1
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
2
|
Dhers L, Pietrancosta N, Ducassou L, Ramassamy B, Dairou J, Jaouen M, André F, Mansuy D, Boucher JL. Spectral and 3D model studies of the interaction of orphan human cytochrome P450 2U1 with substrates and ligands. Biochim Biophys Acta Gen Subj 2017; 1861:3144-3153. [DOI: 10.1016/j.bbagen.2016.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/06/2016] [Accepted: 07/21/2016] [Indexed: 02/08/2023]
|
3
|
Fujita S, Chevion M, Peisach J. Influence of Sex Hormones on Relative Quantities of Multiple Species of Cytochrome P-450 in Rat Liver Microsomes: A Possible Answer to the Sexual Differences in Metabolic Activities of Rat Liver Microsomes. Isr J Chem 2013. [DOI: 10.1002/ijch.198100021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Complexes of ferriheme nitrophorin 4 with low-molecular weight thiol(ate)s occurring in blood plasma. J Inorg Biochem 2013; 122:38-48. [DOI: 10.1016/j.jinorgbio.2013.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 11/17/2022]
|
5
|
Luthra A, Denisov IG, Sligar SG. Spectroscopic features of cytochrome P450 reaction intermediates. Arch Biochem Biophys 2010; 507:26-35. [PMID: 21167809 DOI: 10.1016/j.abb.2010.12.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 11/24/2022]
Abstract
Cytochromes P450 constitute a broad class of heme monooxygenase enzymes with more than 11,500 isozymes which have been identified in organisms from all biological kingdoms [1]. These enzymes are responsible for catalyzing dozens chemical oxidative transformations such as hydroxylation, epoxidation, N-demethylation, etc., with very broad range of substrates [2,3]. Historically these enzymes received their name from 'pigment 450' due to the unusual position of the Soret band in UV-vis absorption spectra of the reduced CO-saturated state [4,5]. Despite detailed biochemical characterization of many isozymes, as well as later discoveries of other 'P450-like heme enzymes' such as nitric oxide synthase and chloroperoxidase, the phenomenological term 'cytochrome P450' is still commonly used as indicating an essential spectroscopic feature of the functionally active protein which is now known to be due to the presence of a thiolate ligand to the heme iron [6]. Heme proteins with an imidazole ligand such as myoglobin and hemoglobin as well as an inactive form of P450 are characterized by Soret maxima at 420nm [7]. This historical perspective highlights the importance of spectroscopic methods for biochemical studies in general, and especially for heme enzymes, where the presence of the heme iron and porphyrin macrocycle provides rich variety of specific spectroscopic markers available for monitoring chemical transformations and transitions between active intermediates of catalytic cycle.
Collapse
Affiliation(s)
- Abhinav Luthra
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
6
|
Boscolo B, Leal SS, Salgueiro CA, Ghibaudi EM, Gomes CM. The prominent conformational plasticity of lactoperoxidase: A chemical and pH stability analysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1041-8. [DOI: 10.1016/j.bbapap.2009.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/12/2009] [Accepted: 03/06/2009] [Indexed: 11/16/2022]
|
7
|
Reynolds MF, Ackley L, Blizman A, Lutz Z, Manoff D, Miles M, Pace M, Patterson J, Pozzessere N, Saia K, Sato R, Smith D, Tarves P, Weaver M, Sieg K, Lukat-Rodgers GS, Rodgers KR. Role of conserved F(alpha)-helix residues in the native fold and stability of the kinase-inhibited oxy state of the oxygen-sensing FixL protein from Sinorhizobium meliloti. Arch Biochem Biophys 2009; 485:150-9. [PMID: 19254684 DOI: 10.1016/j.abb.2009.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
Abstract
The oxygen-sensing FixL protein from Sinorhizobium meliloti is part of the heme-PAS family of gas sensors that regulate many important signal transduction pathways in a wide variety of organisms. We examined the role of the conserved F(alpha)-9 arginine 200 and several other conserved residues on the proximal F(alpha)-helix in the heme domain of SmFixL* using site-directed mutagenesis in conjunction with UV-visible, EPR, and resonance Raman spectroscopy. The F(alpha)-helix variants R200A, E, Q, H, Y197A, and D195A were expressed at reasonable levels and purified to homogeneity. The R200I and Y201A variants did not express in observable quantities. Tyrosine 201 is crucial for forming the native protein fold of SmFixL* while Y197 and R200 are important for stabilizing the kinase-inhibited oxy state. Our results show a clear correlation between H-bond donor ability of the F(alpha)-9 side chain and the rate of heme autoxidation. This trend in conjunction with crystal structures of liganded BjFixL heme domains, show that H-bonding between the conserved F(alpha)-9 arginine and the heme-6-propionate group contributes to the kinetic stability of the kinase-inactivated, oxy state of SmFixL*.
