1
|
Rocamora F, Peralta AG, Shin S, Sorrentino J, Wu MYM, Toth EA, Fuerst TR, Lewis NE. Glycosylation shapes the efficacy and safety of diverse protein, gene and cell therapies. Biotechnol Adv 2023; 67:108206. [PMID: 37354999 PMCID: PMC11168894 DOI: 10.1016/j.biotechadv.2023.108206] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Over recent decades, therapeutic proteins have had widespread success in treating a myriad of diseases. Glycosylation, a near universal feature of this class of drugs, is a critical quality attribute that significantly influences the physical properties, safety profile and biological activity of therapeutic proteins. Optimizing protein glycosylation, therefore, offers an important avenue to developing more efficacious therapies. In this review, we discuss specific examples of how variations in glycan structure and glycoengineering impacts the stability, safety, and clinical efficacy of protein-based drugs that are already in the market as well as those that are still in preclinical development. We also highlight the impact of glycosylation on next generation biologics such as T cell-based cancer therapy and gene therapy.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angelo G Peralta
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seunghyeon Shin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - James Sorrentino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mina Ying Min Wu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
S. M. S, Naveen NR, Rao GSNK, Gopan G, Chopra H, Park MN, Alshahrani MM, Jose J, Emran TB, Kim B. A spotlight on alkaloid nanoformulations for the treatment of lung cancer. Front Oncol 2022; 12:994155. [PMID: 36330493 PMCID: PMC9623325 DOI: 10.3389/fonc.2022.994155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 07/30/2023] Open
Abstract
Numerous naturally available phytochemicals have potential anti-cancer activities due to their vast structural diversity. Alkaloids have been extensively used in cancer treatment, especially lung cancers, among the plant-based compounds. However, their utilization is limited by their poor solubility, low bioavailability, and inadequacies such as lack of specificity to cancer cells and indiscriminate distribution in the tissues. Incorporating the alkaloids into nanoformulations can overcome the said limitations paving the way for effective delivery of the alkaloids to the site of action in sufficient concentrations, which is crucial in tumor targeting. Our review attempts to assess whether alkaloid nanoformulation can be an effective tool in lung cancer therapy. The mechanism of action of each alkaloid having potential is explored in great detail in the review. In general, Alkaloids suppress oncogenesis by modulating several signaling pathways involved in multiplication, cell cycle, and metastasis, making them significant component of many clinical anti-cancerous agents. The review also explores the future prospects of alkaloid nanoformulation in lung cancer. So, in conclusion, alkaloid based nanoformulation will emerge as a potential gamechanger in treating lung cancer in the near future.
Collapse
Affiliation(s)
- Sindhoor S. M.
- Department of Pharmaceutics, P.A. College of Pharmacy, Mangalore, Karnataka, India
| | - N. Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagar, Karnataka, India
| | - GSN Koteswara Rao
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Gopika Gopan
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Moon Nyeo Park
- Department of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
3
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
4
|
Chokshi NV, Rawal S, Solanki D, Gajjar S, Bora V, Patel BM, Patel MM. Fabrication and Characterization of Surface Engineered Rifampicin Loaded Lipid Nanoparticulate Systems for the Potential Treatment of Tuberculosis: An In Vitro and In Vivo Evaluation. J Pharm Sci 2021; 110:2221-2232. [PMID: 33610570 DOI: 10.1016/j.xphs.2021.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
The main aim of the present investigation highlights the development of mannose appended rifampicin containing solid lipid nanoparticles (Mn-RIF-SLNs) for the management of pulmonary TB. The developed Mn-RIF-SLNs showed particle size of Mn-RIF-SLNs (479 ± 13 nm) which was found to be greater than that of unconjugated SLNs (456 ± 11 nm), with marginal reduction in percentage entrapment efficiency (79.41 ± 2.42%). The in vitro dissolution studies depicted an initial burst release followed by sustained release profile indicating biphasic release pattern, close-fitting Weibull model having least F-value. The cytotoxicity studies using J774A.1 cell line represented that the developed SLNs were non-toxic and safe as compared to free drug. Fluorescence imaging and flow cytometric (FACS) analysis depicted significant (1.79-folds) intracellular uptake of coumarin-6 (fluorescent marker) loaded Mn-C6-SLNs. The in vivo pharmacokinetic studies in sprague-dawley rats were performed and Mn-RIF-SLNs showed remarkable enhancement in terms of relative bioavailability (~17-folds) as compared to its drug solution via oral administration. The biodistribution studies revealed higher lung accumulation (1.8-folds) of Mn-RIF-SLNs as compared to the Un-RIF-SLNs. In conclusion, the developed Mn-RIF-SLNs could serve as a promising tool for delivering the drug cargo to the site of infection (lungs) in the treatment of TB.
Collapse
Affiliation(s)
- Nimitt V Chokshi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Dhruvi Solanki
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Saumitra Gajjar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Vivek Bora
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Bhoomika M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
5
|
Uhler R, Popa-Wagner R, Kröning M, Brehm A, Rennert P, Seifried A, Peschke M, Krieger M, Kohla G, Kannicht C, Wiedemann P, Hafner M, Rosenlöcher J. Glyco-engineered HEK 293-F cell lines for the production of therapeutic glycoproteins with human N-glycosylation and improved pharmacokinetics. Glycobiology 2021; 31:859-872. [PMID: 33403396 DOI: 10.1093/glycob/cwaa119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylated proteins produced in human embryonic kidney 293 (HEK 293) cells often carry terminal N-acetylgalactosamine (GalNAc) and only low levels of sialylation. On therapeutic proteins, such N-glycans often trigger rapid clearance from the patient bloodstream via efficient binding to asialoglycoprotein receptor (ASGP-R) and mannose receptor (MR). This currently limits the use of HEK 293 cells for therapeutic protein production. To eliminate terminal GalNAc, we knocked-out GalNAc transferases B4GALNT3 and B4GALNT4 by CRISPR/Cas9 in FreeStyle 293-F cells. The resulting cell line produced a coagulation factor VII-albumin fusion protein without GalNAc but with increased sialylation. This glyco-engineered protein bound less efficiently to both the ASGP-R and MR in vitro and it showed improved recovery, terminal half-life and area under the curve in pharmacokinetic rat experiments. By overexpressing sialyltransferases ST6GAL1 and ST3GAL6 in B4GALNT3 and B4GALNT4 knock-out cells, we further increased factor VII-albumin sialylation; for ST6GAL1 even to the level of human plasma-derived factor VII. Simultaneous knock-out of B4GALNT3 and B4GALNT4, and overexpression of ST6GAL1 further lowered factor VII-albumin binding to ASGP-R and MR. This novel glyco-engineered cell line is well-suited for the production of factor VII-albumin and presumably other therapeutic proteins with fully human N-glycosylation and superior pharmacokinetic properties.
Collapse
Affiliation(s)
- Rico Uhler
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.,Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany
| | | | - Mario Kröning
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Anja Brehm
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Paul Rennert
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | | | | | - Markus Krieger
- Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany
| | - Guido Kohla
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Christoph Kannicht
- Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany.,Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Philipp Wiedemann
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.,Institute for Medical Technology, University Heidelberg and the Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | | |
Collapse
|
6
|
Pawde DM, Viswanadh MK, Mehata AK, Sonkar R, Narendra, Poddar S, Burande AS, Jha A, Vajanthri KY, Mahto SK, Azger Dustakeer VN, Muthu MS. Mannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosis. Saudi Pharm J 2020; 28:1616-1625. [PMID: 33424254 PMCID: PMC7783224 DOI: 10.1016/j.jsps.2020.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/04/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022] Open
Abstract
Drug-resistant tuberculosis (TB) is one of the most lethal diseases, and it is imperative to exploit an advanced drug formulation for its effective treatment. This work aims to develop a mannose receptor-targeted bioadhesive chitosan nanoparticles for effective drug-resistant tuberculosis treatment. The clofazimine loaded chitosan nanoparticles were formulated; their size, charge, polydispersity (PDI), surface morphology, entrapment efficiency (EE) and in-vitro release pattern were established. Also, cellular uptake study on C2C12 cell lines and anti-mycobacterial activity against H37Rv (a standard strain of Mycobacterium tuberculosis) were evaluated. The particle sizes of formulated chitosan nanoparticles were in the range of 132–184 nm and EE was also found to be between 73 and 95%. The functionalization of bioadhesive chitosan nanoparticles with mannose was confirmed by infrared spectroscopy (FTIR). The uptake studies on the C2C12 cell lines showed that mannosylated nanoparticles were more efficiently internalized when compared to non-targeted nanoparticles. Further, luciferase reporter phage (LRP) assay against H37Rv strain showed that clofazimine nanoparticles were found to be 49.5 times superior in terms of inhibition and anti-mycobacterial activity than free clofazimine. This excellent activity might be attributed to enhanced drug delivery with a promising bioadhesion property of chitosan-based nanoparticles.
