1
|
Physiological Overview of the Potential Link between the UPS and Ca2+ Signaling. Antioxidants (Basel) 2022; 11:antiox11050997. [PMID: 35624861 PMCID: PMC9137615 DOI: 10.3390/antiox11050997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin–proteasome system (UPS) is the main proteolytic pathway by which damaged target proteins are degraded after ubiquitination and the recruit of ubiquitinated proteins, thus regulating diverse physiological functions and the maintenance in various tissues and cells. Ca2+ signaling is raised by oxidative or ER stress. Although the basic function of the UPS has been extensively elucidated and has been continued to define its mechanism, the precise relationship between the UPS and Ca2+ signaling remains unclear. In the present review, we describe the relationship between the UPS and Ca2+ signaling, including Ca2+-associated proteins, to understand the end point of oxidative stress. The UPS modulates Ca2+ signaling via the degradation of Ca2+-related proteins, including Ca2+ channels and transporters. Conversely, the modulation of UPS is driven by increases in the intracellular Ca2+ concentration. The multifaceted relationship between the UPS and Ca2+ plays critical roles in different tissue systems. Thus, we highlight the potential crosstalk between the UPS and Ca2+ signaling by providing an overview of the UPS in different organ systems and illuminating the relationship between the UPS and autophagy.
Collapse
|
2
|
Cai T, Huang YH, Zhang F. Ovarian morphological features and proteome reveal fecundity fitness disadvantages in β-cypermethrin-resistant strains of Blattella germanica (L.) (Blattodea: Blattellidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104682. [PMID: 32980072 DOI: 10.1016/j.pestbp.2020.104682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/19/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
To evaluate whether the development of β-cypermethrin resistance in Blattella germanica (L.) (Blattaria: Blattellidae) affects the fecundity fitness of this insect and to determine the underlying mechanism, we compared fecundity differences between β-cypermethrin-resistant (R) and sensitive (S) strains of B. germanica, observed the physiological structural changes of ovaries from an visual perspective, and analyzed differences in the ovarian proteome using proteomic methods. The results showed that, compared with the S strain of B. germanica, the R strain of B. germanica had a significantly higher ootheca shedding rate, a significantly lower number of hatched and surviving nymphs, a significantly higher female proportion in the population and defective ovarian development. Ovarian proteomic analysis showed a total of 64 differentially expressed proteins in the R strain, including 18 upregulated proteins and 46 downregulated proteins. Twenty-four significantly differentially expressed proteins were further studied, and 14 were successfully identified, which were mainly classified into the following categories: immunity-related proteins, development-related proteins, structural proteins, energy metabolism-related proteins and proteins with unknown functions. The differential expression of these proteins reflects the overall changes in cell structure and metabolism associated with β-cypermethrin resistance and explains the possible molecular mechanism of fecundity fitness disadvantages. In summary, β-cypermethrin resistance can cause fecundity fitness disadvantages in B. germanica. The metabolic deviations needed to overcome the adverse effects of insecticides may result in an energy exchange that affects energy allocation and, ultimately, the basic needs of the insect. The fitness cost due to insecticide resistance is critical to the delay of the evolution of resistance.
Collapse
Affiliation(s)
- Tong Cai
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, People's Republic of China
| | - Yan-Hong Huang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), 41 Jiefang Road, Jinan 250013, People's Republic of China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, People's Republic of China..
| |
Collapse
|
3
|
Lu YF, Sheng H, Zhang Y, Li ZY. Computational prediction of cleavage using proteasomal in vitro digestion and MHC I ligand data. J Zhejiang Univ Sci B 2014; 14:816-28. [PMID: 24009202 DOI: 10.1631/jzus.b1200299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteasomes are responsible for the production of the majority of cytotoxic T lymphocyte (CTL) epitopes. Hence, it is important to identify correctly which peptides will be generated by proteasomes from an unknown protein. However, the pool of proteasome cleavage data used in the prediction algorithms, whether from major histocompatibility complex (MHC) I ligand or in vitro digestion data, is not identical to in vivo proteasomal digestion products. Therefore, the accuracy and reliability of these models still need to be improved. In this paper, three types of proteasomal cleavage data, constitutive proteasome (cCP), immunoproteasome (iCP) in vitro cleavage, and MHC I ligand data, were used for training cleave-site predictive methods based on the kernel-function stabilized matrix method (KSMM). The predictive accuracies of the KSMM+pair coefficients were 75.0%, 72.3%, and 83.1% for cCP, iCP, and MHC I ligand data, respectively, which were comparable to the results from support vector machine (SVM). The three proteasomal cleavage methods were combined in turn with MHC I-peptide binding predictions to model MHC I-peptide processing and the presentation pathway. These integrations markedly improved MHC I peptide identification, increasing area under the receiver operator characteristics (ROC) curve (AUC) values from 0.82 to 0.91. The results suggested that both MHC I ligand and proteasomal in vitro degradation data can give an exact simulation of in vivo processed digestion. The information extracted from cCP and iCP in vitro cleavage data demonstrated that both cCP and iCP are selective in their usage of peptide bonds for cleavage.
Collapse
Affiliation(s)
- Yu-feng Lu
- School of Mathematical Sciences, Dalian University of Technology, Dalian 116023, China; College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China; School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | | | | | | |
Collapse
|
4
|
Platelet protein damage by free radicals and glycationin vitro: The pathological consequences. Indian J Clin Biochem 2012; 15:11-6. [PMID: 23105231 DOI: 10.1007/bf02873541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Modification of platelet proteins by free radicals and glycation has been studied in the present work, as anin vitro model. The results of the two parameters, SDS-PAGE and carbonylation study are quite corroborative. We observed that the inducers like ferrous sulphate, ascorbate (mainly in supraphysiological concentration) and glucose attack the protein in a dose dependent manner, of which ferrous sulphate is most potent. Proteins from aged and degenerative conditions like malignancy and diabetes mellitus have suffered greater damage than normal adult and foetal proteins. The individual life expectancy in terms of biological versus chronological age may also be worked out from the individual stress level.
Collapse
|
5
|
Shang F, Taylor A. Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Radic Biol Med 2011; 51:5-16. [PMID: 21530648 PMCID: PMC3109097 DOI: 10.1016/j.freeradbiomed.2011.03.031] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 03/08/2011] [Accepted: 03/26/2011] [Indexed: 12/13/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in noncanonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. Whereas many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin-conjugating enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin-conjugating enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells seem to be an indicator of mild oxidative stress.
Collapse
Affiliation(s)
- Fu Shang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | |
Collapse
|
6
|
Drosophila lacking a homologue of mammalian ALDH2 have multiple fitness defects. Chem Biol Interact 2011; 191:296-302. [PMID: 21296060 DOI: 10.1016/j.cbi.2011.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 11/22/2022]
Abstract
Little is known about the roles of aldehyde dehydrogenases in non-vertebrate animals. We recently showed that in Drosophila melanogaster, an enzyme with ∼70% amino acid identity to mammalian ALDH2 is necessary for detoxification of dietary ethanol. To investigate other functions of this enzyme, DmALDH, encoded by the gene Aldh, we compared two strains homozygous for Aldh-null mutations to two closely related wild type strains in measures of fitness and stress resistance in the absence of ethanol. Aldh-null strains have lower total reproductive rate, pre-adult viability, resistance to starvation, and possibly longevity than wild-type strains. When maintained under hyperoxia, Aldh nulls die more quickly and accumulate higher levels of protein carbonyls than wild-types, thereby providing evidence that DmALDH is important for detoxifying reactive aldehydes generated by lipid peroxidation. However no effect of Aldh was seen on protein carbonyl levels in flies maintained under normoxia. It is possible that Aldh nulls experience elevated rates of protein carbonylation under normoxia, but this is compensated (at a fitness cost) by increased rates of degradation of the defective proteins. Alternatively, the fitness defects of Aldh nulls under normoxia may result from the absence of one or more other functions of DmALDH, unrelated to protection against protein carbonylation.