Collapse
Affiliation(s)
- Mark F Reynolds
- Department of Chemistry, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA 19131, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ozaki SI, Doi M, Migita CT. Modulation of Cystathionine β-Synthase Activity by Altering Heme Environment. CHEM LETT 2008. [DOI: 10.1246/cl.2008.208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Singh S, Madzelan P, Banerjee R. Properties of an unusual heme cofactor in PLP-dependent cystathionine beta-synthase. Nat Prod Rep 2007; 24:631-9. [PMID: 17534535 DOI: 10.1039/b604182p] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Sangita Singh
- Redox Biology Center and Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | | | | |
Collapse
|
10
|
Sato M, Ohya T, Morishima I. Crystal field analysis of E.P.R.g-factors in low-spin Fe(III) haem complexes. Mol Phys 2006. [DOI: 10.1080/00268978100100401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
|
12
|
|
13
|
|
14
|
Weichsel A, Maes EM, Andersen JF, Valenzuela JG, Shokhireva TK, Walker FA, Montfort WR. Heme-assisted S-nitrosation of a proximal thiolate in a nitric oxide transport protein. Proc Natl Acad Sci U S A 2005; 102:594-9. [PMID: 15637157 PMCID: PMC545542 DOI: 10.1073/pnas.0406549102] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 11/30/2004] [Indexed: 11/18/2022] Open
Abstract
Certain bloodsucking insects deliver nitric oxide (NO) while feeding, to induce vasodilation and inhibit blood coagulation. We have expressed, characterized, and determined the crystal structure of the Cimex lectularius (bedbug) nitrophorin, the protein responsible for NO storage and delivery, to understand how the insect successfully handles this reactive molecule. Surprisingly, NO binds not only to the ferric nitrophorin heme, but it can also be stored as an S-nitroso (SNO) conjugate of the proximal heme cysteine (Cys-60) when present at higher concentrations. EPR- and UV-visible spectroscopies, and a crystallographic structure determination to 1.75-A resolution, reveal SNO formation to proceed with reduction of the heme iron, yielding an Fe-NO complex. Stopped-flow kinetic measurements indicate that an ordered reaction mechanism takes place: initial NO binding occurs at the ferric heme and is followed by heme reduction, Cys-60 release from the heme iron, and SNO formation. Release of NO occurs through a reversal of these steps. These data provide, to our knowledge, the first view of reversible metal-assisted SNO formation in a protein and suggest a mechanism for its role in NO release from ferrous heme. This mechanism and Cimex nitrophorin structure are completely unlike those of the nitrophorins from Rhodnius prolixus, where NO protection is provided by a large conformational change that buries the heme nitrosyl complex, highlighting the remarkable evolution of proteins that assist insects in bloodfeeding.
Collapse
Affiliation(s)
- Andrzej Weichsel
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Dumortier C, Fitch J, Meyer TE, Cusanovich MA. Protein dynamics: imidazole and 2-mercaptoethanol binding to the Rhodobacter capsulatus cytochrome c(2) mutant, glycine 95 proline. Arch Biochem Biophys 2002; 405:154-62. [PMID: 12220527 DOI: 10.1016/s0003-9861(02)00347-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Class I c-type cytochromes can bind exogenous ligands in the oxidized state, with the kinetics of ligand binding providing information on naturally occurring intramolecular dynamics. Typically, nitrogenous bases are used as ligands; however, it is less well known that 2-mercaptoethanol (BME), a commonly used cytochrome reducing agent, can form a complex with the heme. To better understand the cytochrome-mercaptan interaction, we have investigated the kinetics of binding of BME to wild type and mutants of Rhodobacter capsulatus cytochrome c(2) and to horse cytochrome c. Complex formation with the G95P mutant is apparent from the formation of a green color and a shift in the Soret peak to 418 nm from 410 nm upon addition of BME. Unlike horse cytochrome c and wild-type R. capsulatus cytochrome c(2), G95P permits the kinetics of formation of the BME-G95P complex to be measured since complex formation and reduction kinetics can be resolved. The affinity constant for the binding of BME to mutant G95P was strong ( approximately 1.5 x 10(5)M(-1)) and the kinetics of formation of the BME-G95P complex were found to undergo a change in rate-limiting step consistent with a concentration-independent protein rearrangement (68s(-1)) followed by second-order binding of BME ( approximately approximately 1.3 x 10(5)M(-1)s(-1)). The most remarkable characteristic of mutant G95P is the relatively large amount of high-spin species in equilibrium with the low- spin form, which can be estimated to be approximately 3% at pH 7. The BME binding kinetics, coupled with the kinetics of imidazole binding to G95P, allow us, for the first time, to specify all four rate constants describing the ligand binding reaction. Moreover, we can use the kinetic results to estimate the rate constants for ligand binding with the wild-type cytochrome c(2). This has also allowed us to quantify and more fully interpret cytochrome dynamics.
