratorio de Aprendizaje y Memoria, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro 76230, México.
| | - Eduardo Alvarado-Ortiz
- Laboratorio de Aprendizaje y Memoria, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro 76230, México.
| | - Anaid Antaramian
- Unidad de Proteogenómica, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro 76230, México.
| | - Gina L Quirarte
- Laboratorio de Aprendizaje y Memoria, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro 76230, México.
| | - Roberto A Prado-Alcalá
- Laboratorio de Aprendizaje y Memoria, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro 76230, México.
| |
Collapse
|
6
|
Jacob S, Nayak S, Kakar R, Chaudhari UK, Joshi D, Vundinti BR, Fernandes G, Barai RS, Kholkute SD, Sachdeva G. A triad of telomerase, androgen receptor and early growth response 1 in prostate cancer cells. Cancer Biol Ther 2017; 17:439-48. [PMID: 27003515 DOI: 10.1080/15384047.2016.1156255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Telomerase activation is one of the key mechanisms that allow cells to bypass replicative senescence. Telomerase activity is primarily regulated at the level of transcription of its catalytic unit- hTERT. Prostate cancer (PCa), akin to other cancers, is characterized by high telomerase activity. Existing data suggest that hTERT expression and telomerase activity are positively regulated by androgenic stimuli in androgen-dependent prostate cancer (ADPC) cells. A part of the present study reaffirmed this by demonstrating a decline in the hTERT expression and telomerase activity on "loss of AR" in ADPC cells. The study further addressed 2 unresolved queries, i) whether AR-mediated signaling is of any relevance to hTERT expression in castration-resistant prostate cancer (CRPC) and ii) whether this signaling involves EGR1. Our data suggest that AR-mediated signaling negatively regulates hTERT expression in CRPC cells. Incidental support for the possibility of EGR1 being a regulator of hTERT expression in PCa was provided by i) immunolocalization of hTERT and EGR1 proteins in the same cell type (secretory epithelium) of PCa and BPH tissues; ii) significantly (p< 0.001) higher levels of both these proteins in CRPC (PC3 and DU145), compared with ADPC (LNCaP) cells. A direct evidence for the role of EGR1 in hTERT expression was evident by a significant (p<0.0001) decrease in the hTERT transcript levels in the EGR1-silenced CRPC cells. Further, "gain of AR" led to a significant reduction in the levels of hTERT and EGR1 in CRPC cells. However, restoration of EGR1 levels prevented the decline in the hTERT transcript levels in these cells. Taken together, our data indicate that AR regulates the expression of EGR1, which in turn acts as a positive regulator of hTERT expression in CRPC cells. Thus, AR exerts an inhibitory effect on hTERT expression and telomerase activity by modulating EGR1 levels in CRPC cells.
Collapse
Affiliation(s)
- Sheeba Jacob
- a Primate Biology Division, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR) , Mumbai , India
| | - Sumeet Nayak
- a Primate Biology Division, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR) , Mumbai , India
| | - Ruchi Kakar
- a Primate Biology Division, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR) , Mumbai , India
| | - Uddhav K Chaudhari
- a Primate Biology Division, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR) , Mumbai , India
| | - Dolly Joshi
- b Cytogenetics Laboratory, National Institute of Immunohaematology (NIIH), ICMR , Mumbai , India
| | - Babu R Vundinti
- b Cytogenetics Laboratory, National Institute of Immunohaematology (NIIH), ICMR , Mumbai , India
| | | | - Ram S Barai
- d Biomedical Informatics Centre, NIRRH, ICMR , Mumbai , India
| | - Sanjeeva D Kholkute
- a Primate Biology Division, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR) , Mumbai , India
| | - Geetanjali Sachdeva
- a Primate Biology Division, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR) , Mumbai , India
| |
Collapse
|
7
|
Wu Y, Ma S, Xia Y, Lu Y, Xiao S, Cao Y, Zhuang S, Tan X, Fu Q, Xie L, Li Z, Yuan Z. Loss of GCN5 leads to increased neuronal apoptosis by upregulating E2F1- and Egr-1-dependent BH3-only protein Bim. Cell Death Dis 2017; 8:e2570. [PMID: 28125090 PMCID: PMC5386373 DOI: 10.1038/cddis.2016.465] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022]
Abstract
Cellular acetylation homeostasis is a kinetic balance precisely controlled by histone acetyl-transferase (HAT) and histone deacetylase (HDAC) activities. The loss of the counterbalancing function of basal HAT activity alters the precious HAT:HDAC balance towards enhanced histone deacetylation, resulting in a loss of acetylation homeostasis, which is closely associated with neuronal apoptosis. However, the critical HAT member whose activity loss contributes to neuronal apoptosis remains to be identified. In this study, we found that inactivation of GCN5 by either pharmacological inhibitors, such as CPTH2 and MB-3, or by inactivation with siRNAs leads to a typical apoptosis in cultured cerebellar granule neurons. Mechanistically, the BH3-only protein Bim is transcriptionally upregulated by activated Egr-1 and E2F1 and mediates apoptosis following GCN5 inhibition. Furthermore, in the activity withdrawal- or glutamate-evoked neuronal apoptosis models, GCN5 loses its activity, in contrast to Bim induction. Adenovirus-mediated overexpression of GCN5 suppresses Bim induction and apoptosis. Interestingly, the loss of GCN5 activity and the induction of Egr-1, E2F1 and Bim are involved in the early brain injury (EBI) following subarachnoid haemorrhage (SAH) in rats. HDAC inhibition not only significantly rescues Bim expression and apoptosis induced by either potassium deprivation or GCN5 inactivation but also ameliorates these events and EBI in SAH rats. Taken together, our results highlight a new mechanism by which the loss of GCN5 activity promotes neuronal apoptosis through the transcriptional upregulation of Bim, which is probably a critical event in triggering neuronal death when cellular acetylation homeostasis is impaired.
Collapse
Affiliation(s)
- Yanna Wu
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Shanshan Ma
- Guangdong Province Key laboratory of Brain Function and Disease, Guangzhou 510006, China
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Yong Xia
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Yangpeng Lu
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Shiyin Xiao
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Yali Cao
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Sidian Zhuang
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Xiangpeng Tan
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Qiang Fu
- Department of General Dentistry, 323 Hospital of the People's Liberation Army, Xi'an, China
| | - Longchang Xie
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Zhiming Li
- Department of Radiology, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhongmin Yuan
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
- Guangdong Province Key laboratory of Brain Function and Disease, Guangzhou 510006, China
| |
Collapse
|
8
|
McVea DA, Murphy TH, Mohajerani MH. Large Scale Cortical Functional Networks Associated with Slow-Wave and Spindle-Burst-Related Spontaneous Activity. Front Neural Circuits 2016; 10:103. [PMID: 28066190 PMCID: PMC5174115 DOI: 10.3389/fncir.2016.00103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 11/30/2016] [Indexed: 11/13/2022] Open
Abstract
Cortical sensory systems are active with rich patterns of activity during sleep and under light anesthesia. Remarkably, this activity shares many characteristics with those present when the awake brain responds to sensory stimuli. We review two specific forms of such activity: slow-wave activity (SWA) in the adult brain and spindle bursts in developing brain. SWA is composed of 0.5-4 Hz resting potential fluctuations. Although these fluctuations synchronize wide regions of cortex, recent large-scale imaging has shown spatial details of their distribution that reflect underlying cortical structural projections and networks. These networks are regulated, as prior awake experiences alter both the spatial and temporal features of SWA in subsequent sleep. Activity patterns of the immature brain, however, are very different from those of the adult. SWA is absent, and the dominant pattern is spindle bursts, intermittent high frequency oscillations superimposed on slower depolarizations within sensory cortices. These bursts are driven by intrinsic brain activity, which act to generate peripheral inputs, for example via limb twitches. They are present within developing sensory cortex before they are mature enough to exhibit directed movements and respond to external stimuli. Like in the adult, these patterns resemble those evoked by sensory stimulation when awake. It is suggested that spindle-burst activity is generated purposefully by the developing nervous system as a proxy for true external stimuli. While the sleep-related functions of both slow-wave and spindle-burst activity may not be entirely clear, they reflect robust regulated phenomena which can engage select wide-spread cortical circuits. These circuits are similar to those activated during sensory processing and volitional events. We highlight these two patterns of brain activity because both are prominent and well-studied forms of spontaneous activity that will yield valuable insights into brain function in the coming years.
Collapse
Affiliation(s)
- David A. McVea
- Department of Psychiatry, University of British ColumbiaVancouver, BC, Canada
- Brain Research Centre, University of British ColumbiaVancouver, BC, Canada
| | - Timothy H. Murphy
- Department of Psychiatry, University of British ColumbiaVancouver, BC, Canada
- Brain Research Centre, University of British ColumbiaVancouver, BC, Canada
| | - Majid H. Mohajerani
- Canadian Center for Behavioural Neuroscience, University of LethbridgeLethbridge, AB, Canada
| |
Collapse
|
9
|
Pfaffenseller B, da Silva Magalhães PV, De Bastiani MA, Castro MAA, Gallitano AL, Kapczinski F, Klamt F. Differential expression of transcriptional regulatory units in the prefrontal cortex of patients with bipolar disorder: potential role of early growth response gene 3. Transl Psychiatry 2016; 6:e805. [PMID: 27163206 PMCID: PMC5070056 DOI: 10.1038/tp.2016.78] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 01/08/2023] Open
Abstract
Bipolar disorder (BD) is a severe mental illness with a strong genetic component. Despite its high degree of heritability, current genetic studies have failed to reveal individual loci of large effect size. In lieu of focusing on individual genes, we investigated regulatory units (regulons) in BD to identify candidate transcription factors (TFs) that regulate large groups of differentially expressed genes. Network-based approaches should elucidate the molecular pathways governing the pathophysiology of BD and reveal targets for potential therapeutic intervention. The data from a large-scale microarray study was used to reconstruct the transcriptional associations in the human prefrontal cortex, and results from two independent microarray data sets to obtain BD gene signatures. The regulatory network was derived by mapping the significant interactions between known TFs and all potential targets. Five regulons were identified in both transcriptional network models: early growth response 3 (EGR3), TSC22 domain family, member 4 (TSC22D4), interleukin enhancer-binding factor 2 (ILF2), Y-box binding protein 1 (YBX1) and MAP-kinase-activating death domain (MADD). With a high stringency threshold, the consensus across tests was achieved only for the EGR3 regulon. We identified EGR3 in the prefrontal cortex as a potential key target, robustly repressed in both BD signatures. Considering that EGR3 translates environmental stimuli into long-term changes in the brain, disruption in biological pathways involving EGR3 may induce an impaired response to stress and influence on risk for psychiatric disorders, particularly BD.
