1
|
Byun S, Park C, Suh JY, Witte CP, Rhee S. Structure, cooperativity and inhibition of the inosine 5'-monophosphate-specific phosphatase from Saccharomyces cerevisiae. FEBS J 2024; 291:1992-2008. [PMID: 38362806 DOI: 10.1111/febs.17093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/02/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
The nucleoside inosine is a main intermediate of purine nucleotide catabolism in Saccharomyces cerevisiae and is produced via the dephosphorylation of inosine monophosphate (IMP) by IMP-specific 5'-nucleotidase 1 (ISN1), which is present in many eukaryotic organisms. Upon transition of yeast from oxidative to fermentative growth, ISN1 is important for intermediate inosine accumulation as purine storage, but details of ISN1 regulation are unknown. We characterized structural and kinetic behavior of ISN1 from S. cerevisiae (ScISN1) and showed that tetrameric ScISN1 is negatively regulated by inosine and adenosine triphosphate (ATP). Regulation involves an inosine-binding allosteric site along with IMP-induced local and global conformational changes in the monomer and a tetrameric re-arrangement, respectively. A proposed interaction network propagates local conformational changes in the active site to the intersubunit interface, modulating the allosteric features of ScISN1. Via ATP and inosine, ScISN1 activity is likely fine-tuned to regulate IMP and inosine homeostasis. These regulatory and catalytic features of ScISN1 contrast with those of the structurally homologous ISN1 from Plasmodium falciparum, indicating that ISN1 enzymes may serve different biological purposes in different organisms.
Collapse
Affiliation(s)
- Sujeong Byun
- Department of Agricultural Biotechnology, Seoul National University, Korea
| | - Changkon Park
- Department of Agricultural Biotechnology, Seoul National University, Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Korea
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Germany
| | - Sangkee Rhee
- Department of Agricultural Biotechnology, Seoul National University, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Korea
| |
Collapse
|
2
|
Reglero C, Dieck CL, Zask A, Forouhar F, Laurent AP, Lin WHW, Albero R, Miller HI, Ma C, Gastier-Foster JM, Loh ML, Tong L, Stockwell BR, Palomero T, Ferrando AA. Pharmacologic Inhibition of NT5C2 Reverses Genetic and Nongenetic Drivers of 6-MP Resistance in Acute Lymphoblastic Leukemia. Cancer Discov 2022; 12:2646-2665. [PMID: 35984649 PMCID: PMC9633388 DOI: 10.1158/2159-8290.cd-22-0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/09/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023]
Abstract
Low-intensity maintenance therapy with 6-mercaptopurine (6-MP) limits the occurrence of acute lymphoblastic leukemia (ALL) relapse and is central to the success of multiagent chemotherapy protocols. Activating mutations in the 5'-nucleotidase cytosolic II (NT5C2) gene drive resistance to 6-MP in over 35% of early relapse ALL cases. Here we identify CRCD2 as a first-in-class small-molecule NT5C2 nucleotidase inhibitor broadly active against leukemias bearing highly prevalent relapse-associated mutant forms of NT5C2 in vitro and in vivo. Importantly, CRCD2 treatment also enhanced the cytotoxic activity of 6-MP in NT5C2 wild-type leukemias, leading to the identification of NT5C2 Ser502 phosphorylation as a novel NT5C2-mediated mechanism of 6-MP resistance in this disease. These results uncover an unanticipated role of nongenetic NT5C2 activation as a driver of 6-MP resistance in ALL and demonstrate the potential of NT5C2 inhibitor therapy for enhancing the efficacy of thiopurine maintenance therapy and overcoming resistance at relapse. SIGNIFICANCE Relapse-associated NT5C2 mutations directly contribute to relapse in ALL by driving resistance to chemotherapy with 6-MP. Pharmacologic inhibition of NT5C2 with CRCD2, a first-in-class nucleotidase inhibitor, enhances the cytotoxic effects of 6-MP and effectively reverses thiopurine resistance mediated by genetic and nongenetic mechanisms of NT5C2 activation in ALL. This article is highlighted in the In This Issue feature, p. 2483.
Collapse
Affiliation(s)
- Clara Reglero
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
- These authors contributed equally: Clara Reglero, Chelsea L. Dieck
| | - Chelsea L. Dieck
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
- These authors contributed equally: Clara Reglero, Chelsea L. Dieck
| | - Arie Zask
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Farhad Forouhar
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Anouchka P. Laurent
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Wen-Hsuan W. Lin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Robert Albero
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Hannah I. Miller
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Cindy Ma
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Julie M Gastier-Foster
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Children’s Oncology Group, Arcadia, CA, USA
| | - Mignon L Loh
- Division of Hematology, Oncology, Bone Marrow Transplant, and Cellular Therapies, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Liang Tong
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, 1212 Amsterdam Avenue, 701 Fairchild Center, New York, NY 10027, USA
| | - Brent R. Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Teresa Palomero
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Adolfo A. Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
3
|
Genescà E, González-Gil C. Latest Contributions of Genomics to T-Cell Acute Lymphoblastic Leukemia (T-ALL). Cancers (Basel) 2022; 14:2474. [PMID: 35626077 PMCID: PMC9140158 DOI: 10.3390/cancers14102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
As for many neoplasms, initial genetic data about T-cell acute lymphoblastic leukemia (T-ALL) came from the application of cytogenetics. This information helped identify some recurrent chromosomal alterations in T-ALL at the time of diagnosis, although it was difficult to determine their prognostic impact because of their low incidence in the specific T-ALL cohort analyzed. Genetic knowledge accumulated rapidly following the application of genomic techniques, drawing attention to the importance of using high-resolution genetic techniques to detect cryptic aberrations present in T-ALL, which are not usually detected by cytogenetics. We now have a clearer appreciation of the genetic landscape of the different T-ALL subtypes at diagnosis, explaining the particular oncogenetic processes taking place in each T-ALL, and we have begun to understand relapse-specific mechanisms. This review aims to summarize the latest advances in our knowledge of the genome in T-ALL. We highlight areas where the research in this subtype of ALL is progressing with the aim of identifying key questions that need to be answered in the medium-long term if this knowledge is to be applied in clinics.
Collapse
Affiliation(s)
- Eulàlia Genescà
- Institut d’Investigació Contra la Leucemia Josep Carreras (IJC), Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | | |
Collapse
|
4
|
Mirzaei G, Petreaca RC. Distribution of copy number variations and rearrangement endpoints in human cancers with a review of literature. Mutat Res 2022; 824:111773. [PMID: 35091282 PMCID: PMC11301607 DOI: 10.1016/j.mrfmmm.2021.111773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Copy number variations (CNVs) which include deletions, duplications, inversions, translocations, and other forms of chromosomal re-arrangements are common to human cancers. In this report we investigated the pattern of these variations with the goal of understanding whether there exist specific cancer signatures. We used re-arrangement endpoint data deposited on the Catalogue of Somatic Mutations in Cancers (COSMIC) for our analysis. Indeed, we find that human cancers are characterized by specific patterns of chromosome rearrangements endpoints which in turn result in cancer specific CNVs. A review of the literature reveals tissue specific mutations which either drive these CNVs or appear as a consequence of CNVs because they confer an advantage to the cancer cell. We also identify several rearrangement endpoints hotspots that were not previously reported. Our analysis suggests that in addition to local chromosomal architecture, CNVs are driven by the internal cellular or nuclear physiology of each cancer tissue.
Collapse
Affiliation(s)
- Golrokh Mirzaei
- Department of Computer Science and Engineering, The Ohio State University at Marion, Marion, OH, 43302, USA
| | - Ruben C Petreaca
- Department of Molecular Genetics, The Ohio State University at Marion, Marion, OH, 43302, USA; Cancer Biology Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Jiang C, Yang W, Moriyama T, Liu C, Smith C, Yang W, Qian M, Li Z, Tulstrup M, Schmiegelow K, Crews KR, Zhang H, Pui CH, Evans W, Relling M, Bhatia S, Yang JJ. Effects of NT5C2 Germline Variants on 6-Mecaptopurine Metabolism in Children With Acute Lymphoblastic Leukemia. Clin Pharmacol Ther 2020; 109:1538-1545. [PMID: 33124053 DOI: 10.1002/cpt.2095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 01/21/2023]
Abstract
6-mercaptopurine (6-MP) is widely used in the treatment of acute lymphoblastic leukemia (ALL), and its cytotoxicity is primarily mediated by thioguanine nucleotide (TGN) metabolites. A recent genomewide association study has identified germline polymorphisms (e.g., rs72846714) in the NT5C2 gene associated with 6-MP metabolism in patients with ALL. However, the full spectrum of genetic variation in NT5C2 is unclear and its impact on 6-MP drug activation has not been comprehensively examined. To this end, we performed targeted sequencing of NT5C2 in 588 children with ALL and identified 121 single nucleotide polymorphisms nominally associated with erythrocyte TGN during 6-MP treatment (P < 0.05). Of these, 61 variants were validated in a replication cohort of 372 children with ALL. After considering linkage disequilibrium and multivariate analysis, we confirmed two clusters of variants, represented by rs72846714 and rs58700372, that independently affected 6-MP metabolism. Functional studies showed that rs58700372 directly altered the activity of an intronic enhancer, with the variant allele linked to higher transcription activity and reduced 6-MP metabolism (lower TGN). By contrast, rs72846714 was not located in a regulatory element and instead its association signal was explained by linkage disequilibrium with a proximal functional variant rs12256506 that activated NT5C2 transcription in-cis. Our results indicated that NT5C2 germline variation significantly contributes to interpatient variability in thiopurine drug disposition.
Collapse
Affiliation(s)
- Chuang Jiang
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Takaya Moriyama
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chengcheng Liu
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Colton Smith
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wentao Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Maoxiang Qian
- Department of Hematology and Oncology, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ziping Li
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Morten Tulstrup
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristine R Crews
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hui Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - William Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mary Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Genetics and mechanisms of NT5C2-driven chemotherapy resistance in relapsed ALL. Blood 2019; 133:2263-2268. [PMID: 30910786 DOI: 10.1182/blood-2019-01-852392] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/18/2019] [Indexed: 01/01/2023] Open
Abstract
Mutations in the cytosolic 5' nucleotidase II (NT5C2) gene drive resistance to thiopurine chemotherapy in relapsed acute lymphoblastic leukemia (ALL). Mechanistically, NT5C2 mutant proteins have increased nucleotidase activity as a result of altered activating and autoregulatory switch-off mechanisms. Leukemias with NT5C2 mutations are chemoresistant to 6-mercaptopurine yet show impaired proliferation and self-renewal. Direct targeting of NT5C2 or inhibition of compensatory pathways active in NT5C2 mutant cells may antagonize the emergence of NT5C2 mutant clones driving resistance and relapse in ALL.
