1
|
Abstract
Phosphofructokinase-1 (Pfk) acts as the main control point of flux through glycolysis. It is involved in complex allosteric regulation and Pfk mutations have been linked to cancer development. Whereas the 3D structure and structural basis of allosteric regulation of prokaryotic Pfk has been studied in great detail, our knowledge about the molecular basis of the allosteric behaviour of the more complex mammalian Pfk is still very limited. To characterize the structural basis of allosteric regulation, the subunit interfaces and the functional consequences of modifications in Tarui's disease and cancer, we analysed the physiological homotetramer of human platelet Pfk at up to 2.67 Å resolution in two crystal forms. The crystallized enzyme is permanently activated by a deletion of the 22 C-terminal residues. Complex structures with ADP and fructose-6-phosphate (F6P) and with ATP suggest a role of three aspartates in the deprotonation of the OH-nucleophile of F6P and in the co-ordination of the catalytic magnesium ion. Changes at the dimer interface, including an asymmetry observed in both crystal forms, are the primary mechanism of allosteric regulation of Pfk by influencing the F6P-binding site. Whereas the nature of this conformational switch appears to be largely conserved in bacterial, yeast and mammalian Pfk, initiation of these changes differs significantly in eukaryotic Pfk.
Collapse
|
2
|
Arechaga I, Martínez-Costa OH, Ferreras C, Carrascosa JL, Aragón JJ. Electron microscopy analysis of mammalian phosphofructokinase reveals an unusual 3‐dimensional structure with significant implications for enzyme function. FASEB J 2010. [DOI: 10.1096/fj.10.165845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ignacio Arechaga
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientIficas (CSIC) Madrid Spain
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas Alberto Sols Universidad Autönoma de Madrid–CSICFacultad de Medicina, Universidad Autónoma de Madrid Madrid Spain
| | - Cristina Ferreras
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas Alberto Sols Universidad Autönoma de Madrid–CSICFacultad de Medicina, Universidad Autónoma de Madrid Madrid Spain
| | - José L. Carrascosa
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientIficas (CSIC) Madrid Spain
| | - Juan J. Aragón
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas Alberto Sols Universidad Autönoma de Madrid–CSICFacultad de Medicina, Universidad Autónoma de Madrid Madrid Spain
| |
Collapse
|
3
|
Arechaga I, Martínez-Costa OH, Ferreras C, Carrascosa JL, Aragón JJ. Electron microscopy analysis of mammalian phosphofructokinase reveals an unusual 3-dimensional structure with significant implications for enzyme function. FASEB J 2010; 24:4960-8. [DOI: 10.1096/fj.10-165845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ignacio Arechaga
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas (CSIC), and
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas Alberto Sols Universidad Autónoma de Madrid–CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Ferreras
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas Alberto Sols Universidad Autónoma de Madrid–CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - José L. Carrascosa
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas (CSIC), and
| | - Juan J. Aragón
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas Alberto Sols Universidad Autónoma de Madrid–CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Ferreras C, Hernández ED, Martínez-Costa OH, Aragón JJ. Subunit interactions and composition of the fructose 6-phosphate catalytic site and the fructose 2,6-bisphosphate allosteric site of mammalian phosphofructokinase. J Biol Chem 2009; 284:9124-31. [PMID: 19218242 DOI: 10.1074/jbc.m807737200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian phosphofructokinase originated by duplication, fusion, and divergence of a primitive prokaryotic gene, with the duplicated fructose 6-phosphate catalytic site in the C-terminal half becoming an allosteric site for the activator fructose 2,6-bisphosphate. It has been suggested that both sites are shared across the interface between subunits aligned in an antiparallel orientation, the N-terminal half of one subunit facing the C-terminal half of the other. The composition of these binding sites and the way in which subunits interact to form the dimer within the tetrameric enzyme have been reexamined by systematic point mutations to alanine of key amino acid residues of human muscle phosphofructokinase. We found that residues His-199, His-298, Arg-201, and Arg-292 contribute to the catalytic site and not to the allosteric site, because their mutation decreased the affinity for fructose 6-phosphate without affecting the activation by fructose 2,6-bisphosphate or its binding affinity. In contrast, residues Arg-566, Arg-655, and His-661 were critical components of the fructose bisphosphate allosteric site, because their mutation strongly reduced the action and affinity of the activator, with no alteration of substrate binding to the active site. Our results suggest that mammalian phosphofructokinase subunits associate with the N-terminal halves facing each other to form the two catalytic sites/dimer and the C-terminal halves forming the allosteric sites. Additionally, mutation of certain residues eliminated activation by fructose 1,6-bisphosphate, but not its binding, with little effect on activation by fructose 2,6-bisphosphate, indicating a divergence in the signal transduction route despite their binding to the same site.
