1
|
Johnston CU, Kennedy CJ. Potency and mechanism of p-glycoprotein chemosensitizers in rainbow trout (Oncorhynchus mykiss) hepatocytes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024:10.1007/s10695-024-01376-9. [PMID: 39026113 DOI: 10.1007/s10695-024-01376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
The membrane efflux transporter P-glycoprotein (P-gp, [ABCB1, MDR1]) exports a wide range of xenobiotic compounds, resulting in a continuous first line of defense against toxicant accumulation at basal expression levels, and contributing to the multixenobiotic resistance (MXR) phenotype at elevated expression levels. Relatively little information exists on P-gp inhibition in fish by chemosensitizers, compounds which lower toxicity thresholds for harmful P-gp substrates in complex mixtures. The effects of four known mammalian chemosensitizers (cyclosporin A [CsA], quinidine, valspodar [PSC833], and verapamil) on the P-gp-mediated transport of rhodamine 123 (R123) and cortisol in primary cultures of rainbow trout (Oncorhynchus mykiss) hepatocytes were examined. Competitive accumulation assays using 25 µM R123 or cortisol and varying concentrations of chemosensitizers (0-500 µM) were used. CsA, quinidine, and verapamil inhibited R123 export (IC50 values ± SE: 132 ± 60, 83.3 ± 27.2, and 43.2 ± 13.6 µM, respectively). CsA and valspodar inhibited cortisol export (IC50 values: 294 ± 106 and 92.2 ± 34.9 µM, respectively). In an ATP depletion assay, hepatocytes incubated with all four chemosensitizers resulted in lower free ATP concentrations, suggesting that they act via competitive inhibition. Chemosensitizers that inhibit MXR transporters are an important class of environmental pollutant, and these results show that rainbow trout transporters are inhibited by similar chemosensitizers (and mostly at similar concentrations) as seen in mammals and other fish species.
Collapse
Affiliation(s)
- Christina U Johnston
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive Burnaby, British Columbia, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive Burnaby, British Columbia, Canada.
| |
Collapse
|
2
|
Koh JYP, Itahana Y, Krah A, Mostafa H, Ong M, Iwamura S, Vincent DM, Radha Krishnan S, Ye W, Yim PWC, Khopade TM, Chen K, Kong PS, Wang LF, Bates RW, Kimura Y, Viswanathan R, Bond PJ, Itahana K. Exploring bat-inspired cyclic tryptophan diketopiperazines as ABCB1 Inhibitors. Commun Chem 2024; 7:158. [PMID: 39003409 PMCID: PMC11246513 DOI: 10.1038/s42004-024-01225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Chemotherapy-induced drug resistance remains a major cause of cancer recurrence and patient mortality. ATP binding cassette subfamily B member 1 (ABCB1) transporter overexpression in tumors contributes to resistance, yet current ABCB1 inhibitors have been unsuccessful in clinical trials. To address this challenge, we propose a new strategy using tryptophan as a lead molecule for developing ABCB1 inhibitors. Our idea stems from our studies on bat cells, as bats have low cancer incidences and high ABCB1 expression. We hypothesized that potential ABCB1 substrates in bats could act as competitive inhibitors in humans. By molecular simulations of ABCB1-substrate interactions, we generated a benzylated Cyclo-tryptophan (C3N-Dbn-Trp2) that inhibits ABCB1 activity with efficacy comparable to or better than the classical inhibitor, verapamil. C3N-Dbn-Trp2 restored chemotherapy sensitivity in drug-resistant human cancer cells with no adverse effect on cell proliferation. Our unique approach presents a promising lead toward developing effective ABCB1 inhibitors to treat drug-resistant cancers.
Collapse
Affiliation(s)
- Javier Yu Peng Koh
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yoko Itahana
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Alexander Krah
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Habib Mostafa
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh, India
| | - Mingmin Ong
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Sahana Iwamura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Dona Mariya Vincent
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh, India
| | | | - Weiying Ye
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Pierre Wing Chi Yim
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Tushar M Khopade
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh, India
| | - Kunihiko Chen
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Pui San Kong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Roderick W Bates
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Rajesh Viswanathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh, India.
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Koji Itahana
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
3
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
4
|
Nikolov N, Petkova T, Binev R, Milanova A. Low Doses of Deoxynivalenol and Zearalenone Alone or in Combination with a Mycotoxin Binder Affect ABCB1 mRNA and ABCC2 mRNA Expression in the Intestines of Pigs. TOXICS 2024; 12:297. [PMID: 38668520 PMCID: PMC11054541 DOI: 10.3390/toxics12040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
Mycotoxin binders, in combination with enzymes degrading some mycotoxins, contribute to feed detoxification. Their use reduces economic losses and the negative impacts of mycotoxins on animal health and productivity in farm animals. The aim of this study was to evaluate the efficacy of a mycotoxin detoxifier on the expression of the ATP-binding cassette efflux transporters ABCB1 mRNA and ABCC2 mRNA, which transport xenobiotics and thus have a barrier function, in the tissues of pigs exposed to low doses of deoxynivalenol (DON, 1 mg/kg feed) and zearalenone (ZEN, 0.4 mg/kg feed) for 37 days. The levels of expression were determined by an RT-PCR, and the effect of the mycotoxin detoxifier (Mycofix Plus3.E) was evaluated by a comparison of results between healthy pigs (n = 6), animals treated with DON and ZEN (n = 6), and a group that received both mycotoxins and the detoxifier (n = 6). A significant downregulation of ABCB1 mRNA and ABCC2 mRNA was observed in the jejunum (p < 0.05). A tendencies toward the downregulation of ABCB1 mRNA and ABCC2 mRNA were found in the ileum and duodenum, respectively. The mycotoxin detoxifier restored the expression of ABCB1 mRNA to the level found in healthy animals but did not restore that of ABCC2 mRNA to the level of healthy animals in the jejunum.
Collapse
Affiliation(s)
- Nikolay Nikolov
- Department of Internal Non-Infectious Diseases, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria; (N.N.); (R.B.)
| | - Tsvetelina Petkova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria;
| | - Rumen Binev
- Department of Internal Non-Infectious Diseases, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria; (N.N.); (R.B.)
| | - Aneliya Milanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria;
| |
Collapse
|
5
|
Sunakawa H, Mizoi K, Takahashi R, Takahashi S, Ogihara T. Impact of P-Glycoprotein-Mediated Drug-Endogenous Substrate Interactions on Androgen and Blood-Brain Barrier Permeability. J Pharm Sci 2024; 113:228-234. [PMID: 37898165 DOI: 10.1016/j.xphs.2023.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
This report focuses on pharmacokinetic drug-endogenous substrate interactions (DEIs). We hypothesized that P-glycoprotein (P-gp)-mediated DEI might affect androgen kinetics, especially its blood-brain barrier (BBB) permeability. The intracellular accumulation of the endogenous substrates of P-gp, testosterone (TES) and androstenedione (ADO) was increased by several tested drugs in uptake studies using P-gp overexpressing cells, indicating that these drugs inhibit P-gp-mediated efflux of TES of ADO from the cells. In a transport study using rat BBB kit, we found that the BBB limited the penetration of TES and ADO into the central nervous system. In addition, tested drugs that cause DEI were found to increase BBB permeability of TES and ADO via P-gp inhibition. In short, this study provides new findings regarding the possibility that DEI may affect the kinetics of endogenous substrates of P-gp.
Collapse
Affiliation(s)
- Hiroki Sunakawa
- Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare.
| | - Kenta Mizoi
- School of Pharmacy, International University of Heath and Welfare
| | - Reiko Takahashi
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Saori Takahashi
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Takuo Ogihara
- Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare; Faculty of Pharmacy, Takasaki University of Health and Welfare
| |
Collapse
|
6
|
Nethathe GD, Lipman J, Anderson R, Fuller PJ, Feldman C. Glucocorticoids with or without fludrocortisone in septic shock: a narrative review from a biochemical and molecular perspective. Br J Anaesth 2024; 132:53-65. [PMID: 38030548 PMCID: PMC10797514 DOI: 10.1016/j.bja.2023.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Two randomised controlled trials have reported a reduction in mortality when adjunctive hydrocortisone is administered in combination with fludrocortisone compared with placebo in septic shock. A third trial did not support this finding when hydrocortisone administered in combination with fludrocortisone was compared with hydrocortisone alone. The underlying mechanisms for this mortality benefit remain poorly understood. We review the clinical implications and potential mechanisms derived from laboratory and clinical data underlying the beneficial role of adjunctive fludrocortisone with hydrocortisone supplementation in septic shock. Factors including distinct biological effects of glucocorticoids and mineralocorticoids, tissue-specific and mineralocorticoid receptor-independent effects of mineralocorticoids, and differences in downstream signalling pathways between mineralocorticoid and glucocorticoid binding at the mineralocorticoid receptor could contribute to this interaction. Furthermore, pharmacokinetic and pharmacodynamic disparities exist between aldosterone and its synthetic counterpart fludrocortisone, potentially influencing their effects. Pending publication of well-designed, randomised controlled trials, a molecular perspective offers valuable insights and guidance to help inform clinical strategies.
Collapse
Affiliation(s)
- Gladness D Nethathe
- School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; Academy of Critical Care, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Jeffrey Lipman
- Academy of Critical Care, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia; Jamieson Trauma Institute and Intensive Care Services, Royal Brisbane and Women's Hospital, Butterfield Street, Herston, Brisbane, 4029, QLD, Australia; Nimes University Hospital, University of Montpellier, Nimes, France
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Peter J Fuller
- Endocrinology Unit, Monash Health, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Charles Feldman
- School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Verdoorn TA, Parry TJ, Pinna G, Lifshitz J. Neurosteroid Receptor Modulators for Treating Traumatic Brain Injury. Neurotherapeutics 2023; 20:1603-1615. [PMID: 37653253 PMCID: PMC10684848 DOI: 10.1007/s13311-023-01428-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Traumatic brain injury (TBI) triggers wide-ranging pathology that impacts multiple biochemical and physiological systems, both inside and outside the brain. Functional recovery in patients is impeded by early onset brain edema, acute and chronic inflammation, delayed cell death, and neurovascular disruption. Drug treatments that target these deficits are under active development, but it seems likely that fully effective therapy may require interruption of the multiplicity of TBI-induced pathological processes either by a cocktail of drug treatments or a single pleiotropic drug. The complex and highly interconnected biochemical network embodied by the neurosteroid system offers multiple options for the research and development of pleiotropic drug treatments that may provide benefit for those who have suffered a TBI. This narrative review examines the neurosteroids and their signaling systems and proposes directions for their utility in the next stage of TBI drug research and development.