Collapse
|
7
|
Grune T, Botzen D, Engels M, Voss P, Kaiser B, Jung T, Grimm S, Ermak G, Davies KJA. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions. Arch Biochem Biophys 2010; 500:181-8. [PMID: 20478262 DOI: 10.1016/j.abb.2010.05.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 12/31/2022]
Abstract
Tau is the major protein exhibiting intracellular accumulation in Alzheimer disease. The mechanisms leading to its accumulation are not fully understood. It has been proposed that the proteasome is responsible for degrading tau but, since proteasomal inhibitors block both the ubiquitin-dependent 26S proteasome and the ubiqutin-independent 20S proteasome pathways, it is not clear which of these pathways is involved in tau degradation. Some involvement of the ubiquitin ligase, CHIP in tau degradation has also been postulated during stress. In the current studies, we utilized HT22 cells and tau-transfected E36 cells in order to test the relative importance or possible requirement of the ubiquitin-dependent 26S proteasomal system versus the ubiquitin-independent 20S proteasome, in tau degradation. By means of ATP-depletion, ubiquitinylation-deficient E36ts20 cells, a 19S proteasomal regulator subunit MSS1-siRNA approaches, and in vitro ubiquitinylation studies, we were able to demonstrate that ubiquitinylation is not required for normal tau degradation.
Collapse
Affiliation(s)
- Tilman Grune
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Organisms are constantly exposed to various forms of reactive oxygen species (ROS) that lead to oxidation of proteins, nucleic acids, and lipids. Protein oxidation can involve cleavage of the polypeptide chain, modification of amino acid side chains, and conversion of the protein to derivatives that are highly sensitive to proteolytic degradation. Unlike other types of modification (except cysteine oxidation), oxidation of methionine residues to methionine sulfoxide is reversible; thus, cyclic oxidation and reduction of methionine residues leads to consumption of ROS and thereby increases the resistance of proteins to oxidation. The importance of protein oxidation in aging is supported by the observation that levels of oxidized proteins increase with animal age. The age-related accumulation of oxidized proteins may reflect age-related increases in rates of ROS generation, decreases in antioxidant activities, or losses in the capacity to degrade oxidized proteins.
Collapse
Affiliation(s)
- Earl R Stadtman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Biochemistry and Biophysics Center, MSC-8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
9
|
Ginodi I, Vider-Shalit T, Tsaban L, Louzoun Y. Precise score for the prediction of peptides cleaved by the proteasome. ACTA ACUST UNITED AC 2008; 24:477-83. [PMID: 18216070 DOI: 10.1093/bioinformatics/btm616] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION An 8-10mer can become a cytotoxic T lymphocyte epitope only if it is cleaved by the proteasome, transported by TAP and presented by MHC-I molecules. Thus most of the epitopes presented to cytotoxic T cells in the context of MHC-I molecules are products of intracellular proteasomal cleavage. These products are not random, as peptide production is a function of the precise sequence of the proteins processed by the proteasome. RESULTS We have developed a score for the probability that a given peptide results from proteasomal cleavage. High scoring peptides are those that are cleaved in their extremities and not in their center, while low scoring peptides are either cleaved in their centers or not cleaved in their extremities. The current work differs from most previous works, in that it determines the production probability of an entire peptide, rather than trying to predict specific cleavage sites. We further present different score functions for the constitutive and the immunoproteasome. Our results were validated to have low error levels against multiple epitope databases. We provide here a novel computational tool and a website to use it-http://peptibase.cs.biu.ac.il/PepCleave_II/ to assess the probability that a given peptide indeed results from proteasomal cleavage.
Collapse
Affiliation(s)
- Ido Ginodi
- Department of Mathematics and Statistics, Bar-Ilan University, Ramat-Gan, Israel, 52900
| | | | | | | |
Collapse
|
10
|
Visalli V, Muscoli C, Sacco I, Sculco F, Palma E, Costa N, Colica C, Rotiroti D, Mollace V. N-acetylcysteine prevents HIV gp 120-related damage of human cultured astrocytes: correlation with glutamine synthase dysfunction. BMC Neurosci 2007; 8:106. [PMID: 18062818 PMCID: PMC2221944 DOI: 10.1186/1471-2202-8-106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Accepted: 12/06/2007] [Indexed: 12/22/2022] Open
Abstract
Background HIV envelope gp 120 glycoprotein is released during active HIV infection of brain macrophages thereby generating inflammation and oxidative stress which contribute to the development of the AIDS-Dementia Complex (ADC). Gp120 has also been found capable to generate excitotoxic effect on brain tissue via enhancement of glutamatergic neurotransmission, leading to neuronal and astroglial damage, though the mechanism is still to be better understood. Here we investigated on the effect of N-acetylcysteine (NAC), on gp120-induced damage in human cultured astroglial cells and the possible contribution of gp120-related reacting oxygen species (ROS) in the imbalanced activity of glutamine synthase (GS), the enzyme that metabolizes glutamate into glutamine within astroglial cells playing a neuroprotective role in brain disorders. Results Incubation of Lipari human cultured astroglial cells with gp 120 (0.1–10 nM) produced a significant reduction of astroglial cell viability and apoptosis as evaluated by TUNEL reaction and flow cytometric analysis (FACS). This effect was accompanied by lipid peroxidation as detected by means of malondialdehyde assay (MDA). In addition, gp 120 reduced both glutamine concentration in astroglial cell supernatants and GS expression as detected by immunocytochemistry and western blotting analysis. Pre-treatment of cells with NAC (0.5–5 mM), dose-dependently antagonised astroglial apoptotic cell death induced by gp 120, an effect accompanied by significant attenuation of MDA accumulation. Furthermore, both effects were closely associated with a significant recovery of glutamine levels in cell supernatants and by GS expression, thus suggesting that overproduction of free radicals might contribute in gp 120-related dysfunction of GS in astroglial cells. Conclusion In conclusion, the present experiments demonstrate that gp 120 is toxic to astroglial cells, an effect accompanied by lipid peroxidation and by altered glutamine release. All the effects of gp120 on astroglial cells were counteracted by NAC thus suggesting a novel and potentially useful approach in the treatment of glutammatergic disorders found in HAD patients.
Collapse
Affiliation(s)
- Valeria Visalli
- Department of Pharmacobiological Sciences, Faculty of Pharmacy, University Magna Graecia, Catanzaro, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The ubiquitin proteasome system (UPS) represents a major pathway for intracellular protein degradation. Proteasome dependent protein quality control participates in cell cycle, immune response and apoptosis. Therefore, the UPS is in focus of therapeutic investigations and the development of pharmaceutical agents. Detailed analyses on proteasome structure and function are the foundation for drug development and clinical studies. Proteomic approaches contributed significantly to our current knowledge in proteasome research. In particular, 2-DE has been essential in facilitating the development of current models on molecular composition and assembly of proteasome complexes. Furthermore, developments in MS enabled identification of UPS proteins and their PTMs at high accuracy and high-throughput. First results on global characterization of the UPS are also available. Although the UPS has been intensively investigated within the last two decades, its functional significance and contribution to the regulation of cell and tissue phenotypes remain to be explored. This review recapitulates a variety of applied proteomic approaches in proteasome exploration, and presents an overview of current technologies and their potential in driving further investigations.
Collapse
Affiliation(s)
- Oliver Drews
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
12
|
Chakravarti B, Chakravarti DN. Oxidative modification of proteins: age-related changes. Gerontology 2006; 53:128-39. [PMID: 17164550 DOI: 10.1159/000097865] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aging is a complex biological phenomenon which involves progressive loss of different physiological functions of various tissues of living organisms. It is the inevitable fate of life and is a major risk factor for death and different pathological disorders. Based on a wide variety of studies performed in humans as well as in various animal models and microbial systems, reactive oxygen species (ROS) are believed to play a key role in the aging process. The production of ROS is influenced by cellular metabolic activities as well as environmental factors. ROS can react with all major biological macromolecules such as carbohydrates, nucleic acids, lipids, and proteins. Since, in general, proteins are the key molecules that play the ultimate role in various structural and functional aspects of living organisms, this review will focus on the age-related oxidative modifications of proteins as well as on mechanism for removal or repair of the oxidized proteins. The topics covered include protein oxidation as a marker of oxidative stress, experimental evidence indicating the role of ROS in protein oxidation, protein carbonyl content, enzymatic degradation of oxidized proteins, and effects of caloric restriction on protein oxidation in the context of aging. Finally, we will discuss different strategies which have been or can be undertaken to slow down the oxidative damage of proteins and the aging process.
