1
|
Takeda K, Igarashi K, Yoshida M, Nakamura N. Discovery of a novel quinohemoprotein from a eukaryote and its application in electrochemical devices. Bioelectrochemistry 2019; 131:107372. [PMID: 31759220 DOI: 10.1016/j.bioelechem.2019.107372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
Pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase is one of the extensively studied sugar-oxidizing enzymes used as a biocatalyst for biosensors and biofuel cells. A novel pyranose dehydrogenase (CcPDH) derived from the basidiomycete Coprinopsis cinerea is the first discovered eukaryotic PQQ-dependent enzyme. This enzyme carries a b-type cytochrome domain that is homologous to the cytochrome domain of cellobiose dehydrogenase (CDH); thus, CcPDH is a quinohemoprotein. CcPDH catalyzes the oxidation of various aldose sugars and shows significant activity toward the reverse-chair conformation of pyranoses. Interdomain electron transfer occurs in CcPDH similar to CDH, from the PQQ cofactor in the catalytic domain to the heme b in the cytochrome domain. This enzyme is able to direct electrical communication with electrodes, without artificial electron mediators, thus allowing direct electron transfer (DET)-type bioelectrocatalysis. In this review, we briefly describe recent progress in research on the biochemical discovery of CcPDH and the development of (bio)electrochemical applications (an amperometric biosensor) based on DET reactions.
Collapse
Affiliation(s)
- Kouta Takeda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Yoshida
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Nobuhumi Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
2
|
Ouyang Z, Felix J, Zhou J, Pei Y, Ma B, Hwang PM, Lemieux MJ, Gutsche I, Zheng F, Wen Y. Trimeric structure of the mouse Kupffer cell C-type lectin receptor Clec4f. FEBS Lett 2019; 594:189-198. [PMID: 31369681 DOI: 10.1002/1873-3468.13565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 11/09/2022]
Abstract
The C-type lectin receptor Clec4f has been identified as a specific surface marker for Kupffer cells, although its ortholog is absent in humans and its biological function remains elusive. Here, we report the crystal structure of a truncated mouse trimeric Clec4f. The orientation between the carbohydrate-recognition domain of Clec4f and its neck region differs from other C-type lectins, resulting in an observed distance of 45 Å between the glycan-binding sites within the Clec4f trimer. Interestingly, the trimeric coiled-coil interface within its heptad neck region contains multiple polyglutamine interactions instead of the predominantly hydrophobic leucine zipper found in other C-type lectin receptors. The Clec4f trimeric structure displays unique features regarding its assembly and ligand recognition, shedding light on the evolution and diversity of the C-type lectin family.
Collapse
Affiliation(s)
- Zhenlin Ouyang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, China.,Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, China
| | - Jan Felix
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Jinhong Zhou
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, China
| | - Yingmei Pei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, China
| | - Bohan Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, China
| | - Peter M Hwang
- Department of Biochemistry, Faculty of Medicine & Dentistry, Edmonton, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine & Dentistry, Edmonton, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton, Canada
| | - Irina Gutsche
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Fang Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, China
| | - Yurong Wen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, China.,Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, China.,Department of Biochemistry, Faculty of Medicine & Dentistry, Edmonton, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Taylor ME, Snelling T, Smith DF, Drickamer K. Absence of a human ortholog of rodent Kupffer cell galactose-binding receptor encoded by the CLEC4f gene. Glycobiology 2019; 29:332-345. [PMID: 30590594 PMCID: PMC6422238 DOI: 10.1093/glycob/cwy113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 01/21/2023] Open
Abstract
The murine CLEC4f gene encodes the Kupffer cell receptor, a galactose-binding receptor containing a C-type carbohydrate-recognition domain. Orthologs have been identified in nearly 100 species. The receptors from rat and mouse have previously been characterized and data presented here show that functional CLEC4f protein is expressed in domestic cattle (Bos taurus). However, the human CLEC4f gene does not encode a functional receptor because a mutation in the splice acceptor site of the final exon prevents appropriate splicing and a missense mutation disrupts the sugar-binding site. Transcriptomic and PCR analysis of transcripts confirms the absence of a spliced transcript containing the final exon and only background levels of transcripts are detected in human tissues. These mutations are also present in the CLEC4f gene in Neanderthals. In contrast to humans, closely related species, including chimpanzees, do have CLEC4f genes that encode full-length receptors. Affinity chromatography and glycan array results demonstrate that the chimpanzee, bovine and murine proteins all bind to galactose, but they show preferences for different subsets of galactose-containing glycans. In non-human primates, the receptor is expressed in spleen rather than in liver. The results indicate that the CLEC4f protein probably has distinct functions in different species. Absence of the receptor precludes using it for targeting of glycoconjugates to cells in human liver. The fact that CLEC4f protein is expressed in spleen in non-human primates and the close evolutionary relationship of the CLEC4f protein to langerin (CD207) suggest that it may function in the immune system, possibly as a pathogen receptor.