Collapse
Affiliation(s)
- B Pfaffenseller
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - P V da Silva Magalhães
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, 2350 Ramiro Barcelos Street, Porto Alegre 90035 903, Brazil. E-mail:
| | - M A De Bastiani
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Polytechnic Center, Curitiba, Brazil
| | - A L Gallitano
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - F Kapczinski
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - F Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Wu IT, Tang TH, Ko MC, Chiu CY, Lu KT. Amygdaloid zif268 participated in the D-cycloserine facilitation effect on the extinction of conditioned fear. Psychopharmacology (Berl) 2015; 232:3809-19. [PMID: 26282370 DOI: 10.1007/s00213-015-4042-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/30/2015] [Indexed: 11/30/2022]
Abstract
RATIONALE The involvement of glutamate in fear extinction is perhaps the most promising in terms of facilitating clinical interventions for posttraumatic stress disorder (PTSD). This study was aimed at elucidating the possible role of zif268 on the D-cycloserine (DCS) facilitation effect on extinction. OBJECTIVE We investigated the association between zif268 and the extinction of conditioned fear by using antisense oligodeoxynucleotide (ODN) of zif268 and the fear-potentiated startle paradigm. METHODS Male adult Wistar rats were injected DCS (15 mg/kg, IP) 15 min prior to the extinction training, administered with antisense or sense ODN (800 pmol) of zif268 and subjected for fear-potentiated startle paradigm (FPS) and Western blot. RESULTS Either context exposure or cue exposure elevated the expression of zif268 in the basolateral nucleus of the amygdala (BLA) (p < 0.05 and p < 0.01, respectively) compared to the control group. Additionally, zif268 expression in BLA was further elevated by the glutamate NMDA receptor agonist DCS administration. Intra-amygdaloid injection of the antisense ODN of zif268 blocked the facilitation effect of DCS on the extinction of conditioned fear. Subsequent control experiments indicated that administration of vehicle or zif268 sense ODN did not alter the facilitation of DCS and that the blockage effect of zif268 antisense ODN was not due to lasting damage to the amygdala. CONCLUSIONS Our results suggest that zif268 within the amygdala participates in the DCS facilitation effect on the extinction of conditioned fear.
Collapse
Affiliation(s)
- I-Tek Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Huckleberry KA, Kane GA, Mathis RJ, Cook SG, Clutton JE, Drew MR. Behavioral experience induces zif268 expression in mature granule cells but suppresses its expression in immature granule cells. Front Syst Neurosci 2015; 9:118. [PMID: 26347620 PMCID: PMC4543859 DOI: 10.3389/fnsys.2015.00118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/05/2015] [Indexed: 01/10/2023] Open
Abstract
Thousands of neurons are born each day in the dentate gyrus (DG), but many of these cells die before reaching maturity. Both death and survival of adult-born neurons are regulated by neuronal activity in the DG. The immediate-early gene (IEG) zif268 appears to be an important mediator of these effects, as its expression can be induced by neural activity and knockout of zif268 impairs survival of adult-born neurons (Richardson et al., 1992; Veyrac et al., 2013). Despite the apparent importance of zif268 for adult neurogenesis, its behavior-induced expression has not been fully characterized in adult-born neurons. Here we characterize behavior-evoked expression of zif268 in mature and newborn dentate granule cells (DGCs). We first quantified zif268 expression in doublecortin-positive (DCX+) immature neurons and in the general granule cell population after brief exposure to a novel environment (NE). In the general granule cell population, zif268 expression peaked 1 h after NE exposure and returned to baseline by 8 h post-exposure. However, in the DCX+ cells, zif268 expression was suppressed relative to home cage for at least 8 h post-exposure. We next asked whether suppression of zif268 in DCX+ immature cells occurs in other behavioral paradigms that recruit the hippocampus. Exposure to Morris water maze (MWM) training, an enriched environment, or a NE caused approximately equal suppression of zif268 expression in DCX+ cells and approximately equal activation of zif268 expression among the general granule cell population. The same behavioral procedures activated zif268 expression in 6-week-old BrdU-labeled adult-born neurons, indicating that zif268 suppression is specific to immature neurons. Finally, we asked whether zif268 suppression varied as a function of age within the DCX+ population, which ranges in age from 0 to approximately 4 weeks. NE exposure had no significant effect on zif268 expression in 2- or 4-week-old BrdU-labeled neurons, but it significantly suppressed zif268 expression in 3-week-old neurons. In summary, behavioral experience transiently activated expression of zif268 in mature granule cells but caused a more long-lasting suppression of zif268 expression in immature, adult-born granule cells. We hypothesize that zif268 suppression inhibits memory-related synaptic plasticity in immature neurons or mediates learning-induced apoptosis of immature adult-born neurons.
Collapse
Affiliation(s)
- Kylie A Huckleberry
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin Austin, TX, USA
| | - Gary A Kane
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin Austin, TX, USA
| | - Rita J Mathis
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin Austin, TX, USA
| | - Sarah G Cook
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin Austin, TX, USA
| | - Jonathan E Clutton
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin Austin, TX, USA
| | - Michael R Drew
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin Austin, TX, USA
| |
Collapse
|
12
|
Pourié G, Martin N, Bossenmeyer-Pourié C, Akchiche N, Guéant-Rodriguez RM, Geoffroy A, Jeannesson E, El Hajj Chehadeh S, Mimoun K, Brachet P, Koziel V, Alberto JM, Helle D, Debard R, Leininger B, Daval JL, Guéant JL. Folate- and vitamin B12-deficient diet during gestation and lactation alters cerebellar synapsin expression via impaired influence of estrogen nuclear receptor α. FASEB J 2015; 29:3713-25. [PMID: 26018677 DOI: 10.1096/fj.14-264267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/11/2015] [Indexed: 02/06/2023]
Abstract
Deficiency in the methyl donors vitamin B12 and folate during pregnancy and postnatal life impairs proper brain development. We studied the consequences of this combined deficiency on cerebellum plasticity in offspring from rat mothers subjected to deficient diet during gestation and lactation and in rat neuroprogenitor cells expressing cerebellum markers. The major proteomic change in cerebellum of 21-d-old deprived females was a 2.2-fold lower expression of synapsins, which was confirmed in neuroprogenitors cultivated in the deficient condition. A pathway analysis suggested that these proteomic changes were related to estrogen receptor α (ER-α)/Src tyrosine kinase. The influence of impaired ER-α pathway was confirmed by abnormal negative geotaxis test at d 19-20 and decreased phsophorylation of synapsins in deprived females treated by ER-α antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP). This effect was consistent with 2-fold decreased expression and methylation of ER-α and subsequent decreased ER-α/PPAR-γ coactivator 1 α (PGC-1α) interaction in deficiency condition. The impaired ER-α pathway led to decreased expression of synapsins through 2-fold decreased EGR-1/Zif-268 transcription factor and to 1.7-fold reduced Src-dependent phosphorylation of synapsins. The treatment of neuroprogenitors with either MPP or PP1 (4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline, 6,7-dimethoxy-N-(4-phenoxyphenyl)-4-quinazolinamine, SKI-1, Src-l1) Src inhibitor produced similar effects. In conclusion, the deficiency during pregnancy and lactation impairs the expression of synapsins through a deregulation of ER-α pathway.
Collapse
Affiliation(s)
- Grégory Pourié
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Nicolas Martin
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Carine Bossenmeyer-Pourié
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Nassila Akchiche
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Rosa Maria Guéant-Rodriguez
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Andréa Geoffroy
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Elise Jeannesson
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Sarah El Hajj Chehadeh
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Khalid Mimoun
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Patrick Brachet
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Violette Koziel
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Jean-Marc Alberto
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Deborah Helle
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Renée Debard
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Brigitte Leininger
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Jean-Luc Daval
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Jean-Louis Guéant
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| |
Collapse
|
13
|
Mo J, Kim CH, Lee D, Sun W, Lee HW, Kim H. Early growth response 1 (Egr-1) directly regulates GABAA receptor α2, α4, and θ subunits in the hippocampus. J Neurochem 2015; 133:489-500. [PMID: 25708312 DOI: 10.1111/jnc.13077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/10/2015] [Accepted: 02/17/2015] [Indexed: 11/28/2022]
Abstract
The homeostatic regulation of neuronal activity in glutamatergic and GABAergic synapses is critical for neural circuit development and synaptic plasticity. The induced expression of the transcription factor early growth response 1 (Egr-1) in neurons is tightly associated with many forms of neuronal activity, but the underlying target genes in the brain remained to be elucidated. This study uses a quantitative real-time PCR approach, in combination with in vivo chromatin immunoprecipitation, and reveals that GABAA receptor subunit, GABRA2 (α2), GABRA4 (α4), and GABRQ (θ) genes, are transcriptional targets of Egr-1. Transfection of a construct that over-expresses Egr-1 in neuroblastoma (Neuro2A) cells up-regulates the α2, α4, and θ subunits. Given that Egr-1 knockout mice display less GABRA2, GABRA4, and GRBRQ mRNA in the hippocampus, and that Egr-1 directly binds to their promoters and induces mRNA expression, the present findings support a role for Egr-1 as a major regulator for altered GABAA receptor composition in homeostatic plasticity, in a glutamatergic activity-dependent manner. The early growth response 1 (Egr-1) is an inducible transcription factor to mediate rapid gene expression by neuronal activity. However, its underlying molecular target genes and mechanisms are not fully understood. We suggest that GABAA receptor subunits, GABRA2 (α2), GABRA4 (α4), and GABRQ (θ) genes are transcriptional targets of Egr-1. Neuronal activity-dependent up-regulation of Egr-1 might lead to altered subtypes of GABAA receptors for the maintenance of homeostatic excitatory and inhibitory balance for the regulation of synaptic strength.