Collapse
|
7
|
Tulstrup M, Grosjean M, Nielsen SN, Grell K, Wolthers BO, Wegener PS, Jonsson OG, Lund B, Harila-Saari A, Abrahamsson J, Vaitkeviciene G, Pruunsild K, Toft N, Holm M, Hulegårdh E, Liestøl S, Griskevicius L, Punab M, Wang J, Carroll WL, Zhang Z, Dalgaard MD, Gupta R, Nersting J, Schmiegelow K. NT5C2 germline variants alter thiopurine metabolism and are associated with acquired NT5C2 relapse mutations in childhood acute lymphoblastic leukaemia. Leukemia 2018; 32:2527-2535. [PMID: 30201983 DOI: 10.1038/s41375-018-0245-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022]
Abstract
The antileukaemic drug 6-mercaptopurine is converted into thioguanine nucleotides (TGN) and incorporated into DNA (DNA-TG), the active end metabolite. In a series of genome-wide association studies, we analysed time-weighted means (wm) of erythrocyte concentrations of TGN (Ery-TGN) and DNA-TG in 1009 patients undergoing maintenance therapy for acute lymphoblastic leukaemia (ALL). In discovery analyses (454 patients), the propensity for DNA-TG incorporation (wmDNA-TG/wmEry-TGN ratio) was significantly associated with three intronic SNPs in NT5C2 (top hit: rs72846714; P = 2.09 × 10-10, minor allele frequency 15%). In validation analyses (555 patients), this association remained significant during both early and late maintenance therapy (P = 8.4 × 10-6 and 1.3 × 10-3, respectively). The association was mostly driven by differences in wmEry-TGN, but in regression analyses adjusted for wmEry-TGN (P < 0.0001), rs72846714-A genotype was also associated with a higher wmDNA-TG (P = 0.029). Targeted sequencing of NT5C2 did not identify any missense variants associated with rs72846714 or wmEry-TGN/wmDNA-TG. rs72846714 was not associated with relapse risk, but in a separate cohort of 180 children with relapsed ALL, rs72846714-A genotype was associated with increased occurrence of relapse-specific NT5C2 gain-of-function mutations that reduce cytosol TGN levels (P = 0.03). These observations highlight the impact of both germline and acquired mutations in drug metabolism and disease trajectory.
Collapse
Affiliation(s)
- Morten Tulstrup
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Marie Grosjean
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stine Nygaard Nielsen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kathrine Grell
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark.,Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin Ole Wolthers
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Peder Skov Wegener
- Department of Pediatric Hematology and Oncology, H. C. Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | | | - Bendik Lund
- Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Laboratory Medicine, Faculty of Medicine and Health sciences, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arja Harila-Saari
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Jonas Abrahamsson
- Department of Pediatrics, Institution for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Goda Vaitkeviciene
- Clinic of Children's Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Kaie Pruunsild
- Department of Onco-haematology, Talinn Children's Hospital, Talinn, Estonia
| | - Nina Toft
- Department of Hematology, University Hospital Rishospitalet, Copenhagen, Denmark
| | - Mette Holm
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Erik Hulegårdh
- Department of Hematology and Coagulation, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Sigurd Liestøl
- Department of Hematology, Ullevål University Hospital, Faculty Division Ullevål University Hospital, University of Oslo, Oslo, Norway
| | - Laimonas Griskevicius
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Mari Punab
- Clinic of Hematology and Oncology, Tartu University Clinic, Tartu, Estonia
| | - Jinhua Wang
- Masonic Cancer Center, Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - William L Carroll
- Department of Pediatrics, New York University Medical Center, Perlmutter Cancer Center, New York, NY, USA
| | - Zeyu Zhang
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Marlene D Dalgaard
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ramneek Gupta
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jacob Nersting
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark. .,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Dieck CL, Tzoneva G, Forouhar F, Carpenter Z, Ambesi-Impiombato A, Sánchez-Martín M, Kirschner-Schwabe R, Lew S, Seetharaman J, Tong L, Ferrando AA. Structure and Mechanisms of NT5C2 Mutations Driving Thiopurine Resistance in Relapsed Lymphoblastic Leukemia. Cancer Cell 2018; 34:136-147.e6. [PMID: 29990496 PMCID: PMC6049837 DOI: 10.1016/j.ccell.2018.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/06/2018] [Accepted: 06/06/2018] [Indexed: 11/25/2022]
Abstract
Activating mutations in the cytosolic 5'-nucleotidase II gene NT5C2 drive resistance to 6-mercaptopurine in acute lymphoblastic leukemia. Here we demonstrate that constitutively active NT5C2 mutations K359Q and L375F reconfigure the catalytic center for substrate access and catalysis in the absence of allosteric activator. In contrast, most relapse-associated mutations, which involve the arm segment and residues along the surface of the inter-monomeric cavity, disrupt a built-in switch-off mechanism responsible for turning off NT5C2. In addition, we show that the C-terminal acidic tail lost in the Q523X mutation functions to restrain NT5C2 activation. These results uncover dynamic mechanisms of enzyme regulation targeted by chemotherapy resistance-driving NT5C2 mutations, with important implications for the development of NT5C2 inhibitor therapies.
Collapse
Affiliation(s)
- Chelsea L Dieck
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Gannie Tzoneva
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Farhad Forouhar
- Hervert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, 1212 Amsterdam Avenue, 701 Fairchild Center, New York, NY 10027, USA
| | - Zachary Carpenter
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | | | | | - Renate Kirschner-Schwabe
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Scott Lew
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, 1212 Amsterdam Avenue, 701 Fairchild Center, New York, NY 10027, USA
| | | | - Liang Tong
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, 1212 Amsterdam Avenue, 701 Fairchild Center, New York, NY 10027, USA.
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Columbia University Medical Center, 1130 St. Nicholas Avenue, ICRC 402, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Hnízda A, Fábry M, Moriyama T, Pachl P, Kugler M, Brinsa V, Ascher DB, Carroll WL, Novák P, Žaliová M, Trka J, Řezáčová P, Yang JJ, Veverka V. Relapsed acute lymphoblastic leukemia-specific mutations in NT5C2 cluster into hotspots driving intersubunit stimulation. Leukemia 2018. [PMID: 29535428 DOI: 10.1038/s41375-018-0073-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Activating mutations in NT5C2, a gene encoding cytosolic purine 5'-nucleotidase (cN-II), confer chemoresistance in relapsed acute lymphoblastic leukemia. Here we show that all mutants became independent of allosteric effects of ATP and thus constitutively active. Structural mapping of mutations described in patients demonstrates that 90% of leukemia-specific allelles directly affect two regulatory hotspots within the cN-II molecule-the helix A region: residues 355-365, and the intersubunit interface: helix B (232-242) and flexible interhelical loop L (400-418). Furthermore, analysis of hetero-oligomeric complexes combining wild-type (WT) and mutant subunits showed that the activation is transmitted from the mutated to the WT subunit. This intersubunit interaction forms structural basis of hyperactive NT5C2 in drug-resistant leukemia in which heterozygous NT5C2 mutation gave rise to hetero-tetramer mutant and WT proteins. This enabled us to define criteria to aid the prediction of NT5C2 drug resistance mutations in leukemia.
Collapse
Affiliation(s)
- Aleš Hnízda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic. .,Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK.
| | - Milan Fábry
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Takaya Moriyama
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - Michael Kugler
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic.,Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Vítězslav Brinsa
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - David B Ascher
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.,Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | | | - Petr Novák
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague, 4 142 20, Czech Republic
| | - Markéta Žaliová
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Trka
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic.,Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| |
Collapse
|
10
|
Tzoneva G, Dieck CL, Oshima K, Ambesi-Impiombato A, Sánchez-Martín M, Madubata CJ, Khiabanian H, Yu J, Waanders E, Iacobucci I, Sulis ML, Kato M, Koh K, Paganin M, Basso G, Gastier-Foster JM, Loh ML, Kirschner-Schwabe R, Mullighan CG, Rabadan R, Ferrando AA. Clonal evolution mechanisms in NT5C2 mutant-relapsed acute lymphoblastic leukaemia. Nature 2018; 553:511-514. [PMID: 29342136 PMCID: PMC5931372 DOI: 10.1038/nature25186] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 11/30/2017] [Indexed: 01/10/2023]
Abstract
Relapsed acute lymphoblastic leukemia (ALL) is associated with chemotherapy resistance and poor prognosis1. Gain-of-function mutations in the 5′-nucleotidase, cytosolic II (NT5C2) gene induce resistance to 6-mercaptopurine (6-MP) and are selectively present in relapsed ALL2,3. Yet, the mechanisms involved in NT5C2 mutation-driven clonal evolution during leukemia initiation, disease progression and relapse remain unknown. Using a conditional inducible leukemia model, we demonstrate that expression of Nt5c2 p.R367Q, a highly prevalent relapsed-ALL NT5C2 mutation, induces resistance to chemotherapy with 6-MP at the cost of impaired leukemia cell growth and leukemia-initiating cell activity. The loss of fitness phenotype of Nt5c2+/R367Q mutant cells is associated with excess export of purines to the extracellular space and depletion of the intracellular purine nucleotide pool. Consequently, blocking guanosine synthesis via inosine-5′-monophosphate dehydrogenase (IMPDH) inhibition induced increased cytotoxicity against NT5C2-mutant leukemia lymphoblasts. These results identify NT5C2 mutation-associated fitness cost and resistance to chemotherapy as key evolutionary drivers shaping clonal evolution in relapsed ALL and support a role for IMPDH inhibition in the treatment of ALL.
Collapse
Affiliation(s)
- Gannie Tzoneva
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, USA
| | - Chelsea L Dieck
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, USA
| | - Koichi Oshima
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, USA
| | | | - Marta Sánchez-Martín
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, USA
| | - Chioma J Madubata
- Department of Systems Biology, Columbia University, New York, New York 10032, USA
| | - Hossein Khiabanian
- Rutgers Cancer Institute, Rutgers University, New Brunswick, New Jersey 08903, USA
| | - Jiangyan Yu
- Princess Maxima Center for Pediatric Oncology, Utrecht, 3584 CT, the Netherlands.,Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, 6525 GA, the Netherlands
| | - Esme Waanders
- Princess Maxima Center for Pediatric Oncology, Utrecht, 3584 CT, the Netherlands
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Maria Luisa Sulis
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| | - Motohiro Kato
- Department of Hematology-Oncology, Saitama Children's Medical Center, Saitama 339-8551, Japan
| | - Katsuyoshi Koh
- Department of Hematology-Oncology, Saitama Children's Medical Center, Saitama 339-8551, Japan
| | - Maddalena Paganin
- Onco-Hematology Division, Department, Salute della Donna e del Bambino (SDB), University of Padua, 35128 Padua, Italy
| | - Giuseppe Basso
- Onco-Hematology Division, Department, Salute della Donna e del Bambino (SDB), University of Padua, 35128 Padua, Italy
| | - Julie M Gastier-Foster
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pathology, Ohio State University School of Medicine, Columbus, Ohio 43210, USA.,Department of Pediatrics, Ohio State University School of Medicine, Columbus, Ohio 43210, USA.,Children's Oncology Group, Arcadia, California 91006, USA
| | - Mignon L Loh
- Department of Pediatrics, University of California, San Francisco, California 94143, USA.,Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94115, USA
| | - Renate Kirschner-Schwabe
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, New York 10032, USA.,Department of Biomedical Informatics, Columbia University, New York, New York 10032, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, USA.,Department of Systems Biology, Columbia University, New York, New York 10032, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
11
|
Rahimova R, Fontanel S, Lionne C, Jordheim LP, Peyrottes S, Chaloin L. Identification of allosteric inhibitors of the ecto-5'-nucleotidase (CD73) targeting the dimer interface. PLoS Comput Biol 2018; 14:e1005943. [PMID: 29377887 PMCID: PMC5805337 DOI: 10.1371/journal.pcbi.1005943] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/08/2018] [Accepted: 12/28/2017] [Indexed: 12/31/2022] Open
Abstract
The ecto-5'-nucleotidase CD73 plays an important role in the production of immune-suppressive adenosine in tumor micro-environment, and has become a validated drug target in oncology. Indeed, the anticancer immune response involves extracellular ATP to block cell proliferation through T-cell activation. However, in the tumor micro-environment, two extracellular membrane-bound enzymes (CD39 and CD73) are overexpressed and hydrolyze efficiently ATP into AMP then further into immune-suppressive adenosine. To circumvent the impact of CD73-generated adenosine, we applied an original bioinformatics approach to identify new allosteric inhibitors targeting the dimerization interface of CD73, which should impair the large dynamic motions required for its enzymatic function. Several hit compounds issued from virtual screening campaigns showed a potent inhibition of recombinant CD73 with inhibition constants in the low micromolar range and exhibited a non-competitive inhibition mode. The structure-activity relationships studies indicated that several amino acid residues (D366, H456, K471, Y484 and E543 for polar interactions and G453-454, I455, H456, L475, V542 and G544 for hydrophobic contacts) located at the dimerization interface are involved in the tight binding of hit compounds and likely contributed for their inhibitory activity. Overall, the gathered information will guide the upcoming lead optimization phase that may lead to potent and selective CD73 inhibitors, able to restore the anticancer immune response.