Collapse
Affiliation(s)
- Datta Maroti Pawde
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Roshan Sonkar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Narendra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Suruchi Poddar
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankita Sanjay Burande
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | | | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - V N Azger Dustakeer
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
7
|
Zhang X, Zhang B, Masoudi A, Wang X, Xue X, Li M, Xiao Q, Wang M, Liu J, Wang H. Comprehensive analysis of protein expression levels and phosphorylation levels in host skin in response to tick (Haemaphysalis longicornis) bite. J Proteomics 2020; 226:103898. [PMID: 32682108 DOI: 10.1016/j.jprot.2020.103898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/15/2022]
Abstract
Ticks are parasitic arthropods that suck blood from the surface of most vertebrates. They can transmit a variety of pathogens. The blood sucking of ticks causes varying degrees of damage to the skin of the host. Proteins related to immune regulation, vascular repair, and wound healing in mammalian skin respond to tick bites by regulating their expression and post-translational modifications to protect the skin from injury. Phosphorylation of proteins, as the most common post-translational modification of proteins, plays an important role in the rapid regulation of cell signal transduction, gene expression and cell cycle. To systematically explore the molecular regulatory mechanisms employed by mammalian skin to resist tick bites, larval, nymphal, and adult Haemaphysalis longicornis were used to bite the skin tissues of healthy rabbits in the present study. The quantitative proteomic technology data-independent acquisition was then carried out to investigate in depth the changes in protein expression and phosphorylation in rabbit skin after tick bite. The results showed that among the 4034 proteins and 1795 phosphorylated proteins identified, a total of 202 proteins and 435 phosphorylation sites were changed after H. longicornis bite. In order to provide convenience for sucking blood, active substances in the saliva of H. longicornis injected into the rabbit's skin can cause the expression level of trichohyalin and peptidyl arginine deiminase 3 in the skin of the host downregulate, which can make the host hair loss and regeneration disorders. At the same time, the active substances in saliva of the H. longicornis led to the phosphorylation of microtubule actin cross-linking factor 1 in the host's skin and further inactivation, so as to delay the healing of the host wound. In response to tick bites, the host skin promotes coagulation through high expression of fibrinogen and fibronectin, and vascular repair through high expression of integrin linked kinase and tenascin C, as well as accelerated phosphorylation of the phosphorylated protein Nck adaptor protein 1, and wound healing through high expression of ezrin and integrin. The upregulation of proteins such as coronin, NADPH oxidase, calnexin, and calreticulin and phosphorylation level of IL-4R in the host skin after the H. longicornis bite indicated that the immune response was playing an important defensive role in response to tick bites. Meanwhile, we found that the upregulated two lectins, mannose receptor C-type 1 and DC-SIGN, may serve as molecular makers to identify and monitor whether the skin is bitten by ticks. SIGNIFICANCE: Haemaphysalis longicornis are parasitic arthropods that suck blood from the surface of most vertebrates. They can transmit a variety of pathogens and are harmful to humans and livestock. The present study is the first quantitative proteomic study on protein expression levels in the rabbit skin after infection by H. longicornis. It is also the first quantitative phosphoproteomic study in the host skin infected by ticks. In this study, we found that tick bites cause the host hair loss and regeneration disorders. For resisting tick bite, the host activates the immune response and initiates vascular repair and wound-healing systems. In addition, some phosphorylated proteins promote host immunity and vascular repair. These results can help us further understand the defence mechanism of the host against tick bites, provide a basis for the development of an anti-tick vaccine, the development of anti-tick drugs, and the diagnosis of tick-borne diseases.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Baowen Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Abolfazl Masoudi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Xiaoshuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Xiaomin Xue
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Mengxue Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Qi Xiao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Minjing Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
8
|
Chen P, Zhang X, Venosa A, Lee IH, Myers D, Holloway JA, Prud’homme RK, Gao D, Szekely Z, Laskin JD, Laskin DL, Sinko PJ. A Novel Bivalent Mannosylated Targeting Ligand Displayed on Nanoparticles Selectively Targets Anti-Inflammatory M2 Macrophages. Pharmaceutics 2020; 12:E243. [PMID: 32182675 PMCID: PMC7150811 DOI: 10.3390/pharmaceutics12030243] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 02/04/2023] Open
Abstract
Persistent activation of macrophages (MP)s into a proinflammatory M1 or anti-inflammatory M2 phenotype plays a role in several pathological conditions, including autoimmune diseases, fibrosis, infections, atherosclerosis and tumor development. The mannose receptor (MR, CD206), expressed at low levels on resting MPs and absent on M1 MPs, is highly expressed on M2 MPs, making it a potential target and drug delivery portal. Recently, we developed a novel, highly selective MR targeting ligand (MRTL), consisting of two mannose molecules separated by a monodisperse 12 unit poly(ethylene glycol) linker, to enhance the cellular uptake of polymeric nanocarriers. The feasibility of using the MRTL ligand for selectively targeting M2 MPs for intracellular delivery of nanoparticles (NPs) was investigated. Rat peritoneal MPs were differentiated into an M1 or M2 phenotype using IFN-γ and IL-4/IL-13, respectively. Expression of the M1 marker, inducible nitric oxide synthase (iNOS), and the M2 markers arginase (Arg)-1 and MR (at both the mRNA and protein levels) confirmed MP phenotypic activation. Resting, M1 and M2 MPs were treated with fluorescein isothiocyanate (FITC)-labeled MRTL or NPs displaying FITC-labeled MRTL at two surface densities (1 and 10%) and examined by confocal microscopy. Intracellular fluorescence was also quantified. Uptake of the MRTL was 2.4- and 11.8-fold higher in M2 MPs when compared to resting or M1 MPs, respectively, consistent with marker expression levels. Mannan, a competitive inhibitor of the MR, abrogated MRTL uptake. MRTL also co-localized with a fluid-phase endocytosis marker, further suggesting that uptake was mediated by MR-mediated endocytosis. Intracellular NP fluorescence was confirmed by flow cytometry and by confocal microscopy. MRTL-NPs accumulated intracellularly with no significant cell surface binding, suggesting efficient translocation. NPs displaying a low surface density (1%) of the MRTL exhibited significantly higher (2.3-fold) uptake into M2 MPs, relative to resting and M1 MPs. The 10% MRTL-NPs displayed greater uptake by M2 MPs when compared to resting and M1 MPs, but less uptake than 1% MRTL-NPs into M2 MPs. Control FITC-labeled plain NPs did not exhibit selective MP uptake. These studies demonstrate that M2 MPs are selectively targeted by NPs displaying a novel bivalent ligand that utilizes the MR as a target/portal for cell entry. This study also establishes the feasibility of the approach allowing for further investigation in vivo.
Collapse
Affiliation(s)
- Peiming Chen
- Elucida Oncology, Inc., Monmouth Junction, NJ 08852, USA;
| | - Xiaoping Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.Z.); (I.H.L.); (D.M.); (J.A.H.); (D.G.); (Z.S.)
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84132, USA;
| | - In Heon Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.Z.); (I.H.L.); (D.M.); (J.A.H.); (D.G.); (Z.S.)
| | - Daniel Myers
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.Z.); (I.H.L.); (D.M.); (J.A.H.); (D.G.); (Z.S.)
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jennifer A. Holloway
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.Z.); (I.H.L.); (D.M.); (J.A.H.); (D.G.); (Z.S.)
| | - Robert K. Prud’homme
- Department of Biological Engineering, Princeton University, Princeton, NJ 08540, USA;
| | - Dayuan Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.Z.); (I.H.L.); (D.M.); (J.A.H.); (D.G.); (Z.S.)
| | - Zoltan Szekely
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.Z.); (I.H.L.); (D.M.); (J.A.H.); (D.G.); (Z.S.)
- Rutgers University CounterACT Research Center of Excellence, Piscataway, NJ 08854, USA;
| | - Jeffery D. Laskin
- Rutgers University CounterACT Research Center of Excellence, Piscataway, NJ 08854, USA;
| | - Debra L. Laskin
- Rutgers University CounterACT Research Center of Excellence, Piscataway, NJ 08854, USA;
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Patrick J. Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.Z.); (I.H.L.); (D.M.); (J.A.H.); (D.G.); (Z.S.)
- Rutgers University CounterACT Research Center of Excellence, Piscataway, NJ 08854, USA;
| |
Collapse
|
9
|
Guo N, Bai Z, Jia W, Sun J, Wang W, Chen S, Wang H. Quantitative Analysis of Polysaccharide Composition in Polyporus umbellatus by HPLC-ESI-TOF-MS. Molecules 2019; 24:molecules24142526. [PMID: 31295903 PMCID: PMC6681038 DOI: 10.3390/molecules24142526] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022] Open
Abstract
Polyporus umbellatus is a well-known and important medicinal fungus in Asia. Its polysaccharides possess interesting bioactivities such as antitumor, antioxidant, hepatoprotective and immunomodulatory effects. A qualitative and quantitative method has been established for the analysis of 12 monosaccharides comprising polysaccharides of Polyporus umbellatus based on high-performance liquid chromatography coupled with electrospray ionization–ion trap–time of flight–mass spectrometry. The hydrolysis conditions of the polysaccharides were optimized by orthogonal design. The results of optimized hydrolysis were as follows: neutral sugars and uronic acids 4 mol/L trifluoroacetic acid (TFA), 6 h, 120 °C; and amino sugars 3 mol/L TFA, 3 h, 100 °C. The resulting monosaccharides derivatized with 1-phenyl-3-methyl-5-pyrazolone have been well separated and analyzed by the established method. Identification of the monosaccharides was carried out by analyzing the mass spectral behaviors and chromatography characteristics of 1-phenyl-3-methyl-5-pyrazolone labeled monosaccharides. The results showed that polysaccharides in Polyporus umbellatus were composed of mannose, glucosamine, rhamnose, ribose, lyxose, erythrose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, and fucose. Quantitative recoveries of these monosaccharides in the samples were in the range of 96.10–103.70%. This method is simple, accurate, and sensitive for the identification and quantification of monosaccharides, and can be applied to the quality control of Polyporusumbellatus as a natural medicine.