Collapse
Affiliation(s)
- Jiwon Mo
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
14
|
Noninvasive strategies to promote functional recovery after stroke. Neural Plast 2013; 2013:854597. [PMID: 23864962 PMCID: PMC3707231 DOI: 10.1155/2013/854597] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/02/2013] [Indexed: 01/17/2023] Open
Abstract
Stroke is a common and disabling global health-care problem, which is the third most common cause of death and one of the main causes of acquired adult disability in many countries. Rehabilitation interventions are a major component of patient care. In the last few years, brain stimulation, mirror therapy, action observation, or mental practice with motor imagery has emerged as interesting options as add-on interventions to standard physical therapies. The neural bases for poststroke recovery rely on the concept of plasticity, namely, the ability of central nervous system cells to modify their structure and function in response to external stimuli. In this review, we will discuss recent noninvasive strategies employed to enhance functional recovery in stroke patients and we will provide an overview of neural plastic events associated with rehabilitation in preclinical models of stroke.
Collapse
|
15
|
Cyriac A, Holmes G, Lass J, Belchenko D, Calin-Jageman RJ, Calin-Jageman IE. An Aplysia Egr homolog is rapidly and persistently regulated by long-term sensitization training. Neurobiol Learn Mem 2013; 102:43-51. [PMID: 23567107 DOI: 10.1016/j.nlm.2013.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/21/2013] [Accepted: 03/24/2013] [Indexed: 02/03/2023]
Abstract
The Egr family of transcription factors plays a key role in long-term plasticity and memory in a number of vertebrate species. Here we identify and characterize ApEgr (GenBank: KC608221), an Egr homolog in the marine mollusk Aplysia californica. ApEgr codes for a predicted 593-amino acid protein with the highly conserved trio of zinc-fingered domains in the C-terminus that characterizes the Egr family of transcription factors. Promoter analysis shows that the ApEgr protein selectively recognizes the GSG motif recognized by vertebrate Egrs. Like mammalian Egrs, ApEgr is constitutively expressed in a range of tissues, including the CNS. Moreover, expression of ApEgr is bi-directionally regulated by changes in neural activity. Of most interest, the association between ApEgr function and memory may be conserved in Aplysia, as we observe rapid and long-lasting up-regulation of expression after long-term sensitization training. Taken together, our results suggest that Egrs may have memory functions that are conserved from mammals to mollusks.
Collapse
Affiliation(s)
- Ashly Cyriac
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | | | | | | | | | | |
Collapse
|
16
|
González-Castañeda RE, Sánchez-González VJ, Flores-Soto M, Vázquez-Camacho G, Macías-Islas MA, Ortiz GG. Neural restrictive silencer factor and choline acetyltransferase expression in cerebral tissue of Alzheimer's Disease patients: A pilot study. Genet Mol Biol 2013; 36:28-36. [PMID: 23569405 PMCID: PMC3615522 DOI: 10.1590/s1415-47572013000100005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/15/2012] [Indexed: 02/05/2023] Open
Abstract
Decreased Choline Acetyltransferase (ChAT) brain level is one of the main biochemical disorders in Alzheimer’s Disease (AD). In rodents, recent data show that the CHAT gene can be regulated by a neural restrictive silencer factor (NRSF). The aim of the present work was to evaluate the gene and protein expression of CHAT and NRSF in frontal, temporal, entorhinal and parietal cortices of AD patient brains. Four brains from patients with AD and four brains from subjects without dementia were studied. Cerebral tissues were obtained and processed by the guanidine isothiocyanate method for RNA extraction. CHAT and NRSF gene and protein expression were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. CHAT gene expression levels were 39% lower in AD patients as compared to the control group (p < 0.05, U test). ChAT protein levels were reduced by 17% (p = 0.02, U test). NRSF gene expression levels were 86% higher in the AD group (p = 0.001, U test) as compared to the control group. In the AD subjects, the NRSF protein levels were 57% higher (p > 0.05, U test) than in the control subjects. These findings suggest for the first time that in the brain of AD patients high NRSF protein levels are related to low CHAT gene expression levels.
Collapse
Affiliation(s)
- Rocío E González-Castañeda
- Laboratorio de Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México. ; Instituto Tecnológico de Estudios Superiores de Monterrey, División de Ciencias de la Salud, Escuela de Medicina, Campus Guadalajara, Guadalajara, Jalisco, México
| | | | | | | | | | | |
Collapse
|
17
|
Changes in the Egr1 and Arc expression in brain structures of pentylenetetrazole-kindled rats. Pharmacol Rep 2013; 65:368-78. [DOI: 10.1016/s1734-1140(13)71012-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 11/07/2012] [Indexed: 11/20/2022]
|
18
|
Paonessa F, Latifi S, Scarongella H, Cesca F, Benfenati F. Specificity protein 1 (Sp1)-dependent activation of the synapsin I gene (SYN1) is modulated by RE1-silencing transcription factor (REST) and 5'-cytosine-phosphoguanine (CpG) methylation. J Biol Chem 2012; 288:3227-39. [PMID: 23250796 PMCID: PMC3561544 DOI: 10.1074/jbc.m112.399782] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The development and function of the nervous system are directly dependent on a well defined pattern of gene expression. Indeed, perturbation of transcriptional activity or epigenetic modifications of chromatin can dramatically influence neuronal phenotypes. The phosphoprotein synapsin I (Syn I) plays a crucial role during axonogenesis and synaptogenesis as well as in synaptic transmission and plasticity of mature neurons. Abnormalities in SYN1 gene expression have been linked to important neuropsychiatric disorders, such as epilepsy and autism. SYN1 gene transcription is suppressed in non-neural tissues by the RE1-silencing transcription factor (REST); however, the molecular mechanisms that allow the constitutive expression of this genetic region in neurons have not been clarified yet. Herein we demonstrate that a conserved region of human and mouse SYN1 promoters contains cis-sites for the transcriptional activator Sp1 in close proximity to REST binding motifs. Through a series of functional assays, we demonstrate a physical interaction of Sp1 on the SYN1 promoter and show that REST directly inhibits Sp1-mediated transcription, resulting in SYN1 down-regulation. Upon differentiation of neuroblastoma Neuro2a cells, we observe a decrease in endogenous REST and a higher stability of Sp1 on target GC boxes, resulting in an increase of SYN1 transcription. Moreover, methylation of Sp1 cis-sites in the SYN1 promoter region could provide an additional level of transcriptional regulation. Our results introduce Sp1 as a fundamental activator of basal SYN1 gene expression, whose activity is modulated by the neural master regulator REST and CpG methylation.
Collapse
Affiliation(s)
- Francesco Paonessa
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | | | | | | | | |
Collapse
|
19
|
Martin N, Bossenmeyer-Pourié C, Koziel V, Jazi R, Audonnet S, Vert P, Guéant JL, Daval JL, Pourié G. Non-injurious neonatal hypoxia confers resistance to brain senescence in aged male rats. PLoS One 2012; 7:e48828. [PMID: 23173039 PMCID: PMC3500249 DOI: 10.1371/journal.pone.0048828] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/05/2012] [Indexed: 11/19/2022] Open
Abstract
Whereas brief acute or intermittent episodes of hypoxia have been shown to exert a protective role in the central nervous system and to stimulate neurogenesis, other studies suggest that early hypoxia may constitute a risk factor that influences the future development of mental disorders. We therefore investigated the effects of a neonatal “conditioning-like” hypoxia (100% N2, 5 min) on the brain and the cognitive outcomes of rats until 720 days of age (physiologic senescence). We confirmed that such a short hypoxia led to brain neurogenesis within the ensuing weeks, along with reduced apoptosis in the hippocampus involving activation of Erk1/2 and repression of p38 and death-associated protein (DAP) kinase. At 21 days of age, increased thicknesses and cell densities were recorded in various subregions, with strong synapsin activation. During aging, previous exposure to neonatal hypoxia was associated with enhanced memory retrieval scores specifically in males, better preservation of their brain integrity than controls, reduced age-related apoptosis, larger hippocampal cell layers, and higher expression of glutamatergic and GABAergic markers. These changes were accompanied with a marked expression of synapsin proteins, mainly of their phosphorylated active forms which constitute major players of synapse function and plasticity, and with increases of their key regulators, i.e. Erk1/2, the transcription factor EGR-1/Zif-268 and Src kinase. Moreover, the significantly higher interactions between PSD-95 scaffolding protein and NMDA receptors measured in the hippocampus of 720-day-old male animals strengthen the conclusion of increased synaptic functional activity and plasticity associated with neonatal hypoxia. Thus, early non-injurious hypoxia may trigger beneficial long term effects conferring higher resistance to senescence in aged male rats, with a better preservation of cognitive functions.
Collapse
Affiliation(s)
- Nicolas Martin
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | - Carine Bossenmeyer-Pourié
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | - Violette Koziel
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | - Rozat Jazi
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | - Sandra Audonnet
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | - Paul Vert
- Service de Médecine Néonatale, Maternité Régionale Universitaire, Nancy, France
| | - Jean-Louis Guéant
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
- IRCCS, Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina (EN), Italy
| | - Jean-Luc Daval
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | - Grégory Pourié
- Inserm U954, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
20
|
van Loo KMJ, Schaub C, Pernhorst K, Yaari Y, Beck H, Schoch S, Becker AJ. Transcriptional regulation of T-type calcium channel CaV3.2: bi-directionality by early growth response 1 (Egr1) and repressor element 1 (RE-1) protein-silencing transcription factor (REST). J Biol Chem 2012; 287:15489-501. [PMID: 22431737 DOI: 10.1074/jbc.m111.310763] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pore-forming Ca(2+) channel subunit Ca(V)3.2 mediates a low voltage-activated (T-type) Ca(2+) current (I(CaT)) that contributes pivotally to neuronal and cardiac pacemaker activity. Despite the importance of tightly regulated Ca(V)3.2 levels, the mechanisms regulating its transcriptional dynamics are not well understood. Here, we have identified two key factors that up- and down-regulate the expression of the gene encoding Ca(V)3.2 (Cacna1h). First, we determined the promoter region and observed several stimulatory and inhibitory clusters. Furthermore, we found binding sites for the transcription factor early growth response 1 (Egr1/Zif268/Krox-24) to be highly overrepresented within the Ca(V)3.2 promoter region. mRNA expression analyses and dual-luciferase promoter assays revealed that the Ca(V)3.2 promoter was strongly activated by Egr1 overexpression in vitro and in vivo. Subsequent chromatin immunoprecipitation assays in NG108-15 cells and mouse hippocampi confirmed specific Egr1 binding to the Ca(V)3.2 promoter. Congruently, whole-cell I(CaT) values were significantly larger after Egr1 overexpression. Intriguingly, Egr1-induced activation of the Ca(V)3.2 promoter was effectively counteracted by the repressor element 1-silencing transcription factor (REST). Thus, Egr1 and REST can bi-directionally regulate Ca(V)3.2 promoter activity and mRNA expression and, hence, the size of I(CaT). This mechanism has critical implications for the regulation of neuronal and cardiac Ca(2+) homeostasis under physiological conditions and in episodic disorders such as arrhythmias and epilepsy.