Collapse
Affiliation(s)
- Rahila Rahimova
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Univ. Montpellier, CNRS, Montpellier, France; Institut de Biologie Computationnelle (IBC), Montpellier, France
| | - Simon Fontanel
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, Montpellier, France
| | - Corinne Lionne
- Centre de Biologie Structurale (CBS), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Lars Peter Jordheim
- Centre Léon Bérard (CLB), Centre de Recherche en Cancérologie de Lyon (CRCL), Univ. de Lyon, INSERM, CNRS, Lyon, France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max-Mousseron (IBMM), CNRS, Univ. Montpellier, ENSCM, Montpellier, France
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Univ. Montpellier, CNRS, Montpellier, France; Institut de Biologie Computationnelle (IBC), Montpellier, France
| |
Collapse
|
12
|
Hnízda A, Škerlová J, Fábry M, Pachl P, Šinalová M, Vrzal L, Man P, Novák P, Řezáčová P, Veverka V. Oligomeric interface modulation causes misregulation of purine 5´-nucleotidase in relapsed leukemia. BMC Biol 2016; 14:91. [PMID: 27756303 PMCID: PMC5070119 DOI: 10.1186/s12915-016-0313-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background Relapsed acute lymphoblastic leukemia (ALL) is one of the main causes of mortality in childhood malignancies. Previous genetic studies demonstrated that chemoresistant ALL is driven by activating mutations in NT5C2, the gene encoding cytosolic 5´-nucleotidase (cN-II). However, molecular mechanisms underlying this hyperactivation are still unknown. Here, we present kinetic and structural properties of cN-II variants that represent 75 % of mutated alleles in patients who experience relapsed ALL (R367Q, R238W and L375F). Results Enzyme kinetics measurements revealed that the mutants are consitutively active without need for allosteric activators. This shows that hyperactivity is not caused by a direct catalytic effect but rather by misregulation of cN-II. X-ray crystallography combined with mass spectrometry-based techniques demonstrated that this misregulation is driven by structural modulation of the oligomeric interface within the cN-II homotetrameric assembly. These specific conformational changes are shared between the studied variants, despite the relatively random spatial distribution of the mutations. Conclusions These findings define a common molecular mechanism for cN-II hyperactivity, which provides a solid basis for targeted therapy of leukemia. Our study highlights the cN-II oligomerization interface as an attractive pharmacological target. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0313-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aleš Hnízda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic.
| | - Jana Škerlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - Martina Šinalová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - Lukáš Vrzal
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Petr Novák
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic.,Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic.
| |
Collapse
|
13
|
Kulikova V, Shabalin K, Nerinovski K, Dölle C, Niere M, Yakimov A, Redpath P, Khodorkovskiy M, Migaud ME, Ziegler M, Nikiforov A. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells. J Biol Chem 2015; 290:27124-27137. [PMID: 26385918 DOI: 10.1074/jbc.m115.664458] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 12/31/2022] Open
Abstract
NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors.
Collapse
Affiliation(s)
- Veronika Kulikova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Konstantin Shabalin
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia,; Petersburg Nuclear Physics Institute, National Research Centre Kurchatov Institute, Gatchina 188300, Russia
| | - Kirill Nerinovski
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia,; St. Petersburg State University, St. Petersburg 199034, Russia
| | - Christian Dölle
- Department of Molecular Biology, University of Bergen, 5020 Bergen, Norway
| | - Marc Niere
- Department of Molecular Biology, University of Bergen, 5020 Bergen, Norway
| | - Alexander Yakimov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia,; Petersburg Nuclear Physics Institute, National Research Centre Kurchatov Institute, Gatchina 188300, Russia
| | - Philip Redpath
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Mikhail Khodorkovskiy
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Marie E Migaud
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Mathias Ziegler
- Department of Molecular Biology, University of Bergen, 5020 Bergen, Norway,.
| | - Andrey Nikiforov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia,; Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia.
| |
Collapse
|
14
|
Cividini F, Cros-Perrial E, Pesi R, Machon C, Allegrini S, Camici M, Dumontet C, Jordheim LP, Tozzi MG. Cell proliferation and drug sensitivity of human glioblastoma cells are altered by the stable modulation of cytosolic 5'-nucleotidase II. Int J Biochem Cell Biol 2015; 65:222-9. [PMID: 26079827 DOI: 10.1016/j.biocel.2015.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/31/2015] [Accepted: 06/08/2015] [Indexed: 01/13/2023]
Abstract
Cytosolic 5'-nucleotidase II (cN-II) has been reported to be involved in cell survival, nucleotide metabolism and in the cellular response to anticancer drugs. With the aim to further evaluate the role of this enzyme in cell biology, we stably modulated its expression the human glioblastoma cell ADF in which the transient inhibition of cN-II has been shown to induce cell death. Stable cell lines were obtained both with inhibition, obtained with plasmids coding cN-II-targeting short hairpin RNA, and stimulation, obtained with plasmids coding Green Fluorescence Protein (GFP)-fused wild type cN-II or a GFP-fused hyperactive mutant (GFP-cN-II-R367Q), of cN-II expression. Silenced cells displayed a decreased proliferation rate while the over expressing cell lines displayed an increased proliferation rate as evidenced by impedance measurement using the xCELLigence device. The expression of nucleotide metabolism relevant genes was only slightly different between cell lines, suggesting a compensatory mechanism in transfected cells. Cells with decreased cN-II expression were resistant to the nucleoside analog fludarabine confirming the involvement of cN-II in the metabolism of this drug. Finally, we observed sensitivity to cisplatin in cN-II silenced cells and resistance to this same drug in cN-II over-expressing cells indicating an involvement of cN-II in the mechanism of action of platinum derivatives, and most probably in DNA repair. In summary, our findings confirm some previous data on the role of cN-II in the sensitivity of cancer cells to cancer drugs, and suggest its involvement in other cellular phenomenon such as cell proliferation.
Collapse
Affiliation(s)
- F Cividini
- University of Pisa, Department of Biology, Biochemistry Unit, Pisa, Italy.
| | - E Cros-Perrial
- Université de Lyon, F-69000 Lyon, France; Université de Lyon 1, F-69622 Lyon, France; Université de Lyon 1, F-69000 Lyon, France; INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - R Pesi
- University of Pisa, Department of Biology, Biochemistry Unit, Pisa, Italy
| | - C Machon
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de Biochimie et Toxicologie, Lyon, France
| | - S Allegrini
- University of Sassari, Department of Chemistry and Pharmacology, Sassari, Italy
| | - M Camici
- University of Pisa, Department of Biology, Biochemistry Unit, Pisa, Italy
| | - C Dumontet
- Université de Lyon, F-69000 Lyon, France; Université de Lyon 1, F-69622 Lyon, France; Université de Lyon 1, F-69000 Lyon, France; INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - L P Jordheim
- Université de Lyon, F-69000 Lyon, France; Université de Lyon 1, F-69622 Lyon, France; Université de Lyon 1, F-69000 Lyon, France; INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - M G Tozzi
- University of Pisa, Department of Biology, Biochemistry Unit, Pisa, Italy
| |
Collapse
|
15
|
Cytosolic 5'-nucleotidase II interacts with the leucin rich repeat of NLR family member Ipaf. PLoS One 2015; 10:e0121525. [PMID: 25811392 PMCID: PMC4374842 DOI: 10.1371/journal.pone.0121525] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/03/2015] [Indexed: 01/17/2023] Open
Abstract
IMP/GMP preferring cytosolic 5'-nucleotidase II (cN-II) is a bifunctional enzyme whose activities and expression play crucial roles in nucleotide pool maintenance, nucleotide-dependent pathways and programmed cell death. Alignment of primary amino acid sequences of cN-II from human and other organisms show a strong conservation throughout the entire vertebrata taxon suggesting a fundamental role in eukaryotic cells. With the aim to investigate the potential role of this homology in protein-protein interactions, a two hybrid system screening of cN-II interactors was performed in S. cerevisiae. Among the X positive hits, the Leucin Rich Repeat (LRR) domain of Ipaf was found to interact with cN-II. Recombinant Ipaf isoform B (lacking the Nucleotide Binding Domain) was used in an in vitro affinity chromatography assay confirming the interaction obtained in the screening. Moreover, co-immunoprecipitation with proteins from wild type Human Embryonic Kidney 293 T cells demonstrated that endogenous cN-II co-immunoprecipitated both with wild type Ipaf and its LRR domain after transfection with corresponding expression vectors, but not with Ipaf lacking the LRR domain. These results suggest that the interaction takes place through the LRR domain of Ipaf. In addition, a proximity ligation assay was performed in A549 lung carcinoma cells and in MDA-MB-231 breast cancer cells and showed a positive cytosolic signal, confirming that this interaction occurs in human cells. This is the first report of a protein-protein interaction involving cN-II, suggesting either novel functions or an additional level of regulation of this complex enzyme.
Collapse
|
16
|
Meurillon M, Marton Z, Hospital A, Jordheim LP, Béjaud J, Lionne C, Dumontet C, Périgaud C, Chaloin L, Peyrottes S. Structure-activity relationships of β-hydroxyphosphonate nucleoside analogues as cytosolic 5'-nucleotidase II potential inhibitors: synthesis, in vitro evaluation and molecular modeling studies. Eur J Med Chem 2014; 77:18-37. [PMID: 24607586 DOI: 10.1016/j.ejmech.2014.02.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 01/10/2014] [Accepted: 02/22/2014] [Indexed: 12/11/2022]
Abstract
The cytosolic 5'-nucleotidase II (cN-II) has been proposed as an attractive molecular target for the development of novel drugs circumventing resistance to cytotoxic nucleoside analogues currently used for treating leukemia and other malignant hemopathies. In the present work, synthesis of β-hydroxyphosphonate nucleoside analogues incorporating modifications either on the sugar residue or the nucleobase, and their in vitro evaluation towards the purified enzyme were carried out in order to determine their potency towards the inhibition of cN-II. In addition to the biochemical investigations, molecular modeling studies revealed important structural features for binding affinities towards the target enzyme.