Collapse
Affiliation(s)
| | - Tom Snelling
- Department of Life Sciences, Imperial College, London, UK
| | - David F Smith
- Emory Comprehensive Glycomics Core, Emory University, Atlanta, GA, USA
| | - Kurt Drickamer
- Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
4
|
Ogura A, Kurbangalieva A, Tanaka K. Exploring the glycan interaction in vivo: Future prospects of neo-glycoproteins for diagnostics. Glycobiology 2016; 26:804-12. [PMID: 26980440 DOI: 10.1093/glycob/cww038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/09/2016] [Indexed: 12/21/2022] Open
Abstract
Herein the biodistributions and in vivo kinetics of chemically prepared neoglycoproteins are reviewed. Chemical methods can be used to conjugate various mono- and oligosaccharides onto a protein surface. The kinetics and organ-specific accumulation profiles of these glycoconjugates, which are introduced through intravenous injections, have been analyzed using conventional dissection studies as well as noninvasive methods such as single photon emission computed tomography, positron emission tomography and fluorescence imaging. These studies suggest that glycan-dependent protein distribution kinetics may be useful for pharmacological and diagnostic applications.
Collapse
Affiliation(s)
- Akihiro Ogura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan 420008, Russia
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan 420008, Russia JST PRESTO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
5
|
In vivo kinetics and biodistribution analysis of neoglycoproteins: effects of chemically introduced glycans on proteins. Glycoconj J 2014; 31:273-9. [DOI: 10.1007/s10719-014-9520-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 12/15/2022]
|
6
|
Yang CY, Chen JB, Tsai TF, Tsai YC, Tsai CY, Liang PH, Hsu TL, Wu CY, Netea MG, Wong CH, Hsieh SL. CLEC4F is an inducible C-type lectin in F4/80-positive cells and is involved in alpha-galactosylceramide presentation in liver. PLoS One 2013; 8:e65070. [PMID: 23762286 PMCID: PMC3675125 DOI: 10.1371/journal.pone.0065070] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/21/2013] [Indexed: 01/19/2023] Open
Abstract
CLEC4F, a member of C-type lectin, was first purified from rat liver extract with high binding affinity to fucose, galactose (Gal), N-acetylgalactosamine (GalNAc), and un-sialylated glucosphingolipids with GalNAc or Gal terminus. However, the biological functions of CLEC4F have not been elucidated. To address this question, we examined the expression and distribution of murine CLEC4F, determined its binding specificity by glycan array, and investigated its function using CLEC4F knockout (Clec4f-/-) mice. We found that CLEC4F is a heavily glycosylated membrane protein co-expressed with F4/80 on Kupffer cells. In contrast to F4/80, CLEC4F is detectable in fetal livers at embryonic day 11.5 (E11.5) but not in yolk sac, suggesting the expression of CLEC4F is induced as cells migrate from yolk cells to the liver. Even though CLEC4F is not detectable in tissues outside liver, both residential Kupffer cells and infiltrating mononuclear cells surrounding liver abscesses are CLEC4F-positive upon Listeria monocytogenes (L. monocytogenes) infection. While CLEC4F has strong binding to Gal and GalNAc, terminal fucosylation inhibits CLEC4F recognition to several glycans such as Fucosyl GM1, Globo H, Bb3∼4 and other fucosyl-glycans. Moreover, CLEC4F interacts with alpha-galactosylceramide (α-GalCer) in a calcium-dependent manner and participates in the presentation of α-GalCer to natural killer T (NKT) cells. This suggests that CLEC4F is a C-type lectin with diverse binding specificity expressed on residential Kupffer cells and infiltrating monocytes in the liver, and may play an important role to modulate glycolipids presentation on Kupffer cells.
Collapse
Affiliation(s)
- Chih-Ya Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Jiun-Bo Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chen Tsai
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Yen Tsai
- Transgenic Core Facility, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Clinical Medicine & Infection and Immunity Center, National Yang-Ming University, Taipei, Taiwan
- Immunology Center, Taipei Veterans General Hospital, Taipei, Taiwan
- The Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
7
|
Sørensen ALT, Clausen H, Wandall HH. Carbohydrate clearance receptors in transfusion medicine. Biochim Biophys Acta Gen Subj 2012; 1820:1797-808. [PMID: 22846227 DOI: 10.1016/j.bbagen.2012.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/10/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Complex carbohydrates play important functions for circulation of proteins and cells. They provide protective shields and refraction from non-specific interactions with negative charges from sialic acids to enhance circulatory half-life. For recombinant protein therapeutics carbohydrates are especially important to enhance size and reduce glomerular filtration loss. Carbohydrates are, however, also ligands for a large number of carbohydrate-binding lectins exposed to the circulatory system that serve as scavenger receptors for the innate immune system, or have more specific roles in targeting of glycoproteins and cells. SCOPE OF REVIEW Here we provide an overview of the common lectin receptors that play roles for circulating glycoproteins and cells, and present a discussion of ways to engineer glycosylation of recombinant biologics and cells to improve therapeutic effects. MAJOR CONCLUSIONS While the pharmaceutical industry has learned how to exploit carbohydrates to improve pharmacokinetic properties of recombinant therapeutics, our understanding of how to improve cell-based therapies by manipulation of complex carbohydrates is still at its infancy. Progress with the latter has recently been achieved with cold-stored platelets, where exposure of uncapped glycans lead to rapid clearance from circulation by several lectin-mediated pathways. GENERAL SIGNIFICANCE Understanding lectin-mediated clearance pathways is essential for progress in development of biological pharmaceuticals.