Collapse
Affiliation(s)
- Karen M J van Loo
- Department of Neuropathology, University of Bonn Medical Center, D-53105 Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
While there is ample agreement that the cognitive role of sleep is explained by sleep-dependent synaptic changes, consensus is yet to be established as to the nature of these changes. Some researchers believe that sleep promotes global synaptic downscaling, leading to a non-Hebbian reset of synaptic weights that is putatively necessary for the acquisition of new memories during ensuing waking. Other investigators propose that sleep also triggers experience-dependent, Hebbian synaptic upscaling able to consolidate recently acquired memories. Here, I review the molecular and physiological evidence supporting these views, with an emphasis on the calcium signaling pathway. I argue that the available data are consistent with sleep promoting experience-dependent synaptic embossing, understood as the simultaneous non-Hebbian downscaling and Hebbian upscaling of separate but complementary sets of synapses, heterogeneously activated at the time of memory encoding and therefore differentially affected by sleep.
Collapse
Affiliation(s)
- Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
22
|
Jiang X, Tian Q, Wang Y, Zhou XW, Xie JZ, Wang JZ, Zhu LQ. Acetyl-L-Carnitine ameliorates spatial memory deficits induced by inhibition of phosphoinositol-3 kinase and protein kinase C. J Neurochem 2011; 118:864-78. [DOI: 10.1111/j.1471-4159.2011.07355.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Mayer SI, Müller I, Mannebach S, Endo T, Thiel G. Signal transduction of pregnenolone sulfate in insulinoma cells: activation of Egr-1 expression involving TRPM3, voltage-gated calcium channels, ERK, and ternary complex factors. J Biol Chem 2011; 286:10084-96. [PMID: 21257751 DOI: 10.1074/jbc.m110.202697] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The neurosteroid pregnenolone sulfate acts on the nervous system by modifying neurotransmission and receptor functions, thus influencing synaptic strength, neuronal survival, and neurogenesis. Here we show that pregnenolone sulfate induces a signaling cascade in insulinoma cells leading to enhanced expression of the zinc finger transcription factor Egr-1 and Egr-1-responsive target genes. Pharmacological and genetic experiments revealed that influx of Ca(2+) ions via transient receptor potential M3 and voltage-gated Ca(2+) channels, elevation of the cytosolic Ca(2+) level, and activation of ERK are essential for connecting pregnenolone sulfate stimulation with enhanced Egr-1 biosynthesis. Expression of a dominant-negative mutant of Elk-1, a key regulator of gene transcription driven by a serum response element, attenuated Egr-1 expression following stimulation, indicating that Elk-1 or related ternary complex factors connect the transcription of the Egr-1 gene with the pregnenolone sulfate-induced intracellular signaling cascade elicited by the initial influx of Ca(2+). The newly synthesized Egr-1 was biologically active and bound under physiological conditions to the regulatory regions of the Pdx-1, Synapsin I, and Chromogranin B genes. Pdx-1 is a major regulator of insulin gene transcription. Accordingly, elevated insulin promoter activity and increased mRNA levels of insulin could be detected in pregnenolone sulfate-stimulated insulinoma cells. Likewise, the biosynthesis of synapsin I, a synaptic vesicle protein that is found at secretory granules in insulinoma cells, was stimulated in pregnenolone sulfate-treated INS-1 cells. Together, these data show that pregnenolone sulfate induces a signaling cascade in insulinoma cells that is very similar to the signaling cascade induced by glucose in β-cells.
Collapse
Affiliation(s)
- Sabine I Mayer
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
24
|
Maddox SA, Monsey MS, Schafe GE. Early growth response gene 1 (Egr-1) is required for new and reactivated fear memories in the lateral amygdala. Learn Mem 2011; 18:24-38. [PMID: 21177377 PMCID: PMC3023969 DOI: 10.1101/lm.1980211] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/13/2010] [Indexed: 01/16/2023]
Abstract
The immediate-early gene early growth response gene-1 (EGR-1, zif-268) has been extensively studied in synaptic plasticity and memory formation in a variety of memory systems. However, a convincing role for EGR-1 in amygdala-dependent memory consolidation processes has yet to emerge. In the present study, we have examined the role of EGR-1 in the consolidation and reconsolidation of amygdala-dependent auditory Pavlovian fear conditioning. In our first series of experiments, we show that EGR-1 is regulated following auditory fear conditioning in the lateral nucleus of the amygdala (LA). Next, we use antisense oligodeoxynucleotide (ODN) knockdown of EGR-1 in the LA to show that training-induced expression of EGR-1 is required for memory consolidation of auditory fear conditioning; that is, long-term memory (LTM) is significantly impaired while acquisition and short-term memory (STM) are intact. In a second set of experiments, we show that EGR-1 is regulated in the LA by retrieval of an auditory fear memory. We then show that retrieval-induced expression of EGR-1 in the LA is required for memory reconsolidation of auditory fear conditioning; that is, post-retrieval (PR)-LTM is significantly impaired while memory retrieval and PR-STM are intact. Additional experiments show these effects to be restricted to the LA, to be temporally graded, and unlikely to be due to nonspecific toxicity within the LA. Collectively, our findings strongly implicate a role for EGR-1 in both the initial consolidation and in the reconsolidation of auditory fear memories in the LA.
Collapse
Affiliation(s)
- Stephanie A. Maddox
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | - Melissa S. Monsey
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | - Glenn E. Schafe
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
25
|
Revest JM, Kaouane N, Mondin M, Le Roux A, Rougé-Pont F, Vallée M, Barik J, Tronche F, Desmedt A, Piazza PV. The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/Ib. Mol Psychiatry 2010; 15:1125, 1140-51. [PMID: 20368707 PMCID: PMC2990189 DOI: 10.1038/mp.2010.40] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The activation of glucocorticoid receptors (GR) by glucocorticoids increases stress-related memory through the activation of the MAPK signaling pathway and the downstream transcription factor Egr-1. Here, using converging in vitro and in vivo approaches, respectively, GR-expressing cell lines, culture of hippocampal neurons, and GR genetically modified mice (GR(NesCre)), we identified synapsin-Ia/Ib as one of the effectors of the glucocorticoid signaling cascade. Stress and glucocorticoid-induced activation of the GR modulate synapsin-Ia/Ib through two complementary mechanisms. First, glucocorticoids driving Egr-1 expression increase the expression of synapsin-Ia/Ib, and second, glucocorticoids driving MAPK activation increase its phosphorylation. Finally, we showed that blocking fucosylation of synapsin-Ia/Ib in the hippocampus inhibits its expression and prevents the glucocorticoid-mediated increase in stress-related memory. In conclusion, our data provide a complete molecular pathway (GR/Egr-1/MAPK/Syn-Ia/Ib) through which stress and glucocorticoids enhance the memory of stress-related events and highlight the function of synapsin-Ia/Ib as molecular effector of the behavioral effects of stress.
Collapse
Affiliation(s)
- J-M Revest
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction group, Bordeaux, France.
| | - N Kaouane
- Université de Bordeaux, Bordeaux, France,CNRS UMR5228, Cognitive and Integrative Neurosciences, Talence, France
| | - M Mondin
- Université de Bordeaux, Bordeaux, France,CNRS UMR 5091, Cellular Physiology of the Synapse, Bordeaux, France
| | - A Le Roux
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction group, Bordeaux, France,Université de Bordeaux, Bordeaux, France
| | - F Rougé-Pont
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction group, Bordeaux, France,Université de Bordeaux, Bordeaux, France
| | - M Vallée
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction group, Bordeaux, France,Université de Bordeaux, Bordeaux, France
| | - J Barik
- CNRS FRE2401, Molecular Genetics, Neurophysiology and Behavior, Institute of Biology, Paris, France
| | - F Tronche
- CNRS FRE2401, Molecular Genetics, Neurophysiology and Behavior, Institute of Biology, Paris, France
| | - A Desmedt
- Université de Bordeaux, Bordeaux, France,CNRS UMR5228, Cognitive and Integrative Neurosciences, Talence, France
| | - P V Piazza
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction group, Bordeaux, France,Université de Bordeaux, Bordeaux, France,Department of Pathophysiology, Université de Bordeaux, INSERM U862, Bordeaux F33077, France. E-mail: or
| |
Collapse
|
26
|
de Lartigue G, Lur G, Dimaline R, Varro A, Raybould H, Dockray GJ. EGR1 Is a target for cooperative interactions between cholecystokinin and leptin, and inhibition by ghrelin, in vagal afferent neurons. Endocrinology 2010; 151:3589-99. [PMID: 20534729 PMCID: PMC2940532 DOI: 10.1210/en.2010-0106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Food intake is regulated by signals from peripheral organs, but the way these are integrated remains uncertain. Cholecystokinin (CCK) from the intestine and leptin from adipocytes interact to inhibit food intake. Our aim was to examine the hypothesis that these interactions occur at the level of vagal afferent neurons via control of the immediate early gene EGR1. We now report that CCK stimulates redistribution to the nucleus of early growth response factor-1 (EGR1) in these neurons in vivo and in culture, and these effects are not dependent on EGR1 synthesis. Leptin stimulates EGR1 expression; leptin alone does not stimulate nuclear translocation, but it strongly potentiates the action of CCK. Ghrelin inhibits CCK-stimulated nuclear translocation of EGR1 and leptin-stimulated EGR1 expression. Expression of the gene encoding the satiety peptide cocaine- and amphetamine-regulated transcript (CARTp) is stimulated by CCK via an EGR1-dependent mechanism, and this is strongly potentiated by leptin. Leptin potentiated inhibition of food intake by endogenous CCK in the rat in conditions reflecting changes in EGR1 activation. The data indicate that by separately regulating EGR1 activation and synthesis, CCK and leptin interact cooperatively to define the capacity for satiety signaling by vagal afferent neurons; manipulation of these interactions may be therapeutically beneficial.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Blume A, Torner L, Liu Y, Subburaju S, Aguilera G, Neumann ID. Prolactin induces Egr-1 gene expression in cultured hypothalamic cells and in the rat hypothalamus. Brain Res 2009; 1302:34-41. [PMID: 19769948 DOI: 10.1016/j.brainres.2009.09.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 09/01/2009] [Accepted: 09/12/2009] [Indexed: 11/25/2022]
Abstract
Prolactin (PRL), the major lactogenic hormone, acts also as neuromodulator and regulator of neuronal and glial plasticity in the brain. There is an increase in synthesis and release of PRL within the hypothalamus during peripartum and in response to stress. To identify mechanisms by which PRL induces neuroplasticity, we studied the ability of PRL to induce the transcription factor Egr-1 in the hypothalamic cell line, 4B, in vitro, and in specific neuronal cell types of the hypothalamus in vivo. PRL induced Egr-1 mRNA expression in 4B cells, an effect which was prevented by the MEK inhibitor, U0126. In vivo, intracerebroventricular PRL (1 microg) increased Egr-1 mRNA levels in the hypothalamic paraventricular (PVN) and supraoptic nuclei (SON) of female rats. The increase in mRNA paralleled elevated Egr-1 protein expression in the PVN and SON. Double staining immunohistochemistry revealed Egr-1 localization in oxytocin neurons of the PVN and SON, but not in vasopressin neurons in these regions. In the dorsomedial PVN, a population of non-oxytocin or vasopressin cells localized in a region corresponding to corticotropin-releasing hormone neurons also showed marked Egr-1 immunoreactivity. The data suggest that PRL modulates plasticity in oxytocinergic neurons, through MAP kinase-dependent induction of Egr-1.