Collapse
Affiliation(s)
- Ning Guo
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zongli Bai
- Kangmei Pharmaceutical Co.Ltd, Puning 515300, China
| | - Weijuan Jia
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jianhua Sun
- Kangmei Pharmaceutical Co.Ltd, Puning 515300, China
| | - Wanwan Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shizhong Chen
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Hong Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
10
|
Gallego I, Rioboo A, Reina JJ, Díaz B, Canales Á, Cañada FJ, Guerra‐Varela J, Sánchez L, Montenegro J. Glycosylated Cell‐Penetrating Peptides (GCPPs). Chembiochem 2019; 20:1400-1409. [DOI: 10.1002/cbic.201800720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/22/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Iván Gallego
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - Alicia Rioboo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - José J. Reina
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - Bernardo Díaz
- Centro de Investigaciones Biológicas (CIB) del CSIC C/Ramiro de Maetzu 9, CP 28040 Madrid Spain
- Departamento de Biología Estructural y QuímicaFac. Ciencias Químicas Univ. Complutense de Madrid Avd/ Complutense s/n, CP Madrid Spain
| | - Ángeles Canales
- Departamento de Biología Estructural y QuímicaFac. Ciencias Químicas Univ. Complutense de Madrid Avd/ Complutense s/n, CP Madrid Spain
| | - F. Javier Cañada
- Centro de Investigaciones Biológicas (CIB) del CSIC C/Ramiro de Maetzu 9, CP 28040 Madrid Spain
| | - Jorge Guerra‐Varela
- Departamento de Zooloxía, Xenética e Antropoloxía FísicaFacultade de Veterinaria Universidade de Santiago de Compostela 27002 Lugo Spain
| | - Laura Sánchez
- Departamento de Zooloxía, Xenética e Antropoloxía FísicaFacultade de Veterinaria Universidade de Santiago de Compostela 27002 Lugo Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| |
Collapse
|
11
|
Teodorowicz M, Hendriks WH, Wichers HJ, Savelkoul HFJ. Immunomodulation by Processed Animal Feed: The Role of Maillard Reaction Products and Advanced Glycation End-Products (AGEs). Front Immunol 2018; 9:2088. [PMID: 30271411 PMCID: PMC6146089 DOI: 10.3389/fimmu.2018.02088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
The immune system provides host protection to infection with pathogenic organisms, while at the same time providing tolerance upon exposure to harmless antigens. Thus, an impaired immune function is associated with increased susceptibility to infections with increased disease severity and thereby necessitating the therapeutic use of antibiotics. Livestock performance and feed efficiency, in addition to their health status, are dependent on the microbial load of their gut, the barrier function of the intestinal epithelium and the activity of the mucosal immune system, all of which can be modulated by dietary components. The majority of feeds that are consumed in pets and livestock have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars called Maillard reaction (MR). Maillard reaction products (MRPs) and advanced Maillard reaction products (AGEs) determine taste, smell, and color of many food products therefore the MR is highly relevant for the feed industry. MRPs interact with different types of immune receptors, including the receptor for advanced glycation end products (RAGE) and immunomodulatory potential of feed proteins can be modified by Maillard reaction. This MR has become an important concern since MRPs/AGEs have been shown to contribute to increasing prevalence of diet-related chronic inflammatory states in the gut with negative health consequences and performance. The immunomodulatory effects of dietary MRPs and AGEs in livestock and pet animals are far less well-described, but widely considered to be similar to the relevant concepts and mechanisms obtained in the human field. This review will highlight immunological mechanisms underlying initiation of the innate and adaptive immune responses by MRPs/AGEs present in animal feeds, which are currently not completely understood. Bridging this knowledge gap, and taking advantage of progress in the human field, will significantly improve nutritional quality of feed and increase the prevention of diet-mediated inflammation in animals.
Collapse
Affiliation(s)
- Malgorzata Teodorowicz
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Wouter H. Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- Department of Nutrition, Faculty of Veterinary Sciences, Utrecht University, Utrecht, Netherlands
| | - Harry J. Wichers
- Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
12
|
Li Q, Guo Z. Synthesis of the Cancer-Associated KH-1 Antigen by Block Assembly of Its Backbone Structure Followed by One-Step Grafting of Three Fucose Residues. Org Lett 2017; 19:6558-6561. [PMID: 29185761 PMCID: PMC6000830 DOI: 10.1021/acs.orglett.7b03275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A robust, convergent, and efficient strategy was developed for the synthesis of the nonasaccharide cancer antigen KH-1. This strategy featured a one-pot block assembly of the linear hexasaccharide backbone using three disaccharides followed by grafting of three fucose residues onto the backbone in one step.
Collapse
Affiliation(s)
- Qingjiang Li
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
13
|
Gupta RK, Gupta K, Sharma A, Das M, Ansari IA, Dwivedi PD. Maillard reaction in food allergy: Pros and cons. Crit Rev Food Sci Nutr 2017; 58:208-226. [PMID: 26980434 DOI: 10.1080/10408398.2016.1152949] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food allergens have a notable potential to induce various health concerns in susceptible individuals. The majority of allergenic foods are usually subjected to thermal processing prior to their consumption. However, during thermal processing and long storage of foods, Maillard reaction (MR) often takes place. The MR is a non-enzymatic glycation reaction between the carbonyl group of reducing sugars and compounds having free amino groups. MR may sometimes be beneficial by damaging epitope of allergens and reducing allergenic potential, while exacerbation in allergic reactions may also occur due to changes in the motifs of epitopes or neoallergen generation. Apart from these modulations, non-enzymatic glycation can also modify the food protein(s) with various type of advance glycation end products (AGEs) such as Nϵ-(carboxymethyl-)lysine (CML), pentosidine, pyrraline, and methylglyoxal-H1 derived from MR. These Maillard products may act as immunogen by inducing the activation and proliferation of various immune cells. Literature is available to understand pathogenesis of glycation in the context of various diseases but there is hardly any review that can provide a thorough insight on the impact of glycation in food allergy. Therefore, present review explores the pathogenesis with special reference to food allergy caused by non-enzymatic glycation as well as AGEs.
Collapse
Affiliation(s)
- Rinkesh Kumar Gupta
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India.,b Department of Biosciences , Integral University , Lucknow , India
| | - Kriti Gupta
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India
| | - Akanksha Sharma
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India.,c Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Capmus , Lucknow , India
| | - Mukul Das
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India
| | | | | |
Collapse
|
14
|
Chen J, Yang F, Guo H, Wu F, Wang X. Optimized hydrolysis and analysis of Radix Asparagi
polysaccharide monosaccharide composition by capillary zone electrophoresis. J Sep Sci 2015; 38:2327-31. [DOI: 10.1002/jssc.201500120] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Jiye Chen
- College of Pharmacy; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University; Baoding China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis; Ministry of Education, Hebei University; Baoding China
| | - Feifei Yang
- College of Pharmacy; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University; Baoding China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis; Ministry of Education, Hebei University; Baoding China
| | - Huaizhong Guo
- College of Pharmacy; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University; Baoding China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis; Ministry of Education, Hebei University; Baoding China
| | - Fang Wu
- College of Pharmacy; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University; Baoding China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis; Ministry of Education, Hebei University; Baoding China
| | - Xiaohuan Wang
- College of Pharmacy; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University; Baoding China
| |
Collapse
|
15
|
Unraveling functional significance of natural variations of a human galectin by glycodendrimersomes with programmable glycan surface. Proc Natl Acad Sci U S A 2015; 112:5585-90. [PMID: 25902539 DOI: 10.1073/pnas.1506220112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Surface-presented glycans (complex carbohydrates) are docking sites for adhesion/growth-regulatory galectins within cell-cell/matrix interactions. Alteration of the linker length in human galectin-8 and single-site mutation (F19Y) are used herein to illustrate the potential of glycodendrimersomes with programmable glycan displays as a model system to reveal the functional impact of natural sequence variations in trans recognition. Extension of the linker length slightly reduces lectin capacity as agglutinin and slows down aggregate formation at low ligand surface density. The mutant protein is considerably less active as agglutinin and less sensitive to low-level ligand presentation. The present results suggest that mimicking glycan complexity and microdomain occurrence on the glycodendrimersome surface can provide key insights into mechanisms to accomplish natural selectivity and specificity of lectins in structural and topological terms.
Collapse
|
16
|
Jain R, Dandekar P, Loretz B, Koch M, Lehr CM. Dimethylaminoethyl methacrylate copolymer-siRNA nanoparticles for silencing a therapeutically relevant gene in macrophages. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00490f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DMC nanoparticles target Bfl1/A1 gene in lung macrophages and effective silencing of Bfl1/A1 gene by DMC nanoparticles paves the way for research on alternative treatment strategies for tuberculosis.
Collapse
Affiliation(s)
- Ratnesh Jain
- Department of Chemical Engineering
- Institute of Chemical Technology
- NP Marg
- Mumbai 400019
- India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology
- Institute of Chemical Technology
- NP Marg
- Mumbai 400019
- India
| | - Brigitta Loretz
- Department of Drug Delivery (DDEL)
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)
- Campus A4 1
- Saarland University
- Saarbrücken
| | - Marcus Koch
- Innovative Electron Microscopy
- INM – Leibniz Institute for New Materials
- Service Group Physical Analysis
- Campus D2 2
- Saarland University
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL)
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)
- Campus A4 1
- Saarland University
- Saarbrücken
| |
Collapse
|
17
|
Rifampicin Loaded Mannosylated Cationic Nanostructured Lipid Carriers for Alveolar Macrophage-specific Delivery. Pharm Res 2014; 32:1741-51. [DOI: 10.1007/s11095-014-1572-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
|
18
|
Ramos YFM, Metrustry S, Arden N, Bay-Jensen AC, Beekman M, de Craen AJM, Cupples LA, Esko T, Evangelou E, Felson DT, Hart DJ, Ioannidis JPA, Karsdal M, Kloppenburg M, Lafeber F, Metspalu A, Panoutsopoulou K, Slagboom PE, Spector TD, van Spil EWE, Uitterlinden AG, Zhu Y, Valdes AM, van Meurs JBJ, Meulenbelt I. Meta-analysis identifies loci affecting levels of the potential osteoarthritis biomarkers sCOMP and uCTX-II with genome wide significance. J Med Genet 2014; 51:596-604. [PMID: 25057126 DOI: 10.1136/jmedgenet-2014-102478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Research for the use of biomarkers in osteoarthritis (OA) is promising, however, adequate discrimination between patients and controls may be hampered due to innate differences. We set out to identify loci influencing levels of serum cartilage oligomeric protein (sCOMP) and urinary C-telopeptide of type II collagen (uCTX-II). METHODS Meta-analysis of genome-wide association studies was applied to standardised residuals of sCOMP (N=3316) and uCTX-II (N=4654) levels available in 6 and 7 studies, respectively, from TreatOA. Effects were estimated using a fixed-effects model. Six promising signals were followed up by de novo genotyping in the Cohort Hip and Cohort Knee study (N = 964). Subsequently, their role in OA susceptibility was investigated in large-scale genome-wide association studies meta-analyses for OA. Differential expression of annotated genes was assessed in cartilage. RESULTS Genome-wide significant association with sCOMP levels was found for a SNP within MRC1 (rs691461, p = 1.7 × 10(-12)) and a SNP within CSMD1 associated with variation in uCTX-II levels with borderline genome-wide significance (rs1983474, p = 8.5 × 10(-8)). Indication for association with sCOMP levels was also found for a locus close to the COMP gene itself (rs10038, p = 7.1 × 10(-6)). The latter SNP was subsequently found to be associated with hip OA whereas COMP expression appeared responsive to the OA pathophysiology in cartilage. CONCLUSIONS We have identified genetic loci affecting either uCTX-II or sCOMP levels. The genome wide significant association of MRC1 with sCOMP levels was found likely to act independent of OA subtypes. Increased sensitivity of biomarkers with OA may be accomplished by taking genetic variation into account.