Collapse
Affiliation(s)
- Maïa Meurillon
- Institut des biomolécules Max Mousseron (IBMM), UMR 5247 CNRS - UM1 - UM2, Université Montpellier 2, cc1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Zsuzsanna Marton
- Centre d'études d'agents pathogènes et biotechnologies pour la santé (CPBS), UMR 5236 CNRS - UM1 - UM2, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Audrey Hospital
- Institut des biomolécules Max Mousseron (IBMM), UMR 5247 CNRS - UM1 - UM2, Université Montpellier 2, cc1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Lars Petter Jordheim
- Université de Lyon 1, INSERM U1052 CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, 69000 Lyon, France
| | - Jérôme Béjaud
- Institut des biomolécules Max Mousseron (IBMM), UMR 5247 CNRS - UM1 - UM2, Université Montpellier 2, cc1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Corinne Lionne
- Centre d'études d'agents pathogènes et biotechnologies pour la santé (CPBS), UMR 5236 CNRS - UM1 - UM2, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Charles Dumontet
- Université de Lyon 1, INSERM U1052 CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, 69000 Lyon, France
| | - Christian Périgaud
- Institut des biomolécules Max Mousseron (IBMM), UMR 5247 CNRS - UM1 - UM2, Université Montpellier 2, cc1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Laurent Chaloin
- Centre d'études d'agents pathogènes et biotechnologies pour la santé (CPBS), UMR 5236 CNRS - UM1 - UM2, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Suzanne Peyrottes
- Institut des biomolécules Max Mousseron (IBMM), UMR 5247 CNRS - UM1 - UM2, Université Montpellier 2, cc1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| |
Collapse
|
17
|
Srinivasan B, Forouhar F, Shukla A, Sampangi C, Kulkarni S, Abashidze M, Seetharaman J, Lew S, Mao L, Acton TB, Xiao R, Everett JK, Montelione GT, Tong L, Balaram H. Allosteric regulation and substrate activation in cytosolic nucleotidase II from Legionella pneumophila. FEBS J 2014; 281:1613-1628. [PMID: 24456211 DOI: 10.1111/febs.12727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/24/2013] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Cytosolic nucleotidase II (cN-II) from Legionella pneumophila (Lp) catalyzes the hydrolysis of GMP and dGMP displaying sigmoidal curves, whereas catalysis of IMP hydrolysis displayed a biphasic curve in the initial rate versus substrate concentration plots. Allosteric modulators of mammalian cN-II did not activate LpcN-II although GTP, GDP and the substrate GMP were specific activators. Crystal structures of the tetrameric LpcN-II revealed an activator-binding site at the dimer interface. A double mutation in this allosteric-binding site abolished activation, confirming the structural observations. The substrate GMP acting as an activator, partitioning between the allosteric and active site, is the basis for the sigmoidicity of the initial velocity versus GMP concentration plot. The LpcN-II tetramer showed differences in subunit organization upon activator binding that are absent in the activator-bound human cN-II structure. This is the first observation of a structural change induced by activator binding in cN-II that may be the molecular mechanism for enzyme activation. DATABASE The coordinates and structure factors reported in this paper have been submitted to the Protein Data Bank under the accession numbers 2BDE and 4G63. The accession number of GMP complexed LpcN-II is 4OHF. STRUCTURED DIGITAL ABSTRACT LpcN-II and LpcN-II bind by molecular sieving (View interaction) LpcN-II and LpcN-II bind by x-ray crystallography (View interaction) [Structured digital abstract was added on 5 March 2014 after original online publication].
Collapse
Affiliation(s)
- Bharath Srinivasan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, Karnataka, India
| | - Farhad Forouhar
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Arpit Shukla
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, Karnataka, India
| | - Chethana Sampangi
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, Karnataka, India
| | - Sonia Kulkarni
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, Karnataka, India
| | - Mariam Abashidze
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Jayaraman Seetharaman
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Scott Lew
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Lei Mao
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Department of Biochemistry, Robert Wood Johnson Medical School, Northeast Structural Genomics Consortium, Piscataway, NJ 08854
| | - Thomas B Acton
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Department of Biochemistry, Robert Wood Johnson Medical School, Northeast Structural Genomics Consortium, Piscataway, NJ 08854
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Department of Biochemistry, Robert Wood Johnson Medical School, Northeast Structural Genomics Consortium, Piscataway, NJ 08854
| | - John K Everett
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Department of Biochemistry, Robert Wood Johnson Medical School, Northeast Structural Genomics Consortium, Piscataway, NJ 08854
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Department of Biochemistry, Robert Wood Johnson Medical School, Northeast Structural Genomics Consortium, Piscataway, NJ 08854
| | - Liang Tong
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, Karnataka, India
| |
Collapse
|
18
|
Meyer JA, Carroll WL, Bhatla T. Screening for gene mutations: will identification of NT5C2 mutations help predict the chance of relapse in acute lymphoblastic leukemia? Expert Rev Hematol 2013; 6:223-4. [PMID: 23782074 DOI: 10.1586/ehm.13.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello V, Allegretta M, Paietta E, Racevskis J, Rowe JM, Tallman MS, Paganin M, Basso G, Hof J, Kirschner-Schwabe R, Palomero T, Rabadan R, Ferrando A. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med 2013; 19:368-71. [PMID: 23377281 PMCID: PMC3594483 DOI: 10.1038/nm.3078] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/19/2012] [Indexed: 12/25/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL.
Collapse
Affiliation(s)
- Gannie Tzoneva
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gallier F, Lallemand P, Meurillon M, Jordheim LP, Dumontet C, Périgaud C, Lionne C, Peyrottes S, Chaloin L. Structural insights into the inhibition of cytosolic 5'-nucleotidase II (cN-II) by ribonucleoside 5'-monophosphate analogues. PLoS Comput Biol 2011; 7:e1002295. [PMID: 22174667 PMCID: PMC3234209 DOI: 10.1371/journal.pcbi.1002295] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/20/2011] [Indexed: 02/04/2023] Open
Abstract
Cytosolic 5′-nucleotidase II (cN-II) regulates the intracellular nucleotide pools within the cell by catalyzing the dephosphorylation of 6-hydroxypurine nucleoside 5′-monophosphates. Beside this physiological function, high level of cN-II expression is correlated with abnormal patient outcome when treated with cytotoxic nucleoside analogues. To identify its specific role in the resistance phenomenon observed during cancer therapy, we screened a particular class of chemical compounds, namely ribonucleoside phosphonates to predict them as potential cN-II inhibitors. These compounds incorporate a chemically and enzymatically stable phosphorus-carbon linkage instead of a regular phosphoester bond. Amongst them, six compounds were predicted as better ligands than the natural substrate of cN-II, inosine 5′-monophosphate (IMP). The study of purine and pyrimidine containing analogues and the introduction of chemical modifications within the phosphonate chain has allowed us to define general rules governing the theoretical affinity of such ligands. The binding strength of these compounds was scrutinized in silico and explained by an impressive number of van der Waals contacts, highlighting the decisive role of three cN-II residues that are Phe 157, His 209 and Tyr 210. Docking predictions were confirmed by experimental measurements of the nucleotidase activity in the presence of the three best available phosphonate analogues. These compounds were shown to induce a total inhibition of the cN-II activity at 2 mM. Altogether, this study emphasizes the importance of the non-hydrolysable phosphonate bond in the design of new competitive cN-II inhibitors and the crucial hydrophobic stacking promoted by three protein residues. Nucleotidase activity is part of a biological process that allows the cell to regulate the intracellular pools of nucleotides involved in many signaling pathways. During cancer therapy with cytotoxic nucleoside analogues, the role of cN-II is unclear. Therefore, the development of specific inhibitors against this enzyme is of great interest for understanding its implication in cancer biology and drug resistance. Ribonucleoside phosphonates are of major importance because they behave as bioisosteric analogues of the natural cN-II substrates and contain a chemically and enzymatically stable phosphorus-carbon linkage. Taking the advantages of docking methods, we predicted the inhibitory potential of these compounds. Their binding strength was explained by an impressive interaction network involving mainly three residues of the enzyme (acting as hydrophobic tweezers). These new characterized inhibitors will constitute a valuable tool for elucidating the role of cN-II in cancer cells and may be used in combination with cytotoxic nucleosidic drugs in order to increase their antitumor activity. Furthermore, the strategy taking into account the hydrophobic clamp for designing new inhibitors may be applied to other nucleotidases of the HAD family as two of the three identified residues are present in the substrate binding site of cytosolic 5′-nucleotidase III and 5′-deoxynucleotidase-I.
Collapse
Affiliation(s)
- Franck Gallier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS – Universités Montpellier 1 et 2, Université Montpellier 2, Montpellier, France
| | - Perrine Lallemand
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236, CNRS – Universités Montpellier 1 et 2, Montpellier, France
| | - Maïa Meurillon
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS – Universités Montpellier 1 et 2, Université Montpellier 2, Montpellier, France
| | - Lars P. Jordheim
- Centre de Recherche de Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286 – Université Claude Bernard Lyon 1, Lyon, France
| | - Charles Dumontet
- Centre de Recherche de Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286 – Université Claude Bernard Lyon 1, Lyon, France
| | - Christian Périgaud
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS – Universités Montpellier 1 et 2, Université Montpellier 2, Montpellier, France
| | - Corinne Lionne
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236, CNRS – Universités Montpellier 1 et 2, Montpellier, France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS – Universités Montpellier 1 et 2, Université Montpellier 2, Montpellier, France
| | - Laurent Chaloin
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236, CNRS – Universités Montpellier 1 et 2, Montpellier, France
- * E-mail:
| |
Collapse
|
21
|
Walldén K, Nordlund P. Structural basis for the allosteric regulation and substrate recognition of human cytosolic 5'-nucleotidase II. J Mol Biol 2011; 408:684-96. [PMID: 21396942 DOI: 10.1016/j.jmb.2011.02.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/18/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
Abstract
Cytosolic 5'-nucleotidase II (cN-II) catalyzes the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates and participates in the regulation of purine nucleotide pools within the cell. It interferes with the phosphorylation-dependent activation of nucleoside analogues used in the treatment of cancer and viral diseases. It is allosterically activated by a number of phosphate-containing cellular metabolites such as ATP, diadenosine polyphosphates, and 2,3-bisphosphoglycerate, which couple its activity with the metabolic state of the cell. We present seven high-resolution structures of human cN-II, including a ligand-free form and complexes with various substrates and effectors. These structures reveal the structural basis for the allosteric activation of cN-II, uncovering a mechanism where an effector-induced disorder-to-order transition generates rearrangements within the catalytic site and the subsequent coordination of the catalytically essential magnesium. Central to the activation is the large transition of the catalytically essential Asp356. This study also provides the structural basis for the substrate specificity of cN-II, where Arg202, Asp206, and Phe157 seem to be important residues for purine/pyrimidine selectivity. These structures provide a comprehensive structural basis for the design of cN-II inhibitors. They also contribute to the understanding of how the nucleotide salvage pathway is regulated at a molecular level.