Collapse
Affiliation(s)
- Cristina Ferreras
- Departamento de Bioquímica, Facultad de Medicina de la Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
5
|
Hines JK, Chen X, Nix JC, Fromm HJ, Honzatko RB. Structures of mammalian and bacterial fructose-1,6-bisphosphatase reveal the basis for synergism in AMP/fructose 2,6-bisphosphate inhibition. J Biol Chem 2007; 282:36121-31. [PMID: 17933867 DOI: 10.1074/jbc.m707302200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fructose-1,6-bisphosphatase (FBPase) operates at a control point in mammalian gluconeogenesis, being inhibited synergistically by fructose 2,6-bisphosphate (Fru-2,6-P(2)) and AMP. AMP and Fru-2,6-P(2) bind to allosteric and active sites, respectively, but the mechanism responsible for AMP/Fru-2,6-P(2) synergy is unclear. Demonstrated here for the first time is a global conformational change in porcine FBPase induced by Fru-2,6-P(2) in the absence of AMP. The Fru-2,6-P(2) complex exhibits a subunit pair rotation of 13 degrees from the R-state (compared with the 15 degrees rotation of the T-state AMP complex) with active site loops in the disengaged conformation. A three-state thermodynamic model in which Fru-2,6-P(2) drives a conformational change to a T-like intermediate state can account for AMP/Fru-2,6-P(2) synergism in mammalian FBPases. AMP and Fru-2,6-P(2) are not synergistic inhibitors of the Type I FBPase from Escherichia coli, and consistent with that model, the complex of E. coli FBPase with Fru-2,6-P(2) remains in the R-state with dynamic loops in the engaged conformation. Evidently in porcine FBPase, the actions of AMP at the allosteric site and Fru-2,6-P(2) at the active site displace engaged dynamic loops by distinct mechanisms, resulting in similar quaternary end-states. Conceivably, Type I FBPases from all eukaryotes may undergo similar global conformational changes in response to Fru-2,6-P(2) ligation.
Collapse
Affiliation(s)
- Justin K Hines
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
6
|
Martínez-Costa OH, Sánchez-Martínez C, Sánchez V, Aragón JJ. Chimeric phosphofructokinases involving exchange of the N- and C-terminal halves of mammalian isozymes: implications for ligand binding sites. FEBS Lett 2007; 581:3033-8. [PMID: 17544406 DOI: 10.1016/j.febslet.2007.05.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/10/2007] [Accepted: 05/18/2007] [Indexed: 02/01/2023]
Abstract
Two phosphofructokinase (PFK) chimeras were constructed by exchanging the N- and C-terminal halves of the mammalian M- and C-type isozymes, to investigate the contribution of each terminus to the catalytic site and the fructose-2,6-P(2)/fructose-1,6-P(2) allosteric site. The homogeneously-purified chimeric enzymes organized into tetramers, and exhibited kinetic properties for fructose-6-P and MgATP similar to those of the native enzyme that furnished the N-terminal domain in each case, whereas their fructose-2,6-P(2) activatory characteristics coincided with those of the isozyme that provided the C-terminal half. This reflected the role of each domain in the formation of the corresponding binding site. Grafting the N-terminus of PFK-M onto the C-terminus of the fructose-1,6-P(2) insensitive PFK-C restored transduction of this signal to the catalytic site, which significance is also discussed.
Collapse
Affiliation(s)
- Oscar H Martínez-Costa
- Departamento de Bioquímica de la UAM, Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Facultad de Medicina de la Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
7
|
Van Schaftingen E. Fructose 2,6-bisphosphate. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 59:315-95. [PMID: 3028056 DOI: 10.1002/9780470123058.ch7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Jin ES, Uyeda K, Kawaguchi T, Burgess SC, Malloy CR, Sherry AD. Increased hepatic fructose 2,6-bisphosphate after an oral glucose load does not affect gluconeogenesis. J Biol Chem 2003; 278:28427-33. [PMID: 12764148 DOI: 10.1074/jbc.m302134200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The generally accepted metabolic concept that fructose 2,6-bisphosphate (Fru-2,6-P2) inhibits gluconeogenesis by directly inhibiting fructose 1,6-bisphosphatase is based entirely on in vitro observations. To establish whether gluconeogenesis is indeed inhibited by Fru-2,6-P2 in intact animals, a novel NMR method was developed using [U-13C]glucose and 2H2O as tracers. The method was used to estimate the sources of plasma glucose from gastric absorption of oral [U-13C]glucose, from gluconeogenesis, and from glycogen in 24-h fasted rats. Liver Fru-2,6-P2 increased approximately 10-fold shortly after the glucose load, reached a maximum at 60 min, and then dropped to base-line levels by 150 min. The gastric contribution to plasma glucose reached approximately 50% at 30 min after the glucose load and gradually decreased thereafter. Although the contribution of glycogen to plasma glucose was small, glucose formed from gluconeogenesis was substantial throughout the study period even when liver Fru-2,6-P2 was high. Liver glycogen repletion was also brisk throughout the study period, reaching approximately 30 micromol/g at 3 h. These data demonstrate that Fru-2,6-P2 does not inhibit gluconeogenesis significantly in vivo.