Collapse
Affiliation(s)
- Yolande F M Ramos
- Department of Molecular Epidemiology, LUMC, Leiden, The Netherlands The Netherlands Genomics Initiative-Sponsored Netherlands Consortium for Healthy Aging, Leiden and Rotterdam, The Netherlands
| | - Sarah Metrustry
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Nigel Arden
- NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK Arthritis Research UK, Sport, Exercise and Osteoarthritis Centre of Excellence, London, UK
| | | | - Marian Beekman
- Department of Molecular Epidemiology, LUMC, Leiden, The Netherlands The Netherlands Genomics Initiative-Sponsored Netherlands Consortium for Healthy Aging, Leiden and Rotterdam, The Netherlands
| | - Anton J M de Craen
- Department of Gerontology and Geriatrics, LUMC, Leiden, The Netherlands The Netherlands Genomics Initiative-Sponsored Netherlands Consortium for Healthy Aging, Leiden and Rotterdam, The Netherlands
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA The Framingham Heart Study, Framingham, Massachusetts, USA
| | - Tõnu Esko
- Institute of Molecular and Cell Biology and Estonian Genome Center, University of Tartu, Tartu, Estonia Department of Endocrinology, Children's Hospital Boston, Boston, Massachusetts, USA Broad Institute, Cambridge, Massachusetts, USA
| | - Evangelos Evangelou
- Department of Hygiene & Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - David T Felson
- Clinical Epidemiology Unit, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Deborah J Hart
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - John P A Ioannidis
- Department of Hygiene & Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece Department of Medicine, Stanford Prevention Research Center, Stanford, USA Department of Health Research and Policy, Stanford University School of Medicine, Stanford, USA Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, USA
| | - Morten Karsdal
- Department of Rheumatology, Nordic Bioscience, Herlev, Denmark
| | - Margreet Kloppenburg
- Department of Rheumatology & Clinical Epidemiology, LUMC, Leiden, The Netherlands
| | - Floris Lafeber
- Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Andres Metspalu
- Institute of Molecular and Cell Biology and Estonian Genome Center, University of Tartu, Tartu, Estonia
| | | | - P Eline Slagboom
- Department of Molecular Epidemiology, LUMC, Leiden, The Netherlands The Netherlands Genomics Initiative-Sponsored Netherlands Consortium for Healthy Aging, Leiden and Rotterdam, The Netherlands
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Erwin W E van Spil
- Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Andre G Uitterlinden
- The Netherlands Genomics Initiative-Sponsored Netherlands Consortium for Healthy Aging, Leiden and Rotterdam, The Netherlands Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Yanyan Zhu
- Global Analytical Science, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | | | | | - Ana M Valdes
- Academic Rheumatology, University of Nottingham, Nottingham, UK
| | - Joyce B J van Meurs
- The Netherlands Genomics Initiative-Sponsored Netherlands Consortium for Healthy Aging, Leiden and Rotterdam, The Netherlands Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ingrid Meulenbelt
- Department of Molecular Epidemiology, LUMC, Leiden, The Netherlands The Netherlands Genomics Initiative-Sponsored Netherlands Consortium for Healthy Aging, Leiden and Rotterdam, The Netherlands
| |
Collapse
|
19
|
Jeong HS, Na KS, Hwang H, Oh PS, Kim DH, Lim ST, Sohn MH, Jeong HJ. Effect of space length of mannose ligand on uptake of mannosylated liposome in RAW 264.7 cells: In vitro and in vivo studies. J Biomed Mater Res A 2014; 102:4545-53. [PMID: 24677479 DOI: 10.1002/jbm.a.35112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/08/2014] [Accepted: 02/10/2014] [Indexed: 11/08/2022]
Abstract
The most widely used method for increasing uptake on macrophage is specific targeting for mannose receptor (MR) presented on macrophages. Efficiency of the uptake for MR is influenced by the space length and flexibility of mannose ligand in liposome (LP). We prepared mannosylated liposomes (M-EGn-LP-ICG) encapsulated indocyanine green (ICG) with mannose ligand of various ethylene glycol units (EG), LP-ICG, and mannosylated liposome (M-LP-ICG) incorporated with p-aminophenyl-α-d-mannopyranoside. We studied the effect of space length of the mannose ligand in vitro and in vivo with prepared liposomes. A space length of two ethylene glycol units at least was needed for uptake by macrophages and the uptake was increased as the space length increased up to EG4. We measured near-infrared (NIR) fluorescence intensity by ICG and the fluorescence value of cell-associated N-(4-nitrobenzo-2-oxa-1,3-diazole) (NBD) in liposome after cellular uptake. M-EG4-LP-ICG showed lower NIR fluorescence intensity but higher NBD fluorescence value than M-LP-ICG. The result of pre-treatment with d(+)-mannose as an inhibitor showed significant decreasing in uptake of mannosylated LP-ICG but no difference in LP-ICG. These were explained that mannosylated LP-ICG was taken up by macrophages through the MR and M-EG4-LP-ICG showed more specific uptake than M-LP-ICG. We obtained images as time passed in the NIR range after intravenous administration using a Balb/c mouse with inflammatory model. The results showed high uptake in liver at early time and rapid degradation of mannosylated LP-ICG. M-EG4-LP-ICG was more selectively taken up by macrophages than M-LP-ICG.
Collapse
Affiliation(s)
- Hwan-Seok Jeong
- Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, 561-712, Republic of Korea; Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, 561-712, Republic of Korea; Cyclotron Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, 561-712, Republic of Korea; Institute for Medical Sciences, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, 561-712, Republic of Korea; Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, 561-712, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shimada KI, Takimoto H, Yano I, Kumazawa Y. Involvement of Mannose Receptor in Glycopeptidolipid-Mediated Inhibition of Phagosome-Lysosome Fusion. Microbiol Immunol 2013; 50:243-51. [PMID: 16547422 DOI: 10.1111/j.1348-0421.2006.tb03782.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We previously reported that glycopeptidolipid (GPL) isolated from Mycobacterium avium serovar 4 inhibited phagosome-lysosome (P-L) fusion when macrophages phagocytosed heat-killed Staphylococcus aureus (SA). In the present study we analyzed the underlying inhibitory mechanism of GPL coated on SA. Elimination of oligosaccharide from GPL abrogated its inhibitory activity. GPL did not inhibit P-L fusion of opsonized SA phagocytosed via complement receptors. The inhibitory activity of GPL was competitively reduced by the presence of alpha-methyl-D-mannoside and anti-mannose receptor antibody, suggesting that inhibition of P-L fusion by GPL is mediated through mannose receptor. Recruitment of early endosome antigen 1 and Ca2+/calmodulin kinase II in human macrophage-like THP-1 cells were significantly suppressed by GPL, indicating that GPL inhibits steps for leading to the P-L fusion.
Collapse
Affiliation(s)
- Ken-ichi Shimada
- Department of Bioscience, School of Science, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | |
Collapse
|
21
|
Pothlichet J, Quintana-Murci L. The genetics of innate immunity sensors and human disease. Int Rev Immunol 2013; 32:157-208. [PMID: 23570315 DOI: 10.3109/08830185.2013.777064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since their discovery, innate immunity microbial sensors have been increasingly studied and shown to play a critical role in innate responses to microbes in several experimental in vitro, ex vivo, and animal models. However, their role in the human response to infection in natural conditions has just started to be deciphered, by means of clinical studies of primary immunodeficiencies and epidemiological genetic studies. Here, we summarize the major findings concerning the genetic diversity of the various families of microbial sensors in humans, and of other molecules involved in the signaling pathways they trigger. Specifically, we review the genetic associations, revealed by both clinical and epidemiological genetics studies, of microbial sensors from five different families: Toll-like receptors, C-type lectin receptors, NOD-like receptors, RIG-I-like receptors, and cytosolic DNA sensors. In particular, we consider the relationships between variation at the genes encoding these molecules and susceptibility to and the severity of infectious diseases and other clinical conditions associated with immune dysfunction, including autoimmunity, inflammation, allergy, and cancer. Despite the fact that the genetic links between innate immunity sensors and human disorders remain still limited, human genetics studies are increasingly improving our understanding of the genuine functions of microbial sensors and downstream signaling molecules in the natural setting.