Collapse
Affiliation(s)
- Karin Walldén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | | |
Collapse
|
22
|
Pesi R, Allegrini S, Careddu MG, Filoni DN, Camici M, Tozzi MG. Active and regulatory sites of cytosolic 5'-nucleotidase. FEBS J 2010; 277:4863-72. [PMID: 21029378 DOI: 10.1111/j.1742-4658.2010.07891.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytosolic 5'-nucleotidase (cN-II), which acts preferentially on 6-hydroxypurine nucleotides, is essential for the survival of several cell types. cN-II catalyses both the hydrolysis of nucleotides and transfer of their phosphate moiety to a nucleoside acceptor through formation of a covalent phospho-intermediate. Both activities are regulated by a number of phosphorylated compounds, such as diadenosine tetraphosphate (Ap₄A), ADP, ATP, 2,3-bisphosphoglycerate (BPG) and phosphate. On the basis of a partial crystal structure of cN-II, we mutated two residues located in the active site, Y55 and T56. We ascertained that the ability to catalyse the transfer of phosphate depends on the presence of a bulky residue in the active site very close to the aspartate residue that forms the covalent phospho-intermediate. The molecular model indicates two possible sites at which adenylic compounds may interact. We mutated three residues that mediate interaction in the first activation site (R144, N154, I152) and three in the second (F127, M436 and H428), and found that Ap₄A and ADP interact with the same site, but the sites for ATP and BPG remain uncertain. The structural model indicates that cN-II is a homotetrameric protein that results from interaction through a specific interface B of two identical dimers that have arisen from interaction of two identical subunits through interface A. Point mutations in the two interfaces and gel-filtration experiments indicated that the dimer is the smallest active oligomerization state. Finally, gel-filtration and light-scattering experiments demonstrated that the native enzyme exists as a tetramer, and no further oligomerization is required for enzyme activation.
Collapse
Affiliation(s)
- Rossana Pesi
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Bogan KL, Brenner C. 5′-Nucleotidases and their new roles in NAD+ and phosphate metabolism. NEW J CHEM 2010. [DOI: 10.1039/b9nj00758j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Saraiva AM, Reis MA, Tada SF, Rosselli-Murai LK, Schneider DRS, Pelloso AC, Toledo MAS, Giles C, Aparicio R, de Souza AP. Functional and small-angle X-ray scattering studies of a new stationary phase survival protein E (SurE) from Xylella fastidiosa--evidence of allosteric behaviour. FEBS J 2009; 276:6751-62. [PMID: 19843181 DOI: 10.1111/j.1742-4658.2009.07390.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genome data of bacterium Xylella fastidiosa strain 9a5c has identified several orfs related to its phytopathogenic adaptation and survival. Among these genes, the surE codifies a survival protein E (XfSurE) whose function is not so well understood, but functional assays in Escherichia coli revealed nucleotidase and exopolyphosphate activity. In the present study, we report the XfSurE protein overexpression in E. coli and its purification. The overall secondary structure was analyzed by CD. Small-angle X-ray scattering and gel filtration techniques demonstrated that the oligomeric state of the protein in solution is a tetramer. In addition, functional kinetics experiments were carried out with several monophosphate nucleoside substrates and revealed a highly positive cooperativity. An allosteric mechanism involving torsion movements in solution is proposed to explain the cooperative behaviour of XfSurE. This is the first characterization of a SurE enzyme from a phytopathogen organism and, to our knowledge, the first solution structure of a SurE protein to be described.
Collapse
Affiliation(s)
- Antonio M Saraiva
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vannoni D, Leoncini R, Giglioni S, Niccolai N, Spiga O, Aceto E, Marinello E. Evidence of a new phosphoryl transfer system in nucleotide metabolism. FEBS J 2008; 276:271-85. [PMID: 19049516 DOI: 10.1111/j.1742-4658.2008.06779.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crude rat liver extract showed AMP-AMP phosphotransferase activity which, on purification, was ascribed to a novel interaction between adenylate kinase, also known as myokinase (EC 2.7.4.3), and adenosine kinase (EC 2.7.1.20). The activity was duplicated using the same enzymes purified from recombinant sources. The reaction requires physical contact between myokinase and adenosine kinase, and the net reaction is aided by the presence of adenosine deaminase (EC 3.5.4.4), which fills the gap in the energy balance of the phosphoryl transfer and shifts the equilibrium towards ADP and inosine synthesis. The proposed mechanism involves the association of adenosine kinase and myokinase through non-covalent, transient interactions that induce slight conformational changes in the active site of myokinase, bringing two already bound molecules of AMP together for phosphoryl transfer to form ADP. The proposed mechanism suggests a physiological role for the enzymes and for the AMP-AMP phosphotransferase reaction under conditions of extreme energy drain (such as hypoxia or temporary anoxia, as in cancer tissues) when the enzymes cannot display their conventional activity because of substrate deficiency.
Collapse
Affiliation(s)
- Daniela Vannoni
- Department of Internal Medicine, Endocrine-Metabolic Sciences and Biochemistry, University of Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Galmarini CM. What does over-expression of cN-II enzyme signify in haematological malignancies? Leuk Res 2007; 31:1325-6. [PMID: 17434583 DOI: 10.1016/j.leukres.2007.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 02/15/2007] [Accepted: 02/15/2007] [Indexed: 11/15/2022]
|
27
|
Lu Y, Rosenberg PA. NMDA receptor-mediated extracellular adenosine accumulation is blocked by phosphatase 1/2A inhibitors. Brain Res 2007; 1155:116-24. [PMID: 17509540 PMCID: PMC3626428 DOI: 10.1016/j.brainres.2007.04.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 04/06/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
We have previously demonstrated that NMDA receptor-mediated extracellular adenosine accumulation in neuronal cultures is receptor-mediated and requires calcium influx. Because protein kinase C (PKC) is a calcium-dependent enzyme, we hypothesized that activation of PKC might be involved in NMDA-mediated adenosine accumulation. PKC inhibitors, however, did not block NMDA-evoked adenosine accumulation, but rather, stimulated basal adenosine accumulation. These data suggested the possibility that NMDA receptor-mediated adenosine accumulation involves net dephosphorylation rather than phosphorylation of one or more substrates. Thus, inhibition of kinases would be expected to increase adenosine accumulation and inhibition of phosphatases would be expected to block adenosine accumulation. To test this hypothesis, we used the phosphatase 1/2A inhibitors calyculin A and okadaic acid. Both inhibitors significantly reduced NMDA-evoked adenosine accumulation. In contrast phosphatase 2B inhibitors did not block NMDA-evoked adenosine accumulation. These data suggest that NMDA-evoked adenosine accumulation is mediated by activation of phosphatase 1/2A. We have established previously that NMDA-mediated adenosine accumulation is associated with adenosine kinase inhibition. However, adenosine kinase is not a direct substrate for phosphatase 1/2A because inhibition of phosphatase 1/2A did not abolish NMDA-evoked adenosine kinase inhibition. Okadaic acid also had no effect on NO donor-evoked adenosine accumulation, which previously has been shown to be associated with adenosine kinase inhibition. Dephosphorylation of one or more proteins other than adenosine kinase as a consequence of NMDA receptor activation might play an important role in extracellular adenosine regulation, with important consequences for the regulation of excitatory synaptic transmission, plasticity, epileptogenesis, and excitotoxicity.
Collapse
Affiliation(s)
- Yin Lu
- Enders Research Building, Department of Neurology, Neurobiology Program, Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
28
|
Walldén K, Stenmark P, Nyman T, Flodin S, Gräslund S, Loppnau P, Bianchi V, Nordlund P. Crystal structure of human cytosolic 5'-nucleotidase II: insights into allosteric regulation and substrate recognition. J Biol Chem 2007; 282:17828-36. [PMID: 17405878 DOI: 10.1074/jbc.m700917200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic 5'-nucleotidase II catalyzes the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates and regulates the IMP and GMP pools within the cell. It possesses phosphotransferase activity and thereby also catalyzes the reverse reaction. Both reactions are allosterically activated by adenine-based nucleotides and 2,3-bisphosphoglycerate. We have solved structures of cytosolic 5'-nucleotidase II as native protein (2.2 Angstrom) and in complex with adenosine (1.5 Angstrom) and beryllium trifluoride (2.15 Angstrom) The tetrameric enzyme is structurally similar to enzymes of the haloacid dehalogenase (HAD) superfamily, including mitochondrial 5'(3')-deoxyribonucleotidase and cytosolic 5'-nucleotidase III but possesses additional regulatory regions that contain two allosteric effector sites. At effector site 1 located near a subunit interface we modeled diadenosine tetraphosphate with one adenosine moiety in each subunit. This efficiently glues the tetramer subunits together in pairs. The model shows why diadenosine tetraphosphate but not diadenosine triphosphate activates the enzyme and supports a role for cN-II during apoptosis when the level of diadenosine tetraphosphate increases. We have also modeled 2,3-bisphosphoglycerate in effector site 1 using one phosphate site from each subunit. By comparing the structure of cytosolic 5'-nucleotidase II with that of mitochondrial 5'(3')-deoxyribonucleotidase in complex with dGMP, we identified residues involved in substrate recognition.
Collapse
Affiliation(s)
- Karin Walldén
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hunsucker SA, Mitchell BS, Spychala J. The 5'-nucleotidases as regulators of nucleotide and drug metabolism. Pharmacol Ther 2005; 107:1-30. [PMID: 15963349 DOI: 10.1016/j.pharmthera.2005.01.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2005] [Indexed: 11/19/2022]
Abstract
The 5'-nucleotidases are a family of enzymes that catalyze the dephosphorylation of nucleoside monophosphates and regulate cellular nucleotide and nucleoside levels. While the nucleoside kinases responsible for the initial phosphorylation of salvaged nucleosides have been well studied, many of the catabolic nucleotidases have only recently been cloned and characterized. Aside from maintaining balanced ribo- and deoxyribonucleotide pools, substrate cycles that are formed with kinase and nucleotidase activities are also likely to regulate the activation of nucleoside analogues, a class of anticancer and antiviral agents that rely on the nucleoside kinases for phosphorylation to their active forms. Both clinical and in vitro studies suggest that an increase in nucleotidase activity can inhibit nucleoside analogue activation and result in drug resistance. The physiological role of the 5'-nucleotidases will be covered in this review, as will the evidence that these enzymes can mediate resistance to nucleoside analogues.