Collapse
Affiliation(s)
- Todd A Verdoorn
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA.
| | - Tom J Parry
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA
| | - Graziano Pinna
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago College of Medicine, 1601 W. Taylor Street, Chicago, IL 60612, USA
| | - Jonathan Lifshitz
- Department of Psychiatry, University of Arizona College of Medicine - Phoenix, 475 N. 5th Street, Phoenix, AZ 85004, USA
| |
Collapse
|
8
|
Skinner KT, Palkar AM, Hong AL. Genetics of ABCB1 in Cancer. Cancers (Basel) 2023; 15:4236. [PMID: 37686513 PMCID: PMC10487083 DOI: 10.3390/cancers15174236] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
ABCB1, also known as MDR1, is a gene that encodes P-glycoprotein (P-gp), a membrane-associated ATP-dependent transporter. P-gp is widely expressed in many healthy tissues-in the gastrointestinal tract, liver, kidney, and at the blood-brain barrier. P-gp works to pump xenobiotics such as toxins and drugs out of cells. P-gp is also commonly upregulated across multiple cancer types such as ovarian, breast, and lung. Overexpression of ABCB1 has been linked to the development of chemotherapy resistance across these cancers. In vitro work across a wide range of drug-sensitive and -resistant cancer cell lines has shown that upon treatment with chemotherapeutic agents such as doxorubicin, cisplatin, and paclitaxel, ABCB1 is upregulated. This upregulation is caused in part by a variety of genetic and epigenetic mechanisms. This includes single-nucleotide variants that lead to enhanced P-gp ATPase activity without increasing ABCB1 RNA and protein levels. In this review, we summarize current knowledge of genetic and epigenetic mechanisms leading to ABCB1 upregulation and P-gp-enhanced ATPase activity in the setting of chemotherapy resistance across a variety of cancers.
Collapse
Affiliation(s)
- Katie T. Skinner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.T.S.); (A.M.P.)
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Antara M. Palkar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.T.S.); (A.M.P.)
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Andrew L. Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.T.S.); (A.M.P.)
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Okamoto N, Fujinaga D, Yamanaka N. Steroid hormone signaling: What we can learn from insect models. VITAMINS AND HORMONES 2023; 123:525-554. [PMID: 37717997 DOI: 10.1016/bs.vh.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ecdysteroids are a group of steroid hormones in arthropods with pleiotropic functions throughout their life history. Ecdysteroid research in insects has made a significant contribution to our current understanding of steroid hormone signaling in metazoans, but how far can we extrapolate our findings in insects to other systems, such as mammals? In this chapter, we compare steroid hormone signaling in insects and mammals from multiple perspectives and discuss similarities and differences between the two lineages. We also highlight a few understudied areas and remaining questions of steroid hormone biology in metazoans and propose potential future research directions.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daiki Fujinaga
- Department of Entomology, University of California, Riverside, CA, United States
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, CA, United States.
| |
Collapse
|
10
|
Long COVID and the Neuroendocrinology of Microbial Translocation Outside the GI Tract: Some Treatment Strategies. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Similar to previous pandemics, COVID-19 has been succeeded by well-documented post-infectious sequelae, including chronic fatigue, cough, shortness of breath, myalgia, and concentration difficulties, which may last 5 to 12 weeks or longer after the acute phase of illness. Both the psychological stress of SARS-CoV-2 infection and being diagnosed with COVID-19 can upregulate cortisol, a stress hormone that disrupts the efferocytosis effectors, macrophages, and natural killer cells, leading to the excessive accumulation of senescent cells and disruption of biological barriers. This has been well-established in cancer patients who often experience unrelenting fatigue as well as gut and blood–brain barrier dysfunction upon treatment with senescence-inducing radiation or chemotherapy. In our previous research from 2020 and 2021, we linked COVID-19 to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) via angiotensin II upregulation, premature endothelial senescence, intestinal barrier dysfunction, and microbial translocation from the gastrointestinal tract into the systemic circulation. In 2021 and 2022, these hypotheses were validated and SARS-CoV-2-induced cellular senescence as well as microbial translocation were documented in both acute SARS-CoV-2 infection, long COVID, and ME/CFS, connecting intestinal barrier dysfunction to disabling fatigue and specific infectious events. The purpose of this narrative review is to summarize what is currently known about host immune responses to translocated gut microbes and how these responses relate to fatiguing illnesses, including long COVID. To accomplish this goal, we examine the role of intestinal and blood–brain barriers in long COVID and other illnesses typified by chronic fatigue, with a special emphasis on commensal microbes functioning as viral reservoirs. Furthermore, we discuss the role of SARS-CoV-2/Mycoplasma coinfection in dysfunctional efferocytosis, emphasizing some potential novel treatment strategies, including the use of senotherapeutic drugs, HMGB1 inhibitors, Toll-like receptor 4 (TLR4) blockers, and membrane lipid replacement.
Collapse
|
11
|
Gomez-Sanchez CE, Sapiro DR, May KV, Rainey WE, Nishimoto K, Gomez-Sanchez EP. Origin of circulating 18-oxocortisol in the normal human adrenal. Mol Cell Endocrinol 2022; 555:111720. [PMID: 35870737 PMCID: PMC10911085 DOI: 10.1016/j.mce.2022.111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
18-Oxocortisol is the product of the metabolism of 11-deoxycortisol by the mitochondrial enzyme aldosterone synthase (CYP11B2). The traditional concept is that the CYP11B2 is exclusively expressed in zona glomerulosa cells and the 17α-hydroxylase (CYP17A1) enzyme, required to synthesize 11-deoxycortisol, is in the zona fasciculata of the human adrenal. It has been postulated that the substrate for 18-oxocortisol is either cortisol from the circulation or from zona fasciculata cells adjacent to the zona glomerulosa. P-glycoprotein, which is highly expressed in steroidogenic cells of the adrenal gland, efficiently expels cortisol from the cell. Double immunofluorescence staining for the CYP11B2 and CYP17A1 enzymes in 7 human adrenals demonstrated that a highly variable number of cells in different areas of the zona glomerulosa co-expressed both enzymes. In addition, there were a variable number of cells that exclusively expressed the CYP17A1 embedded within the zona glomerulosa surrounded by CYP11B2-expressing cells. 18-Oxocortisol in the media of human adrenocortical HAC15 cells was measured by ELISA after incubation with and without 10 nM of angiotensin II to stimulate CYP11B2 activity, with and without the 3β-hydroxysteroid dehydrogenase (HSD3B) inhibitor trilostane, and with variable amounts of cortisol or 11-deoxycortisol. Cortisol was a poor substrate, while 11-deoxycortisol was a significant substrate for the synthesis of 18-oxocortisol. These data suggest that the biosynthesis of 18-oxocortisol in the human adrenal is likely catalyzed by co-expression of the two crucial enzymes CYP17A1 and CYP11B2 in a small proportion of cells within the zona glomerulosa. It is also possible that 11-deoxycortisol diffusing from cells expressing only CYP17A1 interspersed with cells expressing the CYP11B2 enzyme may be a paracrine substrate in the synthesis of 18-oxocortisol.
Collapse
Affiliation(s)
- Celso E Gomez-Sanchez
- Endocrine Section, G.V. Sonny Montgomery VA Medical Center, USA; Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Dina R Sapiro
- Department of Integrative and Molecular Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Katie V May
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - William E Rainey
- Department of Integrative and Molecular Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Koshiro Nishimoto
- Department of Uro-Oncology, International Medical Center Saitama Medical University, Saitama, 350-1298, Japan; Department of Biochemistry, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
12
|
Ahmed Juvale II, Abdul Hamid AA, Abd Halim KB, Che Has AT. P-glycoprotein: new insights into structure, physiological function, regulation and alterations in disease. Heliyon 2022; 8:e09777. [PMID: 35789865 PMCID: PMC9249865 DOI: 10.1016/j.heliyon.2022.e09777] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023] Open
Abstract
The multidrug resistance phenomenon presents a major threat to the pharmaceutical industry. This resistance is a common occurrence in several diseases and is mediated by multidrug transporters that actively pump substances out of the cell and away from their target regions. The most well-known multidrug transporter is the P-glycoprotein transporter. The binding sites within P-glycoprotein can accommodate a variety of compounds with diverse structures. Hence, numerous drugs are P-glycoprotein substrates, with new ones being identified every day. For many years, the mechanisms of action of P-glycoprotein have been shrouded in mystery, and scientists have only recently been able to elucidate certain structural and functional aspects of this protein. Although P-glycoprotein is highly implicated in multidrug resistant diseases, this transporter also performs various physiological roles in the human body and is expressed in several tissues, including the brain, kidneys, liver, gastrointestinal tract, testis, and placenta. The expression levels of P-glycoprotein are regulated by different enzymes, inflammatory mediators and transcription factors; alterations in which can result in the generation of a disease phenotype. This review details the discovery, the recently proposed structure and the regulatory functions of P-glycoprotein, as well as the crucial role it plays in health and disease.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| |
Collapse
|
13
|
Wong ILK, Wang XK, Liu Z, Sun W, Li FX, Wang BC, Li P, Wan SB, Chow LMC. Synthesis and evaluation of stereoisomers of methylated catechin and epigallocatechin derivatives on modulating P-glycoprotein-mediated multidrug resistance in cancers. Eur J Med Chem 2021; 226:113795. [PMID: 34597896 DOI: 10.1016/j.ejmech.2021.113795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022]
Abstract
P-glycoprotein (P-gp; ABCB1)-mediated drug efflux causes multidrug resistance in cancer. Previous synthetic methylated epigallocatechin (EGC) possessed promising P-gp modulating activity. In order to further improve the potency, we have synthesized some novel stereoisomers of methylated epigallocatechin (EGC) and gallocatechin (GC) as well as epicatechin (EC) and catechin (C). The (2R, 3S)-trans-methylated C derivative 25 and the (2R, 3R)-cis-methylated EC derivative 31, both containing dimethyoxylation at ring B, tri-methoxylation at ring D and oxycarbonylphenylcarbamoyl linker between ring D and C3, are the most potent in reversing P-gp mediated drug resistance with EC50 ranged from 32 nM to 93 nM. They are non-toxic to fibroblast with IC50 > 100 μM. They can inhibit the P-gp mediated drug efflux and restore the intracellular drug concentration to a cytotoxic level. They do not downregulate surface P-gp protein level to enhance drug retention. They are specific for P-gp with no or low modulating activity towards MRP1- or BCRP-mediated drug resistance. In summary, methylated C 25 and EC 31 derivatives represent a new class of potent, specific and non-toxic P-gp modulator.