Collapse
Affiliation(s)
- Annegret Blume
- Department of Behavioural and Molecular Neuroendocrinology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Wang JL, Chang WT, Tong CW, Kohno K, Huang AM. Human synapsin I mediates the function of nuclear respiratory factor 1 in neurite outgrowth in neuroblastoma IMR-32 cells. J Neurosci Res 2009; 87:2255-63. [DOI: 10.1002/jnr.22059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Pinaud R. EXPERIENCE-DEPENDENT IMMEDIATE EARLY GENE EXPRESSION IN THE ADULT CENTRAL NERVOUS SYSTEM: EVIDENCE FROM ENRICHED-ENVIRONMENT STUDIES. Int J Neurosci 2009; 114:321-33. [PMID: 14754658 DOI: 10.1080/00207450490264142] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Here I discuss evidence from our group's work that implicates the immediate early genes NGFI-A and arc as possible regulators of neuronal plasticity. The enriched environment (EE) paradigm has been demonstrated to induce neural plasticity in both developing and mature mammals. Others and we have recently demonstrated that adult rats placed within an enriched environment underwent central nervous system-wide increases in the expression levels for the IEGs NGFI-A and arc. The relationships between the altered expression profiles for both genes in response to an EE exposure, and their putative role in orchestrating network restructuring in response to enhanced environmental complexity are discussed.
Collapse
Affiliation(s)
- Raphael Pinaud
- Neurological Sciences Institute, Oregon Health & Science University, Portland, Oregon 97006, USA.
| |
Collapse
|
31
|
Colecchia F, Kottwitz D, Wagner M, Pfenninger CV, Thiel G, Tamm I, Peterson C, Nuber UA. Tissue-specific regulatory network extractor (TS-REX): a database and software resource for the tissue and cell type-specific investigation of transcription factor-gene networks. Nucleic Acids Res 2009; 37:e82. [PMID: 19443447 PMCID: PMC2699531 DOI: 10.1093/nar/gkp311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The prediction of transcription factor binding sites in genomic sequences is in principle very useful to identify upstream regulatory factors. However, when applying this concept to genomes of multicellular organisms such as mammals, one has to deal with a large number of false positive predictions since many transcription factor genes are only expressed in specific tissues or cell types. We developed TS-REX, a database/software system that supports the analysis of tissue and cell type-specific transcription factor-gene networks based on expressed sequence tag abundance of transcription factor-encoding genes in UniGene EST libraries. The use of expression levels of transcription factor-encoding genes according to hierarchical anatomical classifications covering different tissues and cell types makes it possible to filter out irrelevant binding site predictions and to identify candidates of potential functional importance for further experimental testing. TS-REX covers ESTs from H. sapiens and M. musculus, and allows the characterization of both presence and specificity of transcription factors in user-specified tissues or cell types. The software allows users to interactively visualize transcription factor-gene networks, as well as to export data for further processing. TS-REX was applied to predict regulators of Polycomb group genes in six human tumor tissues and in human embryonic stem cells.
Collapse
Affiliation(s)
- Federico Colecchia
- Lund Strategic Research Center for Stem Cell Biology, Lund University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
32
|
De Steno DA, Schmauss C. A role for dopamine D2 receptors in reversal learning. Neuroscience 2009; 162:118-27. [PMID: 19401217 DOI: 10.1016/j.neuroscience.2009.04.052] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/08/2009] [Accepted: 04/20/2009] [Indexed: 11/15/2022]
Abstract
Reversal learning has been shown to require intact serotonergic innervation of the forebrain neocortex. Whether dopamine acting through D2 receptors plays a complementary role in this anatomic area is still unclear. Here we show that mice lacking dopamine D2 receptors exhibited significantly impaired performance in the reversal learning phase of an attention-set-shifting task (ASST) and that wild type mice treated chronically with the D2-like receptor antagonist haloperidol exhibited the same cognitive deficit. The test-phase-specific deficits of D2 mutants and haloperidol-treated mice were also accompanied by deficits in the induction of expression of early growth response gene 2 (egr-2), a regulatory transcription factor previously shown to be selectively induced in the ventrolateral orbital frontal cortex and the pre- and infralimbic medial prefrontal cortex of ASST-tested mice. D2-receptor knockout mice and haloperidol-treated wild type, however, exhibited lower egr-2 expression in these anatomic regions after completion of an ASST-test phase that required reversal learning but not after completion of set-shifting phases without rule reversals. In contrast, mice treated chronically with clozapine, an atypical neuroleptic drug with lower D2-receptor affinity and broader pharmacological effects, had deficits in compound discrimination phases of the ASST, but also these deficits were accompanied by lower egr-2 expression in the same anatomic subregions. Thus, the findings indicate that egr-2 expression is a sensitive indicator of test-phase-specific performance in the ASST and that normal function of D2 receptors in subregions of the orbital frontal and the medial prefrontal cortex is required for cognitive flexibility in tests involving rule reversals.
Collapse
Affiliation(s)
- D A De Steno
- Department of Pharmacology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
33
|
Romcy-Pereira RN, Erraji-Benchekroun L, Smyrniotopoulos P, Ogawa S, Mello CV, Sibille E, Pavlides C. Sleep-dependent gene expression in the hippocampus and prefrontal cortex following long-term potentiation. Physiol Behav 2009; 98:44-52. [PMID: 19389414 DOI: 10.1016/j.physbeh.2009.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 04/03/2009] [Accepted: 04/09/2009] [Indexed: 11/19/2022]
Abstract
The activity-dependent transcription factor zif268 is re-activated in sleep following hippocampal long-term potentiation (LTP). However, the activation of secondary genes, possibly involved in modifying local synaptic strengths and ultimately stabilizing memory traces during sleep, has not yet been studied. Here, we investigated changes in hippocampal and cortical gene expression at a time point subsequent to the previously reported initial zif268 re-activation during sleep. Rats underwent unilateral hippocampal LTP and were assigned to SLEEP or AWAKE groups. Eighty minutes after a long rapid-eye-movement sleep (REMS) episode (or an equivalent amount of time for awake group) animals had their hippocampi dissected and processed for gene microarray hybridization. Prefrontal and parietal cortices were also collected for qRT-PCR analysis. The microarray analysis identified 28 up-regulated genes in the hippocampus: 11 genes were enhanced in the LTPed hemisphere of sleep animals; 13 genes were enhanced after sleep, regardless of hemisphere; and 4 genes were enhanced in LTPed hemisphere, regardless of behavioral state. qRT-PCR analysis confirmed the up-regulation of aif-1 and sc-65 during sleep. Moreover, we observed a down-regulation of the purinergic receptor, P2Y4R in the LTP hemisphere of awake animals and a trend for the protein kinase, CaMKI to be up-regulated in the LTP hemisphere of sleep animals. In the prefrontal cortex, we showed a significant LTP-dependent down-regulation of gluR1 and spinophilin specifically during sleep. Zif268 was down-regulated in sleep regardless of the hemisphere. No changes in gene expression were observed in the parietal cortex. Our findings indicate that a set of synaptic plasticity-related genes have their expression modulated during sleep following LTP, which can reflect biochemical events associated with reshaping of synaptic connections in sleep following learning.
Collapse
|
34
|
Chan IHS, Tang NLS, Leung TF, Huang W, Lam YYO, Wong GWK, Chan JCN, Chan MHM, Wong CK, Zhang YP, Lam CWK. Association of early growth response-1 gene polymorphisms with total IgE and atopy in asthmatic children. Pediatr Allergy Immunol 2009; 20:142-50. [PMID: 18507785 DOI: 10.1111/j.1399-3038.2008.00757.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Early growth response-1 (Egr-1) is expressed in human airways and found to modulate tumor necrosis factor, immunoglobulin E (IgE), airway responsiveness, and interleukin-13-induced inflammation in mice. We investigated the effects of Chinese-tagging single nucleotide polymorphisms (SNPs) of Egr-1 on asthma traits in 298 Chinese asthmatic children and 175 controls, and a replication community cohort of 191 controls. Tag SNP (-4071 A-->G) and three additional SNPs (-1427 C-->T, -151 C-->T and IVS1 -42 C-->T) were genotyped by restriction fragment length polymorphism (RFLP). Significant associations were found between plasma total IgE concentration and -4071 A-->G (p = 0.008) and IVS1 -42 C-->T (p = 0.027) in asthmatic patients. After Bonferroni correction, only -4071 A-->G showed significant association. Multivariate regression analysis confirmed this significant association with a standardized coefficient beta of 0.156 (95% CI: 0.046-0.317; p = 0.009) in asthmatics among the three SNPs with age and gender-adjusted. In -4071 A-->G, IgE(log) was significantly higher in patients with the GG genotype than the AA genotype (p = 0.009). In addition, -4071 A-->G was significantly associated with atopy (p = 0.016) and high total IgE concentration (p = 0.030) among asthmatics. Patients with the G allele had a 3.5-fold risk of having atopy and a 2.0-fold risk of having high total IgE concentration than those homozygous for the A allele. This is the first report to show significant association of Egr-1 polymorphisms with plasma total IgE and atopy in asthmatics. It may help to explore the pharmacogenetics of Egr-1 inhibitors.