Collapse
Affiliation(s)
- Chantal Dumortier
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
16
|
Psylinakis E, Davoras EM, Ioannidis N, Trikeriotis M, Petrouleas V, Ghanotakis DF. Isolation and spectroscopic characterization of a recombinant bell pepper hydroperoxide lyase. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1533:119-27. [PMID: 11566449 DOI: 10.1016/s1388-1981(01)00150-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fatty acid hydroperoxide (HPO) lyase is a component of the oxylipin pathway and holds a central role in elicited plant defense. HPO lyase from bell pepper has been identified as a heme protein which shares 40% homology with allene oxide synthase, a cytochrome P450 (CYP74A). HPO lyase of immature bell pepper fruits was expressed in Escherichia coli and the enzyme was purified and characterized by spectroscopic techniques. The electronic structure and ligand coordination properties of the heme were investigated by using a series of exogenous ligands. The various complexes were characterized by using UV-visible absorption and electron paramagnetic resonance spectroscopy. The spectroscopic data demonstrated that the isolated recombinant HPO lyase has a pentacoordinate, high-spin heme with thiolate ligation. Addition of the neutral ligand imidazole or the anionic ligand cyanide results in the formation of hexacoordinate adducts that retain thiolate ligation. The striking similarities between both the ferric and ferrous HPO lyase-NO complexes with the analogous P450 complexes, suggest that the active sites of HPO lyase and P450 share common structural features.
Collapse
Affiliation(s)
- E Psylinakis
- Department of Chemistry, University of Crete, Heraklion, Crete, Greece
| | | | | | | | | | | |
Collapse
|
17
|
Ojha S, Hwang J, Kabil O, Penner-Hahn JE, Banerjee R. Characterization of the heme in human cystathionine beta-synthase by X-ray absorption and electron paramagnetic resonance spectroscopies. Biochemistry 2000; 39:10542-7. [PMID: 10956045 DOI: 10.1021/bi000831h] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human cystathionine beta-synthase is one of two key enzymes involved in intracellular metabolism of homocysteine. It catalyzes a beta-replacement reaction in which the thiolate of homocysteine replaces the hydroxyl group of serine to give the product, cystathionine. The enzyme is unusual in its dependence on two cofactors: pyridoxal phosphate and heme. The requirement for pyridoxal phosphate is expected on the basis of the nature of the condensation reaction that is catalyzed; however the function of the heme in this protein is unknown. We have examined the spectroscopic properties of the heme in order to assign the axial ligands provided by the protein. The heme Soret peak of ferric cystathionine beta-synthase is at 428 nm and shifts to approximately 395 nm upon addition of the thiol chelator, mercuric chloride. This is indicative of 6-coordinate low-spin heme converting to a 5-coordinate high-spin heme. The enzyme as isolated exhibits a rhombic EPR signal with g values of 2.5, 2.3, and 1.86, which are similar to those of heme proteins and model complexes with imidazole/thiolate ligands. Mercuric chloride treatment of the enzyme results in conversion of the rhombic EPR signal to a g = 6 signal, consistent with formation of the high-spin ferric heme. The X-ray absorption data reveal that iron in ferric cystathionine beta-synthase is 6-coordinate, with 1 high-Z scatterer and 5 low-Z scatterers. This is consistent with the presence of 5 nitrogens and 1 sulfur ligand. Together, these data support assignment of the axial ligands as cysteinate and imidazole in ferric cystathionine beta-synthase.
Collapse
Affiliation(s)
- S Ojha
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | |
Collapse
|
18
|
Sigman JA, Pond AE, Dawson JH, Lu Y. Engineering cytochrome c peroxidase into cytochrome P450: a proximal effect on heme-thiolate ligation. Biochemistry 1999; 38:11122-9. [PMID: 10460168 DOI: 10.1021/bi990815o] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an effort to investigate factors required to stabilize heme-thiolate ligation, key structural components necessary to convert cytochrome c peroxidase (CcP) into a thiolate-ligated cytochrome P450-like enzyme have been evaluated and the H175C/D235L CcP double mutant has been engineered. The UV-visible absorption, magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) spectra for the double mutant at pH 8.0 are reported herein. The close similarity between the spectra of ferric substrate-bound cytochrome P450cam and those of the exogenous ligand-free ferric state of the double mutant with all three techniques support the conclusion that the latter has a pentacoordinate, high-spin heme with thiolate ligation. Previous efforts to prepare a thiolate-ligated mutant of CcP with the H175C single mutant led to Cys oxidation to cysteic acid [Choudhury et al. (1994) J. Biol. Chem. 267, 25656-25659]. Therefore it is concluded that changing the proximal Asp235 residue to Leu is critical in forming a stable heme-thiolate ligation in the resting state of the enzyme. To further probe the versatility of the CcP double mutant as a ferric P450 model, hexacoordinate low-spin complexes have also been prepared. Addition of the neutral ligand imidazole or of the anionic ligand cyanide results in formation of hexacoordinate adducts that retain thiolate ligation as determined by spectral comparison to the analogous derivatives of ferric P450cam. The stability of these complexes and their similarity to the analogous forms of P450cam illustrates the potential of the H175C/D235L CcP double mutant as a model for ferric P450 enzymes. This study marks the first time a stable cyanoferric complex of a model P450 has been made and demonstrates the importance of the environment around the primary coordination ligands in stabilizing metal-ligand ligation.