Collapse
Affiliation(s)
- Iris L K Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Xing-Kai Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhen Liu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenqin Sun
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Fu-Xing Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bao-Chao Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peng Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Sheng-Biao Wan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Larry M C Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
14
|
Fedotcheva TA, Fedotcheva NI, Shimanovsky NL. Progestins as Anticancer Drugs and Chemosensitizers, New Targets and Applications. Pharmaceutics 2021; 13:pharmaceutics13101616. [PMID: 34683909 PMCID: PMC8540053 DOI: 10.3390/pharmaceutics13101616] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/13/2023] Open
Abstract
Progesterone and its synthetic analogues, progestins, participate in the regulation of cell differentiation, proliferation and cell cycle progression. Progestins are usually applied for contraception, maintenance of pregnancy, and hormone replacement therapy. Recently, their effectiveness in the treatment of hormone-sensitive tumors was revealed. According to current data, the anticancer activity of progestins is mainly mediated by their cytotoxic and chemosensitizing influence on different cancer cells. In connection with the detection of previously unknown targets of the progestin action, which include the membrane-associated progesterone receptor (PR), non-specific transporters related to the multidrug resistance (MDR) and mitochondrial permeability transition pore (MPTP), and checkpoints of different signaling pathways, new aspects of their application have emerged. It is likely that the favorable influence of progestins is predominantly associated with the modulation of expression and activity of MDR-related proteins, the inhibition of survival signaling pathways, especially TGF-β and Wnt/β-catenin pathways, which activate the proliferation and promote MDR in cancer cells, and the facilitation of mitochondrial-dependent apoptosis. Biological effects of progestins are mediated by the inhibition of these signaling pathways, as well as the direct interaction with the nucleotide-binding domain of ABC-transporters and mitochondrial adenylate translocase as an MPTP component. In these ways, progestins can restore the proliferative balance, the ability for apoptosis, and chemosensitivity to drugs, which is especially important for hormone-dependent tumors associated with estrogen stress, epithelial-to-mesenchymal transition, and drug resistance.
Collapse
Affiliation(s)
- Tatiana A. Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, 117997 Moscow, Russia;
- Correspondence: ; Tel.: +7-916-935-31-96
| | - Nadezhda I. Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya str., 3, Pushchino, 142290 Moscow, Russia;
| | - Nikolai L. Shimanovsky
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, 117997 Moscow, Russia;
| |
Collapse
|
15
|
Anoshchenko O, Storelli F, Unadkat JD. Successful Prediction of Human Fetal Exposure to P-Glycoprotein Substrate Drugs Using the Proteomics-Informed Relative Expression Factor Approach and PBPK Modeling and Simulation. Drug Metab Dispos 2021; 49:919-928. [PMID: 34426410 PMCID: PMC8626637 DOI: 10.1124/dmd.121.000538] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Many women take drugs during their pregnancy to treat a variety of clinical conditions. To optimize drug efficacy and reduce fetal toxicity, it is important to determine or predict fetal drug exposure throughout pregnancy. Previously, we developed and verified a maternal-fetal physiologically based pharmacokinetic (m-f PBPK) model to predict fetal Kp,uu (unbound fetal plasma AUC/unbound maternal plasma AUC) of drugs that passively cross the placenta. Here, we used in vitro transport studies in Transwell, in combination with our m-f PBPK model, to predict fetal Kp,uu of drugs that are effluxed by placental P-glycoprotein (P-gp)-namely, dexamethasone, betamethasone, darunavir, and lopinavir. Using Transwell, we determined the efflux ratio of these drugs in hMDR1-MDCKcP-gpKO cells, in which human P-gp was overexpressed and the endogenous P-gp was knocked out. Then, using the proteomics-informed efflux ratio-relative expressive factor approach, we predicted the fetal Kp,uu of these drugs at term. Finally, to verify our predictions, we compared them with the observed in vivo fetal Kp,uu at term. The latter was estimated using our m-f PBPK model and published fetal [umbilical vein (UV)]/maternal plasma drug concentrations obtained at term (UV/maternal plasma). Fetal Kp,uu predictions for dexamethasone (0.63), betamethasone (0.59), darunavir (0.17), and lopinavir (0.08) were successful, as they fell within the 90% confidence interval of the corresponding in vivo fetal Kp,uu (0.30-0.66, 0.29-0.71, 0.11-0.22, 0.04-0.19, respectively). This is the first demonstration of successful prediction of fetal Kp,uu of P-gp drug substrates from in vitro studies. SIGNIFICANCE STATEMENT: For the first time, using in vitro studies in cells, this study successfully predicted human fetal Kp,uu of P-gp substrate drugs. This success confirms that the m-f PBPK model, combined with the ER-REF approach, can successfully predict fetal drug exposure to P-gp substrates. This success provides increased confidence in the use of the ER-REF approach, combined with the m-f PBPK model, to predict fetal Kp,uu of drugs (transported by P-gp or other transporters), both at term and at earlier gestational ages.
Collapse
Affiliation(s)
- Olena Anoshchenko
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Flavia Storelli
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
16
|
Cetin G, Tras B, Uney K. The Effects of P‐glycoprotein Modulators on the Transition of Levofloxacin to Rat Brain, Testicle, and Plasma: In Vivo and In Silico Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202102122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gul Cetin
- Department of Pharmacology Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24100 Turkey
| | - Bunyamin Tras
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Selcuk University Konya 42031 Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Selcuk University Konya 42031 Turkey
| |
Collapse
|
17
|
Shintani Y, Kato K, Kawami M, Takano M, Kumamoto T. Direct N 1-Selective Alkylation of Hydantoins Using Potassium Bases. Chem Pharm Bull (Tokyo) 2021; 69:407-410. [PMID: 33790085 DOI: 10.1248/cpb.c20-00857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydantoins, including the antiepileptic drug phenytoin, contain an amide nitrogen and an imide nitrogen, both of which can be alkylated. However, due to the higher acidity of its proton, N3 can be more easily alkylated than N1 under basic conditions. In this study, we explored methods for direct N1-selective methylation of phenytoin and found that conditions using potassium bases [potassium tert-butoxide (tBuOK) and potassium hexamethyldisilazide (KHMDS)] in tetrahydrofuran (THF) gave N1-monomethylated phenytoin in good yield. The applicable scope of this reaction system was found to include various hydantoins and alkyl halides. To explore the function of methylated hydantoins, the effects of a series of methylated phenytoins on P-glycoprotein were examined, but none of methylated products showed inhibitory activity toward rhodamine 123 efflux by P-glycoprotein.
Collapse
Affiliation(s)
- Yumi Shintani
- Department of Synthetic Organic Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Koichi Kato
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry
| | - Masashi Kawami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takuya Kumamoto
- Department of Synthetic Organic Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
18
|
Sasahara K, Shibata M, Sasabe H, Suzuki T, Takeuchi K, Umehara K, Kashiyama E. Feature importance of machine learning prediction models shows structurally active part and important physicochemical features in drug design. Drug Metab Pharmacokinet 2021; 39:100401. [PMID: 34089983 DOI: 10.1016/j.dmpk.2021.100401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
The objective of this study was to obtain the indicators of physicochemical parameters and structurally active sites to design new chemical entities with desirable pharmacokinetic profiles by investigating the process by which machine learning prediction models arrive at their decisions, which are called explainable artificial intelligence. First, we developed the prediction models for metabolic stability, CYP inhibition, and P-gp and BCRP substrate recognition using 265 physicochemical parameters for designing the molecular structures. Four important parameters, including the well-known indicator h_logD, are common in some in vitro studies; as such, these can be used to optimize compounds simultaneously to address multiple pharmacokinetic concerns. Next, we developed machine learning models that had been programmed to show structurally active sites. Many types of machine learning models were developed using the results of in vitro metabolic stability study of around 30000 in-house compounds. The metabolic sites of in-house compounds predicted using some prediction models matched experimentally identified metabolically active sites, with a ratio of number of metabolic sites (predicted/actual) of over 90%. These models can be applied to several screening projects. These two approaches can be employed for obtaining lead compounds with desirable pharmacokinetic profiles efficiently.