Collapse
Affiliation(s)
- Julien Pothlichet
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris, France
| | | |
Collapse
|
22
|
Hashino M, Tachibana M, Shimizu T, Watarai M. Mannose receptor, C type 1 contributes to bacterial uptake by placental trophoblast giant cells. ACTA ACUST UNITED AC 2013; 66:427-35. [PMID: 23163874 DOI: 10.1111/1574-695x.12009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 11/29/2022]
Abstract
During pregnancy, maternal immune function is strictly controlled and immune tolerance is induced. Trophoblast giant (TG) cells exhibit phagocytic activity and show macrophage-like activity against microorganisms in the placenta. However, details of molecular receptors and mechanisms for uptake by TG cells have not been clarified. In this study, we investigated the involvement of the mannose receptor, C type 1 (MRC1), in the uptake of the abortion-inducible bacterium Listeria monocytogenes and abortion-uninducible bacteria Bacillus subtilis and Escherichia coli by TG cells differentiated from a mouse trophoblast stem cell line in vitro. Knockdown of MRC1 inhibited the uptake of all of these bacteria, as did the blocking of MRC1 by MRC1 ligands. The uptake of bacteria by MRC1 delayed the maturation of phagolysosomes. These findings suggest that MRC1 plays an important role in the uptake of various bacteria by TG cells and may provide an opportunity for those bacteria to escape from phagosomes.
Collapse
Affiliation(s)
- Masanori Hashino
- The United Graduate School of Veterinary Science, and Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | | | | | | |
Collapse
|
23
|
Jeong HS, Lee CM, Cheong SJ, Kim EM, Hwang H, Na KS, Lim ST, Sohn MH, Jeong HJ. The effect of mannosylation of liposome-encapsulated indocyanine green on imaging of sentinel lymph node. J Liposome Res 2013; 23:291-7. [DOI: 10.3109/08982104.2013.801488] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
|
25
|
Hopkins RA, Connolly JE. The specialized roles of immature and mature dendritic cells in antigen cross-presentation. Immunol Res 2012; 53:91-107. [PMID: 22450675 DOI: 10.1007/s12026-012-8300-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Exogenous antigen cross-presentation is integral to the stimulation of cytotoxic T-lymphocytes against viruses and tumors. Central to this process are dendritic cells (DCs), which specialize in cross-presentation. DCs may be considered to exist in two radically different states of activation, generally referred to as immature and mature. In each of these states, the cell has a series of separate and specialized abilities for the induction of T-cell immunity. In the immature state, the DC is adept in surveying the periphery, acquiring and storing antigen, but has a limited capacity for direct T-cell activation. During a brief and defined window of time following DC stimulation, nearly every aspect of antigen handling changes, as it transitions from an entity focused on protein preservation to one capable of efficient cross-presentation. It is this time period and the underlying molecular mechanisms active here, which form the core of our studies on cross-presentation.
Collapse
Affiliation(s)
- Richard A Hopkins
- Program in Translational Immunology, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03 Immunos, Biopolis, Singapore
| | | |
Collapse
|
26
|
Mahor S, Dash BC, O’Connor S, Pandit A. Mannosylated Polyethyleneimine–Hyaluronan Nanohybrids for Targeted Gene Delivery to Macrophage-Like Cell Lines. Bioconjug Chem 2012; 23:1138-48. [DOI: 10.1021/bc200599k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sunil Mahor
- Network of Excellence
for Functional Biomaterials, National University of Ireland, IDA Business Park,
Galway, Ireland
| | - Biraja C. Dash
- Network of Excellence
for Functional Biomaterials, National University of Ireland, IDA Business Park,
Galway, Ireland
| | - Stephen O’Connor
- Network of Excellence
for Functional Biomaterials, National University of Ireland, IDA Business Park,
Galway, Ireland
| | - Abhay Pandit
- Network of Excellence
for Functional Biomaterials, National University of Ireland, IDA Business Park,
Galway, Ireland
| |
Collapse
|
27
|
Abstract
Myeloid cells are key drivers of physiological responses to pathogen invasion or tissue damage. Members of the C-type lectin receptor (CLR) family stand out among the specialized receptors utilized by myeloid cells to orchestrate these responses. CLR ligands include carbohydrate, protein, and lipid components of both pathogens and self, which variably trigger endocytic, phagocytic, proinflammatory, or anti-inflammatory reactions. These varied outcomes rely on a versatile system for CLR signaling that includes tyrosine-based motifs that recruit kinases, phosphatases, or endocytic adaptors as well as nontyrosine-based signals that modulate the activation of other pathways or couple to the uptake machinery. Here, we review the signaling properties of myeloid CLRs and how they impact the role of myeloid cells in innate and adaptive immunity.
Collapse
Affiliation(s)
- David Sancho
- Department of Vascular Biology and Inflammation, CNIC, Centro Nacional de Investigaciones Cardiovasculares, E-28029, Madrid, Spain.
| | | |
Collapse
|
28
|
O'Hara JM, Yermakova A, Mantis NJ. Immunity to ricin: fundamental insights into toxin-antibody interactions. Curr Top Microbiol Immunol 2012; 357:209-41. [PMID: 22113742 PMCID: PMC4433546 DOI: 10.1007/82_2011_193] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ricin toxin is an extraordinarily potent inducer of cell death and inflammation. Ricin is also a potent provocateur of the humoral immune system, eliciting a mixture of neutralizing, non-neutralizing and even toxin-enhancing antibodies. The characterization of dozens of monoclonal antibodies (mAbs) against the toxin's enzymatic (RTA) and binding (RTB) subunits has begun to reveal fundamental insights into the underlying mechanisms by which antibodies neutralize (or fail to neutralize) ricin in systemic and mucosal compartments. This information has had immediate applications in the design, development and evaluation of ricin subunit vaccines and immunotherapeutics.
Collapse
Affiliation(s)
- Joanne M. O'Hara
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA; Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12201, USA
| | - Anastasiya Yermakova
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA; Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12201, USA
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA; Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12201, USA
| |
Collapse
|
29
|
Cui L, Cohen JA, Broaders KE, Beaudette TT, Fréchet JMJ. Mannosylated dextran nanoparticles: a pH-sensitive system engineered for immunomodulation through mannose targeting. Bioconjug Chem 2011; 22:949-57. [PMID: 21476603 DOI: 10.1021/bc100596w] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biotherapeutic delivery is a rapidly growing field in need of new materials that are easy to modify, are biocompatible, and provide for triggered release of their encapsulated cargo. Herein, we report on a particulate system made of a polysaccharide-based pH-sensitive material that can be efficiently modified to display mannose-based ligands of cell-surface receptors. These ligands are beneficial for antigen delivery, as they enhance internalization and activation of APCs, and are thus capable of modulating immune responses. When compared to unmodified particles or particles modified with a nonspecific sugar residue used in the delivery of antigens to dendritic cells (DCs), the mannosylated particles exhibited enhanced antigen presentation in the context of major histocompatibility complex (MHC) class I molecules. This represents the first demonstration of a mannosylated particulate system that enables enhanced MHC I antigen presentation by DCs in vitro. Our readily functionalized pH-sensitive material may also open new avenues in the development of optimally modulated vaccine delivery systems.
Collapse
Affiliation(s)
- Lina Cui
- College of Chemistry, University of California-Berkeley, CA 94720-1460, United States
| | | | | | | | | |
Collapse
|
30
|
Lugo-Villarino G, Hudrisier D, Tanne A, Neyrolles O. C-type lectins with a sweet spot for Mycobacterium tuberculosis. Eur J Microbiol Immunol (Bp) 2011; 1:25-40. [PMID: 24466434 PMCID: PMC3894812 DOI: 10.1556/eujmi.1.2011.1.6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The pattern of receptors sensing pathogens onto host cells is a key factor that can determine the outcome of the infection. This is particularly true when such receptors belong to the family of pattern recognition receptors involved in immunity. Mycobacterium tuberculosis, the etiologic agent of tuberculosis interacts with a wide range of pattern-recognition receptors present on phagocytes and belonging to the Toll-like, Nod-like, scavenger and C-type lectin receptor families. A complex scenario where those receptors can establish cross-talks in recognizing pathogens or microbial determinants including mycobacterial components in different spatial and temporal context starts to emerge as a key event in the outcome of the immune response, and thus, the control of the infection. In this review, we will focus our attention on the family of calcium-dependent carbohydrate receptors, the C-type lectin receptors, that is of growing importance in the context of microbial infections. Members of this family appear to be key innate immune receptors of mycobacteria, capable of cross-talk with other pattern recognition receptors to induce or modulate the inflammatory context upon mycobacterial infection.
Collapse
|
31
|
Intratracheally instilled mannosylated cationic liposome/NFκB decoy complexes for effective prevention of LPS-induced lung inflammation. J Control Release 2011; 149:42-50. [DOI: 10.1016/j.jconrel.2009.12.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 12/14/2009] [Accepted: 12/16/2009] [Indexed: 01/25/2023]
|
32
|
Khalil NM, Carraro E, Cótica LF, Mainardes RM. Potential of polymeric nanoparticles in AIDS treatment and prevention. Expert Opin Drug Deliv 2010; 8:95-112. [PMID: 21143001 DOI: 10.1517/17425247.2011.543673] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Acquired immunodeficiency syndrome (AIDS) remains one of the greatest challenges in public health. The AIDS virus is now responsible for > 2.5 million new infections worldwide each year. Despite significant advances in understanding the mechanism of viral infection and identifying effective treatment approaches, the search for optimum treatment strategies for AIDS remains a major challenge. Recent advances in the field of drug delivery have provided evidence that engineered nanosystems may contribute to the enhancement of current antiretroviral therapy. AREAS COVERED IN THIS REVIEW This review describes the potential of polymeric nanoparticle-based drug delivery systems in the future treatment of AIDS. Polymeric nanoparticles have been developed to improve physicochemical drug characteristics (by increasing drug solubility and stability), to achieve sustained drug release profile, to provide targeting to the cellular and anatomic human immunodeficiency virus (HIV) latent reservoirs and to be applied as an adjuvant in anti-HIV vaccine formulations. WHAT THE READER WILL GAIN The insight that will be gained is knowledge about the progress in the development of polymeric nanoparticle-based drug delivery systems for antiretroviral drugs as alternative for AIDS treatment and prevention. TAKE HOME MESSAGE The advances in the field of targeted drug delivery can result in more efficient strategies for AIDS treatment and prevention.