Collapse
Affiliation(s)
- Iris H S Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Salani M, Anelli T, Tocco GA, Lucarini E, Mozzetta C, Poiana G, Tata AM, Biagioni S. Acetylcholine-induced neuronal differentiation: muscarinic receptor activation regulates EGR-1 and REST expression in neuroblastoma cells. J Neurochem 2009; 108:821-34. [PMID: 19187099 DOI: 10.1111/j.1471-4159.2008.05829.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurotransmitters are considered part of the signaling system active in nervous system development and we have previously reported that acetylcholine (ACh) is capable of enhancing neuronal differentiation in cultures of sensory neurons and N18TG2 neuroblastoma cells. To study the mechanism of ACh action, in this study, we demonstrate the ability of choline acetyltransferase-transfected N18TG2 clones (e.g. 2/4 clone) to release ACh. Analysis of muscarinic receptors showed the presence of M1-M4 subtypes and the activation of both IP(3) and cAMP signal transduction pathways. Muscarinic receptor activation increases early growth response factor-1 (EGR-1) levels and treatments with agonists, antagonists, and signal transduction enzyme inhibitors suggest a role for M3 subtype in EGR-1 induction. The role of EGR-1 in the enhancement of differentiation was investigated transfecting in N18TG2 cells a construct for EGR-1. EGR-1 clones show increased neurite extension and a decrease in Repressor Element-1 silencing transcription factor (REST) expression: both these features have also been observed for the 2/4 clone. Transfection of this latter with EGR zinc-finger domain, a dominant negative inhibitor of EGR-1 action, increases REST expression, and decreases fiber outgrowth. The data reported suggest that progression of the clone 2/4 in the developmental program is dependent on ACh release and the ensuing activation of muscarinic receptors, which in turn modulate the level of EGR-1 and REST transcription factors.
Collapse
Affiliation(s)
- Monica Salani
- Dipartimento di Biologia Cellulare e dello Sviluppo, Unità di Ricerca di Neurobiologia e Centro di Ricerca in Neurobiologia Daniel Bovet, Università La Sapienza, Piazzale Aldo Moro, Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Luo Y, Lathia J, Mughal M, Mattson MP. SDF1alpha/CXCR4 signaling, via ERKs and the transcription factor Egr1, induces expression of a 67-kDa form of glutamic acid decarboxylase in embryonic hippocampal neurons. J Biol Chem 2008; 283:24789-800. [PMID: 18606818 PMCID: PMC2529007 DOI: 10.1074/jbc.m800649200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 06/06/2008] [Indexed: 02/04/2023] Open
Abstract
Stromal cell-derived factor alpha (SDF1alpha) and its cognate receptor CXCR4 play an important role in neuronal development in the hippocampus, but the genes directly regulated by SDF1alpha/CXCR4 signaling are unknown. To study the role of CXCR4 targeted genes in neuronal development, we used neuronal cultures established from embryonic day 18 rats. Hippocampal neurons express CXCR4 receptor proteins and are stimulated by SDF1alpha resulting in activation of extracellular signal-regulated kinase (ERK)1/2 and the transcription factor cAMP-response element-binding protein. SDF1alpha rapidly induces the expression of the early growth response gene Egr1, a transcription factor involved in activity-dependent neuronal responses, in a concentration-dependent manner. Gel-shift analysis showed that SDF1alpha enhances DNA binding activity to the Egr1-containing promoter for GAD67. Chromatin immunoprecipitation analysis using an Egr1 antibody indicated that SDF1alpha stimulation increases binding of Egr1 to a GAD67 promoter DNA sequence. SDF1alpha stimulation increases the expression of GAD67 at both the mRNA and protein levels, and increases the amount and neurite localization of gamma-aminobutyric acid (GABA) in neurons already expressing GABA. SDF1alpha-induced Egr1/GAD67 expression is mediated by the G protein-coupled CXCR4 receptor and activation of the ERK pathway. Reduction of Egr1 gene expression using small interfering RNA technology lowers the level of GAD67 transcripts and inhibits SDF1alpha-induced GABA production. Inhibition of CXCR4 activation in the developing mouse brain in utero greatly reduced Egr1 and GAD67 mRNA levels and GAD67 protein levels, suggesting a pivotal role for CXCR4 signaling in the development of GABAergic neurons in vivo. Our data suggest that SDF1alpha/CXCR4/G protein/ERK signaling induces the expression of the GAD67 system via Egr1 activation, a mechanism that may promote the maturation of GABAergic neurons during development.
Collapse
MESH Headings
- Animals
- Chemokine CXCL12/metabolism
- Chemokine CXCL12/pharmacology
- Dose-Response Relationship, Drug
- Early Growth Response Protein 1/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/enzymology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Glutamate Decarboxylase/biosynthesis
- Hippocampus/embryology
- Hippocampus/enzymology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Mice
- Neurites/enzymology
- Pregnancy
- RNA, Messenger/biosynthesis
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, CXCR4/agonists
- Receptors, CXCR4/metabolism
- Response Elements/physiology
- gamma-Aminobutyric Acid/biosynthesis
Collapse
Affiliation(s)
| | | | | | - Mark P. Mattson
- Laboratory of Neurosciences, NIA Intramural Research Program, National
Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
37
|
Gannon AM, Kinsella BT. Regulation of the human thromboxane A2 receptor gene by Sp1, Egr1, NF-E2, GATA-1, and Ets-1 in megakaryocytes. J Lipid Res 2008; 49:2590-604. [PMID: 18698092 DOI: 10.1194/jlr.m800256-jlr200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alpha and beta isoforms of the human thromboxane A(2) (TXA(2)) receptor (TP) are encoded by a single gene but are transcriptionally regulated by distinct promoters, termed promoter 1 (Prm1) and Prm3, respectively. Herein, it was sought to identify factors regulating Prm1 within the megakaryocytic human erythroleukemia 92.1.7 cell line. Through gene deletion and reporter assays, the core Prm1 was localized to between nucleotides -6,320 and -5,895, proximal to the transcription initiation site. Furthermore, two upstream repressor and two upstream activator regions were identified. Site-directed mutagenesis of four overlapping Sp1/Egr1 elements and an NF-E2/AP1 element within the proximal region substantially reduced Prm1 activity. Deletion/mutation of GATA and Ets elements disrupted the upstream activator sequence located between -7,962 and -7,717, significantly impairing Prm1 activity. Electrophoretic mobility shift assays and chromatin immunoprecipitations confirmed that Sp1, Egr1, and NF-E2 bind to elements within the core promoter, whereas GATA-1 and Ets-1 factors bind to the upstream activator sequence (between -7,962 and -7,717). Collectively, these data establish that Sp1, Egr1, and NF-E2 regulate core Prm1 activity in the megakaryocytic-platelet progenitor cells, whereas GATA-1 and Ets-1 act as critical upstream activators, hence providing the first genetic basis for the expression of the human TXA(2) receptor (TP) within the vasculature.
Collapse
Affiliation(s)
- AnneMarie M Gannon
- University College Dublin School of Biomolecular and Biomedical Sciences, University College Dublin Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
38
|
Pinaud R, Osorio C, Alzate O, Jarvis ED. Profiling of experience-regulated proteins in the songbird auditory forebrain using quantitative proteomics. Eur J Neurosci 2008; 27:1409-22. [PMID: 18364021 DOI: 10.1111/j.1460-9568.2008.06102.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Auditory and perceptual processing of songs are required for a number of behaviors in songbirds such as vocal learning, territorial defense, mate selection and individual recognition. These neural processes are accompanied by increased expression of a few transcription factors, particularly in the caudomedial nidopallium (NCM), an auditory forebrain area believed to play a key role in auditory learning and song discrimination. However, these molecular changes are presumably part of a larger, yet uncharacterized, protein regulatory network. In order to gain further insight into this network, we performed two-dimensional differential in-gel expression (2D-DIGE) experiments, extensive protein quantification analyses, and tandem mass spectrometry in the NCM of adult songbirds hearing novel songs. A subset of proteins was selected for immunocytochemistry in NCM sections to confirm the 2D-DIGE findings and to provide additional quantitative and anatomical information. Using these methodologies, we found that stimulation of freely behaving birds with conspecific songs did not significantly impact the NCM proteome 5 min after stimulus onset. However, following 1 and 3 h of stimulation, a significant number of proteins were consistently regulated in NCM. These proteins spanned a range of functional categories that included metabolic enzymes, cytoskeletal molecules, and proteins involved in neurotransmitter secretion and calcium binding. Our findings suggest that auditory processing of vocal communication signals in freely behaving songbirds triggers a cascade of protein regulatory events that are dynamically regulated through activity-dependent changes in calcium levels.
Collapse
Affiliation(s)
- Raphael Pinaud
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | |
Collapse
|
39
|
DeSteno DA, Schmauss C. Induction of early growth response gene 2 expression in the forebrain of mice performing an attention-set-shifting task. Neuroscience 2008; 152:417-28. [PMID: 18280047 DOI: 10.1016/j.neuroscience.2008.01.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/17/2007] [Accepted: 01/10/2008] [Indexed: 11/30/2022]
Abstract
Early growth response (egr) genes encode transcription factors that are induced by stimuli that cause synaptic plasticity. Here we show that the expression of one member of this family, egr-2, is induced in the orbital frontal cortex (OFC) and medial prefrontal cortex (mPFC) of mice performing an attention-set-shifting task (ASST). The ASST is a series of two-choice perceptual discriminations between different odors and textures. Within the OFC and mPFC, different subregions exhibited egr-2 induction in response to different test-related features. In the medial OFC and the anterior cingulate subregion of the mPFC, egr-2 induction occurred in response to exposure to the novel odor stimulus. In the ventrolateral OFC and the pre- and infralimbic mPFC, additional egr-2 induction occurred during the associative learning phase of the ASST. In the infralimbic mPFC, further egr-2 induction occurred when mice performed set-shifting and reversal learning phases of the ASST. Mice with enhanced set-shifting performance exhibited decreased egr-2 induction in the mPFC indicating that the magnitude of egr-2 induction correlates with the magnitude of attentional demand. This decrease was largest in the infralimbic mPFC suggesting further that egr-2 induction in this region plays a role in the attentional control during set-shifting. In contrast to egr-2, neither egr-1 nor egr-3 expression was altered in ASST-tested mice, and no egr-2 induction occurred in mice that performed a spatial working memory task. These findings suggest a specific role of egr-2-mediated transcriptional activation in cognitive functions associated with attention.