Collapse
Affiliation(s)
- Katsunori Sasahara
- Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan.
| | - Masakazu Shibata
- Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan.
| | - Hiroyuki Sasabe
- Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan.
| | - Tomoki Suzuki
- Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan.
| | - Kenji Takeuchi
- Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan.
| | - Ken Umehara
- Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan.
| | - Eiji Kashiyama
- Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan.
| |
Collapse
|
19
|
Nakazono Y, Arakawa H, Nishino M, Yamaki I, Oba T, Tomotoshi K, Kakinuma C, Ogihara T, Tamai I. Drug Transcellular Transport Assay Using a High Porosity Honeycomb Film. Biol Pharm Bull 2021; 44:635-641. [PMID: 33952820 DOI: 10.1248/bpb.b20-00925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro transport studies across cells grown on culture inserts are widely used for evaluating pharmacokinetic characteristics such as intestinal membrane permeability. However, measurements of the apparent permeability coefficient of highly lipophilic compounds are often limited by transport across the membrane filters, not by transport across the cultured cells. To overcome this concern, we have investigated the utility of a high-porosity membrane honeycomb film (HCF) for transcellular transport studies. Using the HCF inserts, the apparent permeability coefficient (Papp) of the drugs tested in LLC-PK1 and Caco-2 cells tended to increase with an increase in lipophilicity, reaching a maximum Papp value at Log D higher than 2. In contrast, using the commercially available Track-Etched membrane (TEM) inserts, a maximum value was observed at Log D higher than 1. The basolateral to apical transport permeability Papp(BL→AP) of rhodamine 123 across LLC-PK1 cells that express P-glycoprotein (P-gp) cultured on HCF inserts and TEM inserts was 2.33 and 2.39 times higher than the reverse directional Papp(AP→BL) permeability, respectively. The efflux ratio (Papp(B-A)/Papp(A-B)) of rhodamine 123 in LLC-PK1 expressing P-gp cells using HCF inserts was comparable to that obtained using TEM inserts, whereas the transported amount in both directions was significantly higher when using the HCF inserts. Accordingly, due to the higher permeability and high porosity of HCF membranes, it is expected that transcellular transport of high lipophilic as well as hydrophilic compounds and substrate recognition of transporters can be evaluated more accurately by using HCF inserts.
Collapse
Affiliation(s)
- Yuya Nakazono
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | | | - Ikumi Yamaki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Takahiro Oba
- Bio Science & Engineering Laboratory, Fujifilm Corporation
| | | | | | - Takuo Ogihara
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
20
|
Tuey SM, Atilano-Roque A, Charkoftaki G, Thurman JM, Nolin TD, Joy MS. Influence of vitamin D treatment on functional expression of drug disposition pathways in human kidney proximal tubule cells during simulated uremia. Xenobiotica 2021; 51:657-667. [PMID: 33870862 DOI: 10.1080/00498254.2021.1909783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Effects of cholecalciferol (VitD3) and calcitriol (1,25-VitD3), on the expression and function of major vitamin D metabolizing enzymes (cytochrome P450 [CYP]2R1, CYP24A1) and select drug transport pathways (ABCB1/P-gp, SLCO4C1/OATP4C1) were evaluated in human kidney proximal tubule epithelial cells (hPTECs) under normal and uraemic serum conditions.hPTECs were incubated with 10% normal or uraemic serum for 24 h followed by treatment with 2% ethanol vehicle, or 100 and 240 nM doses of VitD3, or 1,25-VitD3 for 6 days. The effects of treatment on mRNA and protein expression and functional activity of select CYP enzymes and transporters were assessedUnder uraemic serum, treatment with 1,25-VitD3 resulted in increased mRNA but decreased protein expression of CYP2R1. Activity of CYP2R1 was not influenced by serum or VitD analogues. CYP24A1 expression was increased with 1,25-VitD3 under normal as well as uraemic serum, although to a lesser extent. ABCB1/P-gp mRNA expression increased under normal and uraemic serum, with exposure to 1,25-VitD3. SLCO4C1/OATP4C1 exhibited increased mRNA but decreased protein expression, under uraemic serum + 1,25-VitD3. Functional assessments of transport showed no changes regardless of exposure to serum or 1,25-VitD3.Key findings indicate that uraemic serum and VitD treatment led to differential effects on the functional expression of CYPs and transporters in hPTECs.
Collapse
Affiliation(s)
- Stacey M Tuey
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Amandla Atilano-Roque
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Georgia Charkoftaki
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.,School of Public Health, Yale University, New Haven, CT, USA
| | - Joshua M Thurman
- Division of Nephrology and Hypertension, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.,Division of Nephrology and Hypertension, School of Medicine, University of Colorado, Aurora, CO, USA
| |
Collapse
|
21
|
Ly LK, Doden HL, Ridlon JM. Gut feelings about bacterial steroid-17,20-desmolase. Mol Cell Endocrinol 2021; 525:111174. [PMID: 33503463 PMCID: PMC8886824 DOI: 10.1016/j.mce.2021.111174] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Advances in technology are only beginning to reveal the complex interactions between hosts and their resident microbiota that have co-evolved over centuries. In this review, we present compelling evidence that implicates the host-associated microbiome in the generation of 11β-hydroxyandrostenedione, leading to the formation of potent 11-oxy-androgens. Microbial steroid-17,20-desmolase cleaves the side-chain of glucocorticoids (GC), including cortisol (and its derivatives of cortisone, 5α-dihydrocortisol, and also (allo)- 3α, 5α-tetrahydrocortisol, but not 3α-5β-tetrahydrocortisol) and drugs (prednisone and dexamethasone). In addition to side-chain cleavage, we discuss the gut microbiome's robust potential to transform a myriad of steroids, mirroring much of the host's metabolism. We also explore the overlooked role of intestinal steroidogenesis and efflux pumps as a potential route for GC transport into the gut. Lastly, we propose several health implications from microbial steroid-17,20-desmolase function, including aberrant mineralocorticoid, GC, and androgen receptor signaling in colonocytes, immune cells, and prostate cells, which may exacerbate disease states.
Collapse
Affiliation(s)
- Lindsey K Ly
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Heidi L Doden
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jason M Ridlon
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center of Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
22
|
Goda M, Ikehara M, Sakitani M, Oda K, Ishizawa K, Otsuka M. Involvement of Human Multidrug and Toxic Compound Extrusion (MATE) Transporters in Testosterone Transport. Biol Pharm Bull 2021; 44:501-506. [PMID: 33790101 DOI: 10.1248/bpb.b20-00753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multidrug and toxic compound extrusion (MATE) transporters are primarily expressed in the kidneys and liver, where they contribute to the excretion of organic cations. Our previous study suggested that pig MATE2 (class III) participates in testosterone secretion from Leydig cells. In humans, it is unclear which MATE class is involved in testosterone transport. In this study, we aimed to clarify whether human MATE1 (hMATE1) or human MATE2K (hMATE2K) mediates testosterone transport. To confirm that testosterone inhibits transporter-mediated tetraethylammonium (TEA) uptake, a cis-inhibition assay was performed using cells that stably expressed hMATE1 or hMATE2K. Docking simulations were performed to characterize differences in the binding of hMATE1 and hMATE2K to testosterone. Transport experiments in LLC-PK1 cells that stably expressed hMATE1 were used to test whether hMATE1 mediates testosterone transport. We detected differences between the amino acid sequences of the substrate-binding sites of hMATE1 and hMATE2K that could potentially be involved in testosterone binding. Testosterone and estradiol inhibited TEA uptake mediated by hMATE1 but not that mediated by hMATE2K. Transport experiments in LLC-PK1 cells indicated that testosterone might be transported via hMATE1. This study suggested that hMATE1, but not hMATE2K, is involved in human testosterone transport.
Collapse
Affiliation(s)
- Mitsuhiro Goda
- Department of Pharmacy, Tokushima University Hospital.,Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
| | - Momo Ikehara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Mako Sakitani
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Kana Oda
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital.,Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
| | - Masato Otsuka
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
23
|
Song D, Jusko WJ. Across‐species meta‐analysis of dexamethasone pharmacokinetics utilizing allometric and scaling modeling approaches. Biopharm Drug Dispos 2021; 42:191-203. [DOI: 10.1002/bdd.2266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Dawei Song
- Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences State University of New York at Buffalo Buffalo New York USA
| | - William J Jusko
- Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences State University of New York at Buffalo Buffalo New York USA
| |
Collapse
|
24
|
Watanabe R, Esaki T, Ohashi R, Kuroda M, Kawashima H, Komura H, Natsume-Kitatani Y, Mizuguchi K. Development of an In Silico Prediction Model for P-glycoprotein Efflux Potential in Brain Capillary Endothelial Cells toward the Prediction of Brain Penetration. J Med Chem 2021; 64:2725-2738. [PMID: 33619967 DOI: 10.1021/acs.jmedchem.0c02011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Developing in silico models to predict the brain penetration of drugs remains a challenge owing to the intricate involvement of multiple transport systems in the blood brain barrier, and the necessity to consider a combination of multiple pharmacokinetic parameters. P-glycoprotein (P-gp) is one of the most important transporters affecting the brain penetration of drugs. Here, we developed an in silico prediction model for P-gp efflux potential in brain capillary endothelial cells (BCEC). Using the representative values of P-gp net efflux ratio in BCEC, we proposed a novel prediction system for brain-to-plasma concentration ratio (Kp,brain) and unbound brain-to-plasma concentration ratio (Kp,uu,brain) of P-gp substrates. We validated the proposed prediction system using newly acquired experimental brain penetration data of 28 P-gp substrates. Our system improved the predictive accuracy of brain penetration of drugs using only chemical structure information compared with that of previous studies.