Collapse
Affiliation(s)
- Sally Anne Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
30
|
Pinto CS, Jinnah HA, Shirley TL, Nyhan WL, Seifert R. Altered membrane NTPase activity in Lesch-Nyhan disease fibroblasts: comparison with HPRT knockout mice and HPRT-deficient cell lines. J Neurochem 2005; 93:1579-86. [PMID: 15935074 DOI: 10.1111/j.1471-4159.2005.03151.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lesch-Nyhan disease (LND) is a rare disorder caused by a defect of an enzyme in the purine salvage pathway, hypoxanthine phosphoribosyl transferase (HPRT). It is still unknown how the metabolic defect translates into the complex neuropsychiatric phenotype characterized by self-injurious behavior, dystonia and mental retardation. There are abnormalities in purine and pyrimidine nucleotide content in HPRT-deficient cells. We hypothesized that altered nucleotide concentrations in HPRT deficiency change G-protein-mediated signal transduction. Therefore, our original study aim was to examine the high-affinity GTPase activity of G-proteins in membranes from primary human skin and immortalized mouse skin fibroblasts, rat B103 neuroblastoma cells and mouse Neuro-2a neuroblastoma cells. Unexpectedly, in membranes from human fibroblasts, B103- and Neuro-2a cells, V(max) of low-affinity nucleoside 5'-triphosphatase (NTPase) activities was decreased up to 7-fold in HPRT deficiency. In contrast, in membranes from mouse fibroblasts, HPRT deficiency increased NTPase activity up to 4-fold. The various systems analyzed differed from each other in terms of K(m) values for NTPs, absolute V(max) values and K(i) values for nucleoside 5'-[beta,gamma-imido]triphosphates. Our data show that altered membrane NTPase activity is a biochemical hallmark of HPRT deficiency, but species and cell-type differences have to be considered. Thus, future studies on biochemical changes in LND should be conducted in parallel in several HPRT-deficient systems.
Collapse
Affiliation(s)
- Cibele S Pinto
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, USA
| | | | | | | | | |
Collapse
|
31
|
Bretonnet AS, Jordheim LP, Dumontet C, Lancelin JM. Regulation and activity of cytosolic 5′-nucleotidase II. FEBS Lett 2005; 579:3363-8. [PMID: 15946667 DOI: 10.1016/j.febslet.2005.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 11/20/2022]
Abstract
In many vertebrate tissues, cytosolic 5'-nucleotidase II (cN-II) either hydrolyses or phosphorylates a number of purine (monophosphorylated) nucleosides through a scheme common to the Haloacid Dehalogenase superfamily members. It possesses a pivotal role in purine cellular metabolism and it acts on anti-tumoural and antiviral nucleoside analogues, thus being of potential therapeutic importance. cN-II is Mg2+-dependent, regulated and stabilised by several factors such as allosteric effectors ATP and 2,3-DPG, although these are not directly involved in the reaction stoichiometry. We review herein the experimental knowledge currently available about this remarkable enzymatic activity.
Collapse
Affiliation(s)
- A S Bretonnet
- Laboratoire de RMN Biomoléculaire, Université Claude Bernard--Lyon I, UMR CNRS 5180 Sciences Analytiques, ESCPE Lyon, 69622 Villeurbanne, France
| | | | | | | |
Collapse
|
32
|
Proudfoot M, Kuznetsova E, Brown G, Rao NN, Kitagawa M, Mori H, Savchenko A, Yakunin AF. General enzymatic screens identify three new nucleotidases in Escherichia coli. Biochemical characterization of SurE, YfbR, and YjjG. J Biol Chem 2004; 279:54687-94. [PMID: 15489502 DOI: 10.1074/jbc.m411023200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To find proteins with nucleotidase activity in Escherichia coli, purified unknown proteins were screened for the presence of phosphatase activity using the general phosphatase substrate p-nitrophenyl phosphate. Proteins exhibiting catalytic activity were then assayed for nucleotidase activity against various nucleotides. These screens identified the presence of nucleotidase activity in three uncharacterized E. coli proteins, SurE, YfbR, and YjjG, that belong to different enzyme superfamilies: SurE-like family, HD domain family (YfbR), and haloacid dehalogenase (HAD)-like superfamily (YjjG). The phosphatase activity of these proteins had a neutral pH optimum (pH 7.0-8.0) and was strictly dependent on the presence of divalent metal cations (SurE: Mn(2+) > Co(2+) > Ni(2+) > Mg(2+); YfbR: Co(2+) > Mn(2+) > Cu(2+); YjjG: Mg(2+) > Mn(2+) > Co(2+)). Further biochemical characterization of SurE revealed that it has a broad substrate specificity and can dephosphorylate various ribo- and deoxyribonucleoside 5'-monophosphates and ribonucleoside 3'-monophosphates with highest affinity to 3'-AMP. SurE also hydrolyzed polyphosphate (exopolyphosphatase activity) with the preference for short-chain-length substrates (P(20-25)). YfbR was strictly specific to deoxyribonucleoside 5'-monophosphates, whereas YjjG showed narrow specificity to 5'-dTMP, 5'-dUMP, and 5'-UMP. The three enzymes also exhibited different sensitivities to inhibition by various nucleoside di- and triphosphates: YfbR was equally sensitive to both di- and triphosphates, SurE was inhibited only by triphosphates, and YjjG was insensitive to these effectors. The differences in their sensitivities to nucleotides and their varied substrate specificities suggest that these enzymes play unique functions in the intracellular nucleotide metabolism in E. coli.
Collapse
Affiliation(s)
- Michael Proudfoot
- Banting and Best Department of Medical Research, University of Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Vera Bianchi
- Department of Biology, University of Padua, I-35131 Padua, Italy.
| | | |
Collapse
|
34
|
Mazzon C, Rampazzo C, Scaini MC, Gallinaro L, Karlsson A, Meier C, Balzarini J, Reichard P, Bianchi V. Cytosolic and mitochondrial deoxyribonucleotidases: activity with substrate analogs, inhibitors and implications for therapy. Biochem Pharmacol 2003; 66:471-9. [PMID: 12907246 DOI: 10.1016/s0006-2952(03)00290-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nucleoside analogs act as prodrugs that must be converted to 5'-phosphates by intracellular kinases to become active in the treatment of viral and oncological diseases. Activation may be reversed by dephosphorylation if the 5'-phosphates are substrates for 5'-nucleotidases. Dephosphorylation by cytosolic enzymes decreases the efficacy of the analogs, whereas dephosphorylation by mitochondrial enzymes may decrease mitochondrial toxicity. Both effects may influence the outcome of therapy. We investigated the dephosphorylation of the 5'-phosphates of commonly used nucleoside analogs by two cytosolic (cN-II and dNT-1) and one mitochondrial (dNT-2) nucleotidase. Most uracil/thymine nucleotide analogs were dephosphorylated by all three human enzymes but cytosine-containing nucleotide analogs were inactive. Only cN-II showed some activity with the monophosphates of the two purine analogs 2-chloro-2'-deoxyadenosine and 9-beta-D-arabinosylguanine. We conclude that overproduction of any of the three 5'-nucleotidases cannot explain development of resistance against cytosine analogs but that overproduction of cN-II could lead to resistance against purine analogs. Of the tested analogs, only (E)-5-(2-bromovinyl)-2'-deoxyuridine was preferentially dephosphorylated by mitochondrial dNT-2. We propose that in future developments of analogs this aspect be considered in order to reduce mitochondrial toxicity. We tested inhibition of dNT-1 and dNT-2 by a large variety of synthetic metabolically stable nucleoside phosphonate analogs and found one (PMcP-U) that inhibited dNT-1 and dNT-2 competitively and a second (DPB-T) that inhibited dNT-2 by mixed inhibition. Both inhibitors are useful for specific 5'-nucleotidase assays and structural studies and may open up possibilities for therapy.
Collapse
Affiliation(s)
- Cristina Mazzon
- Department of Biology, University of Padova, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Galmarini CM, Jordheim L, Dumontet C. Role of IMP-selective 5'-nucleotidase (cN-II) in hematological malignancies. Leuk Lymphoma 2003; 44:1105-11. [PMID: 12916861 DOI: 10.1080/1042819031000077142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytotoxic nucleoside analogs (NA) are important in the treatment of hematologic malignancies. The NA in routine clinical use include the pyrimidine analog cytosine arabinoside (ara-c), which is extensively used in the treatment of acute leukemias, and the purine analogs, cladribine and fludarabine. These drugs have mostly been used in the treatment of low grade hematological malignancies. NA become therapeutically effective only after phosporylation to the triphosphate level. The 5'-nucleotidases (5'-NTs) dephosphorylate the monophosphate form of NA and, therefore, may affect the pharmacological activity of these antimetabolites in the clinic. Several 5'-NTs attached to membranes or present in the cytosol or in mitochondria are present in mammalian cells. cN-II, an IMP-selective 5'-NT, participates in the regulation of purine deoxyribonucleotide metabolism. cN-II opposes the action of the salvage enzymes by dephosphorylating purine nucleoside mononphosphates to purine nucleosides. Due to its phosphotransferase activity, cN-II can also phosphorylate inosine and 2',3'-dideoxyribonucleosides utilizing IMP as a phosphate donor. The observation that cytosolic cN-II is able to phosphorylate purine nucleosides has initiated studies on its potential participation in the metabolism of anticancer agents and in the development of cN-II inhibitory substances. In this review, we highlight the current knowledge concerning cN-II activity and regulation of intracellular deoxyribonucleotide pools and it role in hematological malignancies.
Collapse
|
36
|
Trifilo M, Page T. NAPDD patients exhibit altered electrophoretic mobility of cytosolic 5' nucleotidase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 486:87-90. [PMID: 11783534 DOI: 10.1007/0-306-46843-3_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- M Trifilo
- Department of Neurosciences, University of California at San Diego, La Jolla 92093, USA
| | | |
Collapse
|
37
|
Galmarini CM, Graham K, Thomas X, Calvo F, Rousselot P, El Jafaari A, Cros E, Mackey JR, Dumontet C. Expression of high Km 5'-nucleotidase in leukemic blasts is an independent prognostic factor in adults with acute myeloid leukemia. Blood 2001; 98:1922-6. [PMID: 11535530 DOI: 10.1182/blood.v98.6.1922] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytarabine (ara-C) requires activation into its triphosphorylated form, ara-CTP, to exert cytotoxic activity. Cytoplasmic 5'-nucleotidase (5NT) dephosphorylates ara-CMP, a key intermediate, preventing accumulation of ara-CTP and may reduce cellular sensitivity to the cytotoxic activity of ara-C. To determine whether the level of expression of 5NT is correlated with clinical outcome in patients with acute myeloid leukemia (AML) treated with ara-C, this study analyzed the levels of messenger RNA expression of high Km 5NT by real-time polymerase chain reaction at diagnosis in blast cells of 108 patients with AML. High Km 5NT was expressed at diagnosis in the blast cells of 54% of patients. In univariate analysis, (1) patients whose blast cells contained high levels (values greater than the median value for total population) of high Km 5NT at diagnosis had significantly shorter disease-free survival (DFS) than patients with low levels of high Km 5NT (11 months versus 17.5 months, P =.02) and (2) high levels of high Km 5NT also predicted significantly shorter overall survival (15.7 months versus 39 months, P = .01) in young patients (< or = 57 years; median value for the entire population). In a multivariate analysis taking into account age, karyotype risk, and other factors found to have prognostic significance in univariate analysis, (1) high Km 5NT expression was an independent prognostic factor for DFS and (2) high levels of high Km 5NT also predicted significantly shorter overall survival in young patients. These results demonstrate that the expression of high levels of high Km 5NT in blast cells is correlated with outcome in patients with AML.