Collapse
Affiliation(s)
- J A Sigman
- Department of Chemistry, University of Illinois at Urbana-Champaign 61801, USA
| | | | | | | |
Collapse
|
19
|
Reynolds MF, Shelver D, Kerby RL, Parks RB, Roberts GP, Burstyn JN. EPR and Electronic Absorption Spectroscopies of the CO-Sensing CooA Protein Reveal a Cysteine-Ligated Low-Spin Ferric Heme. J Am Chem Soc 1998. [DOI: 10.1021/ja981146p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mark F. Reynolds
- Department of Chemistry and the Department of Bacteriology University of Wisconsin, Madison, Wisconsin 53706
| | - Daniel Shelver
- Department of Chemistry and the Department of Bacteriology University of Wisconsin, Madison, Wisconsin 53706
| | - Robert L. Kerby
- Department of Chemistry and the Department of Bacteriology University of Wisconsin, Madison, Wisconsin 53706
| | - Ryan B. Parks
- Department of Chemistry and the Department of Bacteriology University of Wisconsin, Madison, Wisconsin 53706
| | - Gary P. Roberts
- Department of Chemistry and the Department of Bacteriology University of Wisconsin, Madison, Wisconsin 53706
| | - Judith N. Burstyn
- Department of Chemistry and the Department of Bacteriology University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
20
|
Tsai AL, Berka V, Chen PF, Palmer G. Characterization of endothelial nitric-oxide synthase and its reaction with ligand by electron paramagnetic resonance spectroscopy. J Biol Chem 1996; 271:32563-71. [PMID: 8955082 DOI: 10.1074/jbc.271.51.32563] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Electron paramagnetic resonance was used to characterize the heme structure of resting endothelial nitric-oxide synthase (eNOS), eNOS devoid of its myristoylation site (G2A mutant), and their heme complexes formed with 16 different ligands. Resting eNOS and the G2A mutant have a mixture of low spin and high spin P450-heme with widely different relaxation behavior and a stable flavin semiquinone radical identified by EPR as a neutral radical. This flavin radical showed efficient electron spin relaxation as a consequence of dipolar interaction with the heme center; P1/2 is independent of Ca2+-calmodulin and tetrahydrobiopterin. Seven of the 16 ligands led to the formation of low spin heme complexes. In order of increasing rhombicity they are pyrimidine, pyridine, thiazole, L-lysine, cyanide, imidazole, and 4-methylimidazole. These seven low spin eNOS complexes fell in a region between the P and O zones on the "truth diagram" originally derived by Blumberg and Peisach (Blumberg, W. E., and Peisach, J. (1971) in Probes and Structure and Function of Macromolecules and Membranes (Chance, B., Yonetani, T., and Mildvan, A. S., eds) Vol. 2, pp. 215-229, Academic Press, New York) and had significant overlap with complexes of chloroperoxidase. A re-definition of the P and O zones is proposed. As eNOS and chloroperoxidase lie closer than do eNOS and P450cam on the truth diagram, it implies that the distal heme environment in eNOS resembles chloroperoxidase more than P450cam. In contrast, 4-ethylpyridine, 4-methylpyrimidine, acetylguanidine, ethylguanidine, 2-aminothiazole, 2amino-4,5-dimethylthiazole, L-histidine, and 7-nitroindazole resulted in high spin heme complexes of eNOS, similar to that observed with L-arginine. This contrasting EPR behavior caused by families of ligands such as imidazole/L-histidine or thiazole/2-aminothiazole confirms the conclusion derived from parallel optical and kinetic studies. The ligands resulting in the low spin complexes bind directly to the heme iron, while their cognate ligands induce the formation of high spin complexes by indirectly perturbing the heme structure and excluding the original axial heme ligand in the resting eNOS (V. Berka, P.-F. Chen, and A. -L. Tsai (1997) J. Biol. Chem. 272, in press). The difference in EPR spectra of these high spin eNOS complexes, although subtle, are different for different homologs.