Collapse
Affiliation(s)
- Reiko Watanabe
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Tsuyoshi Esaki
- The Center for Data Science Education and Research, Shiga University, Hikone, Shiga 522-8522, Japan
| | - Rikiya Ohashi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Discovery Technology Laboratories, Mitsubishi Tanabe Pharma Corporation, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Masataka Kuroda
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Discovery Technology Laboratories, Mitsubishi Tanabe Pharma Corporation, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Hitoshi Kawashima
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Hiroshi Komura
- URA Center, Osaka City University, Osaka 545-0051, Japan
| | - Yayoi Natsume-Kitatani
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Laboratory of In-Silico Drug Design, Center of Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| |
Collapse
|
25
|
Li X, DuBois DC, Almon RR, Jusko WJ. Physiologically Based Pharmacokinetic Modeling Involving Nonlinear Plasma and Tissue Binding: Application to Prednisolone and Prednisone in Rats. J Pharmacol Exp Ther 2020; 375:385-396. [PMID: 32883831 DOI: 10.1124/jpet.120.000191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022] Open
Abstract
The pharmacokinetics (PK) of prednisolone (PNL) exhibit nonlinearity related to plasma protein binding, tissue binding, metabolic interconversion with prednisone (PN), and renal elimination. Blood and 11 tissues were collected from male Wistar rats after steady-state (SS) infusion and after subcutaneous boluses of 50 mg/kg of PNL. Concentrations of PNL and PN were measured by liquid chromatography-tandem mass spectrometry. Plasma and tissue profiles were described using a complex physiologically based pharmacokinetics (PBPK) model. Concentrations of PN and PNL were in rapid equilibrium in plasma and tissues. The tissue partition coefficients (K p ) of PNL calculated from most subcutaneously dosed tissue and plasma areas were similar to SS infusion and in silico values. The blood-to-plasma ratio of PNL was 0.71 with similar red blood cell and unbound-plasma concentrations. Plasma protein binding (60%-90%) was related to corticosteroid-binding globulin (CBG) saturation. Tissue distribution was nonlinear. The equilibrium dissociation constant (K d ) of PNL shared by all tissues was 3.01 ng/ml, with the highest binding in muscle, followed by liver, heart, intestine, and bone and the lowest binding in skin, spleen, fat, kidney, lung, and brain. Fat and bone distribution assumed access only to interstitial space. Brain PNL concentrations (K p = 0.05) were low owing to presumed P-glycoprotein-mediated efflux. Clearances of CBG-free PNL were 1789 from liver and 191.2 ml/h from kidney. The PN/PNL ratio was nonlinear for plasma, spleen, heart, intestine, bone, fat, and linear for the remaining tissues. Our PBPK model with multiple complexities well described the PK profiles of PNL and PN in blood, plasma, and diverse tissues. SIGNIFICANCE STATEMENT: Because steroids, such as prednisolone and prednisone, have similar and complex pharmacokinetics properties in various species, receptors in most tissues, and multiple therapeutic and adverse actions, this physiologically based pharmacokinetics (PBPK) model may provide greater insights into the pharmacodynamic complexities of corticosteroids. The complex properties of these compounds require innovative PBPK modeling approaches that may be instructive for other therapeutic agents.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., R.R.A., W.J.J.) and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., R.R.A., W.J.J.) and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., R.R.A., W.J.J.) and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., R.R.A., W.J.J.) and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
26
|
Abstract
OBJECTIVES P-glycoprotein (P-gp), the product of the ABCB1 gene, is involved in the transport of aldosterone and cortisol in adrenal cells in vitro but its physiological role in humans remains controversial. Our objective was to test the influence of P-gp polymorphisms on aldosterone. METHODS We evaluated plasma aldosterone concentration (PAC), urinary aldosterone, and blood pressure in a cohort of white normotensive men at baseline on diets unrestricted for sodium and potassium and after a 5-day treatment with 500 mg b.i.d. clarithromycin, a P-gp inhibitor. Included were 20 homozygous wild-type (P-gp0), 20 heterozygous (P-gp1), and 20 individuals with combined 2677G>T/A-3435C>T loss-of-function polymorphism of the ABCB1 gene (P-gp2). RESULTS At baseline, PAC, urinary aldosterone, urinary free cortisol to urine creatinine ratios, and blood pressure did not differ in the three genotypes. After clarithromycin administration, the urinary aldosterone to creatinine ratio increased by an average of 30% in the entire cohort (P < 0.001, n = 60). Increases were pronounced in P-gp1 (+40%; P = 0.014) and P-gp2 individuals (+50%; P = 0.020) but lesser and were NS in P-gp0 individuals (+10%; P = 0.259). PAC also increased from baseline after clarithromycin treatment in all individuals (+19%, P = 0.050); however, the increase in PAC was NS when the three genotypes were analyzed separately. CONCLUSION In our experimental conditions, the interaction between P-gp inhibition and the ABCB1 genotype, suggests that aldosterone is indeed a physiological endogenous substrate of P-gp in humans and that P-gp interferes with the net equilibrium between aldosterone secretion and elimination processes in humans.Clinical Trial Registration - URL: http://www.clinicaltrials.gov. Unique identifier: NCT01627665.
Collapse
|
27
|
Song D, Sun L, DuBois DC, Almon RR, Meng S, Jusko WJ. Physiologically Based Pharmacokinetics of Dexamethasone in Rats. Drug Metab Dispos 2020; 48:811-818. [PMID: 32601175 DOI: 10.1124/dmd.120.091017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Blood and multitissue concentration-time profiles for dexamethasone (DEX), a synthetic corticosteroid, were measured in male rats after subcutaneous bolus and infusion dosing. A physiologically based pharmacokinetics (PBPK) model was applied for 12 measured tissues. Tissue partition coefficients (K p ) and metabolic clearance were assessed from infusion studies. Blood cell to plasma partitioning (0.664) and plasma free fraction (0.175) for DEX were found to be moderate. DEX was extensively partitioned into liver (K p = 6.76), whereas the calculated K p values of most tissues ranged between 0.1 and 1.5. Despite the moderate lipophilicity of DEX (log P = 1.8), adipose exhibited very limited distribution (K p = 0.17). Presumably due to P-glycoprotein-mediated efflux, DEX concentrations were very low in brain compared with its expected high permeability. Infusion studies yielded K p values from male and female rats at steady state that were similar. In silico K p values calculated for different tissues by using GastroPlus software were similar to in vivo values except for adipose and liver. Glucocorticoid receptors are found in diverse tissues, and these PBPK modeling results may help provide exposure profiles driving pharmacodynamic effects of DEX. SIGNIFICANCE STATEMENT: Our physiologically based pharmacokinetics model describes the experimentally determined tissue and plasma dexamethasone (DEX) pharmacokinetics (PK) profiles in rats reasonably well. This model can serve for further investigation of DEX tissue distribution in rats as the PK driving force for PD effects in different tissues. No major sex differences were found for DEX tissue distribution. Knowledge gained in this study may be translatable to higher-order species including humans.
Collapse
Affiliation(s)
- Dawei Song
- Departments of Pharmaceutical Sciences (D.S., L.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York; and Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China (S.M.)
| | - Le Sun
- Departments of Pharmaceutical Sciences (D.S., L.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York; and Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China (S.M.)
| | - Debra C DuBois
- Departments of Pharmaceutical Sciences (D.S., L.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York; and Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China (S.M.)
| | - Richard R Almon
- Departments of Pharmaceutical Sciences (D.S., L.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York; and Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China (S.M.)
| | - Shengnan Meng
- Departments of Pharmaceutical Sciences (D.S., L.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York; and Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China (S.M.)
| | - William J Jusko
- Departments of Pharmaceutical Sciences (D.S., L.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York; and Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China (S.M.)
| |
Collapse
|
28
|
Advances in blood-brain barrier modeling in microphysiological systems highlight critical differences in opioid transport due to cortisol exposure. Fluids Barriers CNS 2020; 17:38. [PMID: 32493346 PMCID: PMC7269003 DOI: 10.1186/s12987-020-00200-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/27/2020] [Indexed: 01/16/2023] Open
Abstract
Background The United States faces a national crisis involving opioid medications, where currently more than 130 people die every day. To combat this epidemic, a better understanding is needed of how opioids penetrate into the central nervous system (CNS) to facilitate pain relief and, potentially, result in addiction and/or misuse. Animal models, however, are a poor predictor of blood–brain barrier (BBB) transport and CNS drug penetration in humans, and many traditional 2D cell culture models of the BBB and neurovascular unit have inadequate barrier function and weak or inappropriate efflux transporter expression. Here, we sought to better understand opioid transport mechanisms using a simplified microfluidic neurovascular unit (NVU) model consisting of human brain microvascular endothelial cells (BMECs) co-cultured with astrocytes. Methods Human primary and induced pluripotent stem cell (iPSC)-derived BMECs were incorporated into a microfluidic NVU model with several technical improvements over our previous design. Passive barrier function was assessed by permeability of fluorescent dextrans with varying sizes, and P-glycoprotein function was assessed by rhodamine permeability in the presence or absence of inhibitors; quantification was performed with a fluorescent plate reader. Loperamide, morphine, and oxycodone permeability was assessed in the presence or absence of P-glycoprotein inhibitors and cortisol; quantification was performed with mass spectrometry. Results We first report technical and methodological optimizations to our previously described microfluidic model using primary human BMECs, which results in accelerated barrier formation, decreased variability, and reduced passive permeability relative to Transwell models. We then demonstrate proper transport and efflux of loperamide, morphine, and oxycodone in the microfluidic NVU containing BMECs derived from human iPSCs. We further demonstrate that cortisol can alter permeability of loperamide and morphine in a divergent manner. Conclusions We reveal a novel role for the stress hormone cortisol in modulating the transport of opioids across the BBB, which could contribute to their abuse or overdose. Our updated BBB model represents a powerful tool available to researchers, clinicians, and drug manufacturers for understanding the mechanisms by which opioids access the CNS.