Collapse
Affiliation(s)
- D A DeSteno
- Department of Pharmacology, Columbia University, NY, NY 10032, USA
| | | |
Collapse
|
40
|
Chung EY, Shin SY, Lee YH. Amitriptyline induces early growth response-1 gene expression via ERK and JNK mitogen-activated protein kinase pathways in rat C6 glial cells. Neurosci Lett 2007; 422:43-8. [PMID: 17590509 DOI: 10.1016/j.neulet.2007.05.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 05/23/2007] [Accepted: 05/27/2007] [Indexed: 12/23/2022]
Abstract
Astrocytes play important roles in guiding the construction of the nervous system, controlling extracellular ions and neurotransmitters, and regulating CNS synaptogenesis. Egr-1 is a transcription factor involved in neuronal differentiation and astrocyte cell proliferation. In this study, we investigated whether the tricyclic antidepressant (TCA) amitriptyline induces Egr-1 expression in astrocytes using rat C6 glioma cells as a model. We found that amitriptyline increased the expression of Egr-1 in a dose- and time-dependent manner. The amitriptyline-induced Egr-1 expression was mediated through serum response elements (SREs) in the Egr-1 promoter. SREs were activated by the Ets-domain transcription factor Elk-1 through the ERK and JNK mitogen-activated protein (MAP) kinase pathways. The inhibition of the ERK and JNK MAP kinase signals attenuated amitriptyline-induced transactivation of Gal4-Elk-1 and Egr-1 promoter activity. Our findings suggest that the induction of Egr-1 expression in astrocytes may be required to attain the therapeutic effects of antidepressant drugs.
Collapse
Affiliation(s)
- Eun Young Chung
- Institute of Molecular Life Science and Technology, Ewha Women's University, Seoul 120-750, South Korea
| | | | | |
Collapse
|
41
|
Dahan L, Astier B, Vautrelle N, Urbain N, Kocsis B, Chouvet G. Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 2007; 32:1232-41. [PMID: 17151599 DOI: 10.1038/sj.npp.1301251] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dopamine is involved in motivation, memory, and reward processing. However, it is not clear whether the activity of dopamine neurons is related or not to vigilance states. Using unit recordings in unanesthetized head restrained rats we measured the firing pattern of dopamine neurons of the ventral tegmental area across the sleep-wake cycle. We found these cells were activated during paradoxical sleep (PS) via a clear switch to a prominent bursting pattern, which is known to induce large synaptic dopamine release. This activation during PS was similar to the activity measured during the consumption of palatable food. Thus, as it does during waking in response to novelty and reward, dopamine could modulate brain plasticity and thus participate in memory consolidation during PS. By challenging the traditional view that dopamine is the only aminergic group not involved in sleep physiology, this study provides an alternative perspective that may be crucial for understanding the physiological function of PS and dream mentation.
Collapse
Affiliation(s)
- Lionel Dahan
- Laboratoire de Neuropharmacologie et Neurochimie, Université Lyon 1, Lyon, France.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Since their detection in the early 1980s immediate-early genes (most of them being inducible transcription factors) have been regarded as molecular keys to the orchestration of late-effector genes that ultimately would enable functional and structural adaptation of the brain to changing external and internal demands. This is called neuronal plasticity and it has been intensively studied in the somatosensory (barrel) cortex of rodents. This brain region is intimately involved in the processing and probably also the storage of tactile information, stemming from the large facial whiskers, necessary for object detection or spatial navigation in the environment. On the other hand, several of the inducible transcription factors have been found to function as neuronal activity markers providing a cellular resolution, thus, enabling the cell-type specific mapping of activated neuronal circuits. Some recent data on both topics in the rodent barrel cortex will be presented in this topical review.
Collapse
Affiliation(s)
- Jochen F Staiger
- Department of Neuroanatomy, Albert-Ludwigs-University Freiburg, Freiburg, Germany.
| |
Collapse
|
43
|
A comparative genomics approach to identifying the plasticity transcriptome. BMC Neurosci 2007; 8:20. [PMID: 17355637 PMCID: PMC1831778 DOI: 10.1186/1471-2202-8-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 03/13/2007] [Indexed: 02/04/2023] Open
Abstract
Background Neuronal activity regulates gene expression to control learning and memory, homeostasis of neuronal function, and pathological disease states such as epilepsy. A great deal of experimental evidence supports the involvement of two particular transcription factors in shaping the genomic response to neuronal activity and mediating plasticity: CREB and zif268 (egr-1, krox24, NGFI-A). The gene targets of these two transcription factors are of considerable interest, since they may help develop hypotheses about how neural activity is coupled to changes in neural function. Results We have developed a computational approach for identifying binding sites for these transcription factors within the promoter regions of annotated genes in the mouse, rat, and human genomes. By combining a robust search algorithm to identify discrete binding sites, a comparison of targets across species, and an analysis of binding site locations within promoter regions, we have defined a group of candidate genes that are strong CREB- or zif268 targets and are thus regulated by neural activity. Our analysis revealed that CREB and zif268 share a disproportionate number of targets in common and that these common targets are dominated by transcription factors. Conclusion These observations may enable a more detailed understanding of the regulatory networks that are induced by neural activity and contribute to the plasticity transcriptome. The target genes identified in this study will be a valuable resource for investigators who hope to define the functions of specific genes that underlie activity-dependent changes in neuronal properties.
Collapse
|
44
|
Freson K, Stolarz K, Aerts R, Brand E, Brand-Herrmann SM, Kawecka-Jaszcz K, Kuznetsova T, Tikhonoff V, Thijs L, Vermylen J, Staessen JA, Van Geet C. -391 C to G substitution in the regulator of G-protein signalling-2 promoter increases susceptibility to the metabolic syndrome in white European men: consistency between molecular and epidemiological studies. J Hypertens 2007; 25:117-25. [PMID: 17143182 DOI: 10.1097/hjh.0b013e3280109c6c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The regulator of G-protein signalling-2 (RGS2) is a key factor in adipogenesis. We hypothesized that the metabolic syndrome, of which obesity is an important component, might be related to genetic variation in RGS2. METHODS AND RESULTS We screened the human RGS2 gene. We tested the functionality of a common genetic variant in vitro, ex vivo, and in epidemiological study involving six European populations. The C to G substitution at position -391 in the RGS2 promoter was associated with enhanced RGS2 expression in vitro in transfected 3T3-L1 adipocytes and Chinese hamster cells and ex vivo in adipocytes from male, but not female, volunteers. In 2732 relatives from 512 families and 348 unrelated individuals, randomly recruited from six European populations, the prevalence of GG homozygosity was 54.1%. The metabolic syndrome score, a composite of six continuous traits making up this clinical entity, was 0.27 standardized units higher (P < 0.001) in 795 GG homozygous men compared with 683 men carrying the C allele. Transmission of the -391 G allele to male offspring was associated with a 0.20 unit increase in the score (P=0.039). These epidemiological relations were not significant in 1602 women. CONCLUSIONS The C to G substitution at position -391 in the RGS2 promoter increases RGS2 expression in adipocytes and is associated with the metabolic syndrome in white European men. Further experimental and clinical research should establish whether this common polymorphism might be a target for preventive or therapeutic intervention.
Collapse
Affiliation(s)
- Kathleen Freson
- Center for Molecular and Vascular Biology, University Hospital Gasthuisberg, University of Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li L, Yun SH, Keblesh J, Trommer BL, Xiong H, Radulovic J, Tourtellotte WG. Egr3, a synaptic activity regulated transcription factor that is essential for learning and memory. Mol Cell Neurosci 2007; 35:76-88. [PMID: 17350282 PMCID: PMC2683345 DOI: 10.1016/j.mcn.2007.02.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 02/03/2007] [Indexed: 11/24/2022] Open
Abstract
Learning and memory depend upon poorly defined synaptic and intracellular modifications that occur in activated neurons. Mitogen activated protein kinase-extracellular regulated kinase (MAPK-ERK) signaling and de novo protein synthesis are essential aspects of enduring memory formation, but the precise effector molecules of MAPK-ERK signaling in neurons are not well defined. Early growth response (Egr) transcriptional regulators are examples of MAPK-ERK regulated genes and Egr1 (zif268) has been widely recognized as essential for some aspects of learning and memory. Here we show that Egr3, a transcriptional regulator closely related to Egr1, is essential for normal hippocampal long-term potentiation (LTP) and for hippocampal and amygdala dependent learning and memory. In the absence of Egr3, the defects in learning and memory appear to be independent of Egr1 since Egr1 protein levels are not altered in amygdala, hippocampus or cortex. Moreover, unlike Egr1-deficient mice which have impairments in late phase hippocampal LTP and consolidation of some forms of long-term hippocampus- and amygdala-dependent memory, Egr3-deficient mice have profound defects in early- and late-phase hippocampal LTP, as well as short-term and long-term hippocampus- and amygdala-dependent learning and memory. Thus, Egr3 has an essential role in learning and memory processing that appears to be partly distinct from the role of Egr1.