Collapse
Affiliation(s)
- Bulbul Chakravarti
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, USA.
| | | |
Collapse
|
13
|
Shaw E. Cysteinyl proteinases and their selective inactivation. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 63:271-347. [PMID: 2407065 DOI: 10.1002/9780470123096.ch5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The affinity-labeling of cysteinyl proteinases may now be carried out with a number of peptide-derived reagents with selectivity, particularly for reactions carried out in vitro. These reagents have been described with emphasis on their selectivity for cysteine proteinases and lack of action on serine proteinases, the most likely source of side reactions among proteinases. Perhaps a crucial feature of this selectivity is an enzyme-promoted activation due to initial formation of a hemiketal, which may destabilize the reagent. Prominent among the reagent types that have this class selectivity are the peptidyl diazomethyl ketones, the acyloxymethyl ketones, the peptidylmethyl sulfonium salts, and peptidyl oxides analogous to E-64. The need for specific inhibitors capable of inactivating the target enzyme in intact cells and animals is inevitably pushing the biochemical application of these inhibitors into more complex molecular environments where the possibilities of competing reactions are greatly increased. In dealing with the current state and potential developments for the in vivo use of affinity-labeling reagents of cysteine proteinases, the presently known variety of cysteinyl proteinases had to be considered. Therefore this chapter has, at the same time, attempted to survey these proteinases with respect to specificity and gene family. The continual discovery of new proteinases will increase the complexity of this picture. At present the lysosomal cysteine proteinases cathepsins B and L and the cytoplasmic calcium-dependent proteinases are reasonable goals for a fairly complete metabolic clarification. The ability of investigators to inactivate individual members of this family in vivo, possibly without complications due to concurrent inactivation of serine proteinases by improvements in reagent specificity, is increasing. Among the cysteine proteinases, at least those of the papain super family, hydrophobic interactions in the S2 and S3 subsites are important and some specificity has been achieved by taking advantage of topographical differences among members of this group. Some of this has probably involved surface differences removed from the regions involved in proteolytic action. The emerging cysteine proteinases include some which, in contrast to the papain family, have a pronounced specificity in S1 for the binding of basic side chains, familiar in the trypsin family of serine proteinases. At least a potential conflict with serine proteinases can be avoided by choice of a covalent bonding mechanism. The departing group region, has not been exploited. As a sole contributor to binding, this region may be rather limited as a source of specificity.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Shaw
- Friedrich Miescher-Institut, Basel, Switzerland
| |
Collapse
|
14
|
Rhee SG, Chock PB, Stadtman ER. Regulation of Escherichia coli glutamine synthetase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 62:37-92. [PMID: 2567108 DOI: 10.1002/9780470123089.ch2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- S G Rhee
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892
| | | | | |
Collapse
|
15
|
Khan MAS, Chock PB, Stadtman ER. Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2005; 102:17326-31. [PMID: 16301538 PMCID: PMC1287485 DOI: 10.1073/pnas.0508120102] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In our previous study, we established that inhibition of apoptosis by the general caspase inhibitor is associated with an increase in the level of oxidized proteins in a multicellular eukaryotic system. To gain further insight into a potential link between oxidative stress and apoptosis, we carried out studies with Saccharomyces cerevisiae, which contains a gene (YCA1) that encodes synthesis of metacaspase, a homologue of the mammalian caspase, and is known to play a crucial role in the regulation of yeast apoptosis. We show that upon exposure to H(2)O(2), the accumulation of protein carbonyls is much greater in a Delta yca1 strain lacking the YCA1 gene than in the wild type and that apoptosis was abrogated in the Delta yca1 strain, whereas wild type underwent apoptosis as measured by externalization of phosphatidylserine and the display of TUNEL-positive nuclei. We also show that H(2)O(2)-mediated stress leads to up-regulation of the 20S proteasome and suppression of ubiquitinylation activities. These findings suggest that deletion of the apoptotic-related caspase-like gene leads to a large H(2)O(2)-dependent accumulation of oxidized proteins and up-regulation of 20S proteasome activity.
Collapse
Affiliation(s)
- Mohammed A S Khan
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012, USA
| | | | | |
Collapse
|
16
|
Louzoun Y, Vider T, Weigert M. T-cell epitope repertoire as predicted from human and viral genomes. Mol Immunol 2005; 43:559-69. [PMID: 15927255 DOI: 10.1016/j.molimm.2005.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 04/12/2005] [Indexed: 10/25/2022]
Abstract
During thymic education, strongly self-reactive T cells are selected against, while weakly self-reactive cells are positively selected. However, the probability of an antigen being self derived and the number of self-peptides have never been properly defined. We merge algorithms for: cleavage prediction, TAP binding probability estimates and MHC binding properties to estimate the number and distribution of all MHC binding peptides. We show that the number of self-peptides with a high affinity to a given human MHC-I molecule is between 200 and almost 200,000 and is much less than the estimated total number of peptide sequences. This result suggests that MHC molecules are selected through evolution in order to reduce the number of self-peptides presented. The number of viral peptides presented is also low and varies between zero and a few hundred per virus for a given HLA allele. These low numbers explain the need for multiple alleles within an individual. We show that six codominantly expressed MHC-I alleles are sufficient to present at least one or two peptides per virus for the vast majority of viruses. Viruses can escape detection either by using peptides that cannot be presented on MHC molecules or by using peptides whose presented segments overlap significantly with self. Most viral families (such as influenza, HIV, Hepatitis and HPV) present as many peptides as predicted from their genome length, and overlap minimally with the human self-peptide repertoire. However, a few latent viruses, such as herpes and adenovirus share considerable peptide sequence homology with their human hosts.
Collapse
Affiliation(s)
- Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan 52900, Israel.
| | | | | |
Collapse
|
17
|
TSUKAHARA T, ISHIURA S, SUGITA H. An ATP-dependent protease and ingensin, the multicatalytic proteinase, in K562 cells. ACTA ACUST UNITED AC 2005. [DOI: 10.1111/j.1432-1033.1988.tb14370.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Grune T, Jung T, Merker K, Davies KJA. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and 'aggresomes' during oxidative stress, aging, and disease. Int J Biochem Cell Biol 2005; 36:2519-30. [PMID: 15325589 DOI: 10.1016/j.biocel.2004.04.020] [Citation(s) in RCA: 484] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein aggregation seems to be a common feature of several neurodegenerative diseases and to some extent of physiological aging. It is not always clear why protein aggregation takes place, but a disturbance in the homeostasis between protein synthesis and protein degradation seems to be important. The result is the accumulation of modified proteins, which tend to form high molecular weight aggregates. Such aggregates are also called inclusion bodies, plaques, lipofuscin, ceroid, or 'aggresomes' depending on their location and composition. Such aggregates are not inert metabolic end products, but actively influence the metabolism of cells, in particular proteasomal activity and protein turnover. In this review we focus on the influence of oxidative stress on protein turnover, protein aggregate formation and the various interactions of protein aggregates with the proteasome. Furthermore, the formation and effects of protein aggregates during aging and neurodegeneration will be highlighted.
Collapse
Affiliation(s)
- Tilman Grune
- Research Institute of Environmental Medicine, Heinrich Heine University Düsseldorf, Auf'm Hennekamp 50, 40225 Dusseldorf, Germany.
| | | | | | | |
Collapse
|
19
|
Muscoli C, Visalli V, Colica C, Nisticò R, Palma E, Costa N, Rotiroti D, Nisticò G, Mollace V. The effect of inflammatory stimuli on NMDA-related activation of glutamine synthase in human cultured astroglial cells. Neurosci Lett 2005; 373:184-8. [PMID: 15619540 DOI: 10.1016/j.neulet.2004.09.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 09/28/2004] [Accepted: 09/29/2004] [Indexed: 11/28/2022]
Abstract
Removal of glutamate from the synaptic cleft by astroglial glutamine synthase (GS) is a crucial step in the regulation of glutamate turnover and metabolism, thus participating in endogenous neuroprotective processes occurring within brain tissues. Here we investigated on the effect of inflammatory cytokines on GS activity in astroglial cells undergoing NMDA receptors stimulation. Incubation of human cultured astroglial cells with NMDA (100 microM) enhanced GS expression, an effect driven by the generation of nitric oxide (NO) since l-NAME (500 microM), an inhibitor of NO synthase, reversed this effect. NMDA-related increase of GS activity and glutamine concentration was antagonised by previous incubation of astroglial cells with a mixture of LPS plus gammaIFN, an effect counteracted by dexamethasone, the latter effect being accompanied by inhibition of inducible NO synthase. These results show that LPS plus gammaIFN inhibit elevation of GS activity subsequent to NMDA receptor stimulation in astroglial cells via enhancement of inducible NO synthase, and this may represent the site of interaction between pro-inflammatory and excitotoxic stimuli in the brain.