Collapse
|
8
|
McCann TE, Kosaka N, Mitsunaga M, Choyke PL, Gildersleeve JC, Kobayashi H. Biodistribution and excretion of monosaccharide-albumin conjugates measured with in vivo near-infrared fluorescence imaging. Bioconjug Chem 2011; 21:1925-32. [PMID: 20853850 DOI: 10.1021/bc100313p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Target specific small molecules as modulators of drug delivery may play a significant role in the future development of therapeutics. Small molecules can alter the in vivo pharmacokinetics of therapeutic macromolecules leading to more efficient drug delivery with less systemic toxicity. The potential of creating a more effective drug delivery system through glycosylation has led, for instance, to the addition of galactose to increase drug delivery to the liver. However, there are many other monosaccharides with potentially useful targeting properties that require further characterization. Here, we investigate the potential of glycosylation to guide molecular therapies using five different monosaccharides conjugated to human serum albumin (HSA). Additionally, we investigate how the amount of glycosylation may alter the pharmacokinetic profile of HSA. We introduce the use of in vivo near-infrared optical imaging to characterize the effect of differential glycosylation on the pharmacokinetics of macromolecules.
Collapse
Affiliation(s)
- Thomas E McCann
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1088, USA
| | | | | | | | | | | |
Collapse
|
9
|
Hsu TL, Cheng SC, Yang WB, Chin SW, Chen BH, Huang MT, Hsieh SL, Wong CH. Profiling carbohydrate-receptor interaction with recombinant innate immunity receptor-Fc fusion proteins. J Biol Chem 2009; 284:34479-89. [PMID: 19837675 DOI: 10.1074/jbc.m109.065961] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The recognition of bacteria, viruses, fungi, and other microbes is controlled by host immune cells, which are equipped with many innate immunity receptors, such as Toll-like receptors, C-type lectin receptors, and immunoglobulin-like receptors. Our studies indicate that the immune modulating properties of many herbal drugs, for instance, the medicinal fungus Reishi (Ganoderma lucidum) and Cordyceps sinensis, could be attributed to their polysaccharide components. These polysaccharides specifically interact with and activate surface receptors involved in innate immunity. However, due to the complexity of polysaccharides and their various sources from medicinal fungi, quantitative analysis of medicinal polysaccharide extracts with regard to their functions represents a major challenge. To profile carbohydrate-immune receptor interactions, the extracellular domains of 17 receptors were cloned as Fc-fusion proteins, such that their interactions with immobilized polysaccharides could be probed in an enzyme-linked immunosorbent assay. The results show that several innate immune receptors, including Dectin-1, DC-SIGN, Langerin, Kupffer cell receptor, macrophage mannose receptor, TLR2, and TLR4, interact with the polysaccharide extracts from G. lucidum (GLPS). This analysis revealed distinct polysaccharide profiles from different sources of medicinal fungi, and the innate immune receptor-based enzyme-linked immunosorbent assay described here can serve as a high-throughput profiling method for the characterization and quality control of medicinal polysaccharides. It also provides a means to dissect the molecular mechanism of medicinal polysaccharide-induced immunomodulation events.
Collapse
Affiliation(s)
- Tsui-Ling Hsu
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Leck JR, Wiese TJ. Purification and characterization of the L-fucose transporter. Protein Expr Purif 2005; 37:288-93. [PMID: 15358349 DOI: 10.1016/j.pep.2004.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 04/30/2004] [Indexed: 10/26/2022]
Abstract
L-Fucose is a monosaccharide present in low levels in the serum. It is, however, a common structural component of glycoproteins. L-Fucose is accumulated in eukaryotic cells by a specific, facilitative diffusion transport system which has been designated the fucose transporter. In this study, purification of the transporter from mouse brain was performed by detergent extraction followed by ion-exchange and reactive dye ligand column chromatography. Purification was followed using a transport assay into reconstituted liposomes. A 111-fold purification with 5% yield was achieved from the crude homogenate. The apparent molecular weight of the protein was 57 kDa. Transport was found to be saturable. The K(m) and V(max) values are estimated at 3 microM and 275 pmol/min/mg, respectively. The tissue distribution of fucose transport was examined in liver, kidney, heart, lung, spleen, brain, muscle, adipose, ovary, pancreas, and thymus. Some fucose transport was found in all tissues examined. Very low levels were observed in the liver relative to all other tissues examined. The only monosaccharide which could inhibit the uptake of L-[5,6-(3)H]fucose was fucose itself.