Collapse
Affiliation(s)
- A L Tsai
- Division of Hematology, Department of Internal Medicine, University of Texas Medical School, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
21
|
|
22
|
Theodorakis JL, Garber EA, McCracken J, Peisach J, Schejter A, Margoliash E. A chemical modification of cytochrome-c lysines leading to changes in heme iron ligation. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1252:103-13. [PMID: 7548152 DOI: 10.1016/0167-4838(95)00097-e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although 13 lysines of horse cytochrome c are invariant, and three more are extremely conserved, the modification of their side-chain epsilon-amino groups by beta-thiopropionylation caused important changes in protein properties for only three of them; lysines 72,73 and 79. Optical spectroscopy, electron and nuclear paramagnetic resonance, electron spin echo envelope modulation, and molecular weight studies, as well as the unique features of their reaction with cytochrome-c oxidase, indicate that in the oxidized state the modification of these lysines resulted in equilibria between two different states of iron ligation: the native state, in which the metal is coordinated by the methionine-80 sulfur, and a new state in which this ligand is displaced by the sulfhydryl groups of the elongated side chains. The reduction potentials of the TP Lys-72 and the TP Lys-79 derivatives were 201 and 196 millivolt, respectively, indicating that the equilibria favored the sulfhydryl ligated state by 1.5 and 1.7 kcal/mol, respectively. In the ferric state, the protein modified at lysine 72 remained stable as a monomer, but that modified at lysine 73 dimerized rapidly through disulfide bond formation, while the TP Lys-79 cytochrome c dimerized with a half-time of approx. 3 h, both recovering the native-like iron ligation. By contrast, in the ferrous state the monomeric state and the native ligation were preserved in all cases, indicating that the affinity of the cytochrome-c ferrous iron for the methionine-80 sulfur is particularly strong. The dimerized derivatives lost most, but not all, of the capability of the native protein for electron transfer from ascorbate-TMPD to cytochrome-c oxidase.
Collapse
Affiliation(s)
- J L Theodorakis
- Department of Biological Sciences, University of Illinois at Chicago 60607, USA
| | | | | | | | | | | |
Collapse
|
23
|
Ferrari RP, Laurenti E, Cecchini PI, Gambino O, Sondergaard I. Spectroscopic investigations on the highly purified lactoperoxidase Fe(III)-heme catalytic site. J Inorg Biochem 1995; 58:109-27. [PMID: 7769383 DOI: 10.1016/0162-0134(94)00041-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Purification of the lactoperoxidase (LPO) major cationic isoenzyme was significantly improved by the use of preparative chromatographic and electrophoretic methods combined with analytical electrophoretic techniques and image processing. A detailed report is given of the experimental procedure. Furthermore, electron paramagnetic resonance has played a fundamental role in evaluating the enzyme purity against lactoferrin and minor LPO isoenzyme components in setting the final steps of the purification. With the aim to completely clarify the Fe(III)-heme high-spin nature of the native LPO, two samples of lactoperoxidase, LPO1 and LPO2 (RZ = 0.95) from farm and commercial milk, respectively, were purified and characterized in particular by electron paramagnetic resonance (EPR) spectroscopy, in comparison with a commercial preparation (LPOs). The LPO1 EPR spectrum, at physiological pH, is clearly indictive of the presence of an iron(III)-heme high-spin catalytic site in the native enzyme. On the contrary, in the LPO2 spectrum a thermal equilibrium between high- and low-spin iron(III)-heme species is present. The low-spin component of the spectrum has been assigned to an LPO-NO2- adduct due to the presence of some nitrite impurities originating either from commercial unpasteurized milk or from external sources. The LPOs EPR spectrum shwos the presence of some spurious lines in the g approximately equal to 6 and 4 regions due to the minor LPO isoenzyme components and to lactoferrin, respectively. The LPO EPR spectra previously reported in the literature contain a variable number of spurious lines in the g approximately equal to 4 and 2 regions as a consequence of lactoferrin impurity and LPO low-spin adducts with endogenous or exogenous anions. Furthermore, the interaction of LPO with its native substrate (the thiocyanate anion), which previously was shown by NMR and EPR (at high substrate concentration) spectroscopies, has been confirmed by EPR at low temperature and low substrate concentration and by optical spectroscopy at room temperature and high substrate concentration as a function of pH. The LPO activity at optimum pH (approximately equal to 4-5) has been measured in phosphate and acetate buffer using as an oxidizable substrate the system dimethylamino benzoic acid 3-methyl-2-benzothiazolinone hydrazone hydrochloride monohydrate (DMAB-MBTH), which was considered a good chromogen for other peroxidases such as HRP and zucchini peroxidases. The LPO vs SCN- activity at optimum pH (approximately equal to 5.5) has been measured in phosphate and acetate buffer.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R P Ferrari
- Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Universitá di Torino, Italy
| | | | | | | | | |
Collapse
|
24
|
Calhoun MW, Gennis RB, Ingledew WJ, Salerno JC. Strong-field and integral spin-ligand complexes of the cytochrome bo quinol oxidase in Escherichia coli membrane preparations. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1206:143-54. [PMID: 8186244 DOI: 10.1016/0167-4838(94)90083-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cytochrome bo-type terminal oxidase of Escherichia coli is an analogue of mammalian aa3-type cytochrome c oxidase. The catalytic core of both enzymes is a binuclear site containing a penta-coordinate heme (heme o or a3) and copper (CuB). Herein we report on UV-visible and magnetic properties of ligand complexes of the binuclear site of cytochrome bo. Cyanide, sulfide, and azide react with the Fe(3+)-Cu+ center to give EPR-detectable low-spin complexes, analogous to those formed by cytochrome aa3. Analyses of the ligand fields of these complexes indicate that heme o has a single axial histidine ligand. Cyanide and azide react with the Fe(3+)-Cu2+ center to yield forms observable via UV-visible spectroscopy but not EPR. With formate and fluoride, cytochrome bo forms integral spin complexes similar to those of cytochrome aa3. These complexes have UV-visible characteristics of high-spin species, but EPR spectra show features which appear to correspond to transitions within an integral spin multiplet. Cytochrome bo forms another integral spin complex with azide and NO which is nearly identical to the azide-NO species in cytochrome aa3. This suggests that the binuclear centers of the two enzymes are quite similar.