Collapse
Affiliation(s)
- Eunsook S Jin
- The Mary Nell and Ralph B. Rogers Magnetic Resonance Center, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | |
Collapse
|
9
|
Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci U S A 2001; 98:13710-5. [PMID: 11698644 PMCID: PMC61106 DOI: 10.1073/pnas.231370798] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently we purified and identified a previously uncharacterized transcription factor from rat liver binding to the carbohydrate responsive element of the L-type pyruvate kinase (L-PK) gene. This factor was named carbohydrate responsive element binding protein (ChREBP). ChREBP, essential for L-PK gene transcription, is activated by high glucose and inhibited by cAMP. Here, we demonstrated that (i) nuclear localization signal and basic helix-loop-helix/leucine-zipper domains of ChREBP were essential for the transcription, and (ii) these domains were the targets of regulation by cAMP and glucose. Among three cAMP-dependent protein kinase phosphorylation sites, Ser(196) and Thr(666) were the target sites. Phosphorylation of the former resulted in inactivation of nuclear import, and that of the latter resulted in loss of the DNA-binding activity and L-PK transcription. On the other hand, glucose activated the nuclear import by dephosphorylation of Ser(196) in the cytoplasm and also stimulated the DNA-binding activity by dephosphorylation of Thr(666) in the nucleus. These results thus reveal mechanisms for regulation of ChREBP and the L-PK transcription by excess carbohydrate and cAMP.
Collapse
Affiliation(s)
- T Kawaguchi
- Department of Biochemistry, Dallas Veterans Affairs Medical Center and University of Texas Southwestern Medical Center at Dallas, 4500 South Lancaster Road, Dallas, TX 75223, USA
| | | | | | | |
Collapse
|
10
|
Shyur LF, Poland BW, Honzatko RB, Fromm HJ. Major changes in the kinetic mechanism of AMP inhibition and AMP cooperativity attend the mutation of Arg49 in fructose-1,6-bisphosphatase. J Biol Chem 1997; 272:26295-9. [PMID: 9334199 DOI: 10.1074/jbc.272.42.26295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The significance of subunit interface residues Arg49 and Lys50 in the function of porcine liver fructose-1,6-bisphosphatase was explored by site-directed mutagenesis, initial rate kinetics, and circular dichroism spectroscopy. The Lys50 --> Met mutant had kinetic properties similar to the wild-type enzyme but was more thermostable. Mutants Arg49 --> Leu, Arg49 --> Asp, Arg49 --> Cys were less thermostable than the wild-type enzyme yet exhibited wild-type values for kcat and Km. The Ki for the competitive inhibitor fructose 2,6-bisphosphate increased 3- and 5-fold in Arg49 --> Leu and Arg49 --> Asp, respectively. The Ka for Mg2+ increased 4-8-fold for the Arg49 mutants, with no alteration in the cooperativity of Mg2+ binding. Position 49 mutants had 4-10-fold lower AMP affinity. Most significantly, the mechanism of AMP inhibition with respect to fructose 1,6-bisphosphate changed from noncompetitive (wild-type enzyme) to competitive (Arg49 --> Leu and Arg49 --> Asp mutants) and to uncompetitive (Arg49 --> Cys mutant). In addition, AMP cooperativity was absent in the Arg49 mutants. The R and T-state circular dichroism spectra of the position 49 mutants were identical and superimposable on only the R-state spectrum of the wild-type enzyme. Changes from noncompetitive to competitive inhibition by AMP can be accommodated within the framework of a steady-state Random Bi Bi mechanism. The appearance of uncompetitive inhibition, however, suggests that a more complex mechanism may be necessary to account for the kinetic properties of the enzyme.