Collapse
Affiliation(s)
- Joshua R Leck
- Department of Chemistry, Fort Hays State University 600 Park Street, Hays, KS 67601, USA
| | | |
Collapse
|
11
|
Fadden AJ, Holt OJ, Drickamer K. Molecular characterization of the rat Kupffer cell glycoprotein receptor. Glycobiology 2003; 13:529-37. [PMID: 12672702 DOI: 10.1093/glycob/cwg068] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Kupffer cell receptor for glycoproteins has been reported to have a role in clearance of galactose- and fucose-terminated glycoproteins from circulation. Although the gene and a cDNA encoding the receptor have been described, there has been little study of the receptor protein. To address some questions about possible ligands and functions for this receptor, fragments representing portions of the extracellular domain have been expressed and characterized. The extracellular domain consists of a trimer stabilized by an extended coiled-coil of alpha-helices. The receptor displays monosaccharide-binding characteristics similar to the hepatic asialoglycoprotein receptor, but with somewhat less selectivity. The two best monosaccharide ligands are GalNAc and galactose. alpha-Methyl fucoside is a particularly poor ligand. Analysis of Kupffer cell receptor binding to glycoproteins and oligosaccharides released from them reveals highest affinity for desialylated, complex N-linked glycans. The best glycoprotein ligands contain multiple highly branched oligosaccharides. A human ortholog of the rat receptor gene does not encode a full-length protein and is not expressed in liver. These characteristics suggest that the receptor may have functions parallel to those of the hepatocyte asialoglycoprotein receptor in some (but not all) mammalian species.
Collapse
Affiliation(s)
- Andrew J Fadden
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX21 3QU, United Kingdom
| | | | | |
Collapse
|
12
|
Rosenberg Y, Luo C, Ashani Y, Doctor BP, Fischer R, Wolfe G, Saxena A. Pharmacokinetics and immunologic consequences of exposing macaques to purified homologous butyrylcholinesterase. Life Sci 2002; 72:125-34. [PMID: 12417246 DOI: 10.1016/s0024-3205(02)02203-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exposure to organophosphorus compounds (OPs), in the form of nerve agents and pesticides poses an ever increasing military and civilian threat. In recent years, attention has focused on the use of exogenously administered cholinesterases as an effective prophylactic treatment for protection against OPs. Clearly, a critical prerequisite for any potential bioscavenger is a prolonged circulatory residence time, which is influenced by the size of protein, the microheterogeneity of carbohydrate structures, and the induction (if any) of anti-enzyme antibodies following repeated injections of the enzyme. Previously, it was demonstrated that multiple injections of equine butyrylcholinesterase (BChE) into rabbits, rats, or rhesus monkeys, resulted in a mean residence time spanning several days, and variable immune responses. The present study sought to assess the pharmacokinetics and immunological consequences of administration of purified macaque BChE into macaques of the same species at a dose similar to that required for preventing OP toxicity. An i.v. injection of 7,000 U of homologous enzyme in monkeys demonstrated much longer mean residence times in plasma (MRT = 225 +/- 19 h) compared to those reported for heterologous Hu BChE (33.7 +/- 2.9 h). A smaller second injection of 3,000 U given four weeks later, attained predicted peak plasma levels of enzyme activity, but surprisingly, the MRT in the four macaques showed wide variation and ranged from 54 to 357 h. No antibody response was detected in macaques following either injection of enzyme. These results bode well for the potential use of human BChE as a detoxifying drug in humans.
Collapse
|
13
|
Yang Y, Thomas VH, Man S, Rice KG. Tissue targeting of multivalent GalNAc Le(x) terminated N-glycans in mice. Glycobiology 2000; 10:1341-5. [PMID: 11159926 DOI: 10.1093/glycob/10.12.1341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
N-Linked biantennary and triantennary oligosaccharides containing multiple terminal GalNAc Le(x) (GalNAcss1-4[Fuc-alpha1-3]GlcNAc) determinants were radioiodinated and their pharmacokinetics, biodistribution, and hepatic cellular localization were determined in mice. Pharmacokinetic analysis revealed GalNAc Le(x) biantennary and triantennary oligosaccharides had a similar mean residence time and steady-state volume of distribution but differed in their total body clearance rate due a shorter alpha half-life for GalNAc Le(x) triantennary. Biodistribution and whole-body-autoradiography studies revealed that both GalNAc Le(x) terminated biantennary and triantennary oligosaccharides predominately targeted to the liver, which accumulated 72% and 79% of the dose 30 min after administration, respectively. Separation of mouse liver parenchymal from non-parenchymal cells demonstrated both N-glycans were almost exclusively (94%) taken up by the parenchymal cells. By comparison, GalNAc terminated biantennary and triantennary N-glycans accumulated in the liver with a targeting efficiency of 73% and 81%, respectively. It is concluded that GalNAc and GalNAc Le(x) terminated N-glycans are recognized in vivo with equivalent affinity by the murine hepatic asialoglycoprotein receptor.