Collapse
Affiliation(s)
- Carolina Muscoli
- Faculty of Pharmacy, Magna Graecia University of Catanzaro, Complesso Nini' Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang QX, Melnikov Z, Feierman DE. Characterization of the Acetaminophen-Induced Degradation of Cytochrome P450-3A4 and the Proteolytic Pathway. ACTA ACUST UNITED AC 2004; 94:191-200. [PMID: 15078344 DOI: 10.1111/j.1742-7843.2004.pto940406.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been shown that large doses of acetaminophen can result in increased degradation of the hepatic cytochrome P450 (CYP) enzymes in vivo; however, the proteolytic pathways have not been identified. We found that incubating transfected HepG2 cells that express CYP3A4 or a reconstituted microsomal model containing human liver microsomes and cytosol, high concentrations of acetaminophen could induce a dose- and time-dependent degradation of CYP3A4. In the microsomal model the degradation could be blocked and augmented by the presence of catalase and superoxide dismutase, respectively. Tocopherol could also protect against the acetaminophen-induced degradation. However, lipid peroxidation assays showed no significant increases in lipid peroxidation products nor was there any protection by propyl gallate. Protease and proteasome inhibitors showed that the proteolytic process was mainly (85%) mediated by the lysosomal pathway, whereas a minor portion (15%) of the degradation was mediated by the proteasomal pathway. Both pepstatin A and anti-cathepsin D neutralizing antibody decreased acetaminophen-induced degradation of CYP3A4 in microsomal model systems. Pepstatin A also blocked the acetaminophen-induced degradation of the CYP3A4 in a transfected HepG2 cell line. Incubating the 3A4 cells in the presence of acetaminophen also increased cathepsin D content and activity. The lysosomal pathway, mainly mediated by cathepsin D, appears to be the major proteolytic pathway involved in the degradation of the P450 enzymes induced by toxic doses of acetaminophen.
Collapse
Affiliation(s)
- Qing-Xue Zhang
- Department og Anaesthesia, Mount Sinai School of Medicine, New York, NY, U.S.A
| | | | | |
Collapse
|
21
|
Teoh CY, Davies KJA. Potential roles of protein oxidation and the immunoproteasome in MHC class I antigen presentation: the 'PrOxI' hypothesis. Arch Biochem Biophys 2004; 423:88-96. [PMID: 14871471 DOI: 10.1016/j.abb.2003.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 12/01/2003] [Indexed: 10/26/2022]
Abstract
The major histocompatibility complex (MHC) class I (MHC-I) antigen presentation system is responsible for the cell-surface presentation of self-proteins and intracellular viral proteins. This pathway is important in screening between self, and non-self or infected cells. In this pathway, proteins are partially degraded to peptides in the cytosol and targeted to the cell surface bound to an MHC-I receptor protein. At the cell surface, T cells bypass cells displaying self-peptides but destroy others displaying foreign antigens. Cells contain several isoforms of the proteasome, but it is thought that the immunoproteasome is the major form involved in generating peptides for the MHC-I pathway. How all intracellular proteins are targeted for MHC-I processing is unclear. Oxidative stress is experienced by all cells, and all proteins are exposed to oxidation. We propose that oxidative modification makes proteins susceptible to degradation by the immunoproteasome. This could be called the protein oxidation and immunoproteasome or 'PrOxI' hypothesis of MHC-I antigen processing. Protein oxidation may, thus, be a universal mechanism for peptide generation and presentation in the MHC-I pathway.
Collapse
Affiliation(s)
- Cheryl Y Teoh
- Ethel Percy Andrus Gerontology Center and Division of Molecular and Computational Biology, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | | |
Collapse
|
22
|
Merker K, Ullrich O, Schmidt H, Sitte N, Grune T. Stability of the nuclear protein turnover during cellular senescence of human fibroblasts. FASEB J 2003; 17:1963-5. [PMID: 12897070 DOI: 10.1096/fj.03-0177fje] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The accumulation of oxidized proteins is one of the highlights of age-related changes of cellular metabolism and happens at least partially as a result of a decline in the activity of intracellular proteases (e.g., the proteasome). Because the proteasome is located in numerous cellular compartments, we tested whether and to which extent the proteasome and the protein turnover changes in the cytosolic compartment and in the nucleus of proliferating fibroblasts. We demonstrated that the activity of the proteasomal system declines during proliferative senescence of human fibroblasts in the cytosol dramatically, whereas it is stable within the nucleus. It could be demonstrated in both compartments that an accumulation of oxidized proteins occurs. After oxidative stress, a short timed activation of the proteasomal system in the nucleus occurs. This activation was accompanied by an increase in the protein turnover in response to oxidative stress, which was also present in the nucleus of senescent cells. Taking into account that the nuclear/cytosol ratio of the proteasome content declines during proliferative senescence, we postulated that the senescence-related changes in the cytosolic proteasomal system are more pronounced and that the nuclear proteasomal system is only marginally affected by the senescence process.
Collapse
Affiliation(s)
- Katrin Merker
- Neuroscience Research Center, Medical Faculty (Charité), Humboldt University Berlin, Schumannstr. 20/21, D-10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
23
|
Abstract
Metabolic processes and environmental conditions cause the constant formation of oxidizing species over the lifetime of cells and organisms. This leads to a continuous oxidation of intracellular components, including lipids, DNA and proteins. During the extensively studied process of lipid peroxidation, several reactive low-molecular weight products are formed, including reactive aldehydes as 4-hydroxynonenal (HNE). These aldehydic lipid peroxidation products in turn are able to modify proteins. The degradation of oxidized and oxidatively modified proteins is an essential part of the oxidant defenses of cells. The major proteolytic system responsible for the removal of oxidized cytosolic and nuclear proteins is the proteasomal system. The proteasomal system by itself is a multicomponent system responsible for the degradation of the majority of intracellular proteins. It has been shown that some, mildly cross-linked, HNE-modified proteins are preferentially degraded by the proteasome, but extensive modification with this cross-linking aldehyde leads to the formation of protein aggregates, that can actually inhibit the proteasome. This review summarizes our knowledge of the interactions between lipid peroxidation products, proteins, and the proteasomal system.
Collapse
Affiliation(s)
- Tilman Grune
- Neuroscience Research Center, Medical Faculty (Charité), Humboldt University, Schumannstrasse 20/21, 10117 Berlin, Germany.
| | | |
Collapse
|
24
|
Abstract
The discovery of the 20S proteasome (multicatalytic proteinase complex) was followed by the recognition that this multisubunit macromolecule is the proteolytic core of the 26S proteasome. Most of the research on extralysosomal proteolysis has concentrated on the role of the 26S proteasome in the ubiquitin-dependent proteolytic pathway. However, little attention has been directed toward the possible involvement of the proteasome in ubiquitin-independent proteolysis. In the past few years, many publications have provided evidence that both the 20S proteasome and the 26S proteasome can degrade some proteins in an ubiquitin-independent manner. Furthermore, it is becoming clear that demonstration of ubiquitin-protein conjugates after exposure of cells to proteasome inhibitors does not eliminate the possibility that the same protein can also be degraded by the proteasome without ubiquitination. The possible mechanisms of degradation of an unmodified protein by the 20S proteasome are discussed. These include targeting, protein unfolding, and opening of the gated channel to the catalytic sites. It is reasonable to assume that in the future the number of proteins recognized as substates of the ubiquitin-independent pathway will continue to increase, and that the metabolic significance of this pathway will be clarified.
Collapse
Affiliation(s)
- Marian Orlowski
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
25
|
Grune T, Merker K, Sandig G, Davies KJA. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 2003; 305:709-18. [PMID: 12763051 DOI: 10.1016/s0006-291x(03)00809-x] [Citation(s) in RCA: 334] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxidative stress in mammalian cells is an inevitable consequence of their aerobic metabolism. Oxidants produce modifications to proteins leading to loss of function (or gain of undesirable function) and very often to an enhanced degradation of the oxidized proteins. For several years it has been known that the proteasome is involved in the degradation of oxidized proteins. This review summarizes our knowledge about the recognition of oxidized protein substrates by the proteasome in in vitro systems and its applicability to living cells. The majority of studies in the field agree that the degradation of mildly oxidized proteins is an important function of the proteasomal system. The major recognition motif of the substrates seems to be hydrophobic surface patches that are recognized by the 20S 'core' proteasome. Such hydrophobic surface patches are formed by partial unfolding and exposure of hydrophobic amino acid residues during oxidation. Oxidized proteins appear to be relatively poor substrates for ubiquitination, and the ubiquitination system does not seem to be involved in the recognition or targeting of oxidized proteins. Heavily oxidized proteins appear to first aggregate (new hydrophobic and ionic bonds) and then to form covalent cross-links that make them highly resistant to proteolysis. The inability to degrade extensively oxidized proteins may contribute to the accumulation of protein aggregates during diseases and the aging process.