Collapse
Affiliation(s)
- L F Shyur
- Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
11
|
García AB, Cameselle J, García Barros FJ, Higes Rolando FJ, Calahorro CV, Claros JCV. Interaction of divalent metal ions with fructose 2,6-bisphosphate and analogs. J Inorg Biochem 1996. [DOI: 10.1016/0162-0134(95)00092-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Shyur LF, Aleshin AE, Honzatko RB, Fromm HJ. Site-directed mutagenesis of residues at subunit interfaces of porcine fructose-1,6-bisphosphatase. J Biol Chem 1996; 271:3005-10. [PMID: 8621693 DOI: 10.1074/jbc.271.6.3005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mutation of Arg-15, Glu-19, Arg-22, and Thr-27 of porcine liver fructose-1,6-bisphosphatase was carried out by site-directed mutagenesis. These residues are conserved in all known primary sequences of mammalian fructose-1,6-bisphosphatase. On the basis of the crystal structure of the enzyme, Arg-15, Glu-19, and Arg-22 are located at the interface of the two dimers (C1-C2 and C3-C4), and Thr-27 is in the AMP binding site. The wild-type and mutant forms of the enzyme were purified to homogeneity and characterized by initial rate kinetics and circular dichroism (CD) spectrometry. No discernible differences were observed between the secondary structures of the wild-type and mutant forms of fructose-1, 6-bisphosphatase on the basis of CD data. Kinetic analyses revealed similar kcat values for mutants R15A, E19Q, R22K, and T27A of fructose-1,6-bisphosphatase; however, a 2-fold increase of kcat was observed with R22M compared with that of the wild-type enzyme. Small changes in Km values for fructose-1,6-bisphosphate were found in the five mutants. 4 6-fold decreases in Ki values for fructose 2,6-bisphosphate and 5-9-fold decreases in the binding affinity of Mg2+ relative to the wild-type enzyme were exhibited by R15A and E19Q. No alteration of Mg2+ cooperativity was found in the five mutants. Significant changes in Ki values for AMP were obtained in the case of R22K (30-fold) and T27A (1300-fold) with a Hill coefficient of 2.0. Replacement of Arg-22 with methionine, however, caused the total loss of AMP cooperativity without changing AMP affinity. Modeling of the mutant structures was undertaken in an attempt to define the functional role of Arg-22. These studies link specific interactions between subunits in fructose-1,6-bisphosphatase to observed properties of cooperativity.
Collapse
Affiliation(s)
- L F Shyur
- Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
13
|
Sola MM, Oliver FJ, Salto R, Gutiérrez M, Vargas AM. Regulation of rat-kidney cortex fructose-1,6-bisphosphatase activity. I. Effects of fructose-2,6-bisphosphate and divalent cations. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:1963-8. [PMID: 8138035 DOI: 10.1016/0020-711x(88)90332-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. The native rat-kidney cortex Fructose-1,6-BPase is differentially regulated by Mg2+ and Mn2+. 2. Mg2+ binding to the enzyme is hyperbolic and large concentrations of the cation are non-inhibitory. 3. Mn2+ produces a 10-fold rise in Vmax higher than Mg2+. [Mn2+]0.5 is much larger than [Mg2+]0.5. At elevated [Mn2+] inhibition is observed. 4. Mg2+ and Mn2+ produce antagonistic effects on the inhibition of the enzyme by high substrate. 5. Fru-2,6-P2 inhibits the enzyme by rising the S0.5 and favouring a sigmoidal kinetics. 6. The inhibition by Fru-2,6-P2 is released by Mg2+ and more powerfully by Mn2+ increasing the I0.5.
Collapse
Affiliation(s)
- M M Sola
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | | | | | |
Collapse
|
14
|
Reyes AM, Bravo N, Ludwig H, Iriarte A, Slebe JC. Modification of Cys-128 of pig kidney fructose 1,6-bisphosphatase with different thiol reagents: size dependent effect on the substrate and fructose-2,6-bisphosphate interaction. JOURNAL OF PROTEIN CHEMISTRY 1993; 12:159-68. [PMID: 8387793 DOI: 10.1007/bf01026037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Treatment of fructose 1,6-bisphosphatase with N-ethylmaleimide was shown to abolish the inhibition by fructose 2,6-bisphosphate, which also protected the enzyme against this chemical modification [Reyes, A., Burgos, M. E., Hubert, E., and Slebe, J. C. (1987), J. Biol. Chem. 262, 8451-8454]. On the basis of these results, it was suggested that a single reactive sulfhydryl group was essential for the inhibition. We have isolated a peptide bearing the N-ethylmaleimide target site and the modified residue has been identified as cysteine-128. We have further examined the reactivity of this group and demonstrated that when reagents with bulky groups are used to modify the protein at the reactive sulfhydryl [e.g., N-ethylmaleimide or 5,5'-dithiobis-(2-nitrobenzoate)], most of the fructose 2,6-bisphosphate inhibition potential is lost. However, there is only partial or no loss of inhibition when smaller groups (e.g., cyanate or cyanide) are introduced. Kinetic and ultraviolet difference spectroscopy-binding studies show that the treatment of fructose 1,6-bisphosphatase with N-ethylmaleimide causes a considerable reduction in the affinity of the enzyme for fructose 2,6-bisphosphate while affinity for fructose 1,6-bisphosphate does not change. We can conclude that modification of this reactive sulfhydryl affects the enzyme sensitivity to fructose 2,6-bisphosphate inhibition by sterically interfering with the binding of this sugar bisphosphate, although this residue does not seem to be essential for the inhibition to occur. The results also suggest that fructose 1,6-bisphosphate and fructose 2,6-bisphosphate may interact with the enzyme in a different way.