Collapse
Affiliation(s)
- Y Yang
- College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA
| | | | | | | |
Collapse
|
14
|
Saxena A, Ashani Y, Raveh L, Stevenson D, Patel T, Doctor BP. Role of oligosaccharides in the pharmacokinetics of tissue-derived and genetically engineered cholinesterases. Mol Pharmacol 1998; 53:112-22. [PMID: 9443938 DOI: 10.1124/mol.53.1.112] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To understand the role of glycosylation in the circulation of cholinesterases, we compared the mean residence time of five tissue-derived and two recombinant cholinesterases (injected intravenously in mice) with their oligosaccharide profiles. Monosaccharide composition analysis revealed differences in the total carbohydrate, galactose, and sialic acid contents. The molar ratio of sialic acid to galactose residues on tetrameric human serum butyrylcholinesterase, recombinant human butyrylcholinesterase, and recombinant mouse acetylcholinesterase was found to be approximately 1.0. For Torpedo californica acetylcholinesterase, monomeric and tetrameric fetal bovine serum acetylcholinesterase, and equine serum butyrylcholinesterase, this ratio was approximately 0.5. However, the circulatory stability of cholinesterases could not be correlated with the sialic acid-to-galactose ratio. Fractionation of the total pool of oligosaccharides obtained after neuraminidase digestion revealed one major oligosaccharide for human serum butyrylcholinesterase and three or four major oligosaccharides in other cholinesterases. The glycans of tetrameric forms of plasma cholinesterases (human serum butyrylcholinesterase, fetal bovine serum acetylcholinesterase, and equine serum butyrylcholinesterase) clearly demonstrated a reduced heterogeneity and higher maturity compared with glycans of monomeric fetal bovine serum acetylcholinesterase, dimeric tissue-derived T. californica acetylcholinesterase, and recombinant cholinesterases. T. californica acetylcholinesterase, recombinant cholinesterases, and monomeric fetal bovine serum acetylcholinesterase showed a distinctive shorter mean residence time (44-304 min) compared with tetrameric forms of plasma cholinesterases (1902-3206 min). Differences in the pharmacokinetic parameters of cholinesterases seem to be due to the combined effect of the molecular weight and charge- and size-based heterogeneity in glycans.
Collapse
Affiliation(s)
- A Saxena
- Division of Biochemistry, Walter Reed Army Institute of Research, Washington D. C. 20307-5100, USA
| | | | | | | | | | | |
Collapse
|
15
|
Marino M, Corti A, Ippolito A, Cassani G, Fassina G. Effect of bench-scale culture conditions on murine IgG heterogeneity. Biotechnol Bioeng 1997; 54:17-25. [DOI: 10.1002/(sici)1097-0290(19970405)54:1<17::aid-bit2>3.0.co;2-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Neoglycoproteins. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0167-7306(08)60630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Uozumi N, Yanagidani S, Miyoshi E, Ihara Y, Sakuma T, Gao CX, Teshima T, Fujii S, Shiba T, Taniguchi N. Purification and cDNA cloning of porcine brain GDP-L-Fuc:N-acetyl-beta-D-glucosaminide alpha1-->6fucosyltransferase. J Biol Chem 1996; 271:27810-7. [PMID: 8910378 DOI: 10.1074/jbc.271.44.27810] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
GDP-L-Fuc:N-acetyl-beta-D-glucosaminide alpha1-->6fucosyltransferase (alpha1-6FucT; EC 2.4.1.68), which catalyzes the transfer of fucose from GDP-Fuc to N-linked type complex glycopeptides, was purified from a Triton X-100 extract of porcine brain microsomes. The purification procedures included sequential affinity chromatographies on GlcNAcbeta1-2Manalpha1-6(GlcNAcbeta1-2Manalpha1- 2)Manbeta1-4GlcNAcbet a1-4GlcNAc-Asn-Sepharose 4B and synthetic GDP-hexanolamine-Sepharose 4B columns. The enzyme was recovered in a 12% final yield with a 440, 000-fold increase in specific activity. SDS-polyacrylamide gel electrophoresis of the purified enzyme gave a major band corresponding to an apparent molecular mass of 58 kDa. The alpha1-6FucT has 575 amino acids and no putative N-glycosylation sites. The cDNA was cloned in to pSVK3 and was then transiently transfected into COS-1 cells. alpha1-6FucT activity was found to be high in the transfected cells, as compared with non- or mock-transfected cells. Northern blotting analyses of rat adult tissues showed that alpha1-6FucT was highly expressed in brain. No sequence homology was found with other previously cloned fucosyltransferases, but the enzyme appears to be a type II transmembrane protein like the other glycosyltransferases.
Collapse
Affiliation(s)
- N Uozumi
- Department of Biochemistry, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sarkar K, Sarkar HS, Kole L, Das PK. Receptor-mediated endocytosis of fucosylated neoglycoprotein by macrophages. Mol Cell Biochem 1996; 156:109-16. [PMID: 9095466 DOI: 10.1007/bf00426332] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The characteristics of the recognition system involved in the receptor mediated endocytosis of the neoglycoprotein, fucose-human serum albumin (HSA) were studied. It was found that (i) fucose-HSA showed strong affinity binding and uptake by various macrophages; (ii) binding was specific for L-fucose and D-mannose; (iii) binding was found to be inhibited by oxidant like H2O2 and swainsonine whereas it was elevated by dexamethasone; (iv) clearance of 125I-fucose-HSA was rapid and strongly inhibited by unlabelled fucose-HSA. Greater than 70% of fucose-HSA was found in liver and more than 60% of this was found in liver lysosomes; (v) uptake of fucose-HSA was thirty-fold more efficient in liver macrophages (Kupffer cells) than in hepatocytes; (vi) moreover, mannose-HSA and ovalbumin which are potent inhibitors of mannose/N-acetylglucosamine receptors inhibited clearance and uptake of fucose-HSA by liver as well as by isolated Kupffer cells suggesting the involvement of both fucose and mannose receptors or a single type of receptor having greater affinity for fucose-HSA than for mannose-HSA. These results emphasize the important role of fucose-terminated glycoproteins in site-specific drug targeting.