Collapse
Affiliation(s)
- Tilman Grune
- Neuroscience Research Center, Medical Faculty (Charité) Humboldt University Berlin, Schumannstr. 20/21, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
26
|
Shringarpure R, Grune T, Mehlhase J, Davies KJA. Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 2003; 278:311-8. [PMID: 12401807 DOI: 10.1074/jbc.m206279200] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidatively modified proteins that accumulate in aging and many diseases can form large aggregates because of covalent cross-linking or increased surface hydrophobicity. Unless repaired or removed from cells, these oxidized proteins are often toxic, and threaten cell viability. Most oxidatively damaged proteins appear to undergo selective proteolysis, primarily by the proteasome. Previous work from our laboratory has shown that purified 20 S proteasome degrades oxidized proteins without ATP or ubiquitin in vitro, but there have been no studies to test this mechanism in vivo. The aim of this study was to determine whether ubiquitin conjugation is necessary for the degradation of oxidized proteins in intact cells. We now show that cells with compromised ubiquitin-conjugating activity still preferentially degrade oxidized intracellular proteins, at near normal rates, and this degradation is still inhibited by proteasome inhibitors. We also show that progressive oxidation of proteins such as lysozyme and ferritin does not increase their ubiquitinylation, yet the oxidized forms of both proteins are preferentially degraded by proteasome. Furthermore, rates of oxidized protein degradation by cell lysates are not significantly altered by addition of ATP, excluding the possibility of an energy requirement for this pathway. Contrary to earlier popular belief that most proteasomal degradation is conducted by the 26 S proteasome with ubiquitinylated substrates, our work suggests that oxidized proteins are degraded without ubiquitin conjugation (or ATP hydrolysis) possibly by the 20 S proteasome, or the immunoproteasome, or both.
Collapse
Affiliation(s)
- Reshma Shringarpure
- Ethel Percy Andrus Gerontology Center and Division of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-0191, USA.
| | | | | | | |
Collapse
|
27
|
Grune T, Reinheckel T, North JA, Li R, Bescos PB, Shringarpure R, Davies KJA. Ezrin turnover and cell shape changes catalyzed by proteasome in oxidatively stressed cells. FASEB J 2002; 16:1602-10. [PMID: 12374783 DOI: 10.1096/fj.02-0015com] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We find that ezrin, a cytoskeletal protein involved in anchoring actin to the cell membrane, is preferentially degraded and resynthesized after oxidative stress. Ezrin was identified using 2-dimensional gels and amino-terminal microsequencing as one of a select few [35S]methionine prelabeled proteins degraded in clone 9 rat liver cells exposed to hydrogen peroxide (H2O2). Metabolic labeling of cellular proteins with [35S]methionine after oxidative stress showed that resynthesis of ezrin rose dramatically but carboxyl terminus anti-ezrin monoclonal antibodies revealed constant intracellular ezrin levels; in other words, degradation and resynthesis were exactly matched. Ezrin degradation was blocked by selective inhibitors of the proteasome (lactacystin, NLVS, and epoxomycin) and by an antisense oligonucleotide directed against the proteasome C2 subunit. H2O2 also caused major changes in cell shape, including significant increases in cell diameter, which must require substantial cytoskeletal rearrangement. Peroxide-induced increases in cell diameter were, however, blocked by the selective proteasome inhibitor lactacystin. The degradation and resynthesis of ezrin may therefore be an underlying mechanism for overall cell shape changes observed during oxidative stress. Oxidative stress induces extensive protein oxidation and degradation and significant increases in cell blebbing, rounding-up, and overall size. Our results indicate that all these oxidant-induced changes may actually be catalyzed by the proteasome.
Collapse
Affiliation(s)
- Tilman Grune
- Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, the University of Southern California, Los Angeles, California 90089-0191, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Rivett AJ, Bose S, Pemberton AJ, Brooks P, Onion D, Shirley D, Stratford FLL, Forti K. Assays of proteasome activity in relation to aging. Exp Gerontol 2002; 37:1217-22. [PMID: 12470834 DOI: 10.1016/s0531-5565(02)00127-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proteasomes play a major role in intracellular protein turnover. They exist in cells in several different molecular forms including 20S proteasomes, 26S proteasomes and PA28-20S proteasome complexes. In this study we have compared the properties of these purified proteasome complexes to try to design assays that will distinguish between the different complexes (26S proteasome, 20S proteasome, PA28-20S proteasome) in cell extracts. Although the different purified complexes were found to have differences in stability, and in their sensitivity to low concentrations of SDS and salt, the results suggest that it is not straightforward to assay selectively for each type of complex in cell extracts. The relative contribution of different proteasome complexes varies in different cell types and there may be other proteases present which hydrolyse the chosen substrate. Proteasome assays carried out under defined conditions allow comparisons of activity in cell extracts as a function of age, but separation by gel filtration on a Superose 6 column was found to be a useful method for determining the level of different proteasome related complexes.
Collapse
Affiliation(s)
- A Jennifer Rivett
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Friguet B. Aging of proteins and the proteasome. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 29:17-33. [PMID: 11908070 DOI: 10.1007/978-3-642-56373-7_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Bertrand Friguet
- Laboratoire de Biologie et Biochimie cellulaire du Vieillissement (EA 3106), Université Paris 7-Denis Diderot, CC 7128, Couloir 33-23 ler étage, 2, Place Jussieu, 75251 Paris, France
| |
Collapse
|
30
|
Abstract
Tight linkage between aging and oxidative stress is indicated by the observations that reactive oxygen species generated under various conditions of oxidative stress are able to oxidize nucleic acids, proteins, and lipids and that aging is associated with the accumulation of oxidized forms of cellular constituents, and also by the fact that there is an inverse relationship between the maximum life span of organisms and the age-related accumulation of oxidative damage. Nevertheless, validity of the oxidative stress hypothesis of aging is questioned by (i) the failure to establish a causal relationship between aging and oxidative damage and (ii) lack of a consistent correlation between the accumulation of oxidative damage and aging. The present discussion is focused on the complexity of the aging process and suggests that discrepancies between various studies in this area are likely due to the fact that aging is not a single process and that the lack of consistent experimental results is partly explained by individual variations. Even so, there is overwhelming support for a dominant role of oxidative stress in the aging of some individuals.
Collapse
Affiliation(s)
- Earl R Stadtman
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
31
|
Bota DA, Davies KJA. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 2002; 4:674-80. [PMID: 12198491 DOI: 10.1038/ncb836] [Citation(s) in RCA: 428] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial aconitase is sensitive to oxidative inactivation and can aggregate and accumulate in many age-related disorders. Here we report that Lon protease, an ATP-stimulated mitochondrial matrix protein, selectively recognizes and degrades the oxidized, hydrophobic form of aconitase after mild oxidative modification, but that severe oxidation results in aconitase aggregation, which makes it a poor substrate for Lon. Similarly, a morpholino oligodeoxynucleotide directed against the lon gene markedly decreases the amount of Lon protein, Lon activity and aconitase degradation in WI-38 VA-13 human lung fibroblasts and causes accumulation of oxidatively modified aconitase. The ATP-stimulated Lon protease may be an essential defence against the stress of life in an oxygen environment. By recognizing minor oxidative changes to protein structure and rapidly degrading the mildly modified protein, Lon protease may prevent extensive oxidation, aggregation and accumulation of aconitase, which could otherwise compromise mitochondrial function and cellular viability. Aconitase is probably only one of many mitochondrial matrix proteins that are preferentially degraded by Lon protease after oxidative modification.
Collapse
Affiliation(s)
- Daniela A Bota
- Ethel Percy Andrus Gerontology Center, and Division of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-0191, USA
| | | |
Collapse
|
32
|
Abstract
Proteasomes are highly abundant cytosolic and nuclear protease complexes that degrade most intracellular proteins in higher eukaryotes and appear to play a major role in the cytosolic steps of MHC class I antigen processing. This review summarizes the knowledge of the role of proteasomes in antigen processing and the impact of proteasomal proteolysis on T cell-mediated immunity.