Collapse
Affiliation(s)
- C M Galmarini
- Unité INSERM 453-Laboratoire de Cytologie Analytique, Faculté de Médécine Rockefeller, Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hokari S, Miyazaki T, Hasegawa M, Koyama L, Komoda T. Chicken erythrocyte pyrimidine 5'-nucleotidase: purification and characterization of the subclass I enzyme. Biol Chem 2001; 382:919-24. [PMID: 11501756 DOI: 10.1515/bc.2001.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nucleotidase activities resembling subclass I and subclass II of human pyrimidine 5'-nucleotidases (P5N) were detected in chicken red blood cells (RBCs). In chicken RBCs from untreated controls, the activity of the subclass II enzyme was about one third of that of subclass I enzyme, whereas that ratio was approximately 5:1 in rat or human RBCs. The subclass I activity in chicken RBCs was increased 5- to 6-fold upon erythropoietic induction by phenylhydrazine administration, but the subclass II activity did not increase under these conditions. The subclass I enzyme was purified to near homogeneity. Its molecular mass was about 35 kDa as estimated by gel filtration and SDS-polyacrylamide gel electrophoresis. Its N-terminal 12 amino acids, PEFQKKTVHIKD, were also determined. The catalytic properties of the subclass I enzyme were very similar to those of the human enzyme with regard to substrate (preferential hydrolysis of CMP, dCMP, UMP), Km values, optimum pH, and metal ion requirements. Antibodies against chicken P5N subclass I were raised in rats. The chicken P5N-I as well as the rat P5N-I proteins could be detected by antibodies in Western blot analyses, but not the P5N-II proteins. These findings indicate that P5N subclass I may have an important function in chicken erythropoiesis.
Collapse
Affiliation(s)
- S Hokari
- Department of Biochemistry, Junior College, Saitama Medical School, Moroyama-machi, Iruma-gun, Japan
| | | | | | | | | |
Collapse
|
39
|
Hunsucker SA, Spychala J, Mitchell BS. Human cytosolic 5'-nucleotidase I: characterization and role in nucleoside analog resistance. J Biol Chem 2001; 276:10498-504. [PMID: 11133996 DOI: 10.1074/jbc.m011218200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoside analogs are important in the treatment of hematologic malignancies, solid tumors, and viral infections. Their metabolism to the triphosphate form is central to their chemotherapeutic efficacy. Although the nucleoside kinases responsible for the phosphorylation of these compounds have been well described, the nucleotidases that may mediate drug resistance through dephosphorylation remain obscure. We have cloned and characterized a novel human cytosolic 5'-nucleotidase (cN-I) that potentially may have an important role in nucleoside analog metabolism. It is expressed at a high level in skeletal and heart muscle, at an intermediate level in pancreas and brain, and at a low level in kidney, testis, and uterus. The recombinant cN-I showed high affinity toward dCMP and lower affinity toward AMP and IMP. ADP was necessary for maximal catalytic activity. Expression of cN-I in Jurkat and HEK 293 cells conferred resistance to 2-chloro-2'-deoxyadenosine, with a 49-fold increase in the IC(50) in HEK 293 and a greater than 400-fold increase in the IC(50) in Jurkat cells. Expression of cN-I also conferred a 22-fold increase in the IC(50) to 2',3'-difluorodeoxycytidine in HEK 293 cells and an 82-fold increase in the IC(50) to 2',3'-dideoxycytidine in Jurkat cells. These data indicate that cN-I may play an important role in the regulation of physiological pyrimidine nucleotide pools and may also alter the therapeutic efficacy of certain nucleoside analogs.
Collapse
Affiliation(s)
- S A Hunsucker
- Lineberger Comprehensive Cancer Center, Departments of Pharmacology and Medicine, University of North Carolina at Chapel Hill, 27599-7295, USA
| | | | | |
Collapse
|
40
|
Maury G. The enantioselectivity of enzymes involved in current antiviral therapy using nucleoside analogues: a new strategy? Antivir Chem Chemother 2000; 11:165-89. [PMID: 10901289 DOI: 10.1177/095632020001100301] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review is primarily intended for synthetic bio-organic chemists and enzymologists who are interested in new strategies in the design of virus inhibitors. It is an attempt to assess the importance of the enzymatic properties of L-nucleosides and their analogues, particularly those that are active against viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), herpes simplex virus (HSV), etc. Only data obtained with purified enzymes have been considered and discussed. The examined enzymes include nucleoside- or nucleotide-phosphorylating enzymes, catabolic enzymes, viral target enzymes and cellular polymerases. The enantioselectivities of these enzymes were determined from existing data and are significant only when a sufficient number of enantiomeric pairs of substrates could be examined. The reported data emphasize the weak enantioselectivities of cellular or viral nucleoside kinases and some viral DNA polymerases. Thus, cellular deoxycytidine kinase has a considerably relaxed enantioselectivity with respect to a large number of nucleosides or their analogues, and it occupies a strategic position in the intracellular activation of the compounds. Similarly, HIV-1 reverse transcriptase often has a relatively weak enantioselectivity and can be inhibited by the 5-triphosphates of a large series of L-nucleosides and analogues. In contrast, degradation enzymes, such as adenosine or cytidine deaminases, generally demonstrate strict enantioselectivities favouring D-enantiomers and are used by chemists in asymmetric syntheses. The weak enantioselectivities of some enzymes involved in nucleoside metabolism are more or less pronounced, and one enantiomer or the other is favoured depending on the substrate. This suggests that the low enantioselectivity is fortuitous and does not result from evolutionary pressure, since these enzymes do not create or modify asymmetric centres in substrates. The combined enantioselectivities of the enzymes examined in this review strongly suggest that the field of L-nucleosides and their analogues should be systematically explored in the search for new virus inhibitors.
Collapse
Affiliation(s)
- G Maury
- UMR 5625 du CNRS, Université Montpellier II, France.
| |
Collapse
|
41
|
Sala-Newby GB, Freeman NV, Skladanowski AC, Newby AC. Distinct roles for recombinant cytosolic 5'-nucleotidase-I and -II in AMP and IMP catabolism in COS-7 and H9c2 rat myoblast cell lines. J Biol Chem 2000; 275:11666-71. [PMID: 10766785 DOI: 10.1074/jbc.275.16.11666] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catabolism of AMP during ATP breakdown produces adenosine, which restores energy balance. Catabolism of IMP may be a key step regulating purine nucleotide pools. Two, cloned cytosolic 5'-nucleotidases (cN-I and cN-II) have been implicated in AMP and IMP breakdown. To evaluate their roles directly, we expressed recombinant pigeon cN-I or human cN-II at similar activities in COS-7 or H9c2 cells. During rapid (more than 90% in 10 min) or slower (30-40% in 10 min) ATP catabolism, cN-I-transfected COS-7 and H9c2 cells produced significantly more adenosine than cN-II-transfected cells, which were similar to control-transfected cells. Inosine and hypoxanthine concentrations increased only during slower ATP catabolism. In COS-7 cells, 5'-nucleotidase activity was not rate-limiting for inosine and hypoxanthine production, which was therefore unaffected by cN-II- and actually reduced by cN-I- overexpression. In H9c2 cells, in which 5'-nucleotidase activity was rate-limiting, only cN-II overexpression accelerated inosine and hypoxanthine formation. Guanosine formation from GMP was also increased by cN-II. Our results imply distinct roles for cN-I and cN-II. Under the conditions tested in these cells, only cN-I plays a significant role in AMP breakdown to adenosine, whereas only cN-II breaks down IMP to inosine and GMP to guanosine.
Collapse
Affiliation(s)
- G B Sala-Newby
- University of Bristol, Bristol Heart Institute, Bristol BS2 8HW, United Kingdom.
| | | | | | | |
Collapse
|
42
|
Rampazzo C, Johansson M, Gallinaro L, Ferraro P, Hellman U, Karlsson A, Reichard P, Bianchi V. Mammalian 5'(3')-deoxyribonucleotidase, cDNA cloning, and overexpression of the enzyme in Escherichia coli and mammalian cells. J Biol Chem 2000; 275:5409-15. [PMID: 10681516 DOI: 10.1074/jbc.275.8.5409] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
5'(3')-Deoxyribonucleotidase is a ubiquitous enzyme in mammalian cells whose physiological function is not known. It was earlier purified to homogeneity from human placenta. We determined the amino acid sequences of several internal peptides and with their aid found an expressed sequence tag clone with the complete cDNA for a murine enzyme of 23.9 kDa. The DNA was cloned into appropriate plasmids and introduced into Escherichia coli and ecdyson-inducible 293 and V79 cells. The recombinant enzyme was purified to homogeneity from transformed E. coli and was found to be identical with the native enzyme. After induction with ponasterone, the transfected mammalian cells showed a gradual increase of enzyme activity. A human expressed sequence tag clone contained a large part of the cDNA of the human enzyme but lacked the 5'-end corresponding to 51 amino acids of the murine enzyme. Several polymerase chain reaction-based approaches to find this sequence met with no success. A mouse/human hybrid cDNA that had substituted the missing human 5'-end with the corresponding mouse sequence coded for a fully active enzyme.
Collapse
Affiliation(s)
- C Rampazzo
- Department of Biology, University of Padova, I-35131 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gazziola C, Moras M, Ferraro P, Gallinaro L, Verin R, Rampazzo C, Reichard P, Bianchi V. Induction of human high K(M) 5'-nucleotidase in cultured 293 cells. Exp Cell Res 1999; 253:474-82. [PMID: 10585270 DOI: 10.1006/excr.1999.4681] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human 293 cells were stably transfected with a plasmid introducing a receptor for the ecdysone analog muristerone. The cells were further stably transfected with muristerone-inducible expression vectors carrying either the cDNA for the human high K(M) 5'-nucleotidase or the coding sequence of the nucleotidase linked to the 5'-end of the sequence for the green fluorescent protein. Upon induction, both types of transfectants overproduced nucleotidase activity in a time- and dose-dependent manner. Western blots gave values close to the expected subunit molecular masses of 65 and 92 kDa, respectively, excluding processing of the induced proteins. Cells induced to overexpress the nucleotidase showed a decreased growth rate and contained smaller pools of each of the four common ribonucleoside triphosphates. They showed no increased resistance to the toxicity of 2-chlorodeoxyadenosine.
Collapse
Affiliation(s)
- C Gazziola
- Department of Biology, University of Padova, Padova, 35131, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Rampazzo C, Gazziola C, Ferraro P, Gallinaro L, Johansson M, Reichard P, Bianchi V. Human high-Km 5'-nucleotidase effects of overexpression of the cloned cDNA in cultured human cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:689-97. [PMID: 10215885 DOI: 10.1046/j.1432-1327.1999.00320.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
5'-Nucleotidases participate, together with nucleoside kinases, in substrate cycles involved in the regulation of deoxyribonucleotide metabolism. Three major classes of nucleotidases are known, one on the plasma membrane and two in the cytosol. The two cytosolic classes have been named high-Km nucleotidases and 5'(3')-nucleotidases. Starting from two plasmids with partial sequences (Oka, J., Matsumoto, A., Hosokawa, Y. & Inoue, S. (1994) Biochem. Biophys. Res. Commun. 205, 917-922) we cloned the complete cDNA of the human high-Km nucleotidase into vectors suitable for transfection of Escherichia coli or mammalian cells. After transfection, E. coli overproduced large amounts of the enzyme. Most of the enzyme was present in inclusion bodies that also contained many partially degraded products of the protein. Part of the enzyme, corresponding to approximately 2% of the soluble proteins, was in a soluble active form. Stably transfected human 293 cells were obtained with a vector where the 3'-end of the nucleotidase coding sequence is linked to the 5'-end of the green fluorescent protein coding sequence. Several green clones overproduced both mRNA and fusion protein. Two clones with 10-fold higher enzyme activity were analyzed further. The nucleotidase activity of cell extracts showed the same substrate specificity and allosteric regulation as the high-Km enzyme. The growth rate of the two clones did not differ from the controls. The cells were not resistant to deoxyguanosine or deoxyadenosine, and did not show an increased ability to phosphorylate dideoxyinosine. Both ribonucleoside and deoxyribonucleoside triphosphate pools were decreased slightly, suggesting participation of the enzyme in their regulation.