Collapse
Affiliation(s)
- Najeh Maissar Khalil
- Universidade Estadual do Centro-Oeste/UNICENTRO - Departamento de Farmácia, Rua Simeão Camargo Varela de Sá 03, 85040-080 Guarapuava-PR, Brasil
| | | | | | | |
Collapse
|
33
|
Kurmi BD, Kayat J, Gajbhiye V, Tekade RK, Jain NK. Micro- and nanocarrier-mediated lung targeting. Expert Opin Drug Deliv 2010; 7:781-94. [PMID: 20560777 DOI: 10.1517/17425247.2010.492212] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Drug delivery to lungs appears to be an attractive proposition on account of the large surface area of the alveolar region; it provides tremendous opportunities to improve drug therapies both systemically and locally using new drug delivery systems. Administration of drugs directly to the lungs is the most appropriate route in the treatment of asthma and other pulmonary diseases such as tuberculosis, chronic obstructive pulmonary disease and lung cancer. AREAS COVERED IN THIS REVIEW This review focuses on the utilization of nano- and microcarriers such as microspheres, nanoparticles, liposomes, niosomes and dendrimers for targeted delivery of bioactive molecules to lungs. WHAT THE READER WILL GAIN This review sheds light on the current status of nano- and microcarrier-mediated lung targeting of bioactive compounds. TAKE HOME MESSAGE The literature review shows that carriers could supplement sustained drug delivery to the lungs, extended duration of action, reduced therapeutic dose, improved patient compliance, and reduced adverse effects of highly toxic drugs. There is still a need to identify more specific receptors that are present exclusively in the lungs. The identification of such receptors may also facilitate drug targeting to further specific parts of the lungs, such as bronchioles and alveoli.
Collapse
Affiliation(s)
- Balak D Kurmi
- Dr Hari Singh Gour University, Department of Pharmaceutical Sciences, Pharmaceutics Research Laboratory, Sagar 470 003, India
| | | | | | | | | |
Collapse
|
34
|
Wijsman E, Filippov D, Valentijn A, van der Marel G, van Boom J. Solid-support synthesis of di- and tetramannosylated tetrathymidylic acid. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19961150903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Wismar R, Brix S, Frøkiaer H, Laerke HN. Dietary fibers as immunoregulatory compounds in health and disease. Ann N Y Acad Sci 2010; 1190:70-85. [PMID: 20388138 DOI: 10.1111/j.1749-6632.2009.05256.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Many nonstarch polysaccharides (NSPs) classified as dietary fibers have been reported to possess immunoregulatory properties. The fibers reported to activate or by other means modulate immune responses originate from both plant, fungal, and microbial sources and constitute highly distinct structures. In order to enhance our understanding of factors important for the immunoregulatory activities, this article addresses the importance of chemical structure, origin, and purity of fibers for their capacity to interact with key regulatory immune cells. Furthermore, we assess bioavailability, and discuss possible mechanisms involved. The binding of some NSPs to carbohydrate receptors on immune cells is well established and this event leads to activation or other changes. Especially, certain beta-glucans and some mannans have demonstrated immunomodulatory capacity with the specific structure being important for the activity. Within beta-glucans the activity varies according to structure, molecular weight, and solubility. As many of the preparations tested constitute crude extracts or partly purified NSPs, the risk of contaminants holding immunoregulatory activities should not be ignored. To what extent NSPs enter systemic circulation has been difficult to assess, partly due to lack of sensitive analytical methods. The presence of NSPs in blood and Peyer's patches in the gut has been demonstrated, supporting encounter between NSPs and immune cells, but bioavailability studies still constitute a major challenge. Studies demonstrating in vivo effects of beta-glucans on microbial infections and cancer treatment strongly indicate an immunoregulatory mechanism behind the effects. However, the potential of NSPs as immunoregulatory food ingredients is still far from fully explored.
Collapse
Affiliation(s)
- René Wismar
- Nutritional Immunology Group, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | |
Collapse
|
36
|
Geurtsen J, Chedammi S, Mesters J, Cot M, Driessen NN, Sambou T, Kakutani R, Ummels R, Maaskant J, Takata H, Baba O, Terashima T, Bovin N, Vandenbroucke-Grauls CMJE, Nigou J, Puzo G, Lemassu A, Daffé M, Appelmelk BJ. Identification of mycobacterial alpha-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation. THE JOURNAL OF IMMUNOLOGY 2009; 183:5221-31. [PMID: 19783687 DOI: 10.4049/jimmunol.0900768] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis possesses a variety of immunomodulatory factors that influence the host immune response. When the bacillus encounters its target cell, the outermost components of its cell envelope are the first to interact. Mycobacteria, including M. tuberculosis, are surrounded by a loosely attached capsule that is mainly composed of proteins and polysaccharides. Although the chemical composition of the capsule is relatively well studied, its biological function is only poorly understood. The aim of this study was to further assess the functional role of the mycobacterial capsule by identifying host receptors that recognize its constituents. We focused on alpha-glucan, which is the dominant capsular polysaccharide. Here we demonstrate that M. tuberculosis alpha-glucan is a novel ligand for the C-type lectin DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin). By using related glycogen structures, we show that recognition of alpha-glucans by DC-SIGN is a general feature and that the interaction is mediated by internal glucosyl residues. As for mannose-capped lipoarabinomannan, an abundant mycobacterial cell wall-associated glycolipid, binding of alpha-glucan to DC-SIGN stimulated the production of immunosuppressive IL-10 by LPS-activated monocyte-derived dendritic cells. By using specific inhibitors, we show that this IL-10 induction was DC-SIGN-dependent and also required acetylation of NF-kappaB. Finally, we demonstrate that purified M. tuberculosis alpha-glucan, in contrast to what has been reported for fungal alpha-glucan, was unable to activate TLR2.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lai J, Bernhard OK, Turville SG, Harman AN, Wilkinson J, Cunningham AL. Oligomerization of the macrophage mannose receptor enhances gp120-mediated binding of HIV-1. J Biol Chem 2009; 284:11027-38. [PMID: 19224860 PMCID: PMC2670108 DOI: 10.1074/jbc.m809698200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/03/2009] [Indexed: 12/30/2022] Open
Abstract
C-type lectin receptors expressed on the surface of dendritic cells and macrophages are able to bind glycoproteins of microbial pathogens via mannose, fucose, and N-acetylglucosamine. Langerin on Langerhans cells, dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin on dendritic cells, and mannose receptor (MR) on dendritic cells and macrophages bind the human immunodeficiency virus (HIV) envelope protein gp120 principally via high mannose oligosaccharides. These C-type lectin receptors can also oligomerize to facilitate enhanced ligand binding. This study examined the effect of oligomerization of MR on its ability to bind to mannan, monomeric gp120, native trimeric gp140, and HIV type 1 BaL. Mass spectrometry analysis of cross-linked MR showed homodimerization on the surface of primary monocyte-derived dendritic cells and macrophages. Both monomeric and dimeric MR were precipitated by mannan, but only the dimeric form was co-immunoprecipitated by gp120. These results were confirmed independently by flow cytometry analysis of soluble monomeric and trimeric HIV envelope and a cellular HIV virion capture assay. As expected, mannan bound to the carbohydrate recognition domains of MR dimers mostly in a calcium-dependent fashion. Unexpectedly, gp120-mediated binding of HIV to dimers on MR-transfected Rat-6 cells and macrophages was not calcium-dependent, was only partially blocked by mannan, and was also partially inhibited by N-acetylgalactosamine 4-sulfate. Thus gp120-mediated HIV binding occurs via the calcium-dependent, non-calcium-dependent carbohydrate recognition domains and the cysteine-rich domain at the C terminus of MR dimers, presenting a much broader target for potential inhibitors of gp120-MR binding.
Collapse
Affiliation(s)
- Joey Lai
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, Westmead, Sydney, New South Wales 2145, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Kerrigan AM, Brown GD. C-type lectins and phagocytosis. Immunobiology 2009; 214:562-75. [PMID: 19261355 PMCID: PMC2702671 DOI: 10.1016/j.imbio.2008.11.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 01/22/2023]
Abstract
To recognise and respond to pathogens, germ-line encoded pattern recognition receptors (PRRs) bind to conserved microbial structures and activate host defence systems, including microbial uptake by phagocytosis. Phagocytosis is a complex process that is instrumental in the control of extracellular pathogens, and this activity is mediated by several PRRs, including a number of C-type lectins. While some of these receptors have clearly been shown to mediate or regulate the uptake of pathogens, others are more contentious and are less well understood in terms of their phagocytic potential. Furthermore, very little is known about the underlying phagocytic mechanisms. Here, we review the phagocytic roles of the mannose receptor, Dectin-1, dendritic cell-specific ICAM grabbing non-integrin (DC-SIGN), DCL-1, mannose binding lectin and surfactant proteins A and D.