Collapse
Affiliation(s)
- A M Reyes
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia
| | | | | | | | | |
Collapse
|
15
|
|
16
|
el-Maghrabi MR, Lange AJ, Kümmel L, Pilkis SJ. The rat fructose-1,6-bisphosphatase gene. Structure and regulation of expression. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52217-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Sola MM, Salto R, Oliver J, Vargas AM. Kinetic characterization of phosphofructokinase isolated from rat kidney cortex. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1991; 98:495-500. [PMID: 1831095 DOI: 10.1016/0305-0491(91)90243-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. Phosphofructokinase from rat kidney cortex has been purified by affinity chromatography to a final specific activity of 15 units per mg of protein, measured at 25 degrees C and pH 8. 2. This lower spec. act., compared with that of the enzyme from other sources, shows the enzyme in proximal tubules to be less active, which would account for the main gluconeogenic role of these nephron sections. 3. The binding of fructose-6-phosphate to the enzyme is co-operative. ATP increases the Hill coefficient and produces a marked allosteric inhibition on the activity. 4. Fructose-2,6-bis-phosphate is a potent activator of the enzyme from this source. It reduces the Hill coefficient of the enzyme and the inhibition constant of ATP. A marked difference between this and the liver enzyme is that the activation is not co-operative.
Collapse
Affiliation(s)
- M M Sola
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | | | |
Collapse
|
18
|
Vargas A, Sola M, Bounias M. Inhibition by substrate of fructose 1,6-bisphosphatase purified from rat kidney cortex. Calculation of the kinetic constants of the enzyme. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)55403-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Liu F, Fromm HJ. Kinetic studies on the mechanism and regulation of rabbit liver fructose-1,6-bisphosphatase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39127-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Ke HM, Thorpe CM, Seaton BA, Lipscomb WN, Marcus F. Structure refinement of fructose-1,6-bisphosphatase and its fructose 2,6-bisphosphate complex at 2.8 A resolution. J Mol Biol 1990; 212:513-39. [PMID: 2157849 DOI: 10.1016/0022-2836(90)90329-k] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The structures of the native fructose-1,6-bisphosphatase (Fru-1,6-Pase), from pig kidney cortex, and its fructose 2,6-bisphosphate (Fru-2,6-P2) complexes have been refined to 2.8 A resolution to R-factors of 0.194 and 0.188, respectively. The root-mean-square deviations from the standard geometry are 0.021 A and 0.016 A for the bond length, and 4.4 degrees and 3.8 degrees for the bond angle. Four sites for Fru-2,6-P2 binding per tetramer have been identified by difference Fourier techniques. The Fru-2,6-P2 site has the shape of an oval cave about 10 A deep, and with other dimensions about 18 A by 12 A. The two Fru-2,6-P2 binding caves of the dimer in the crystallographically asymmetric unit sit next to one another and open in opposite directions. These two binding sites mutually exchange their Arg243 side-chains, indicating the potential for communication between the two sites. The beta, D-fructose 2,6-bisphosphate has been built into the density and refined well. The oxygen atoms of the 6-phosphate group of Fru-2,6-P2 interact with Arg243 from the adjacent monomer and the residues of Lys274, Asn212, Tyr264, Tyr215 and Tyr244 in the same monomer. The sugar ring primarily contacts with the backbone atoms from Gly246 to Met248, as well as the side-chain atoms, Asp121, Glu280 and Lys274. The 2-phosphate group interacts with the side-chain atoms of Ser124 and Lys274. A negatively charged pocket near the 2-phosphate group includes Asp118, Asp121 and Glu280, as well as Glu97 and Glu98. The 2-phosphate group showed a disordered binding perhaps because of the disturbance from the negatively charged pocket. In addition, Asn125 and Lys269 are located within a 5 A radius of Fru-2,6-P2. We argue that Fru-2,6-P2 binds to the active site of the enzyme on the basis of the following observations: (1) the structure similarity between Fru-2,6-P2 and the substrate; (2) sequence conservation of the residues directly interacting with Fru-2,6-P2 or located at the negatively charged pocket; (3) a divalent metal site next to the 2-phosphate group of Fru-2,6-P2; and (4) identification of some active site residues in our structure, e.g. tyrosine and Lys274, consistent with the results of the ultraviolet spectra and the chemical modification. The structures are described in detail including interactions of interchain surfaces, and the chemically modifiable residues are discussed on the basis of the refined structures.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H M Ke
- Gibbs Chemical Laboratory, Harvard University, Cambridge, MA 02138
| | | | | | | | | |
Collapse
|
21
|
Liu F, Fromm HJ. Investigation of the relationship between tyrosyl residues and the adenosine 5′-monophosphate binding site of rabbit liver fructose-1,6-biphosphatase as studied by chemical modification and nuclear magnetic resonance spectroscopy. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)51466-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Andrés V, Carreras J, Cussó R. Activation of muscle phosphofructokinase by alpha-glucose 1,6-bisphosphate and fructose 2,6-bisphosphate is differently affected by other allosteric effectors and by pH. Biochem Biophys Res Commun 1988; 157:664-9. [PMID: 2974284 DOI: 10.1016/s0006-291x(88)80301-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Citrate, ATP and AMP affect similarly the activation of muscle phosphofructokinase by alpha-glucose 1,6-bisphosphate and fructose 1,6-bisphosphate, but they affect differently its activation by fructose 2,6-bisphosphate. Activation by alpha-glucose 1,6-bisphosphate and fructose 2,6-bisphosphate is also differently affected by pH. This suggest that both alpha-glucose 1,6-bisphosphate and fructose 1,6-bisphosphate induce the same conformational change on muscle phosphofructokinase, distinct from that produced by fructose 2,6-bisphosphate.