Collapse
Affiliation(s)
- K Sarkar
- Department of Molecular Cell Biology, Indian Institute of Chemical Biology, Calcutta, India
| | | | | | | |
Collapse
|
19
|
Chiu MH, Thomas VH, Stubbs HJ, Rice KG. Tissue targeting of multivalent Le(x)-terminated N-linked oligosaccharides in mice. J Biol Chem 1995; 270:24024-31. [PMID: 7592600 DOI: 10.1074/jbc.270.41.24024] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The target site for N-linked biantennary and triantennary oligosaccharides containing multiple terminal Le(x) determinants was analyzed in mice. N-linked oligosaccharides containing a single tert-butoxycarbonyl-tyrosine attached to the reducing end were used as synthons for human milk alpha-3/4-fucosyltransferase to prepare multivalent Le(x) (Gal beta 1-4[Fuc alpha 1-3]GlcNAc) terminated tyrosinamide oligosaccharides. The oligosaccharides were radioiodinated and examined for their pharmacokinetics and biodistribution in mice. The liver was the major target site in mice at 30 min, which accumulated 18% of the dose for Le(x) biantennary compared with 6% for a nonfucosylated Gal biantennary. By comparison, Le(x)- and Gal-terminated triantennary accumulated in the liver with a targeting efficiency of 66 and 59%, respectively. The liver targeting of Le(x)-biantennary was partially blocked by co-administration with either galactose or L-fucose whereas Le(x) triantennary targeting was only reduced by co-administration with galactose. In contrast to these results in mice, in vivo experiments performed in rats established that both Le(x) and Gal terminated biantennary target the liver with nearly identical efficiency (6-7%). It is concluded that the asialoglycoprotein receptor in mice preferentially recognize Le(x) biantennary over Gal biantennary, whereas little or no differentiation exists in rats. Thereby, the mouse asialoglycoprotein receptor apparently possesses additional binding pockets that accommodate a fucose residue when presented as Le(x).
Collapse
Affiliation(s)
- M H Chiu
- College of Pharmacy, University of Michigan, Ann Arbor 48109-1065, USA
| | | | | | | |
Collapse
|
20
|
Rice KG, Chiu MH, Wadhwa MS, Thomas VH, Stubbs HJ. In vivo targeting function of N-linked oligosaccharides. Pharmacokinetic and biodistribution of N-linked oligosaccharides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 376:271-82. [PMID: 8597259 DOI: 10.1007/978-1-4615-1885-3_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- K G Rice
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
21
|
Wiese T, Dunlap J, Yorek M. L-fucose is accumulated via a specific transport system in eukaryotic cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31703-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Prouty SM, Levitt P. Immunocytochemical analysis of a novel carbohydrate differentiation antigen (CDA-3C2) associated with olfactory and otic systems during embryogenesis in the rat. J Comp Neurol 1993; 332:444-70. [PMID: 7688772 DOI: 10.1002/cne.903320406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Carbohydrate differentiation antigens are known to display specific patterns of expression during mammalian development and are thought to participate in significant morphogenetic events. In the present study, two monoclonal antibodies that react with a novel carbohydrate differentiation antigen (CDA-3C2) were used to analyze, by light microscopy, the spatiotemporal distribution of this unique high molecular weight antigen during embryogenesis in the rat. Correlative analysis of the development of peripheral neural structures, in which CDA-3C2 was expressed, was carried out with an anti-neurofilament antibody. Enzymatic digestion, combined with Western blots, reveal that the CDA-3C2 epitope is a carbohydrate which is carried on a high molecular weight glycoprotein with a mass of greater than 1 million Daltons. Characteristic of carbohydrate antigens, immunoreactivity was found in several distinct cellular patterns: only along the apical border of cells, along lateral and basal membranes of cells, and extracellular-like staining in the mesenchyme. During neurulation, CDA-3C2 showed differential staining in the ectoderm, distinguishing lateral from neural regions. Following closure of the neural tube, there was a striking specificity of expression of CDA-3C2 in the periphery, found almost exclusively in olfactory and otic epithelial structures. While CDA-3C2 is found in placode-derived tissues that subserve sensory transduction, it appears to be primarily associated with the supportive cells (and their secretions) in both otic and olfactory regions and less so with the sensory cells. The data suggest that a unique carbohydrate antigen on a large macromolecule may play a role in neurulation and/or morphogenesis of the placode-derived otic and olfactory structures.
Collapse
Affiliation(s)
- S M Prouty
- Department of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia 19129
| | | |
Collapse
|
23
|
Hosomi O, Takeya A, Yazawa S. A novel lectin in rabbit serum binds H type 1, H type 2 and N-acetyl lactosamine structures. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1157:45-9. [PMID: 8499478 DOI: 10.1016/0304-4165(93)90076-k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel lectin (RSL) which recognizes blood group H type 1 and type 2 (Fuc alpha 1-->2Gal beta 1-->3/4GlcNAc beta-R), and N-acetyllactosamine (Gal beta 1-->4GlcNAc beta-R) was purified from rabbit serum using affinity chromatography on Synsorb H type 2 beads, gel filtration and preparative polyacrylamide gel electrophoresis. The lectin agglutinated human O type red cells, and the hemagglutination reaction was inhibited by H type 1 and type 2 haptens, N-acetyllactosamine and human salivas from secretor individuals. The molecular weight of the lectin was estimated to be approximate 650,000 and 65,000 on Sephacryl S-400 gel filtration and SDS-polyacrylamide gel electrophoresis, respectively.