Collapse
Affiliation(s)
- Ann M Kerrigan
- Institute of Infectious Disease and Molecular Medicine, CLS, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | | |
Collapse
|
39
|
Jain SK, Gupta Y, Jain A, Saxena AR, Khare P, Jain A. Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2008; 4:41-8. [DOI: 10.1016/j.nano.2007.11.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 10/12/2007] [Accepted: 11/16/2007] [Indexed: 11/26/2022]
|
40
|
Wijagkanalan W, Kawakami S, Takenaga M, Igarashi R, Yamashita F, Hashida M. Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J Control Release 2007; 125:121-30. [PMID: 18037185 DOI: 10.1016/j.jconrel.2007.10.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/11/2007] [Accepted: 10/14/2007] [Indexed: 02/06/2023]
Abstract
The success of targeting systems to alveolar macrophages critically depends on internalization into these cells for pharmacological intervention. Direct respiratory delivery via inhalation of mannose modified liposomal carriers to alveolar macrophages is of great interest. To evaluate the targeting efficiency to alveolar macrophages by intratracheal administration of mannosylated liposomes (Man-liposomes), Man-liposomes with various ratio of mannosylated cholesterol derivatives, cholesten-5-yloxy-N-(4-((1-imino-2-D-thiomannosylethyl)amino)alkyl)formamide (Man-C4-Chol) as mannose receptor ligand were investigated with regard to their in vitro uptake in primary cultured alveolar macrophages and in vivo intratracheal administration in rats. The in vitro uptake of Man-liposomes took place in a concentration-dependent manner. The internalization of Man-liposomes with 7.5% (Man-7.5-liposomes) and 5.0% (Man-5.0-liposomes) Man-C4-Chol was considerably higher than that of Man-liposomes with 2.5% of Man-C4-Chol (Man-2.5-liposomes) and Bare-liposomes and significantly inhibited by an excess of mannan, suggesting mannose receptor-mediated endocytosis. After intratracheal administration of Man-7.5 and Man-5.0-liposomes in rats, a significantly high internalization and selective targeting to alveolar macrophages was observed. The enhanced cellular uptake in alveolar macrophages related to the mannose density of Man-liposomes was also confirmed both in vitro and in vivo confocal microscopy studies. These results demonstrate the efficient targeting to alveolar macrophages by the intratracheally administered Man-liposomes via mannose receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Wassana Wijagkanalan
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Kogelberg H, Tolner B, Sharma SK, Lowdell MW, Qureshi U, Robson M, Hillyer T, Pedley RB, Vervecken W, Contreras R, Begent RHJ, Chester KA. Clearance mechanism of a mannosylated antibody-enzyme fusion protein used in experimental cancer therapy. Glycobiology 2006; 17:36-45. [PMID: 17000699 DOI: 10.1093/glycob/cwl053] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MFECP1 is a mannosylated antibody-enzyme fusion protein used in antibody-directed enzyme prodrug therapy (ADEPT). The antibody selectively targets tumor cells and the targeted enzyme converts a prodrug into a toxic drug. MFECP1 is obtained from expression in the yeast Pichia pastoris and produced to clinical grade. The P. pastoris-derived mannosylation of the fusion protein aids rapid normal tissue clearance required for successful ADEPT. The work presented provides evidence that MFECP1 is cleared by the endocytic and phagocytic mannose receptor (MR), which is known to bind to mannose-terminating glycans. MR-transfected fibroblast cells internalize MFECP1 as revealed by flow cytometry and confocal microscopy. Immunofluorescence microscopy shows that in vivo clearance in mice occurs predominantly by MR on liver sinusoidal endothelial cells, although MR is also expressed on adjacent Kupffer cells. In the spleen, MFECP1 is taken up by MR-expressing macrophages residing in the red pulp and not by dendritic cells which are found in the marginal zone and white pulp. Clearance can be inhibited in vivo by the MR inhibitor mannan as shown by increased enzyme activities in blood. The work improves understanding of interactions of MFECP1 with normal tissue, shows that glycosylation can be exploited in the design of recombinant anticancer therapeutics and opens the ways for optimizing pharmacokinetics of mannosylated recombinant therapeutics.
Collapse
Affiliation(s)
- Heide Kogelberg
- Cancer Research UK Targeting and Imaging Group, Department of Oncology, Royal Free & University College Medical School, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yeeprae W, Kawakami S, Yamashita F, Hashida M. Effect of mannose density on mannose receptor-mediated cellular uptake of mannosylated O/W emulsions by macrophages. J Control Release 2006; 114:193-201. [PMID: 16876282 DOI: 10.1016/j.jconrel.2006.04.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 04/10/2006] [Accepted: 04/11/2006] [Indexed: 11/15/2022]
Abstract
Carbohydrate grafted emulsions are one of the most promising cell-specific targeting systems for lipophilic drugs. We have previously reported that mannosylated (Man-) emulsions composed of soybean oil, EggPC and cholesten-5-yloxy-N-(4-((1-imino-2-d-thiomannosylethyl)amino)alkyl)formamide (Man-C4-Chol) with a ratio of 70:25:5 were significantly delivered to liver non-parenchymal cells (NPC) via mannose receptor-mediated mechanism after intravenous administration in mice. Since the efficient targeting through a receptor-mediated mechanism is largely controlled by ligand-receptor interaction, the effect of mannose density on Man-emulsions was studied with regard to both the disposition in vivo in mice and the uptake in vitro, using elicited macrophages which express a number of mannose receptors. After intravenous injection, Man-emulsions with 5.0% (Man-5.0-emulsions) and 7.5% (Man-7.5-emulsions) of Man-C4-Chol were rapidly eliminated from the blood circulation and preferentially accumulated in the liver-NPC compared with Man-emulsions with 2.5% of Man-C4-Chol (Man-2.5-emulsions) and bare emulsions (Bare-emulsions). The in vitro study showed increased internalization of Man-5.0- and Man-7.5-emulsions and significant inhibition of uptake in the presence of mannan. The enhanced uptake of Man-emulsions was related to the increasing of Man-C4-Chol content that corresponded to confocal microscopy study. These results suggest that the mannose density of Man-emulsions plays an important role in both cellular recognition and internalization via a mannose receptor-mediated mechanism.
Collapse
Affiliation(s)
- Wassana Yeeprae
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
43
|
Burgdorf S, Lukacs-Kornek V, Kurts C. The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation. THE JOURNAL OF IMMUNOLOGY 2006; 176:6770-6. [PMID: 16709836 DOI: 10.4049/jimmunol.176.11.6770] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mannose receptor (MR) has been implicated in the recognition and clearance of microorganisms and serum glycoproteins. Its endocytic function has been studied extensively using macrophages, although it is expressed by a variety of cell types, including dendritic cells (DC). In this study, we investigated its role in Ag presentation by DC using MR-/- mice. Uptake of the model Ag, soluble OVA, by bone marrow-derived DC and in vitro activation of OVA-specific CD8 T cells (OT-I cells) strictly depended on the MR. In vivo, MR deficiency impaired endocytosis of soluble OVA by DC and concomitant OT-I cell activation. No alterations in the DC subtype composition in MR-/- mice were accountable. Uptake of cell-associated OVA was unaffected by MR deficiency, resulting in unchanged activation of OT-I cells. These findings demonstrate that DC use the MR for endocytosis of a particular Ag type intended for cross-presentation.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Antigens/metabolism
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Cells, Cultured
- Coculture Techniques
- Cross-Priming
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Endocytosis/immunology
- Lectins, C-Type/deficiency
- Lectins, C-Type/genetics
- Lectins, C-Type/physiology
- Mannose Receptor
- Mannose-Binding Lectins/deficiency
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Ovalbumin/immunology
- Ovalbumin/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Solubility
Collapse
Affiliation(s)
- Sven Burgdorf
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Friedrich-Wilhelms-Universität, Bonn, Germany
| | | | | |
Collapse
|
44
|
Chellat F, Merhi Y, Moreau A, Yahia L. Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials 2005; 26:7260-75. [PMID: 16023200 DOI: 10.1016/j.biomaterials.2005.05.044] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The use of non-viral nanoparticulate systems for the delivery of therapeutic agents is receiving considerable attention for medical and pharmaceutical applications. This increasing interest results from the fact that these systems can be designed to meet specific physicochemical requirements, and they display low toxic and immunogenic effects. Among potential cellular targets by drug-loaded nanoparticles, macrophages are considered because they play a central role in inflammation and they act as reservoirs for microorganisms that are involved with deadly infectious diseases. The most common and potent drugs used in macrophage-mediated diseases treatment often induce unwanted side effects, when applied as a free form, due to the necessity of high doses to induce a satisfactory effect. This could result in their systemic spreading, a lack of bioavailability at the desired sites, and a short half-life. Therefore, the use of drug-loaded nanoparticles represents a good alternative to avoid, or at least decrease, side effects and increase efficacy. In this manuscript, we present an overview of the usefulness of nanoparticles for macrophage-mediated therapies in particular. We discuss, though not exhaustively, the potential of therapeutic agent-loaded nanoparticles for some macrophage-mediated diseases. We also underline the most important parameters that affect the interaction mechanisms of the macrophages and the physicochemical aspects of the particulate systems that may influence their performance in macrophage-targeted therapies.
Collapse
Affiliation(s)
- Fatiha Chellat
- Biomedical Engineering Institute, Ecole Polytechnique de Montréal, C.P. 6079, Succursale Centre-ville, Montréal, Qué., Canada H3C 3A7.
| | | | | | | |
Collapse
|
45
|
Le Cabec V, Emorine LJ, Toesca I, Cougoule C, Maridonneau-Parini I. The human macrophage mannose receptor is not a professional phagocytic receptor. J Leukoc Biol 2005; 77:934-43. [PMID: 15767290 DOI: 10.1189/jlb.1204705] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The macrophage mannose receptor (MR) appears to play an important role in the binding and phagocytosis of several human pathogens, but its phagocytic property and signaling pathways have been poorly defined. The general strategy to explore such topics is to express the protein of interest in nonphagocytic cells, but in the case of MR, there are few reports using the full-length MR cDNA. When we searched to clone de novo the human MR (hMR) cDNA, problems were encountered, and full-length hMR cDNA was only obtained after devising a complex cloning strategy. Chinese hamster ovary cells, which have a fully functional phagocytic machinery when expressing professional phagocytic receptors, were stably transfected, and cell clones expressing hMR at quantitatively comparable levels than human macrophages or J774E cells were obtained. They exhibited a functional hMR-mediated endocytic capacity of a soluble ligand but failed to ingest classical particulate ligands of MR such as zymosan, Mycobacterium kansasii, or trimannoside bovine serum albumin-coated latex beads. Transient expression of hMR in two human cell lines did not provide a phagocytic capacity either. In conclusion, we show that MR is not a professional phagocytic receptor, as it does not possess the ability to promote particle ingestion in nonphagocytic cells on its own. We propose that MR is a binding receptor, which requires a partner to trigger phagocytosis in some specialized cells such as macrophages. Our new expression vector could represent a useful tool to study the receptor and its partnership further.