Collapse
Affiliation(s)
- V Andrés
- Unitat de Bioquimica, Facultat de Medicina, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
23
|
Andrés V, García-Salguero L, Gómez ME, Aragón JJ. Allosteric inhibition of Dictyostelium discoideum fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate. FEBS Lett 1988; 241:51-4. [PMID: 2848725 DOI: 10.1016/0014-5793(88)81029-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It has been found that the inhibition of Dictyostelium discoideum fructose-1,6-bisphosphatase by fructose 2,6-P2 greatly diminished when the pH was raised to the range 8.5-9.5, which resulted in a marked decrease of the affinity for the inhibitor with no change in the Km for the substrate. This provides evidence for the involvement of an allosteric site for fructose 2,6-P2. Moreover, the fact that excess substrate inhibition also decreased at the pH values for minimal fructose 2,6-P2 inhibition, and was essentially abolished in the presence of fructose 2,6-P2, strongly suggests that this inhibition takes place by binding of fructose 1,6-P2 as a weak analogue of the physiological effector fructose 2,6-P2.
Collapse
Affiliation(s)
- V Andrés
- Instituto de Investigaciones Biomédicas del CSIC, Departamento de Bioquímica de la Facultad de Medicina de la Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|
24
|
Achs MJ, Garfinkel D. Pancreatic islet discrimination of hexose anomers. II. Transient computer simulation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1988; 255:E201-5. [PMID: 3044138 DOI: 10.1152/ajpendo.1988.255.2.e201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have previously modeled pancreatic islet glycolysis under idealized steady-state conditions where the input is a pure hexose anomer and there is no mutarotation and reproduced the known preference for the alpha-anomers of glucose and mannose as substrates. This model is here extended to simulate real experiments, where the hexoses mutarotate and measurements may be taken over time. The behavior of our model system agrees with available experimental data. The hexose diphosphate activators of phosphofructokinase, whose effect was seen as not important in the preceding steady-state analysis, are found here to have a modest (approximately 10-15%) effect on its flux. The previous conclusion that the anomeric preference of the glycolytic pathway follows from that of glucokinase continues to hold in the real experimental situation.
Collapse
Affiliation(s)
- M J Achs
- Department of Computer Science, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
25
|
Achs MJ, Garfinkel D. Pancreatic islet discrimination of hexose anomers. I. Steady-state computer simulation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1988; 255:E189-200. [PMID: 2970227 DOI: 10.1152/ajpendo.1988.255.2.e189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pancreatic islets detect glucose level by phosphorylating it and converting the glycolytic rate to a signal to secrete insulin. Insulin secretion is greater from the alpha- than from the beta-anomer when the D-glucose level is below 22 mM. D-mannose behaves similarly but at nearly twofold higher concentrations. Two explanations have been proposed: 1) glucokinase, which has the same anomeric preference, is the principal hexose phosphorylating enzyme and limits glycolytic rate. 2) Phosphofructokinase limits glycolysis and hexokinase is the principal enzyme phosphorylating hexose; hexosediphosphate activators of phosphofructokinase are more readily synthesized from alpha-anomers of hexose phosphates. We have simulated both alternatives with a detailed anomerically specific model of the hexose-metabolizing glycolytic enzymes. The pathway preference for alpha-anomer of both hexoses was adequately reproduced with anomerically active limiting glucokinase. The other mechanism did not reproduce the observed pathway preference.
Collapse
Affiliation(s)
- M J Achs
- Department of Computer Science, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
26
|
Interaction of fructose 2,6-bisphosphate and AMP with fructose-1,6-bisphosphatase as studied by nuclear magnetic resonance spectroscopy. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)76516-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Liu F, Fromm HJ. Relationship between thiol group modification and the binding site for fructose 2,6-bisphosphate on rabbit liver fructose-1,6-bisphosphatase. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81622-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Tornheim K. Fructose 2,6-bisphosphate and glycolytic oscillations in skeletal muscle extracts. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)69111-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Reyes A, Burgos ME, Hubert E, Slebe JC. Selective thiol group modification renders fructose-1,6-bisphosphatase insensitive to fructose 2,6-bisphosphate inhibition. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47432-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Effects of insulin and work on fructose 2,6-bisphosphate content and phosphofructokinase activity in perfused rat hearts. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61485-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Bassols AM, Cussó R, Carreras J. Glucose 1,6-bisphosphate and fructose 2,6-bisphosphate levels in different types of rat skeletal muscle. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1987; 88:843-5. [PMID: 2827951 DOI: 10.1016/0305-0491(87)90252-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. The concentration of glycogen, glucose 1,6-P2, fructose 2,6-P2 and the content of glycogen phosphorylase, phosphofructokinase, 6-phosphofructo 2-kinase and glucose 1,6-P2 phosphatase activity, have been determined in rat muscles which differ in their fiber composition: extensor digitorum longus, gastrocnemius, diaphragm and soleus. 2. Glucose 1,6-P2 concentration seems to be related to the glycolytic capacity of the muscle, while fructose 2,6-P2 concentration does not. 3. No significant relationship exists between the fiber type and the content in glucose 1,6-P2 phosphatase and 6-phosphofructo 2-kinase activities.