Collapse
Affiliation(s)
- Lin Li
- Department of Pathology, Northwestern University, Chicago, IL 60611
| | - Sung Hwan Yun
- Department of Pediatrics, Northwestern University, Chicago, IL 60611
| | | | - Barbara L. Trommer
- Department of Neurology, Northwestern University, Chicago, IL 60611
- Department of Pediatrics, Northwestern University, Chicago, IL 60611
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Jelena Radulovic
- Department of Psychiatry, Northwestern University, Chicago, IL 60611
| | - Warren G. Tourtellotte
- Department of Pathology, Northwestern University, Chicago, IL 60611
- Department of Neurology, Northwestern University, Chicago, IL 60611
| |
Collapse
|
46
|
Kim MY, Jeong BC, Lee JH, Kee HJ, Kook H, Kim NS, Kim YH, Kim JK, Ahn KY, Kim KK. A repressor complex, AP4 transcription factor and geminin, negatively regulates expression of target genes in nonneuronal cells. Proc Natl Acad Sci U S A 2006; 103:13074-9. [PMID: 16924111 PMCID: PMC1551900 DOI: 10.1073/pnas.0601915103] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Indexed: 01/03/2023] Open
Abstract
The transcription of neuron-specific genes must be repressed in nonneuronal cells. REST/NRSF is a transcription factor that restricts the expression of many neuronal genes through interaction with the neuron-restrictive silencer element at the promoter level. PAHX-AP1 is a neuronal gene that is developmentally up-regulated in the adult mouse brain but that has no functional NRSE motif in its 5' upstream sequence. Here, we report that the transcription factor AP4 and the corepressor geminin form a functional complex in which SMRT and histone deacetylase 3 are recruited. The functional complex represses PAHX-AP1 expression in nonneuronal cells and participates in regulating the developmental expression of PAHX-AP1 in the brain. This complex also serves as a transcriptional repressor of DYRK1A, a candidate gene for Down's syndrome. Furthermore, compared with that in normal fetal brain, the expression of AP4 and geminin is reduced in Down's syndrome fetal brain at 20 weeks of gestation age, at which time premature overexpression of dual-specificity tyrosine-phosphorylated and regulated kinase 1A (DYRK1A) is observed. Our findings indicate that AP4 and geminin act as a previously undescribed repressor complex distinct from REST/NRSF to negatively regulate the expression of target genes in nonneuronal cells and suggest that the AP4-geminin complex may contribute to suppressing the precocious expression of target genes in fetal brain.
Collapse
Affiliation(s)
- Mi-Young Kim
- *Research Institute of Medical Sciences and Medical Research Center for Gene Regulation
| | - Byung Chul Jeong
- *Research Institute of Medical Sciences and Medical Research Center for Gene Regulation
| | - Ji Hee Lee
- *Research Institute of Medical Sciences and Medical Research Center for Gene Regulation
| | - Hae Jin Kee
- *Research Institute of Medical Sciences and Medical Research Center for Gene Regulation
| | - Hyun Kook
- *Research Institute of Medical Sciences and Medical Research Center for Gene Regulation
| | - Nack Sung Kim
- *Research Institute of Medical Sciences and Medical Research Center for Gene Regulation
| | - Yoon Ha Kim
- Department of Obstetrics and Gynecology, Chonnam National University Medical School, Kwangju 501-190, South Korea
| | - Jong-Keun Kim
- *Research Institute of Medical Sciences and Medical Research Center for Gene Regulation
| | - Kyu Youn Ahn
- *Research Institute of Medical Sciences and Medical Research Center for Gene Regulation
| | - Kyung Keun Kim
- *Research Institute of Medical Sciences and Medical Research Center for Gene Regulation
| |
Collapse
|
47
|
Grotegut S, von Schweinitz D, Christofori G, Lehembre F. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 2006; 25:3534-45. [PMID: 16858414 PMCID: PMC1538570 DOI: 10.1038/sj.emboj.7601213] [Citation(s) in RCA: 264] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 06/06/2006] [Indexed: 01/08/2023] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF) exerts several functions in physiological and pathological processes, among them the induction of epithelial cell scattering and motility. Its pivotal role in angiogenesis, tumor progression, and metastasis is evident; however, the underlying molecular mechanisms are still poorly understood. Here, we demonstrate that HGF induces scattering of epithelial cells by upregulating the expression of Snail, a transcriptional repressor involved in epithelial-mesenchymal transition (EMT). Snail is required for HGF-induced cell scattering, since shRNA-mediated ablation of Snail expression prevents this process. HGF-induced upregulation of Snail transcription involves activation of the mitogen-activated protein kinase (MAPK) pathway and requires the activity of early growth response factor-1 (Egr-1). Upon induction by Egr-1, Snail represses the expression of E-cadherin and claudin-3 genes. It also binds to the Egr-1 promoter and represses Egr-1 transcription, thereby establishing a negative regulatory feedback loop. These findings indicate that Snail upregulation by HGF is mediated via the MAPK/Egr-1 signaling pathway and that both Snail and Egr-1 play a critical role in HGF-induced cell scattering, migration, and invasion.
Collapse
Affiliation(s)
- Stefan Grotegut
- Department of Clinical-Biological Sciences, Institute of Biochemistry and Genetics, Center of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Gerhard Christofori
- Department of Clinical-Biological Sciences, Institute of Biochemistry and Genetics, Center of Biomedicine, University of Basel, Basel, Switzerland
- Department of Clinical-Biological Sciences, Institute of Biochemistry and Genetics, Center of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland. Tel.: +41 61 267 3562; Fax: +41 61 267 3566; E-mail:
| | - François Lehembre
- Department of Clinical-Biological Sciences, Institute of Biochemistry and Genetics, Center of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
48
|
Stefano L, Al Sarraj J, Rössler OG, Vinson C, Thiel G. Up-regulation of tyrosine hydroxylase gene transcription by tetradecanoylphorbol acetate is mediated by the transcription factors Ets-like protein-1 (Elk-1) and Egr-1. J Neurochem 2006; 97:92-104. [PMID: 16515541 DOI: 10.1111/j.1471-4159.2006.03749.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tyrosine hydroxylase is the rate-limiting enzyme in the biosynthesis of catecholamines. Expression of the tyrosine hydroxylase gene is regulated at the transcriptional level by extracellular signalling molecules, including epidermal growth factor (EGF), nerve growth factor (NGF) and glucocorticoids. We have analysed the stimulation of tyrosine hydroxylase gene transcription by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) in noradrenergic locus coeruleus-like CATH.a cells and observed a striking enhancement of the transcriptional activation potential of the ternary complex factor Ets-like protein-1 (Elk-1), a key transcriptional regulator of serum response element-driven gene transcription. Likewise, TPA strongly up-regulated the biosynthesis of the transcription factor Egr-1 via distal serum response elements within the Egr-1 5'-flanking region. Subsequently, enhancement of the transcriptional activation potential of Egr-1 was observed. Overexpression of Egr-1 was sufficient to activate transcription of a tyrosine hydroxylase promoter/reporter gene, corroborating the view that the tyrosine hydroxylase gene is a target gene of Egr-1. Expression of dominant-negative mutants of Elk-1 or Egr-1 impaired TPA-induced stimulation of a tyrosine hydroxylase promoter/reporter gene transcription. In contrast, dominant-negative mutants of the transcription factors activating transcription factor (ATF)-2, ATF4, cAMP response element-binding protein, c-Jun and CCAAT/enhancer binding protein (C/EBP) did not change TPA-induced tyrosine hydroxylase promoter activity, indicating that these proteins are not part of the TPA-mediated signalling cascade directed towards the tyrosine hydroxylase gene.
Collapse
Affiliation(s)
- Luisa Stefano
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, Homburg, Germany
| | | | | | | | | |
Collapse
|
49
|
Chong VZ, Skoblenick K, Morin F, Xu Y, Mishra RK. Dopamine-D1 and -D2 receptors differentially regulate synapsin II expression in the rat brain. Neuroscience 2006; 138:587-99. [PMID: 16413126 DOI: 10.1016/j.neuroscience.2005.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 11/07/2005] [Accepted: 11/19/2005] [Indexed: 12/21/2022]
Abstract
We previously demonstrated that chronic treatment with the dopamine-D2 receptor antagonist, haloperidol, increases mRNA and protein content of the phosphoprotein, synapsin II, in the rat striatum. Since dopamine-D2 receptor antagonism and dopamine-D1 receptor blockade can have opposing effects on gene expression, the present investigation compared the effects of haloperidol with those of the dopamine-D1 receptor antagonist, R-[+]-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH23390), on the expression of synapsin II protein. Haloperidol and SCH23390 respectively elevated and reduced concentrations of the molecule in mouse primary midbrain cell cultures. Additional experiments revealed that the dopamine-D1 receptor agonist, R-[+]-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzapezine-7,8-diol (SKF38393), upregulated the phosphoprotein in these cells. Furthermore, in vivo rat studies demonstrated that chronic haloperidol treatment increases synapsin II protein expression in the medial prefrontal cortex and nucleus accumbens, as was observed in the striatum. In contrast, chronic SCH23390 administration reduced concentrations of this protein in all of these regions, although the reductions seen in the medial prefrontal cortex were insignificant. Neither haloperidol nor the dopamine-D1 receptor antagonist affected synapsin I protein expression in any of the studied brain areas. Based on these findings, we propose dopamine receptors may specifically regulate synapsin II expression through a cyclic AMP-dependent pathway. Since synapsin II is involved in neurotransmitter release and synaptogenesis, and changes in synaptic efficacy and structure are suggested in schizophrenia as well as in haloperidol treatment, our findings offer insight into the mechanistic actions of the antipsychotic agent at the synaptic level.
Collapse
Affiliation(s)
- V Z Chong
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1200 Main Street West, Hamilton, HSC 4N78 Ontario, Canada L8N 3Z5
| | | | | | | | | |
Collapse
|
50
|
James AB, Conway AM, Morris BJ. Genomic profiling of the neuronal target genes of the plasticity-related transcription factor -- Zif268. J Neurochem 2005; 95:796-810. [PMID: 16248890 DOI: 10.1111/j.1471-4159.2005.03400.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The later phases of neuronal plasticity are invariably dependent on gene transcription. Induction of the transcription factor Zif268 (Egr-1) in neurones is closely associated with many forms of functional plasticity, yet the neuronal target genes modulated by Zif268 have not been characterized. After transfection of a neuronal cell line with Zif268 we identified genes that show altered expression using high density microarrays. Although some of the genes identified have previously been associated with forms of neuronal plasticity, the majority have not been linked with neuronal plasticity or Zif268 action. Altered expression of a representative sample of the novel target genes was confirmed in Zif268-transfected PC12 neurones, and in in vitro and in vivo models of Zif268-associated neuronal plasticity. In particular, altered expression of the protease inhibitor Cystatin C and the chemokine Cxcl10 was observed in striatal tissue after haloperidol administration. Surprisingly, the group of identified genes is enriched for components of the proteasome and the major histocompatibility complex. Our findings suggest that altered expression of these genes following Zif268 induction may be a key component of long lasting plasticity in the CNS.
Collapse
Affiliation(s)
- Allan B James
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|