Collapse
|
29
|
Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS 2020; 17:35. [PMID: 32375819 PMCID: PMC7201396 DOI: 10.1186/s12987-020-00196-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
The choroid plexus (CP) forming the blood-cerebrospinal fluid (B-CSF) barrier is among the least studied structures of the central nervous system (CNS) despite its clinical importance. The CP is an epithelio-endothelial convolute comprising a highly vascularized stroma with fenestrated capillaries and a continuous lining of epithelial cells joined by apical tight junctions (TJs) that are crucial in forming the B-CSF barrier. Integrity of the CP is critical for maintaining brain homeostasis and B-CSF barrier permeability. Recent experimental and clinical research has uncovered the significance of the CP in the pathophysiology of various diseases affecting the CNS. The CP is involved in penetration of various pathogens into the CNS, as well as the development of neurodegenerative (e.g., Alzheimer´s disease) and autoimmune diseases (e.g., multiple sclerosis). Moreover, the CP was shown to be important for restoring brain homeostasis following stroke and trauma. In addition, new diagnostic methods and treatment of CP papilloma and carcinoma have recently been developed. This review describes and summarizes the current state of knowledge with regard to the roles of the CP and B-CSF barrier in the pathophysiology of various types of CNS diseases and sets up the foundation for further avenues of research.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital Brno, Pekařská 53, CZ-656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Lucie Kubíčková
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Petr Dubový
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic.
| |
Collapse
|
30
|
Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101581] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Yano K, Seto S, Kamioka H, Mizoi K, Ogihara T. Testosterone and androstenedione are endogenous substrates of P-glycoprotein. Biochem Biophys Res Commun 2019; 520:166-170. [DOI: 10.1016/j.bbrc.2019.09.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
|
32
|
Rat Kidney Slices for Evaluation of Apical Membrane Transporters in Proximal Tubular Cells. J Pharm Sci 2019; 108:2798-2804. [DOI: 10.1016/j.xphs.2019.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/22/2022]
|
33
|
do Socorro Silva Costa P, Woycinck Kowalski T, Rosa Fraga L, Furtado Feira M, Nazário AP, MarceloAranha Camargo L, Iop de Oliveira Caldoncelli D, Irismar da Silva Silveira M, Hutz MH, Schüler-Faccini L, Sales Luiz Vianna F. NR3C1, ABCB1, TNF and CYP2C19 polymorphisms association with the response to the treatment of erythema nodosum leprosum. Pharmacogenomics 2019; 20:503-516. [PMID: 31124417 DOI: 10.2217/pgs-2018-0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To evaluate the effects of gene polymorphisms in the treatment of erythema nodosum leprosum with prednisone/thalidomide. Patients & methods: A total of 152 patients from different regions of Brazil were included. Generalized estimating equation was used to evaluate the influence of polymorphisms and haplotypes on the drug dose variation throughout the treatment. Results: An association between the genotype tuberculoid of polymorphism ABCB1 3435C>T (rs1045642; p = 0.02) and prednisone dose was found in the recessive model. An association between the haplotypes 1031T/-863C/-857C/-308A/-238G (p = 0.006) and 1031T/-863C/-857T/-308A/-238G (p = 0.040) of the TNF gene and the CYP2C19*2 polymorphism were also identified, in relation to thalidomide dosage variation over the course of treatment. Conclusion: This work presents the first pharmacogenetic report of association between gene polymorphisms and erythema nodosum leprosum treatment with prednisone/thalidomide.
Collapse
Affiliation(s)
- Perpétua do Socorro Silva Costa
- Postgraduate Program in Genetics & Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,INAGEMP, Instituto Nacional de Genética Médica Populacional, Porto Alegre, RS, Brazil.,Center of Social Sciences, Health & Technology, Universidade Federal do Maranhão, Imperatriz, MA, Brazil
| | - Thayne Woycinck Kowalski
- Postgraduate Program in Genetics & Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,INAGEMP, Instituto Nacional de Genética Médica Populacional, Porto Alegre, RS, Brazil.,Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Teratogen Information Service, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Lucas Rosa Fraga
- INAGEMP, Instituto Nacional de Genética Médica Populacional, Porto Alegre, RS, Brazil.,Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Teratogen Information Service, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mariléa Furtado Feira
- INAGEMP, Instituto Nacional de Genética Médica Populacional, Porto Alegre, RS, Brazil.,Center of Experimental Research, Genomics Medicine Laboratory & Laboratory of Research in Bioethics & Ethics in Research (LAPEBEC), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ana Paula Nazário
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Luis MarceloAranha Camargo
- Institute of Biomedical Sciences-5, Universidade de São Paulo, Monte Negro, Rondônia, Brazil.,Center for Research in Tropical Medicine, Porto Velho, Rondônia, Brazil.,National Institute of Science and Technology-EpiAmo, Rondônia, Brazil.,Department of Medicine, Centro Universitário São Lucas, Porto Velho, Rondônia, Brazil
| | | | | | - Mara Helena Hutz
- Postgraduate Program in Genetics & Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lavínia Schüler-Faccini
- Postgraduate Program in Genetics & Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,INAGEMP, Instituto Nacional de Genética Médica Populacional, Porto Alegre, RS, Brazil.,Teratogen Information Service, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduate Program in Genetics & Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,INAGEMP, Instituto Nacional de Genética Médica Populacional, Porto Alegre, RS, Brazil.,Teratogen Information Service, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Center of Experimental Research, Genomics Medicine Laboratory & Laboratory of Research in Bioethics & Ethics in Research (LAPEBEC), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
34
|
Sugiura Y, Takeo E, Shimma S, Yokota M, Higashi T, Seki T, Mizuno Y, Oya M, Kosaka T, Omura M, Nishikawa T, Suematsu M, Nishimoto K. Aldosterone and 18-Oxocortisol Coaccumulation in Aldosterone-Producing Lesions. Hypertension 2019; 72:1345-1354. [PMID: 30571232 DOI: 10.1161/hypertensionaha.118.11243] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Primary aldosteronism is a secondary hypertensive disease caused by autonomous aldosterone production that often caused by an aldosterone-producing adenoma (APA). Immunohistochemistry of aldosterone synthase (CYP11B2) shows the presence of aldosterone-producing cell clusters (APCCs) even in non-primary aldosteronism adult adrenal cortex. An APCC-like structure also exists as possible APCC-to-APA transitional lesions (a speculative designation) in primary aldosteronism adrenals. However, whether APCCs produce aldosterone or 18-oxocortisol, a potential serum marker of APA, remains unknown because of lack of technology to visualize adrenocorticosteroids on tissue sections. To address this obstacle, in this study, we used highly sensitive Fourier transform ion cyclotron resonance mass spectrometry to image various adrenocorticosteroids, including 18-oxocortisol, in adrenal tissue sections from 8 primary aldosteronism patients with APCC (cases 1-4), possible APCC-to-APA transitional lesions (case 5), and APA (cases 6-8). Further analyses by tandem mass spectrometry imaging allowed us to differentially visualize aldosterone from cortisone, which share identical mass-to-charge ratio value ( m/z). In conclusion, these advanced imaging techniques revealed that aldosterone and 18-oxocortisol coaccumulated within CYP11B2-expressing lesions. These imaging outcomes along with a growing body of aldosterone research led us to build a progressive development hypothesis of an aldosterone-producing pathology in the adrenal glands.
Collapse
Affiliation(s)
- Yuki Sugiura
- From the Department of Biochemistry (Y.S., M.S., K.N.), Keio University School of Medicine, Tokyo, Japan
| | - Emi Takeo
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan (E.T., S.S.)
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan (E.T., S.S.)
| | - Mai Yokota
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan (M.Y., T.H.)
| | - Tatsuya Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan (M.Y., T.H.)
| | - Tsugio Seki
- Department of Medical Education, School of Medicine, California University of Science and Medicine, San Bernardino (T.S.)
| | - Yosuke Mizuno
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidakashi, Japan (Y.M.)
| | - Mototsugu Oya
- Department of Urology (M. Oya, T.K.), Keio University School of Medicine, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology (M. Oya, T.K.), Keio University School of Medicine, Tokyo, Japan
| | - Masao Omura
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Japan (M. Omura, T.N.)
| | - Tetsuo Nishikawa
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Japan (M. Omura, T.N.)
| | - Makoto Suematsu
- From the Department of Biochemistry (Y.S., M.S., K.N.), Keio University School of Medicine, Tokyo, Japan
| | - Koshiro Nishimoto
- From the Department of Biochemistry (Y.S., M.S., K.N.), Keio University School of Medicine, Tokyo, Japan.,Department of Uro-Oncology, Saitama Medical University International Medical Center, Hidaka, Japan (K.N.)
| |
Collapse
|
35
|
Zaidi S, Chen MJ, Lee DT, Neubart E, Ewing P, Miller-Larsson A, Hochhaus G. Fetal Concentrations of Budesonide and Fluticasone Propionate: a Study in Mice. AAPS JOURNAL 2019; 21:53. [PMID: 30993489 DOI: 10.1208/s12248-019-0313-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 02/27/2019] [Indexed: 01/01/2023]
Abstract
The study goal was to evaluate the transplacental transfer of two corticosteroids, budesonide (BUD) and fluticasone propionate (FP), in pregnant mice and investigate whether P-glycoprotein (P-gp) might be involved in reducing BUD transplacental transfer. Pregnant mice (N = 18) received intravenously either low (104.9 μg/kg) or high (1049 μg/kg) dose of [3H]-BUD or a high dose of [3H]-FP (1590 μg/kg). In a separate experiment, pregnant mice (N = 12) received subcutaneously either the P-gp inhibitor zosuquidar (20 mg/kg) or vehicle, followed by an intravenous infusion of [3H]-BUD (104.9 μg/kg). Total and free (protein unbound) corticosteroid concentrations were determined in plasma, brain, fetus, placenta, kidney, and liver. The ratios of free BUD concentrations in fetus versus plasma K(fetus, plasma, u, u) 0.42 ± 0.17 (mean ± SD) for low-dose and 0.38 ± 0.18 for high-dose BUD were significantly different from K = 1 (P < 0.05), contrary to 0.87 ± 0.25 for FP, which was moreover significantly higher than that for matching high-dose BUD (P < 0.01). The BUD brain/plasma ratio was also significantly smaller than K = 1, while these ratios for other tissues were close to 1. In the presence of the P-gp inhibitor, K(fetus, plasma, u, u) for BUD (0.59 ± 0.16) was significantly increased over vehicle treatment (0.31 ± 0.10; P < 0.01). This is the first in vivo study demonstrating that transplacental transfer of BUD is significantly lower than FP's transfer and that placental P-gp may be involved in reducing the fetal exposure to BUD. The study provides a mechanistic rationale for BUD's use in pregnancy.