Collapse
Affiliation(s)
- G Niedermann
- Max Planck Institute of Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
33
|
Abstract
As the dominant protease dedicated to protein turnover, the proteasome shapes the cellular protein repertoire. Our knowledge of proteasome regulation and activity has improved considerably over the past decade. Novel inhibitors, in particular, have helped to advance our understanding of proteasome biology. They range from small peptide-based structures that can be modified to vary target specificity, to large macromolecular inhibitors that include proteins. While these reagents have played an important role in establishing our current knowledge of the proteasome's catalytic mechanism, many questions remain. Rapid advances in the synthesis and identification of new classes of proteasome inhibitors over the last 10 years serve as a positive indicator that many of these questions will soon be resolved. The future lies in designing compounds that can function as drugs to target processes involved in disease progression. It may only be a short while before the products of such research have safe application in a practical setting. Structural and combinatorial chemistry approaches are powerful techniques that will bring us closer to these goals.
Collapse
Affiliation(s)
- M Bogyo
- Department of Biochemistry and Biophysics, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, USA
| | | |
Collapse
|
34
|
Abstract
A significant body of evidence supports a key role for free radicals in causing cumulative damage to cellular macromolecules, thereby contributing to senescence/aging, and a number of age-related disorders. Proteins are recognized as major targets for oxidative damage (in addition to DNA and lipids) and the accumulation of oxidized proteins has been reported for many experimental aging models, as measured by several markers for protein oxidation. In young and healthy individuals, moderately oxidized soluble cell proteins are selectively and rapidly degraded by the proteasome. However, severely oxidized, cross-linked proteins are poor substrates for degradation and actually inhibit the proteasome. Considerable evidence now indicates that proteasome activity declines during aging, as the protease is progressively inhibited by binding to ever increasing levels of oxidized and cross-linked protein aggregates. Cellular aging probably involves both an increase in the generation of reactive oxygen species and a progressive decline in proteasome activity, resulting in the progressive accumulation of oxidatively damaged protein aggregates that eventually contribute to cellular dysfunction and senescence.
Collapse
Affiliation(s)
- Reshma Shringarpure
- Ethel Percy Andrus Gerontology Center and the Division of Molecular & Computational Biology, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | | |
Collapse
|
35
|
Abstract
Oxidative stress in mammalian cells is an inevitable consequence of their aerobic metabolism. The production of reactive oxygen and nitric oxide species causes oxidative modifications of proteins often combined with a loss of their biological function. Like most partially denatured proteins, moderately oxidized proteins are more sensitive to proteolytic attack by proteases. The diverse cellular proteolytic systems are an important secondary defense against oxidative stress by degrading oxidized and damaged proteins, thereby preventing their intracellular accumulation. In mammalian cells, a range of proteases exists which are distributed throughout the cell. In this review we summarize the function of the cytosolic (proteasome and calpains), the lysosomal, the mitochondrial and the nuclear proteolytic pathways in response to oxidative stress. Particular emphasis is given to the proteasomal system, since this pathway appears to be the most important proteolytic system involved in the removal of oxidatively modified or damaged proteins.
Collapse
Affiliation(s)
- Jana Mehlhase
- Neuroscience Research Center, Medical Faculty (Charité) of the Humboldt University Berlin, Germany
| | | |
Collapse
|
36
|
Grune T, Reinheckel T, Li R, North JA, Davies KJA. Proteasome-dependent turnover of protein disulfide isomerase in oxidatively stressed cells. Arch Biochem Biophys 2002; 397:407-13. [PMID: 11795901 DOI: 10.1006/abbi.2001.2719] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Generalized increases in protein oxidation and protein degradation in response to mild oxidative stress have been widely reported, but only a few individual proteins have actually been shown to undergo selective, oxidation-induced proteolysis. Our goal was to find such proteins in Clone 9 liver cells exposed to hydrogen peroxide. Using metabolic radiolabeling of intracellular proteins with [35S]cysteine/methionine, and analysis by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), we found at least three labeled proteins ("A," "B," and "C") whose levels were decreased significantly more than the generalized protein loss after mild oxidative stress. "Protein C" was excised from 2-D PAGE and subjected to N-terminal amino acid microsequencing. "Protein C" was identified as Protein Disulfide Isomerase or PDI (E.C. 5.3.4.1), and this identity was reconfirmed by Western blotting with a C-terminal anti-PDI monoclonal antibody. A combination of quantitative radiometry and Western blotting in 2-D PAGE revealed that PDI was selectively degraded and then new PDI was synthesized, following H2O2 exposure. PDI degradation was blocked by inhibitors of the proteasome, and by cell treatment with proteasome C2 subunit antisense oligonucleotides, indicating that the proteasome was largely responsible for oxidation-induced PDI degradation.
Collapse
Affiliation(s)
- Tilman Grune
- Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, California 90089-0191, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Some of the most fundamental yet important cellular activities such as cell division and gene expression are controlled by short-lived regulatory proteins. The levels of these proteins are controlled by their rates of degradation. Similarly, protein catabolism plays a crucial role in prolonging cellular life by destroying damaged proteins that are potentially cytotoxic. A major player in these catabolic reactions is the ubiquitin-proteasome system, a novel proteolytic system that has become the primary proteolytic pathway in eukaryotic cells. Ubiquitin-mediated proteolysis is now regarded as the major pathway by which most intracellular proteins are destroyed. Equally important, from a toxicological standpoint, is that the ubiquitin-proteasome system is also widely considered to be a cellular defense mechanism, since it is involved in the removal of damaged proteins generated by adduct formation and oxidative stress. This review describes the history and the components of the ubiquitin-proteasome system, its regulation and its role in pathological states, with the major emphasis on ethanol-induced organ injury. The available literature cited here deals mainly with the effects of ethanol consumption on the ubiquitin-proteasome pathway in the liver. However, since this proteolytic system is an essential pathway in all cells it is an attractive experimental model and therapeutic target in extrahepatic organs such as the brain and heart that are also affected by excessive alcohol consumption.
Collapse
Affiliation(s)
- Terrence M Donohue
- Liver Study Unit, Department of Veterans Affairs Medical Center and the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68105, USA.
| |
Collapse
|
38
|
Gómez-Baena G, Diez J, García-Fernández JM, El Alaoui S, Humanes L. Regulation of glutamine synthetase by metal-catalyzed oxidative modification in the marine oxyphotobacterium Prochlorococcus. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1568:237-44. [PMID: 11786230 DOI: 10.1016/s0304-4165(01)00226-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The inactivation of glutamine synthetase (GS; EC 6.3.1.2) by metal-catalyzed oxidation (MCO) systems was studied in several Prochlorococcus strains, including the axenic PCC 9511. GS was inactivated in the presence of various oxidative systems, either enzymatic (as NAD(P)H+NAD(P)H-oxidase+Fe(3+)+O(2)) or non-enzymatic (as ascorbate+Fe(3+)+O(2)). This process required the presence of oxygen and a metal cation, and is prevented under anaerobic conditions. Catalase and peroxidase, but not superoxide dismutase, effectively protected the enzyme against inactivation, suggesting that hydrogen peroxide mediates this mechanism, although it is not directly responsible for the reaction. Addition of azide (an inhibitor of both catalase and peroxidase) to the MCO systems enhanced the inactivation. Different thiols induced the inactivation of the enzyme, even in the absence of added metals. However, this inactivation could not be reverted by addition of strong oxidants, as hydrogen peroxide or oxidized glutathione. After studying the effect of addition of the physiological substrates and products of GS on the inactivation mechanism, we could detect a protective effect in the case of inorganic phosphate and glutamine. Immunochemical determinations showed that the concentration of GS protein significantly decreased by effect of the MCO systems, indicating that inactivation precedes the degradation of the enzyme.