Collapse
Affiliation(s)
- M W Calhoun
- School of Chemical Sciences, University of Illinois at Urbana-Champaign 61801
| | | | | | | |
Collapse
|
25
|
Rifkind JM, Abugo O, Levy A, Heim J. Detection, formation, and relevance of hemichromes and hemochromes. Methods Enzymol 1994; 231:449-80. [PMID: 8041268 DOI: 10.1016/0076-6879(94)31030-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J M Rifkind
- Laboratory of Cellular and Molecular Biology, National Institutes of Health, National Institute on Aging, Baltimore, Maryland 21224
| | | | | | | |
Collapse
|
26
|
Spectral characterization of brain and macrophage nitric oxide synthases. Cytochrome P-450-like hemeproteins that contain a flavin semiquinone radical. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36718-3] [Citation(s) in RCA: 300] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
27
|
Isolation and characterization of an altered cytochrome P-450 from a yeast mutant defective in lanosterol 14 alpha-demethylation. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47932-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
28
|
Bangcharoenpaurpong O, Champion PM, Hall KS, Hager LP. Resonance Raman studies of isotopically labeled chloroperoxidase. Biochemistry 1986; 25:2374-8. [PMID: 3718957 DOI: 10.1021/bi00357a011] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chloroperoxidase (CPO) and cytochrome P450cam have been shown by several techniques to have similar active site properties. Recent resonance Raman investigations using isotopically enriched 34S-labeled samples have demonstrated thiolate ligation in the P450cam system. We report here on a number of parallel studies involving CPO. On the basis of isotopic labeling (34S, 13CO), we assign the Fe-S and Fe-CO stretching frequencies of CPO at 347 (-vFe-S) and 488 cm-1 (-vFe-CO). The differences of the -vFe-S and -vFe-CO in CPO and P450cam may suggest subtle differences in the thiolate binding in the two systems.
Collapse
|
29
|
Gibson GG, Tamburini PP. Chemical modification of the histidine residues of purified hepatic cytochrome P-450: influence on substrate binding and the haemoprotein spin state. Chem Biol Interact 1986; 58:185-98. [PMID: 3719856 DOI: 10.1016/s0009-2797(86)80097-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A hepatic cytochrome P-450 isolated in an electrophoretically homogeneous form from phenobarbital-treated rats, exists predominantly in the low spin configuration (82% at 20 degrees C). The addition of saturating amounts of the substrate benzphetamine to this haemoprotein shifted the spin equilibrium to the high spin form, resulting in a doubling of the spin equilibrium constant from 0.220 to 0.539 at 20 degrees C. The histidine residues of this low spin, substrate-free cytochrome P-450 were modified in a time- and concentration-dependent manner with diethylpyrocarbonate, and progressive histidine modification resulted in a decrease of both the affinity and extent of substrate interaction with the haemoprotein. Although the histidine-modified haemoprotein maintained the capacity to undergo a temperature-dependent spin transition of the haem iron in the presence of saturating amounts of substrate, this capability was substantially decreased in comparison to the unmodified cytochrome. These results indicate that a histidine residue(s) is involved in the binding of substrate to cytochrome P-450 and hence interferes with the substrate-bound spin equilibrium. Our results further imply that histidine is probably not the sixth ligand of the substrate-free ferric form of the rat liver cytochrome P-450.
Collapse
|
30
|
Ozols J. Complete amino acid sequence of a cytochrome P-450 isolated from beta-naphthoflavone-induced rabbit liver microsomes. Comparison with phenobarbital-induced and constitutive isozymes and identification of invariant residues. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)35609-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
|
32
|
Weiner LM. Magnetic resonance study of the structure and functions of cytochrome P450. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1986; 20:139-200. [PMID: 3011356 DOI: 10.3109/10409238609083734] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cytochrome P450 is a membrane-bound enzyme providing oxidation of numerous organic compounds in organisms. The objective of this review is to show the wide possibilities that are provided by Electron Spin Resonance (ESR) and Nuclear Magnetic Resonance (NMR) techniques to the study of the structure and functions of this unique enzyme. High sensitivity of ESR spectra of cytochrome P450 to its functional state and interaction with substrates and inhibitors is illustrated. NMR and proton relaxation make it possible to obtain unique information about the structure of the active center of cytochrome P450 under physiological conditions. ESR and NMR methods allow one to obtain structural data on location of substrates, inhibitors, and their spin-labeled analogs with respect to Fe3+ ions in the enzyme-active center. Of special interest seems to be coupling of ESR with the affinity modification method. For this purpose, the spin-labeled analogs of cytochrome P450 substrates containing alkylating groups were used. As a result, an important datum has been obtained on the structure of active centers of cytochrome P450 in microsomes and in a highly purified state. In conclusion, the problems of the structure and functions of cytochrome P450, which can be most efficiently resolved with the use of magnetic resonance methods, are discussed.