Collapse
Affiliation(s)
- Syedsaoud Zaidi
- Departments of Pharmaceutics, JHMHC, P3-33, University of Florida, 100494, Gainesville, Florida, 32610, USA
| | - Mong-Jen Chen
- Departments of Pharmaceutics, JHMHC, P3-33, University of Florida, 100494, Gainesville, Florida, 32610, USA
| | - Daniel T Lee
- Departments of Pharmaceutics, JHMHC, P3-33, University of Florida, 100494, Gainesville, Florida, 32610, USA
| | - Elsa Neubart
- Departments of Pharmaceutics, JHMHC, P3-33, University of Florida, 100494, Gainesville, Florida, 32610, USA
| | - Pär Ewing
- AstraZeneca Gothenburg, 431 83, Mölndal, Sweden
| | | | - Günther Hochhaus
- Departments of Pharmaceutics, JHMHC, P3-33, University of Florida, 100494, Gainesville, Florida, 32610, USA.
| |
Collapse
|
36
|
Ohashi R, Watanabe R, Esaki T, Taniguchi T, Torimoto-Katori N, Watanabe T, Ogasawara Y, Takahashi T, Tsukimoto M, Mizuguchi K. Development of Simplified in Vitro P-Glycoprotein Substrate Assay and in Silico Prediction Models To Evaluate Transport Potential of P-Glycoprotein. Mol Pharm 2019; 16:1851-1863. [PMID: 30933526 DOI: 10.1021/acs.molpharmaceut.8b01143] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
For efficient drug discovery and screening, it is necessary to simplify P-glycoprotein (P-gp) substrate assays and to provide in silico models that predict the transport potential of P-gp. In this study, we developed a simplified in vitro screening method to evaluate P-gp substrates by unidirectional membrane transport in P-gp-overexpressing cells. The unidirectional flux ratio positively correlated with parameters of the conventional bidirectional P-gp substrate assay ( R2 = 0.941) and in vivo Kp,brain ratio (mdr1a/1b KO/WT) in mice ( R2 = 0.800). Our in vitro P-gp substrate assay had high reproducibility and required approximately half the labor of the conventional method. We also constructed regression models to predict the value of P-gp-mediated flux and three-class classification models to predict P-gp substrate potential (low-, medium-, and high-potential) using 2397 data entries with the largest data set collected under the same experimental conditions. Most compounds in the test set fell within two- and three-fold errors in the random forest regression model (71.3 and 88.5%, respectively). Furthermore, the random forest three-class classification model showed a high balanced accuracy of 0.821 and precision of 0.761 for the low-potential classes in the test set. We concluded that the simplified in vitro P-gp substrate assay was suitable for compound screening in the early stages of drug discovery and that the in silico regression model and three-class classification model using only chemical structure information could identify the transport potential of compounds including P-gp-mediated flux ratios. Our proposed method is expected to be a practical tool to optimize effective central nervous system (CNS) drugs, to avoid CNS side effects, and to improve intestinal absorption.
Collapse
Affiliation(s)
- Rikiya Ohashi
- Laboratory of Bioinformatics , National Institutes of Biomedical Innovation, Health and Nutrition , 7-6-8 Saito-Asagi , Ibaraki , Osaka 567-0085 , Japan
| | - Reiko Watanabe
- Laboratory of Bioinformatics , National Institutes of Biomedical Innovation, Health and Nutrition , 7-6-8 Saito-Asagi , Ibaraki , Osaka 567-0085 , Japan
| | - Tsuyoshi Esaki
- Laboratory of Bioinformatics , National Institutes of Biomedical Innovation, Health and Nutrition , 7-6-8 Saito-Asagi , Ibaraki , Osaka 567-0085 , Japan
| | | | | | | | | | | | | | - Kenji Mizuguchi
- Laboratory of Bioinformatics , National Institutes of Biomedical Innovation, Health and Nutrition , 7-6-8 Saito-Asagi , Ibaraki , Osaka 567-0085 , Japan
| |
Collapse
|
37
|
The Impact of Endogenous Breast Cancer Resistance Protein on Human P-Glycoprotein-Mediated Transport Assays Using LLC-PK1 Cells Transfected With Human P-Glycoprotein. J Pharm Sci 2019; 108:1085-1089. [DOI: 10.1016/j.xphs.2018.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/19/2018] [Accepted: 10/08/2018] [Indexed: 01/13/2023]
|
38
|
Erdmann P, Bruckmueller H, Martin P, Busch D, Haenisch S, Müller J, Wiechowska-Kozlowska A, Partecke LI, Heidecke CD, Cascorbi I, Drozdzik M, Oswald S. Dysregulation of Mucosal Membrane Transporters and Drug-Metabolizing Enzymes in Ulcerative Colitis. J Pharm Sci 2019; 108:1035-1046. [DOI: 10.1016/j.xphs.2018.09.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023]
|
39
|
Li M, Zhu L, Chen L, Li N, Qi F. Assessment of drug–drug interactions between voriconazole and glucocorticoids. J Chemother 2019; 30:296-303. [PMID: 30843777 DOI: 10.1080/1120009x.2018.1506693] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- MengXue Li
- Pharmaceutical College, Tianjin Medical University, Tianjin, China
| | - LiQin Zhu
- Pharmaceutical College, Tianjin Medical University, Tianjin, China
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, China
| | - Lu Chen
- Pharmaceutical College, Tianjin Medical University, Tianjin, China
| | - Na Li
- Pharmaceutical College, Tianjin Medical University, Tianjin, China
| | - Fang Qi
- Pharmaceutical College, Tianjin Medical University, Tianjin, China
| |
Collapse
|
40
|
Aldosterone-sensitive HSD2 neurons in mice. Brain Struct Funct 2018; 224:387-417. [PMID: 30343334 DOI: 10.1007/s00429-018-1778-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023]
Abstract
Sodium deficiency elevates aldosterone, which in addition to epithelial tissues acts on the brain to promote dysphoric symptoms and salt intake. Aldosterone boosts the activity of neurons that express 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2), a hallmark of aldosterone-sensitive cells. To better characterize these neurons, we combine immunolabeling and in situ hybridization with fate mapping and Cre-conditional axon tracing in mice. Many cells throughout the brain have a developmental history of Hsd11b2 expression, but in the adult brain one small brainstem region with a leaky blood-brain barrier contains HSD2 neurons. These neurons express Hsd11b2, Nr3c2 (mineralocorticoid receptor), Agtr1a (angiotensin receptor), Slc17a6 (vesicular glutamate transporter 2), Phox2b, and Nxph4; many also express Cartpt or Lmx1b. No HSD2 neurons express cholinergic, monoaminergic, or several other neuropeptidergic markers. Their axons project to the parabrachial complex (PB), where they intermingle with AgRP-immunoreactive axons to form dense terminal fields overlapping FoxP2 neurons in the central lateral subnucleus (PBcL) and pre-locus coeruleus (pLC). Their axons also extend to the forebrain, intermingling with AgRP- and CGRP-immunoreactive axons to form dense terminals surrounding GABAergic neurons in the ventrolateral bed nucleus of the stria terminalis (BSTvL). Sparse axons target the periaqueductal gray, ventral tegmental area, lateral hypothalamic area, paraventricular hypothalamic nucleus, and central nucleus of the amygdala. Dual retrograde tracing revealed that largely separate HSD2 neurons project to pLC/PB or BSTvL. This projection pattern raises the possibility that a subset of HSD2 neurons promotes the dysphoric, anorexic, and anhedonic symptoms of hyperaldosteronism via AgRP-inhibited relay neurons in PB.
Collapse
|
41
|
Allosteric Role of Substrate Occupancy Toward the Alignment of P-glycoprotein Nucleotide Binding Domains. Sci Rep 2018; 8:14643. [PMID: 30279588 PMCID: PMC6168518 DOI: 10.1038/s41598-018-32815-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/15/2018] [Indexed: 01/16/2023] Open
Abstract
P-glycoprotein (Pgp) is an ATP-binding cassette transporter that eliminates toxins from the cell but causes multidrug resistance in chemotherapies. The crystal structures of Pgp revealed drug-like compounds bound to an inward-facing conformation in which the energy-harnessing nucleotide binding domains (NBDs) were widely separated with no interfacial interaction. Following drug binding, inward-facing Pgp must transition to an NBD dimer conformation to achieve ATP binding and hydrolysis at canonical sites defined by both halves of the interface. However, given the high degree of flexibility shown for this transporter, it is difficult to envision how NBDs overcome entropic considerations for achieving proper alignment in order to form the canonical ATP binding site. We explored the hypothesis that substrate occupancy of the polyspecific drug-binding cavity plays a role in the proper alignment of NBDs using computational approaches. We conducted twelve atomistic molecular dynamics (MD) simulations (100-300 ns) on inward-facing Pgp in a lipid bilayer with and without small molecule substrates to ascertain effects of drug occupancy on NBD dimerization. Both apo- and drug-occupied simulations showed NBDs approaching each other compared to the crystal structures. Apo-Pgp reached a pseudo-dimerization in which NBD signature motifs for ATP binding exhibited a significant misalignment during closure. In contrast, occupancy of three established substrates positioned by molecular docking achieved NBD alignment that was much more compatible with a canonical NBD dimerization trajectory. Additionally, aromatic amino acids, known to confer the polyspecific drug-binding characteristic of the internal pocket, may also govern polyspecific drug access to the cavity. The enrichment of aromatics comprising the TM4-TM6 portal suggested a preferential pathway over the aromatic-poor TM10-TM12 for lateral drug entry from the lipid bilayer. Our study also suggested that drug polyspecificity is enhanced due to a synergism between multiple drug-domain interactions involving 36 residues identified in TM1, 5, 6, 7, 11 and 12.
Collapse
|
42
|
Bossennec M, Di Roio A, Caux C, Ménétrier-Caux C. MDR1 in immunity: friend or foe? Oncoimmunology 2018; 7:e1499388. [PMID: 30524890 PMCID: PMC6279327 DOI: 10.1080/2162402x.2018.1499388] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/08/2018] [Indexed: 02/09/2023] Open
Abstract
MDR1 is an ATP-dependent transmembrane transporter primarily studied for its role in the detoxification of tissues and for its implication in resistance of tumor cells to chemotherapy treatment. Several studies also report on its expression on immune cells where it plays a protective role from xenobiotics and toxins. This review provides an overview of what is known on MDR1 expression in immune cells in human, and its implications in different pathologies and their treatment options.