Collapse
Affiliation(s)
- O Hosomi
- Department of Legal Medicine, School of Medicine, Gunma University, Maebashi, Japan
| | | | | |
Collapse
|
24
|
Maiorella BL, Winkelhake J, Young J, Moyer B, Bauer R, Hora M, Andya J, Thomson J, Patel T, Parekh R. Effect of culture conditions on IgM antibody structure, pharmacokinetics and activity. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1993; 11:387-92. [PMID: 7763441 DOI: 10.1038/nbt0393-387] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Culture conditions affect the binding activity, charge heterogeneity, conformational stability, glycosylation, and pharmacokinetics of human monoclonal IgM HMAB-10058. The 10058 human/human/murine trioma was grown in serum-free airlift suspension culture, hollow fiber perfusion culture, or in nude mouse ascites. The ascites-produced antibody showed reduced conformational stability, greater charge and glycoform heterogeneity, and a lower average degree of sialylation than the in vitro culture-produced material. Mean residence time after IV injection in rats was approximately 80-fold greater for the ascites culture-produced material, but specific binding activity was less than 5% of that for the airlift-produced material. In vitro culture in serum-supplemented media (in a hollow fiber perfusion reactor or in shake-flasks) resulted in antibody with pharmacokinetics intermediate between the serum-free airlift and ascites-produced materials. Incubation of airlift-produced antibody in ascites fluid also resulted in material with intermediate pharmacokinetics. Conclusions regarding the effect of culture conditions on antibody product cannot be generalized, as in vitro-produced antibody derived from two related cell lines (HMAB-10233 and HMAB-10390) had long mean residence times similar to that of ascites-produced HMAB-10058.
Collapse
|
25
|
Wattiaux R, Jadot M, Misquith S, Wattiaux-de Coninck S. Characterization of endocytic components of liver nonparenchymal cells. Subcell Biochem 1993; 19:163-94. [PMID: 8385818 DOI: 10.1007/978-1-4615-3026-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- R Wattiaux
- Laboratoire de Chimie Physiologique, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | | | | | | |
Collapse
|
26
|
Kojima N, Hakomori S. Cell adhesion, spreading, and motility of GM3-expressing cells based on glycolipid-glycolipid interaction. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)47407-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Wawrzynczak EJ, Cumber AJ, Henry RV, Parnell GD. Comparative biochemical, cytotoxic and pharmacokinetic properties of immunotoxins made with native ricin A chain, ricin A1 chain and recombinant ricin A chain. Int J Cancer 1991; 47:130-5. [PMID: 1985869 DOI: 10.1002/ijc.2910470123] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunotoxins were constructed by attaching native ricin A chain, ricin A1 chain and recombinant ricin A chain to the mouse monoclonal IgG2a antibody Fib75 by means of a disulphide linkage using the hetero-bifunctional cross-linker SPDP. The Fib75 immunotoxins were of similar composition and exerted identical cytotoxic effects against the EJ human bladder carcinoma cell line in tissue culture. All 3 immunotoxins broke down to the same extent upon incubation with glutathione in vitro. The clearance of the immunotoxins from the circulation of normal Wistar rats was determined following i.v. administration. The concentration of intact immunotoxin in serum samples taken at various intervals up to 48hr after injection was measured by a ricin A chain-specific ELISA. The Fib75 immunotoxin made with native ricin A chain was removed from the circulation most rapidly. Fib75-recombinant ricin A chain persisted in the circulation at a higher level than Fib75-ricin A1 chain. A higher proportion of the ricin A1 chain immunotoxin was lost from the bloodstream during the alpha-phase. The beta-phase half-lives of Fib75-recombinant ricin A chain and Fib75-ricin A1 chain were similar, consistent with the identical susceptibility of the immunotoxins to cleavage by glutathione. The presence of the complex-type oligosaccharide side-chain on the A1 chain may have accelerated the clearance of the A1 chain immunotoxin in relation to that of the immunotoxin made with the aglycosyl recombinant A chain.
Collapse
Affiliation(s)
- E J Wawrzynczak
- Drug Targeting Laboratory, Institute of Cancer Research, Surrey, UK
| | | | | | | |
Collapse
|
28
|
Daunter B, Cham BE. Solasodine glycosides. In vitro preferential cytotoxicity for human cancer cells. Cancer Lett 1990; 55:209-20. [PMID: 2257539 DOI: 10.1016/0304-3835(90)90121-d] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Solamargine [(22R,25R)-spiro-5-en-3 beta-yl-alpha-L-rhamnopyranosyl- (1----2glu)-O-alpha-L-rhamnopyranozyl (1----4glu)-beta-D-glucopyranoze], a glycoside of solasodine preferentially inhibits the uptake of tritiated thymidine by cancer cells. In contrast, solamargine at equivalent concentration, and the mono- and diglycosides of solasodine have a limited effect on the uptake of tritiated thymidine for other cell types, including unstimulated lymphocytes and lymphocytes stimulated with Con A. In contrast the solasodine glycosides do not inhibit the uptake of tritiated thymidine by lymphocytes stimulated with PHA or PWM. The inhibition of tritiated thymidine uptake by solamargine and the mono- and di-glycosides of solasodine are dependent upon their cellular uptake by endogenous endocytic lectins (EELs). The mode of action of the solasodine glycosides, in particular solamargine, appears to be the induction of cell lysis, as determined by morphological examination.