Collapse
|
33
|
Sakurai H, Yoshimura T. Models for coordination site of cytochrome P-450, characterization of hemin-thiolato complexes with S, O, and N donor ligands by electronic absorption and electron spin resonance spectra. J Inorg Biochem 1985; 24:75-96. [PMID: 2995577 DOI: 10.1016/0162-0134(85)80001-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bisthiolato-hemin complexes exhibiting "two split Soret bands" at 370 and 460 nm, classified into "hyperporphyrin spectrum" was prepared with naturally occurring porphyrins (Fe(III)protoporphyrin IX and its dimethyl ester), thioglycolate esters, and tetramethylammonium hydroxide in organic solvents. The structure of the complexes was characterized by electronic absorption and electron spin resonance (ESR) spectrometries. These complexes were stable under air at room temperature, their apparent half-lives being about 30 min monitored by the intensities of the two Soret bands. Thus the bisthiolato-hemin complex containing thioglycolate ester was shown to be a model for the cytochrome P450(P450)-thiolato binding complex. Ligand exchange reactions of the bisthiolato-hemin complex with imidazole or methanol indicated that the intermediate species are stabilized as thiolato-hemin-imidazole or -methanol complexes. The latter intermediate complex was suggested to be a good model for low-spin ferric P450 as characterized by distinct beta- and alpha-bands at 530 and 560 nm, respectively, as well as a single Soret peak at approximately 410 nm. The result of the analysis on ESR g values and crystal field parameters for the bisthiolato-hemin, thiolato-hemin-imidazole, and thiolato-hemin-oxygen ligand complexes comparing with those for P450 itself and the ligand binding complexes revealed that the sixth ligand trans to the fifth thiolato ligand of the low-spin ferric P450 can be an oxygen atom of water molecule.
Collapse
|
34
|
Hall PF. Role of cytochromes P-450 in the biosynthesis of steroid hormones. VITAMINS AND HORMONES 1985; 42:315-68. [PMID: 3913122 DOI: 10.1016/s0083-6729(08)60065-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Bolscher BG, Wever R. The nitrosyl compounds of ferrous animal haloperoxidases. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 791:75-81. [PMID: 6093887 DOI: 10.1016/0167-4838(84)90283-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human myeloperoxidase, human eosinophil peroxidase and bovine lactoperoxidase (donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7) reduced with ascorbic acid form nitrosyl compounds which show rhombic EPR signals centered at g = 2. Using 14NO (IN = 1), the central resonance signal exhibited a hyperfine structure of nine lines originating from a triplet with a small hyperfine splitting (AII(zeta) = 0.69 mT for myeloperoxidase and 0.73 mT for eosinophil peroxidase and lactoperoxidase) superimposed upon a triplet with a larger hyperfine splitting (AI(zeta) = 2.34, 2.32 and 2.09 mT for myeloperoxidase, eosinophil peroxidase and lactoperoxidase, respectively). Using 15NO (IN = 1/2), the nitrosyl compound of ferrous myeloperoxidase and ferrous lactoperoxidase showed a doublet of triplets superimposed upon the central resonance signal. These results demonstrate that a nitrogen nucleus is present at the fifth ligand position of the haem iron in these peroxidases.
Collapse
|
36
|
Abstract
The g values from low-spin ferric hemes can be related through the t2g hole model to rhombic (V/lambda) and tetragonal (delta/lambda) ligand field components and to the lowest Kramer's doublet energy (E/lambda). The latter is also a measure of unpaired electron sharing among the iron 3d (t2g) orbitals. For a series of ligands (X), there is a monotonic increase in myoglobin complex (Mb . X) [E/lambda] values with nonheme hexacoordinate metal complex (M . X6) [eg-t2gPg] orbital separations. As the aqueous solution pKa values of the sulfurous or nitrogenous ligands in model heme complexes increase, values of V/lambda and delta/lambda increase linearly, but those of [E/lambda] decrease linearly. The greater the electron-acceptor ability of the ligand, as suggested by its position in the spectrochemical series or its pKa, the more the unpaired electron sharing among the heme t2g orbitals increases. The rate of change of [E/lambda] with V/lambda and the pKa is different with sulfurous and nitrogenous ligands, and the magnitude of both rates increases with two sulfurs less than sulfur and nitrogen less than two nitrogens bound to the heme. The maximum magnitude of this rate with V/lambda for cytochrome P-450 is four times less than that for myoglobin, which may explain, in part, the differences in ligand binding between these two hemeproteins. The perturbation of [E/lambda], V/lambda, and delta/lambda induced by strain of iron-ligand bonds is quantitated for several hemeproteins and heme models. In addition, energy level comparisons suggest that the largest-magnitude g value falls approximately along the iron-chlorin ring normal. This suggestion implies that the electron distribution of the iron at the catalytic sites of cytochrome P-450 and certain chlorin-containing enzymes is in some way similar, but distinct from that at the transport site of myoglobin.