Collapse
Affiliation(s)
- G Gómez-Baena
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1a planta, Campus de Rabanales, Universidad de Córdoba, E-14071 Córdoba, Spain
| | | | | | | | | |
Collapse
|
39
|
Grune T, Klotz LO, Gieche J, Rudeck M, Sies H. Protein oxidation and proteolysis by the nonradical oxidants singlet oxygen or peroxynitrite. Free Radic Biol Med 2001; 30:1243-53. [PMID: 11368922 DOI: 10.1016/s0891-5849(01)00515-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Exposure of proteins to oxidants leads to increased oxidation followed by preferential degradation by the proteasomal system. The role of the biologically occurring oxidants singlet oxygen and peroxynitrite in oxidation of proteins in living cells and enhanced degradation of these proteins was examined in this study. Subsequent to treatment of an isolated model protein, ferritin, with singlet oxygen or peroxynitrite, there was enhanced degradation by the isolated 20S proteasome. Treatment of clone 9 liver cells (normal liver epithelia) with two different singlet oxygen-generating systems or peroxynitrite leads to a concentration-dependent increase in cellular protein turnover. At high concentrations of these oxidants, the protein turnover decreases without significant loss of cell viability and proteasome activity. To compare the increase of intracellular protein turnover with that obtained with other oxidants, cells were exposed to hydrogen peroxide or xanthine/xanthine oxidase. The maximal increase in protein turnover was similar with the various oxidants. The oxidized protein moieties were removed by enhanced protein turnover. Removal of singlet oxygen- or peroxynitrite-damaged proteins is dependent on the proteasomal system, as suggested by the sensitivity to lactacystin. Our results provide evidence that the proteasomal system is able to selectively recognize and degrade proteins modified by singlet oxygen or peroxynitrite in vitro as well as in living cells.
Collapse
Affiliation(s)
- T Grune
- Neurowissenschaftliches Forschungszentrum, Medizinische Fakultät, Charité, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
40
|
Demasi M, Shringarpure R, Davies KJ. Glutathiolation of the proteasome is enhanced by proteolytic inhibitors. Arch Biochem Biophys 2001; 389:254-63. [PMID: 11339815 DOI: 10.1006/abbi.2001.2332] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proteasome inhibitors lactacystin, clastro lactacystin beta-lactone, or tri-leucine vinyl sulfone (NLVS), in the presence of [(35)S]cysteine/methionine, caused increased incorporation of (35)S into cellular proteins, even when protein synthesis was inhibited by cycloheximide. This effect was blocked by incubation with the glutathione synthesis inhibitor buthionine sulfoximine. Proteasome inhibitors also enhanced total glutathione levels, increased reduced/oxidized glutathione ratio (GSH/GSSG) and upregulated gamma-glutamylcysteine synthetase (rate-limiting in glutathione synthesis). Micromolar concentrations of GSH, GSSG, or cysteine stimulated the chymotrypsin-like activity of purified 20S proteasome, but millimolar GSH or GSSG was inhibitory. Interestingly, GSH did not affect 20S proteasome's trypsin-like activity. Enhanced proteasome glutathiolation was verified when purified preparations of the 20S core enzyme complex were incubated with [(35)S]GSH after pre-incubation with any of the inhibitors. NLVS, lactacystin or clastro lactacystin beta-lactone may promote structural modification of the 20S core proteasome, with increased exposure of cysteine residues, which are prone to S-thiolation. Three main conclusions can be drawn from the present work. First, proteasome inhibitors alter cellular glutathione metabolism. Second, proteasome glutathiolation is enhanced by inhibitors but still occurs in their absence, at physiological GSH and GSSG levels. Third, proteasome glutathiolation seems to be a previously unknown mechanism of proteasome regulation in vivo.
Collapse
Affiliation(s)
- M Demasi
- Ethel Percy Andrus Gerontology Center, Division of Molecular Biology, University of Southern California, 3715 McClintock Avenue, Room 306, Los Angeles, California 90089-0191, USA
| | | | | |
Collapse
|
41
|
Gieche J, Mehlhase J, Licht A, Zacke T, Sitte N, Grune T. Protein oxidation and proteolysis in RAW264.7 macrophages: effects of PMA activation. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1538:321-8. [PMID: 11336803 DOI: 10.1016/s0167-4889(01)00083-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macrophages are stimulable cells able to increase the production of reactive oxygen and nitrogen species dramatically for a short period of time. Free radicals and other oxidants are able to oxidize the intracellular protein pool. These oxidized proteins are selectively recognized and degraded by the intracellular proteasomal system. We used the mouse macrophage-like cell line RAW264.7 to test whether macrophagial cells are able to increase their protein turnover after oxidative stress and whether this is accompanied by an increased protein oxidation. Macrophagial cells are particularly susceptible to bolus additions of hydrogen peroxide and peroxynitrite. In further experiments we activated RAW264.7 cells with PMA to test whether the production of endogenous oxidants has analogous effects. A clear dependence of the protein turnover and protein oxidation on the oxidative burst could be measured. In further experiments the role of the proteasomal system in the selective removal of oxidized proteins could be revealed exploring the proteasome specific inhibitor lactacystin. Therefore, although oxidants are able to attack the intracellular protein pool in macrophages, these cells are able to remove oxidized proteins selectively and protect the intracellular protein pool from oxidation.
Collapse
Affiliation(s)
- J Gieche
- Neuroscience Research Center, Medical Faculty (Charité), Humboldt University Berlin, Schumannstr. 20/21, D-10098, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Floyd RA, West M, Hensley K. Oxidative biochemical markers; clues to understanding aging in long-lived species. Exp Gerontol 2001; 36:619-40. [PMID: 11295504 DOI: 10.1016/s0531-5565(00)00231-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Clues as to why long-lived species live so much longer than short-lived species may reside in the amount of reactive oxygen species (ROS) produced and their effect on damaging cell components (especially proteins) and alterations of crucial cellular processes. Rigorous evaluation of these concepts required critical comparisons of oxidative damage markers and/or parameters with assess difference in ROS flux and the critical age-modifying processes they influence. The limited experimental comparative results available implicate that ROS production per unit weight of total oxygen consumed is much less in the longer-lived species than in shorter-lived species. Mitochondria are the major site of ROS production. They are also the functional nexus for intracellular signaling thus modulating stress and growth factor mediated cellular survival, proliferation and apoptotic processes. Mitochondrial DNA mutations, perhaps caused by ROS, increase with age. Mutant mitochondria possess comparative replicative advantage, which leads to age-specific intracellular swarms. General inflammatory stress tends to increase with age. Disruption in coordinated cell-to-cell signaling triggered by alterations in intracellular signaling may be the basis of the age-related increases in tissue inflammation, which may explain some of the differences between long-lived species and short-lived species.
Collapse
Affiliation(s)
- R A Floyd
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA.
| | | | | |
Collapse
|
43
|
Lasch P, Petras T, Ullrich O, Backmann J, Naumann D, Grune T. Hydrogen peroxide-induced structural alterations of RNAse A. J Biol Chem 2001; 276:9492-502. [PMID: 11115501 DOI: 10.1074/jbc.m008528200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins exposed to oxidative stress are degraded via proteolytic pathways. In the present study, we undertook a series of in vitro experiments to establish a correlation between the structural changes induced by mild oxidation of the model protein RNase A and the proteolytic rate found upon exposure of the modified protein toward the isolated 20 S proteasome. Fourier transform infrared spectroscopy was used as a structure-sensitive probe. We report here strong experimental evidence for oxidation-induced conformational rearrangements of the model protein RNase A and, at the same time, for covalent modifications of amino acid side chains. Oxidation-related conformational changes, induced by H(2)O(2) exposure of the protein may be monitored in the amide I region, which is sensitive to changes in protein secondary structure. A comparison of the time- and H(2)O(2) concentration-dependent changes in the amide I region demonstrates a high degree of similarity to spectral alterations typical for temperature-induced unfolding of RNase A. In addition, spectral parameters of amino acid side chain marker bands (Tyr, Asp) revealed evidence for covalent modifications. Proteasome digestion measurements on oxidized RNase A revealed a specific time and H(2)O(2) concentration dependence; at low initial concentration of the oxidant, the RNase A turnover rate increases with incubation time and concentration. Based on these experimental findings, a correlation between structural alterations detected upon RNase A oxidation and proteolytic rates of RNase A is established, and possible mechanisms of the proteasome recognition process of oxidatively damaged proteins are discussed.