Collapse
Affiliation(s)
- Véronique Le Cabec
- Institute de Pharmacologie et de Biologie Structural, CNRS UMR 5089, Toulouse, France.
| | | | | | | | | |
Collapse
|
46
|
Villeneuve C, Gilleron M, Maridonneau-Parini I, Daffé M, Astarie-Dequeker C, Etienne G. Mycobacteria use their surface-exposed glycolipids to infect human macrophages through a receptor-dependent process. J Lipid Res 2004; 46:475-83. [PMID: 15576843 DOI: 10.1194/jlr.m400308-jlr200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two subfamilies of the polar glycopeptidolipids (GPLs) located on the surface of Mycobacterium smegmatis, along with unknown phospholipids, were recently shown to participate in the nonopsonic phagocytosis of mycobacteria by human macrophages (Villeneuve, C., G. Etienne, V. Abadie, H. Montrozier, C. Bordier, F. Laval, M. Daffe, I. Maridonneau-Parini, and C. Astarie-Dequeker. 2003. Surface-exposed glycopeptidolipids of Mycobacterium smegmatis specifically inhibit the phagocytosis of mycobacteria by human macrophages. Identification of a novel family of glycopeptidolipids. J. Biol. Chem. 278: 51291-51300). As demonstrated herein, a phospholipid mixture that derived from the methanol-insoluble fraction inhibited the phagocytosis of M. smegmatis. Inhibition was essentially attributable to phosphatidylinositol mannosides (PIMs), namely PIM2 and PIM6, because the purified phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol were inactive. This was further confirmed using purified PIM2 and PIM6 from M. bovis BCG that decreased by half the internalization of M. smegmatis. Both compounds also inhibited the uptake of M. tuberculosis and M. avium but had no effect on the internalization of zymosan used as a control particle of the phagocytic process. When coated on latex beads, PIM2 and polar GPL (GPL III) favored the particle entry through complement receptor 3. GPL III, but not PIM2, also directed particle entry through the mannose receptor. Therefore, surface-exposed mycobacterial PIM and polar GPL participate in the receptor-dependent internalization of mycobacteria in human macrophages.
Collapse
Affiliation(s)
- Christelle Villeneuve
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et Biologie Structurale, Unité Mixte de Recherche 5089-Centre National de la Recherche Scientifique, Université Paul Sabatier, 31077 Toulouse, France
| | | | | | | | | | | |
Collapse
|
47
|
Rodríguez A, Esteban MA, Meseguer J. A mannose-receptor is possibly involved in the phagocytosis of Saccharomyces cerevisiae by seabream (Sparus aurata L.) leucocytes. FISH & SHELLFISH IMMUNOLOGY 2003; 14:375-388. [PMID: 12711272 DOI: 10.1006/fsim.2002.0446] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this paper the possible involvement of the mannose-receptor on the non-specific recognition and phagocytosis of heat killed yeast cells (Saccharomyces cerevisiae) by gilthead seabream (Sparus aurata L.) head-kidney leucocytes was established by studying the ability of different sugars to inhibit the uptake of the yeast cells by leucocytes. Leucocytes were preincubated for 30min with different concentrations of sugar (alpha-mannan, d-mannose, d-fucose, l-fucose, d-glucose, d-glucosamine and n-acetyl-glucosamine, all of them described as specific ligands of the vertebrate mannose-receptor) and afterwards incubated with FITC-labelled yeast cells for phagocytosis assays. The phagocytic ability (percentage of cells with one or more ingested yeast cells within the total cell population) and capacity (number of ingested yeast cells per cell) of leucocytes was analysed by flow cytometry. The results demonstrate the potential existence of a specific receptor-sugar or receptor-yeast cell binding process, which was saturable, specific and dose-dependent. More specifically, when leucocytes were preincubated with appropriate doses of d-mannose, d- or l-fucose, d-glucose or n-acetyl-glucosamine the phagocytosis of yeast cells by head-kidney leucocytes was partially blocked. Seabream leucocytes were also preincubated with chloroquine, a lysosomotropic drug which downregulates (in a nonspecific manner) the expression of mannose-receptors in mammals, before phagocytosis assays were performed. The results demonstrated that the phagocytosis of yeast was completely blocked by this substance. The overall results seem to corroborate the presence of the mannose-receptor in seabream phagocytes, which is involved in the non-specific binding and phagocytosis of yeast cells by head-kidney leucocytes.
Collapse
Affiliation(s)
- A Rodríguez
- Department of Cell Biology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | | | | |
Collapse
|
48
|
Schweizer A, Stahl PD, Rohrer J. A di-aromatic motif in the cytosolic tail of the mannose receptor mediates endosomal sorting. J Biol Chem 2000; 275:29694-700. [PMID: 10896932 DOI: 10.1074/jbc.m000571200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mannose receptor (MR), the prototype of a new family of multilectin receptor proteins important in innate immunity, undergoes rapid internalization and recycling from the endosomal system back to the cell surface. Sorting of the MR in endosomes prevents the receptor from entering lysosomes where it would be degraded. Here, we focused on a diaromatic sequence (Tyr(18)-Phe(19)) in the MR cytoplasmic tail as an endosomal sorting signal. The subcellular distribution of chimeric constructs between the MR and the cation-dependent mannose 6-phosphate receptor was assessed by Percoll density gradients and cell surface assays. Unlike the wild type constructs, mutant receptors with alanine substitutions of Tyr(18)-Phe(19) were highly missorted to lysosomes, indicating that the di-aromatic motif of the MR cytoplasmic tail mediates sorting in endosomes. Within this sequence Tyr(18) is the key residue with Phe(19) contributing to this function. Moreover, Tyr(18) was also found to be essential for internalization, consistent with the presence of overlapping signals for internalization and endosomal sorting in the cytosolic tail of the MR. A di-aromatic amino acid sequence in the cytosolic tail has now been shown to function in two receptors known to be internalized from the plasma membrane, the MR and the cation-dependent mannose 6-phosphate receptor. This feature therefore appears to be a general determinant for endosomal sorting.
Collapse
Affiliation(s)
- A Schweizer
- Friedrich Miescher Institut, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | |
Collapse
|
49
|
Fukasawa M, Shimizu Y, Shikata K, Nakata M, Sakakibara R, Yamamoto N, Hatanaka M, Mizuochi T. Liposome oligomannose-coated with neoglycolipid, a new candidate for a safe adjuvant for induction of CD8+ cytotoxic T lymphocytes. FEBS Lett 1998; 441:353-6. [PMID: 9891969 DOI: 10.1016/s0014-5793(98)01577-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cytotoxic T lymphocyte (CTL) response has recently been shown to play a role in protection against human immunodeficiency virus (HIV) and it is therefore thought that a vaccine against HIV must be able to elicit a CTL response. The development of a safe, effective adjuvant is very important because alum, the only adjuvant available for use in humans at present, can barely induce a response of this type. We demonstrate here that liposomes that contain an immunodominant peptide (15 amino acids) of the envelope glycoprotein gp120 of HIV-1 and that are coated with mannopentaose-dipalmitoylphosphatidylethanolamine conjugate induce a major histocompatibility complex class I-restricted CD8+ CTL response in mice with a single subcutaneous immunization, whereas non-coated liposomes do not. Since no damage to the skin at the injection site was caused by the liposomes, and since the oligomannose-coated liposomes consist of innocuous materials ubiquitously distributed throughout the human body, they may be highly suitable for use as a safe adjuvant in vaccines inducing a CTL response against HIV.
Collapse
Affiliation(s)
- M Fukasawa
- Department of Preventive Medicine, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Yan F, Lutz DA, Shepherd VL, Boyle D, McLaughlin BJ. Characterization of rod outer segment plasma membrane proteins which bind to the mannose receptor. Curr Eye Res 1995; 14:465-71. [PMID: 7671628 DOI: 10.3109/02713689509003757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous work by our laboratory has demonstrated that rod outer segment (ROS) phagocytosis can be mediated by mannose-receptor dependent activity. This study was designed to probe for potential ligands on the ROS surface which could interact with the mannose receptor during the phagocytic cycle. Solubilized ROS plasma membranes were passed over a mannose receptor-Sepharose column in the presence of CaCl2. Proteins specifically bound to the column were eluted using methyl-D-mannoside and EDTA and characterized by gel electrophoresis, lectin blots, and immunoblots. Silver stained gels of ROS plasma membrane proteins eluted from the mannose-receptor column demonstrated six bands: a major band at 36 kD, identified by monospecific antibodies as rhodopsin, and bands of Mr = 39 kD, 67 kD, 76 kD, 97 kD and 100 kD. Lectin blots of the eluted fractions confirmed that all six proteins in these fractions could bind concanavalin A. In summary, these results showed that rhodopsin and several other mannose-containing glycoproteins on ROS plasma membranes were bound to a mannose receptor column, and thus could serve as ligands for mannose receptor-mediated ROS phagocytosis.
Collapse
Affiliation(s)
- F Yan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Research Institute, University of Louisville School of Medicine 40292, USA
| | | | | | | | | |
Collapse
|