Collapse
|
37
|
Abstract
Various endogenous and exogenous chemicals, such as hormones, drugs, and carcinogens and other environmental pollutants are enzymatically converted to polar metabolites as a result of their oxidative metabolism by the mixed-function oxidase system. This enzyme complex constitutes the major detoxifying system of man and utilizes the hemoprotein--cytochrome P-450--as the terminal oxidase. Recent studies with trace metals have revealed the potent ability of these elements to alter the synthesis and to enhance the degradation of heme moiety of cytochrome P-450. An important consequence of these metal actions is to greatly impair the ability of cells to oxidatively metabolize chemicals because of the heme dependence of this metabolic process. In this report the effects of exposure to trace metals on drug oxidations is reviewed within the framework of metal alterations of heme metabolism, including both its synthesis and degradation, since these newly discovered properties of metals have made it possible to define a major dimension of metal toxicity in terms of a unified cellular mechanism of action.
Collapse
|
38
|
Gibson GG, Tamburini PP. Cytochrome P-450 spin state: inorganic biochemistry of haem iron ligation and functional significance. Xenobiotica 1984; 14:27-47. [PMID: 6372266 DOI: 10.3109/00498258409151397] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Haem ligation in cytochrome P-450 has been reviewed and the nature of the fifth and sixth ligands of the haemoprotein in the ferric low-spin, ferric high-spin, ferrous and ferrous-carbon-monoxy states have been discussed. Factors controlling the cytochrome P-450 spin equilibrium have been described, including substrate and functional components of the mixed-function oxidase system. In addition, a thermodynamic model describing the interaction of substrate with ferric cytochrome P-450 has been developed in terms of the micro-equilibrium constants governing substrate binding. The functional significance of the cytochrome P-450 spin state with particular reference to control of the first electron reduction of the haemoprotein has been summarized, and a subsequent validation of the spin-redox coupling model of cytochrome P-450-dependent catalysis has been presented.
Collapse
|
39
|
|
40
|
Muhoberac BB, Wharton DC. Electron paramagnetic resonance study of the interaction of some anionic ligands with oxidized Pseudomonas cytochrome oxidase. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32823-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Burger RM, Kent TA, Horwitz SB, Münck E, Peisach J. Mössbauer study of iron bleomycin and its activation intermediates. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33020-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
Lambeir AM, Dunford HB. A kinetic and spectral study of the alkaline transitions of chloroperoxidase. Arch Biochem Biophys 1983; 220:549-56. [PMID: 6824339 DOI: 10.1016/0003-9861(83)90446-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The optical spectrum of chloroperoxidase in the near ultraviolet and visible region was studied from pH 6 to 12. Chloroperoxidase undergoes a first transition which is irreversible at pH 7 and a second transition near pH 11. The second transition is reversible provided the incubation period above pH 11 is kept as short as possible. The spectral properties of the intermediates were studied in the Soret region by means of a rapid scan apparatus. The rates of the transitions were measured in a stopped-flow apparatus. The pH dependence of both the spectra and the rate constants indicate that at least three ionizations are involved in the first alkaline transition.
Collapse
|
43
|
Smith TD, Gaunt R, Ruzic I. Hydroxylation of aniline by hemin-thiol compound solubilised by non-ionic detergents: A model system of cytochrome P-450. Inorganica Chim Acta 1983. [DOI: 10.1016/s0020-1693(00)86497-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Sono M, Andersson LA, Dawson JH. Sulfur donor ligand binding to ferric cytochrome P-450-CAM and myoglobin. Ultraviolet-visible absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopic investigation of the complexes. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34332-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Little PJ, Ryan AJ. Inhibitors of hepatic mixed function oxidases--V. Inhibition of aminopyrine N-demethylation and enhancement of aniline hydroxylation by benzoxazole derivatives. Biochem Pharmacol 1982; 31:1795-8. [PMID: 7104044 DOI: 10.1016/0006-2952(82)90690-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
46
|
Mock DM, Bruno GV, Griffin BW, Peterson JA. Low temperature EPR spectroscopic characterization of the interaction of cytochrome P-450cam with a spin label analog of metyrapone. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)83786-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
|
48
|
Sono M, Dawson JH. Formation of low spin complexes of ferric cytochrome P-450-CAM with anionic ligands. Spin state and ligand affinity comparison to myoglobin. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)83805-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Dawson JH, Andersson LA, Sono M. Spectroscopic investigations of ferric cytochrome P-450-CAM ligand complexes. Identification of the ligand trans to cysteinate in the native enzyme. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34823-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
Heme ligand replacement reactions of cytochrome P-450. Characterization of the bonding atom of the axial ligand trans to thiolate as oxygen. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)81075-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|