Collapse
Affiliation(s)
- P Lasch
- Robert Koch Institute, P 34 Biophysical Structure Analysis, D-13353 Berlin, Nordufer 20, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Videla LA. Energy metabolism, thyroid calorigenesis, and oxidative stress: functional and cytotoxic consequences. Redox Rep 2001; 5:265-75. [PMID: 11145101 DOI: 10.1179/135100000101535807] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- L A Videla
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago.
| |
Collapse
|
45
|
Abstract
Oxidatively modified proteins are continuously produced in cells by reactive oxygen and nitrogen species generated as a consequence of aerobic metabolism. During periods of oxidative stress, protein oxidation is significantly increased and may become a threat to cell survival. In eucaryotic cells the proteasome has been shown (by purification of enzymatic activity, by immunoprecipitation, and by antisense oligonucleotide studies) to selectively recognize and degrade mildly oxidized proteins in the cytosol, nucleus, and endoplasmic reticulum, thus minimizing their cytotoxicity. From in vitro studies it is evident that the 20S proteasome complex actively recognizes and degrades oxidized proteins, but the 26S proteasome, even in the presence of ATP and a reconstituted functional ubiquitinylating system, is not very effective. Furthermore, relatively mild oxidative stress rapidly (but reversibly) inactivates both the ubiquitin activating/conjugating system and 26S proteasome activity in intact cells, but does not affect 20S proteasome activity. Since mild oxidative stress actually increases proteasome-dependent proteolysis (of oxidized protein substrates) the 20S 'core' proteasome complex would appear to be responsible. Finally, new experiments indicate that conditional mutational inactivation of the E1 ubiquitin-activating enzyme does not affect the degradation of oxidized proteins, further strengthening the hypothesis that oxidatively modified proteins are degraded in an ATP-independent, and ubiquitin-independent, manner by the 20S proteasome. More severe oxidative stress causes extensive protein oxidation, directly generating protein fragments, and cross-linked and aggregated proteins, that become progressively resistant to proteolytic digestion. In fact these aggregated, cross-linked, oxidized proteins actually bind to the 20S proteasome and act as irreversible inhibitors. It is proposed that aging, and various degenerative diseases, involve increased oxidative stress (largely from damaged and electron 'leaky' mitochondria), and elevated levels of protein oxidation, cross-linking, and aggregation. Since these products of severe oxidative stress inhibit the 20S proteasome, they cause a vicious cycle of progressively worsening accumulation of cytotoxic protein oxidation products.
Collapse
Affiliation(s)
- K J Davies
- Ethel Percy Andrus Gerontology Center, and Division of Molecular Biology, University of Southern California, Los Angeles 90089-0191, USA.
| |
Collapse
|
46
|
Facchini FS, Hua NW, Reaven GM, Stoohs RA. Hyperinsulinemia: the missing link among oxidative stress and age-related diseases? Free Radic Biol Med 2000; 29:1302-6. [PMID: 11118820 DOI: 10.1016/s0891-5849(00)00438-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mounting evidence supports Harman's hypothesis that aging is caused by free radicals and oxidative stress. Although it is known that oxidant species are produced during metabolic reactions, it is largely unknown which factor(s), of physiological or pathophysiological significance, modulate their production in vivo. In this hypothesis paper, it is postulated that hyperinsulinemia may have such function and therefore promote aging, independently of elevations of glycemia. Hyperinsulinemia is secondary to impaired insulin stimulated glucose metabolism at the level of skeletal muscle (insulin resistance) and is seen in about one third of glucose tolerant humans following dietary carbohydrate intake. If other insulin-stimulated (or inhibited) pathways retain normal sensitivity to the hormone, hyperinsulinemia could, by its effects on antioxidative enzymes and on free radical generators, enhance oxidative stress. Other proaging effects of insulin involve the inhibition of proteasome and the stimulation of polyunsaturated fatty acid (PUFA) synthesis and of nitric oxide (NO). The hypothesis that hyperinsulinemia accelerates aging also offers a metabolic explanation for the life-prolonging effect of calorie restriction and of mutations decreasing the overall activity of insulin-like receptors in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- F S Facchini
- Department of Medicine, Division of Nephrology, San Francisco General Hospital, San Francisco, CA 94080-1341, USA.
| | | | | | | |
Collapse
|
47
|
Sitte N, Merker K, Von Zglinicki T, Grune T, Davies KJ. Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part I--effects of proliferative senescence. FASEB J 2000; 14:2495-502. [PMID: 11099467 DOI: 10.1096/fj.00-0209com] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidized and cross-linked proteins tend to accumulate in aging cells. Declining activity of proteolytic enzymes, particularly the proteasome, has been proposed as a possible explanation for this phenomenon, and direct inhibition of the proteasome by oxidized and cross-linked proteins has been demonstrated in vitro. We have further examined this hypothesis during both proliferative senescence (this paper) and postmitotic senescence (see the accompanying paper, ref 1 ) of human BJ fibroblasts. During proliferative senescence, we found a marked decline in all proteasome activities (trypsin-like activity, chymotrypsin-like activity, and peptidyl-glutamyl-hydrolyzing activity) and in lysosomal cathepsin activity. Despite the loss of proteasome activity, there was no concomitant change in cellular levels of actual proteasome protein (immunoassays) or in the steady-state levels of mRNAs for essential proteasome subunits. The decline in proteasome activities and lysosomal cathepsin activities was accompanied by dramatic increases in the accumulation of oxidized and cross-linked proteins. Furthermore, as proliferation stage increased, cells exhibited a decreasing ability to degrade the oxidatively damaged proteins generated by an acute, experimentally applied oxidative stress. Thus, oxidized and cross-linked proteins accumulated rapidly in cells of higher proliferation stages. Our data are consistent with the hypothesis that proteasome is progressively inhibited by small accumulations of oxidized and cross-linked proteins during proliferative senescence until late proliferation stages, when so much proteasome activity has been lost that oxidized proteins accumulate at ever-increasing rates. Lysosomes attempt to deal with the accumulating oxidized and cross-linked proteins, but declining lysosomal cathepsin activity apparently limits their effectiveness. This hypothesis, which may explain the progressive intracellular accumulation of oxidized and cross-linked proteins in aging, is further explored during postmitotic senescence in the accompanying paper (1).
Collapse
Affiliation(s)
- N Sitte
- Clinics of Physical Medicine and Rehabilitation, Humboldt University Berlin, Germany
| | | | | | | | | |
Collapse
|
48
|
Orlowski M, Wilk S. Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys 2000; 383:1-16. [PMID: 11097171 DOI: 10.1006/abbi.2000.2036] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proteasome, a multisubunit, multicatalytic proteinase complex, is attracting growing attention as the main intracellular, extralysosomal, proteolytic system involved in ubiquitin-(Ub) dependent and Ub-independent intracellular proteolysis. Its involvement in the mitotic cycle, and control of the half-life of most cellular proteins, functions absolutely necessary for cell growth and viability, make it an attractive target for researchers of intracellular metabolism and an important target for pharmacological intervention. The proteasome belongs to a new mechanistic class of proteases, the N-terminal nucleophile hydrolases, where the N-terminal threonine residue functions as the nucleophile. This minireview focuses on the three classical catalytic activities of the proteasome, designated chymotrypsin-like, trypsin-like, and peptidyl-glutamyl-peptide hydrolyzing in eukaryotes and also the activities of the more simple Archaebacteria and Eubacteria proteasomes. Other catalytic activities of the proteasome and their possible origin are also examined. The specificity of the catalytic components toward synthetic substrates, natural peptides, and proteins and their relationship to the catalytic centers are reviewed. Some unanswered questions and future research directions are suggested.
Collapse
Affiliation(s)
- M Orlowski
- Department of Pharmacology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
49
|
Szweda LI, Szweda PA, Holian A. Detection of 4-hydroxy-2-nonenol adducts following lipid peroxidation from ozone exposure. Methods Enzymol 2000; 319:562-70. [PMID: 10907544 DOI: 10.1016/s0076-6879(00)19053-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- L I Szweda
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA
| | | | | |
Collapse
|
50
|
Abstract
Aerobe living is consequently connected with a permanent oxidation of cellular proteins. Free radicals and other oxidants damage the normal intracellular protein pool. Therefore, the prevention of accumulation of oxidised cellular proteins is one of the major functions of the proteolytic machinery of mammalian cells. It is known that the multicatalytic proteinase complex, the proteasome, is the major protease that is able to recognise and degrade oxidised proteins. Cellular models are most useful to investigate biochemical changes of protein catabolism during senescence. Unfortunately, little is known about the protein turnover and the regulation of the proteasomal system as well as under oxidative stress conditions as during senescence. The proteasomal regulation during oxidative stress, protein oxidation and the changes of these processes during the ageing process are highlighted in this review.
Collapse
Affiliation(s)
- K Merker
- Clinics of Physical Medicine and Rehabilitation, Medical Faculty (Charité), Humboldt University, Schumannstrasse 20/21, D-10098, Berlin, Germany
| | | |
Collapse
|