Collapse
Affiliation(s)
- Marion Bossennec
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| | - Anthony Di Roio
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| | - Christophe Caux
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| | - Christine Ménétrier-Caux
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| |
Collapse
|
43
|
Mohammed FZ, Zedan MM, El-Hussiny MAB, Barakat LAELA, El-Eshmawy MAAEM. ABCB1 gene polymorphism in nephrotic syndrome. COMPARATIVE CLINICAL PATHOLOGY 2018; 27:1181-1189. [DOI: 10.1007/s00580-018-2719-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/29/2018] [Indexed: 09/01/2023]
|
44
|
Guerreiro DD, de Lima LF, Mbemya GT, Maside CM, Miranda AM, Tavares KCS, Alves BG, Faustino LR, Smitz J, de Figueiredo JR, Rodrigues APR. ATP-binding cassette (ABC) transporters in caprine preantral follicles: gene and protein expression. Cell Tissue Res 2018; 372:611-620. [DOI: 10.1007/s00441-018-2804-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/18/2018] [Indexed: 12/27/2022]
|
45
|
Jana A, Thomas J, Ghosh P. P-glycoprotein expression in oral lichen planus. Braz Oral Res 2017; 31:e95. [DOI: 10.1590/1807-3107bor-2017.vol31.0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/05/2017] [Indexed: 11/21/2022] Open
|
46
|
Yotsumoto K, Akiyoshi T, Wada N, Imaoka A, Ohtani H. 5-Fluorouracil treatment alters the expression of intestinal transporters in rats. Biopharm Drug Dispos 2017; 38:509-516. [PMID: 28849584 DOI: 10.1002/bdd.2102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/05/2017] [Accepted: 08/14/2017] [Indexed: 01/26/2023]
Abstract
5-Fluorouracil (5-FU), an anticancer drug, causes severe gastrointestinal damage, which may affect the absorption of orally administered drugs including the substrates of intestinal uptake and efflux transporters. This study aimed to investigate quantitatively the effect of 5-FU-induced intestinal damage on the expression of intestinal transporters: P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and peptide transporter 1 (PEPT1) in rats. The rats were treated with 5-FU (30 mg/kg/day, p.o.) for 5 days to induce intestinal damage, and then the upper, middle and lower intestinal segments were removed. The mRNA and protein expression levels of these transporters in each segment were determined using quantitative real-time PCR and Western blotting, respectively. In the 5-FU-treated rats, the protein levels of P-gp and Bcrp in the upper segment were significantly increased to 15- and 2.6-fold of the control, respectively, while those in other segments were unaffected. Pept1 expression was increased by 5-FU in almost all segments. A remarkable increase in P-gp expression was shown, the uptake of digoxin, a P-gp substrate, in each intestinal segment was measured using a rat everted sac. As a result, the uptake of digoxin in the upper segments of 5-FU-treated rats was decreased compared with that of the control. In conclusion, 5-FU-induced intestinal damage was shown to alter the expression of these transporters, especially in the upper intestinal segment, while the characteristics of the influence varied among the transporters. The 5-FU-induced intestinal damage may affect transporter-mediated drug absorption of orally administered drugs in the clinical setting.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Administration, Oral
- Animals
- Antimetabolites, Antineoplastic/toxicity
- Blotting, Western
- Digoxin/pharmacokinetics
- Drug Interactions
- Fluorouracil/toxicity
- Gene Expression Regulation/drug effects
- Intestines/drug effects
- Intestines/pathology
- Male
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Peptide Transporter 1/genetics
- Peptide Transporter 1/metabolism
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
Collapse
Affiliation(s)
- Keiichi Yotsumoto
- Division of Clinical Pharmacy, Keio Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Takeshi Akiyoshi
- Division of Clinical Pharmacy, Keio Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Naoki Wada
- Division of Clinical Pharmacy, Keio Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Ayuko Imaoka
- Division of Clinical Pharmacy, Keio Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Hisakazu Ohtani
- Division of Clinical Pharmacy, Keio Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
47
|
Hindle SJ, Munji RN, Dolghih E, Gaskins G, Orng S, Ishimoto H, Soung A, DeSalvo M, Kitamoto T, Keiser MJ, Jacobson MP, Daneman R, Bainton RJ. Evolutionarily Conserved Roles for Blood-Brain Barrier Xenobiotic Transporters in Endogenous Steroid Partitioning and Behavior. Cell Rep 2017; 21:1304-1316. [PMID: 29091768 PMCID: PMC5774027 DOI: 10.1016/j.celrep.2017.10.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 08/25/2017] [Accepted: 10/05/2017] [Indexed: 12/30/2022] Open
Abstract
Central nervous system (CNS) chemical protection depends upon discrete control of small-molecule access by the blood-brain barrier (BBB). Curiously, some drugs cause CNS side-effects despite negligible transit past the BBB. To investigate this phenomenon, we asked whether the highly BBB-enriched drug efflux transporter MDR1 has dual functions in controlling drug and endogenous molecule CNS homeostasis. If this is true, then brain-impermeable drugs could induce behavioral changes by affecting brain levels of endogenous molecules. Using computational, genetic, and pharmacologic approaches across diverse organisms, we demonstrate that BBB-localized efflux transporters are critical for regulating brain levels of endogenous steroids and steroid-regulated behaviors (sleep in Drosophila and anxiety in mice). Furthermore, we show that MDR1-interacting drugs are associated with anxiety-related behaviors in humans. We propose a general mechanism for common behavioral side effects of prescription drugs: pharmacologically challenging BBB efflux transporters disrupts brain levels of endogenous substrates and implicates the BBB in behavioral regulation.
Collapse
Affiliation(s)
- Samantha J Hindle
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Roeben N Munji
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA; Division of Clinical Pharmacology and Experimental Therapeutics, University of California San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California San Francisco, San Francisco, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Elena Dolghih
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Garrett Gaskins
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA; Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Souvinh Orng
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Hiroshi Ishimoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - Allison Soung
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Michael DeSalvo
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | | | - Michael J Keiser
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA; Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Richard Daneman
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| | - Roland J Bainton
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
48
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
49
|
Tsujimura S, Adachi T, Saito K, Kawabe A, Tanaka Y. Relevance of P-glycoprotein on CXCR4 + B cells to organ manifestation in highly active rheumatoid arthritis. Mod Rheumatol 2017; 28:276-286. [PMID: 28696805 DOI: 10.1080/14397595.2017.1341458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION In rheumatoid arthritis (RA), P-glycoprotein (P-gp) expression on activated B cells is associated with active efflux of intracellular drugs, resulting in drug resistance. CXCR4 is associated with migration of B cells. This study was designed to elucidate the relevance of P-gp expression on CXCR4+ B cells to clinical manifestations in refractory RA. METHODS CD19+ B cells were analyzed using flow cytometry and immunohistochemistry. RESULTS P-gp was highly expressed especially on CXCR4+CD19+ B cells in RA. The proportion of P-gp-expressing CXCR4+ B cells correlated with disease activity, estimated by Simplified Disease Activity Index (SDAI), and showed marked expansion in RA patients with high SDAI and extra-articular involvement. In highly active RA, massive infiltration of P-gp+CXCR4+CD19+ B cells was noted in CXCL12-expressing inflammatory lesions of RA synovitis and RA-associated interstitial pneumonitis. In RA patient with active extra-articular involvement, intracellular dexamethasone level (IDL) in lymphocytes diminished with expansion of P-gp+CXCR4+ CD19+ B cells. Adalimumab reduced P-gp+CXCR4+ CD19+ B cells, increased IDL in lymphocytes, and improved the clinical manifestation and allowed tapering of concomitant medications. CONCLUSIONS Expansion of P-gp+CXCR4+ B cells seems to be associated with drug resistance, disease activity and progressive destructive arthritis with extra-articular involvement in RA.
Collapse
Affiliation(s)
- Shizuyo Tsujimura
- a The First Department of Internal Medicine, School of Medicine , University of Occupational & Environmental Health , Kitakyushu , Japan
| | - Tomoko Adachi
- a The First Department of Internal Medicine, School of Medicine , University of Occupational & Environmental Health , Kitakyushu , Japan
| | - Kazuyoshi Saito
- a The First Department of Internal Medicine, School of Medicine , University of Occupational & Environmental Health , Kitakyushu , Japan
| | - Akio Kawabe
- a The First Department of Internal Medicine, School of Medicine , University of Occupational & Environmental Health , Kitakyushu , Japan
| | - Yoshiya Tanaka
- a The First Department of Internal Medicine, School of Medicine , University of Occupational & Environmental Health , Kitakyushu , Japan
| |
Collapse
|
50
|
Boyle NB, Lawton C, Dye L. The Effects of Magnesium Supplementation on Subjective Anxiety and Stress-A Systematic Review. Nutrients 2017; 9:E429. [PMID: 28445426 PMCID: PMC5452159 DOI: 10.3390/nu9050429] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/17/2017] [Accepted: 04/17/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Anxiety related conditions are the most common affective disorders present in the general population with a lifetime prevalence of over 15%. Magnesium (Mg) status is associated with subjective anxiety, leading to the proposition that Mg supplementation may attenuate anxiety symptoms. This systematic review examines the available evidence for the efficacy of Mg supplementation in the alleviation of subjective measures of anxiety and stress. METHODS A systematic search of interventions with Mg alone or in combination (up to 5 additional ingredients) was performed in May 2016. Ovid Medline, PsychInfo, Embase, CINAHL and Cochrane databases were searched using equivalent search terms. A grey literature review of relevant sources was also undertaken. RESULTS 18 studies were included in the review. All reviewed studies recruited samples based upon an existing vulnerability to anxiety: mildly anxious, premenstrual syndrome (PMS), postpartum status, and hypertension. Four/eight studies in anxious samples, four/seven studies in PMS samples, and one/two studies in hypertensive samples reported positive effects of Mg on subjective anxiety outcomes. Mg had no effect on postpartum anxiety. No study administered a validated measure of subjective stress as an outcome. CONCLUSIONS Existing evidence is suggestive of a beneficial effect of Mg on subjective anxiety in anxiety vulnerable samples. However, the quality of the existing evidence is poor. Well-designed randomised controlled trials are required to further confirm the efficacy of Mg supplementation.
Collapse
Affiliation(s)
| | - Clare Lawton
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK.
| | - Louise Dye
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|