Collapse
Affiliation(s)
- B Daunter
- University of Queensland Department of Obstetrics and Gynaecology, Herston, Australia
| | | |
Collapse
|
29
|
|
30
|
|
31
|
O'Rand MG. Sperm-egg recognition and barriers to interspecies fertilization. GAMETE RESEARCH 1988; 19:315-28. [PMID: 3058566 DOI: 10.1002/mrd.1120190402] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- M G O'Rand
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599
| |
Collapse
|
32
|
Blakey DC, Skilleter DN, Price RJ, Thorpe PE. Uptake of native and deglycosylated ricin A-chain immunotoxins by mouse liver parenchymal and non-parenchymal cells in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 968:172-8. [PMID: 3257705 DOI: 10.1016/0167-4889(88)90005-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The therapeutic activity of ricin A-chain immunotoxins is undermined by their rapid clearance from the bloodstream of animals by the liver. This uptake has generally been attributed to recognition of the mannose-terminating oligosaccharides present on ricin A-chain by receptors present on the non-parenchymal (Kupffer and sinusoidal) cells of the liver. However, we demonstrate here that, in the mouse, the liver uptake of a ricin A-chain immunotoxin occurs in both parenchymal and non-parenchymal cells in equal amounts. This is in contrast to the situation in the rat, where uptake of the immunotoxin is predominantly by the non-parenchymal cells. Recognition of sugar residues on the A-chain portion of the immunotoxin plays an important role in the liver uptake by both cell types in both species. However it is not the only mechanism since, firstly, an immunotoxin containing ricin A-chain which had been effectively deglycosylated with metaperiodate and cyanoborohydride was still trapped to a significant extent by hepatic non-parenchymal cells after it was injected into mice. Secondly, deglycosylation, while eliminating uptake of the free A-chain by parenchymal and non-parenchymal cells in vitro, only reduced the uptake of an immunotoxin by either cell type by about half. Thirdly, the addition of excess D-mannose or L-fucose inhibited the uptake of free A-chain by mouse liver cell cultures by more than 80% but only inhibited the uptake of the native A-chain immunotoxin by about half and had little effect on the uptake of the deglycosylated ricin A-chain immunotoxin. Recognition of the antibody portion of the immunotoxin by liver cells seems improbable, since antibody alone or an antibody-bovine serum albumin conjugate were not taken up in appreciable amounts by the cultures. Possibly attachment of the A-chain to the antibody exposes sites on the A-chain that are recognised by liver cells in vitro and in vivo.
Collapse
Affiliation(s)
- D C Blakey
- Drug Targeting Laboratory, Imperial Cancer Research Fund, London, U.K
| | | | | | | |
Collapse
|
33
|
|
34
|
Raedler A, Schreiber S. Analysis of differentiation and transformation of cells by lectins. Crit Rev Clin Lab Sci 1988; 26:153-93. [PMID: 3067975 DOI: 10.3109/10408368809106861] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During differentiation cells are known to change their biological behavior according to their genotype. This is thought to be accompanied by a modulation of cell surface determinants expressed on the outer cell membrane. Vice versa, cell surface molecules are suggested to mediate extracellular signals to the genome. Most of these molecules integrated in the cell membrane have been proven to be glycoconjugates. The carbohydrate moieties of these molecules can be detected by means of lectins that are characterized by their ability to react specifically with distinct terminal sugar sequences. Thus, lectins have been used as appropriate tools for studying the modulation of functionally important membrane-associated molecules during the differentiation of cells, in particular of B- and T-lymphocytes. Moreover, lectins have been proven to distinguish between differentiated cells and malignant cell clones, according to the hypothesis that transformed cells possess a glycoconjugate profile that corresponds to the stage of differentiation at which they are arrested. Since lectins, like monoclonal antibodies, make it possible to study functionally important molecules that are associated with differentiation and malignancy, they might be of value for diagnostic purposes and, moreover, for analyzing malignant transformation.
Collapse
Affiliation(s)
- A Raedler
- Medical Department, University of Hamburg, Federal Republic of Germany
| | | |
Collapse
|
35
|
Blakey DC, Thorpe PE. Prevention of carbohydrate-mediated clearance of ricin-containing immunotoxins by the liver. Cancer Treat Res 1988; 37:457-73. [PMID: 2908639 DOI: 10.1007/978-1-4613-1083-9_25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Haltiwanger RS, Hill RL. The ligand binding specificity and tissue localization of a rat alveolar macrophage lectin. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)66773-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
37
|
The distribution and localization of the fucose-binding lectin in rat tissues and the identification of a high affinity form of the mannose/N-acetylglucosamine-binding lectin in rat liver. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38410-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
|
39
|
The binding of fucose-containing glycoproteins by hepatic lectins. The binding specificity of the rat liver fucose lectin. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38409-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
The binding of fucose-containing glycoproteins by hepatic lectins. Purification of a fucose-binding lectin from rat liver. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38408-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|