Collapse
Affiliation(s)
- A M Bassols
- Departamento de Bioquimica, Facultad de Medicina, Universidad de Barcelona, Zona Universitaria de Pedralbes, Spain
| | | | | |
Collapse
|
32
|
Pilkis SJ, Claus TH, Kountz PD, El-Maghrabi MR. 1 Enzymes of the Fructose 6-Phosphate-Fructose 1, 6-Bisphosphate Substrate Cycle. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/s1874-6047(08)60252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
33
|
Wegener G, Beinhauer I, Klee A, Newsholme EA. Properties of locust muscle 6-phosphofructokinase and their importance in the regulation of glycolytic flux during prolonged flight. J Comp Physiol B 1987. [DOI: 10.1007/bf00693358] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Scheffler JE, Fromm HJ. Regulation of rabbit liver fructose-1,6-bisphosphatase by metals, nucleotides, and fructose 2,6-bisphosphate as determined from fluorescence studies. Biochemistry 1986; 25:6659-65. [PMID: 3024716 DOI: 10.1021/bi00369a050] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The fluorescent nucleotide analogue formycin 5'-monophosphate (FMP) inhibits rabbit liver fructose-1,6-bisphosphatase (I50 = 17 microM, Hill coefficient = 1.2), as does the natural regulator AMP (I50 = 13 microM, Hill coefficient = 2.3), but exhibits little or no cooperativity of inhibition. Binding of FMP to fructose-1,6-bisphosphatase can be monitored by the increased fluorescence emission intensity (a 2.7-fold enhancement) or the increased fluorescence polarization of the probe. A single dissociation constant for FMP binding of 6.6 microM (4 sites per tetramer) was determined by monitoring fluorescence intensity. AMP displaces FMP from the enzyme as evidenced by a decrease in FMP fluorescence and polarization. The substrates, fructose 6-phosphate and fructose 1,6-bisphosphate, and inhibitors, methyl alpha-D-fructofuranoside 1,6-bisphosphate and fructose 2,6-bisphosphate, all increase the maximal fluorescence of enzyme-bound FMP but have little or no effect on FMP binding. Weak metal binding sites on rabbit liver fructose-1,6-bisphosphatase have been detected by the effect of Zn2+, Mn2+, and Mg2+ in displacing FMP from the enzyme. This is observed as a decrease in FMP fluorescence intensity and polarization in the presence of enzyme as a function of divalent cation concentration. The order of binding by divalent cations is Zn2+ = Mn2+ greater than Mg2+, and the Kd for Mn2+ displacement of FMP is 91 microM. Methyl alpha-D-fructofuranoside 1,6-bisphosphate, as well as fructose 6-phosphate and inorganic phosphate, enhances metal-mediated FMP displacement from rabbit liver fructose-1,6-bisphosphatase.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
35
|
Bertagnolli BL, Younathan ES, Voll RJ, Cook PF. Kinetic studies on the activation of pyrophosphate-dependent phosphofructokinase from mung bean by fructose 2,6-bisphosphate and related compounds. Biochemistry 1986; 25:4682-7. [PMID: 3021199 DOI: 10.1021/bi00364a034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pyrophosphate-dependent phosphofructokinase (PPi-PFK) was purified from the mung bean Phaseolus aureus. The enzyme is activated by fructose 2,6-bisphosphate at nanomolar concentrations. The enzyme exhibits Michaelis-Menten kinetics, and the reaction mechanism, deduced from initial velocity studies in the absence of inhibitors as well as product and dead-end inhibition studies, is rapid equilibrium random in the presence and absence of fructose 2,6-bisphosphate. In the direction of fructose 6-phosphate phosphorylation, saturating fructose 2,6-bisphosphate (1 microM) increases V congruent to 9-fold and increases V/KMgPPi and V/KF6P about 30-fold. In the reverse direction (phosphate phosphorylation), the same concentration of activator has little if any effect on V or the Km for inorganic phosphate (Pi) and Mg2+ but does increase V/KFBP about 42-fold. No changes were observed in any of the other rate constants. The binding affinity of fructose 2,6-bisphosphate to all enzyme forms is identical. The activator site of the mung bean PPi-PFK binds fructose 2,6-bisphosphate with a Kact of 30 nM with the 2,5-anhydro-D-glucitol 1,6-bisphosphate (the most effective analogue) 33-fold less tightly. Of the alkanediol bisphosphate series, 1,4-butanediol bisphosphate exhibited the tightest binding (Kact congruent to 3 microM). These and a series of other activating analogues are discussed in relation to the activator site.
Collapse
|
36
|
Abstract
A new direct assay method for fructose 2,6-bisphosphate has been developed based on competitive binding of labeled and unlabeled fructose 2,6-P2 to phosphofructokinase. Phosphofructokinase (0.5-1.3 pmol protomer) is incubated with saturating concentrations (5.0-5.5 pmol) of fructose 2,6-[2-32P]P2 and samples containing varying concentrations of fructose 2,6-P2. The resulting stable binary complex is retained on nitrocellulose filters with a binding efficiency of up to 70%. Standard curves obtained with this assay show strict linearity with varying fructose 2,6-P2 in the range of 0.5 to 45 pmol, which exceeds the sensitivity of most of the previously described assay methods. Fructose 2,6-P2, ATP, and high concentrations of phosphate interfere with this assay. However, the extent of this inhibition is negligible since their tissue contents are one-half to one-tenth that examined. This new assay is simple, direct, rapid, and does not require pretreatment of tissue extracts.
Collapse
|
37
|
Active hepatic glycogen synthesis from gluconeogenic precursors despite high tissue levels of fructose 2,6-bisphosphate. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)35834-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Meglasson MD, Matschinsky FM. Pancreatic islet glucose metabolism and regulation of insulin secretion. DIABETES/METABOLISM REVIEWS 1986; 2:163-214. [PMID: 2943567 DOI: 10.1002/dmr.5610020301] [Citation(s) in RCA: 342] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Chatterjee T, Reardon I, Heinrikson RL, Marcus F. Des-1-25-fructose-1,6-bisphosphatase, a nonallosteric derivative produced by trypsin treatment of the native protein. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)38758-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Regulation of phosphofructokinase in perfused rat heart. Requirement for fructose 2,6-bisphosphate and a covalent modification. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39302-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Tornheim K. Activation of muscle phosphofructokinase by fructose 2,6-bisphosphate and fructose 1,6-bisphosphate is differently affected by other regulatory metabolites. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39551-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Ganson NJ, Fromm HJ. Nuclear magnetic resonance studies of fructose 2,6-bisphosphate and adenosine 5'-monophosphate interaction with bovine liver fructose-1,6-biphosphatase. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89440-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
43
|
Reyes A, Hubert E, Slebe JC. The reactive cysteine residue of pig kidney fructose 1,6-bisphosphatase is related to a fructose 2,6-bisphosphate allosteric site. Biochem Biophys Res Commun 1985; 127:373-9. [PMID: 2983717 DOI: 10.1016/s0006-291x(85)80169-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Modification of a highly reactive cysteine residue of pig kidney fructose 1,6-bisphosphatase with N-ethylmaleimide results in the loss of activation of the enzyme by monovalent cations. Low concentrations of fructose 2,6-bisphosphate or high (inhibitory) levels of fructose 1,6-bisphosphate protect the enzyme against the loss of monovalent cation activation, while non-inhibitory concentrations of the substrate gave partial protection. The allosteric inhibitor AMP markedly increases the reactivity of the cysteine residue. The results indicate that fructose 2,6-bisphosphate can protect the enzyme against the loss of potassium activation by binding to an allosteric site. High levels of fructose 1,6-bisphosphate probably inhibit the enzyme by binding to this allosteric site.
Collapse
|
44
|
Seaton BA, Campbell RL, Petsko GA, Rose DR, Edelstein I, Marcus F. Preliminary X-ray crystallographic studies of pig kidney fructose-1,6-bisphosphatase. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)47242-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
45
|
Marcus F, Edelstein I, Rittenhouse J. Inhibition of Escherichia coli fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate. Biochem Biophys Res Commun 1984; 119:1103-8. [PMID: 6324777 DOI: 10.1016/0006-291x(84)90888-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fructose 2,6-bisphosphate, a potent inhibitor of fructose-1,6-bisphosphatases, was found to be an inhibitor of the Escherichia coli enzyme. The substrate saturation curves in the presence of inhibitor were sigmoidal and the inhibition was much stronger at low than at high substrate concentrations. At a substrate concentration of 20 microM, 50% inhibition was observed at 4.8 microM fructose 2,6-bisphosphate. Escherichia coli fructose-1,6-bisphosphatase was inhibited by AMP (Ki = 16 microM) and phosphoenolpyruvate caused release of AMP inhibition. However, neither AMP inhibition nor its release by phosphoenolpyruvate was affected by the presence of fructose 2,6-bisphosphate. The results obtained, together with previous observations, provide further evidence for the fructose 2,6-bisphosphate - fructose-1,6-bisphosphatase active site interaction.
Collapse
|
46
|
|