Collapse
Affiliation(s)
- C Rampazzo
- Department of Biology, University of Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Spychala J, Chen V, Oka J, Mitchell BS. ATP and phosphate reciprocally affect subunit association of human recombinant High Km 5'-nucleotidase. Role for the C-terminal polyglutamic acid tract in subunit association and catalytic activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:851-8. [PMID: 10092873 DOI: 10.1046/j.1432-1327.1999.00099.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
IMP-specific, High Km 5'-nucleotidase (EC 3.1.3.5) is an ubiquitous enzyme, the activity of which is highly regulated by substrate, ATP, and inorganic phosphate. The cDNA encoding this enzyme has recently been cloned and found to contain a unique stretch of nine glutamic and four aspartic acid residues at the C-terminus. To study the effects of this acidic tail, and of ATP and inorganic phosphate on enzyme function, we generated several structural modifications of the 5'-nucleotidase cDNA, expressed the corresponding proteins in Escherichia coli and compared their molecular and kinetic properties. As with the enzyme purified from human placenta, all recombinant proteins were activated by ATP and inhibited by inorganic phosphate. Although the S0.5-values were higher, the specific activities of the purified protein variants (except that truncated at the C-terminus) were similar. The molecular mass of the full-length enzyme subunit has been estimated at 57.3 kDa and the molecular mass of the native protein, as determined by gel-filtration chromatography, was estimated to be 195 kDa. Increasing the concentration of NaCl to 0.3 M promoted oligomerization of the protein and the formation of aggregates of 332 kDa. ATP induced further oligomerization to 715 kDa, while inorganic phosphate reduced the estimated molecular mass to 226 kDa. In contrast to the truncation of 30 amino acids at the N-terminus, which did not alter enzyme properties, the removal of the polyglutamic/aspartic acid tail of 13 residues at the C-terminus caused profound kinetic and structural changes, including a 29-fold decrease in specific activity and a significant increase in the sensitivity to inhibition by inorganic phosphate in the presence of AMP. Structurally, there was a dramatic loss of the ability to form oligomers at physiological salt concentration which was only partially restored by the addition of NaCl or ATP. These data suggest an important function of the polyglutamic acid tract in the process of association and dissociation of 5'-nucleotidase subunits.
Collapse
Affiliation(s)
- J Spychala
- Department of Pharmacology, University of North Carolina at Chapel Hill 27599-7365, USA.
| | | | | | | |
Collapse
|
46
|
Garvey EP, Lowen GT, Almond MR. Nucleotide and nucleoside analogues as inhibitors of cytosolic 5'-nucleotidase I from heart. Biochemistry 1998; 37:9043-51. [PMID: 9636049 DOI: 10.1021/bi980209d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Substrate and product specificity studies were used to develop inhibitors of the cytosolic 5'-nucleotidase I (c-N-I) from myocardium. As measured by Vmax/Km, c-N-I preferred pyrimidine 2'-deoxyribonucleotides as substrates with thymidine monophosphate (TMP) being the most efficient. In product inhibition studies, thymidine inhibited noncompetitively and inorganic phosphate inhibited competitively, consistent with an ordered release of nucleoside prior to phosphate. Mirroring nucleotide substrate specificities, pyrimidine nucleosides were more potent product inhibitors than purine nucleosides. Thus, pyrimidine nucleotide and nucleoside analogues were developed as inhibitors. Phosphonate analogues of TMP were synthesized by a novel method. The most potent was the 5'-phosphonate of 3'-deoxythymidine (ddT) (apparent Ki value of 63 nM). In addition, pyrimidine nucleoside analogues were inhibitors with 5-ethynyl-2',3'-dideoxyuridine being the most potent (apparent Ki value of 3.7 microM). The most potent nucleotide and nucleoside inhibitor were both greater than 1000-fold more potent inhibiting c-N-I than the cytosolic 5'-nucleotidase II. The nucleoside analogue was also greater than 1000-fold more potent against c-N-I than the membrane ecto-5'-nucleotidase (e-N). Because the phosphonate analogues measurably inhibited e-N (apparent Ki values of 6-12 microM), the selectivity of the phosphonates for c-N-I versus e-N was less (40-200-fold). Because of the high selectivity for c-N-I versus both of the other 5'-nucleotidases, the nucleoside inhibitors of c-N-I may be useful biochemical tools in discerning the role that c-N-I plays in generating adenosine within myocardium.
Collapse
Affiliation(s)
- E P Garvey
- Division of Biochemistry, Glaxo Wellcome, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
47
|
Hokari S, Miyazaki T, Hasegawa M, Komoda T. Enhanced activity of pyrimidine 5'-nucleotidase in rat red blood cells during erythropoiesis. Biol Chem 1998; 379:329-33. [PMID: 9563829 DOI: 10.1515/bchm.1998.379.3.329] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A nucleotidase that catalyzed selective hydrolysis of pyrimidine 5'-nucleotides was investigated in rat red blood cells (RBCs). The enzyme had similar catalytic properties to human pyrimidine 5'-nucleotidase I (P5N-I). The P5N-I deficiency was known to be closely correlated with the human inherited disease, non-spherocytic hemolytic anemia. Similar to the human P5N-I, the rat enzyme preferentially hydrolyzed 5'-(d)CMP and 5'-UMP but no reactivity was observed with any 3'-nucleotide. Molecular mass of the enzyme was estimated to be approximately 38 kDa by gel filtration and SDS-polyacrylamide gel electrophoresis. Another subclass of pyrimidine 5'-nucleotidase, P5N-II, was also present in rat RBCs. This P5N-II-like enzyme, which resembled a 5'(3')-nucleotidase, preferentially hydrolyzed both 5'- and 3'- of (d)TMP or (d)UMP, but no cytosine nucleotide was hydrolyzed by the enzyme. Results from the reactivity with the antibody against rat 5'(3')-nucleotidase and estimated subunit molecular mass of the enzymes, about 26 kDa, suggested that the P5N-II-like enzyme had a similar structure to the 5'(3')-nucleotidase. The P5N-I-like activity in rat RBCs increased 5 to 6-fold at 4 days after phenylhydrazine injection, and reached a maximum at 6 to 7 days. No change in the activity of P5N-II-like nucleotidase was observed during the experimental period. The increase in rat P5N-I activity coincided with maturation of the erythrocytes.
Collapse
Affiliation(s)
- S Hokari
- Department of Biochemistry, Saitama Medical School, Japan
| | | | | | | |
Collapse
|
48
|
Page T, Yu A, Fontanesi J, Nyhan WL. Developmental disorder associated with increased cellular nucleotidase activity. Proc Natl Acad Sci U S A 1997; 94:11601-6. [PMID: 9326656 PMCID: PMC23552 DOI: 10.1073/pnas.94.21.11601] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Four unrelated patients are described with a syndrome that included developmental delay, seizures, ataxia, recurrent infections, severe language deficit, and an unusual behavioral phenotype characterized by hyperactivity, short attention span, and poor social interaction. These manifestations appeared within the first few years of life. Each patient displayed abnormalities on EEG. No unusual metabolites were found in plasma or urine, and metabolic testing was normal except for persistent hypouricosuria. Investigation of purine and pyrimidine metabolism in cultured fibroblasts derived from these patients showed normal incorporation of purine bases into nucleotides but decreased incorporation of uridine. De novo synthesis of purines and cellular phosphoribosyl pyrophosphate content also were moderately decreased. The distribution of incorporated purines and pyrimidines did not reveal a pattern suggestive of a deficient enzyme activity. Assay of individual enzymes in fibroblast lysates showed no deficiencies. However, the activity of cytosolic 5'-nucleotidase was elevated 6- to 10-fold. Based on the possibility that the observed increased catabolic activity and decreased pyrimidine salvage might be causing a deficiency of pyrimidine nucleotides, the patients were treated with oral pyrimidine nucleoside or nucleotide compounds. All patients showed remarkable improvement in speech and behavior as well as decreased seizure activity and frequency of infections. A double-blind placebo trial was undertaken to ascertain the efficacy of this supplementation regimen. Upon replacement of the supplements with placebo, all patients showed rapid regression to their pretreatment states. These observations suggest that increased nucleotide catabolism is related to the symptoms of these patients, and that the effects of this increased catabolism are reversed by administration of uridine.
Collapse
Affiliation(s)
- T Page
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
49
|
Minelli A, Moroni M, Mezzasoma I. The dephosphorylation of AMP and IMP by a soluble low Km 5'nucleotidase from human seminal plasma: some regulatory aspects. Int J Biochem Cell Biol 1995; 27:1079-83. [PMID: 7496997 DOI: 10.1016/1357-2725(95)00061-s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study, a soluble low Km 5'nucleotidase, dephosphorylating IMP with a Vmax/Km ratio 10-times higher than that of AMP, has been purified from human seminal plasma. The effect of inorganic phosphate (Pi) and adenylate energy charge variations on the activity of this enzyme has also been investigated. In the physiological range, with IMP as substrate, the activity of the enzyme does not change whereas the hydrolysis of AMP increases with decreasing energy charge values. In the presence of both the substrates, phosphate exerts an inhibitory effect on the enzyme activity with a similar concentration dependence pattern. The results show that AMP-hydrolysing activity responds to variations of energy charge by increasing the AMP degradation thus protecting the value of energy charge at the expense of a decrease in the total adenylate pool. In contrast, the dephosphorylation of IMP is not regulated by changes in energy charge. This data suggests that the degradation of IMP and AMP, although carried out by the same enzyme, is controlled by different regulatory mechanisms.
Collapse
Affiliation(s)
- A Minelli
- Dipartimento di Biologia Cellulare e Molecolare, Università di Perugia, Perugia, Italy
| | | | | |
Collapse
|
50
|
Kitos TE, Tyrrell DL. Intracellular metabolism of 2',3'-dideoxynucleosides in duck hepatocyte primary cultures. Biochem Pharmacol 1995; 49:1291-302. [PMID: 7763311 DOI: 10.1016/0006-2952(95)00052-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The intracellular fate of the potent duck hepatitis B virus (DHBV) inhibitor 2,6-diaminopurine 2',3'-dideoxyriboside (ddDAPR), its deamination product 2',3'-dideoxyguanosine (ddG), and the less effective DHBV-inhibitor 2',3'-dideoxycytidine (ddC) was investigated in duck hepatocyte primary cultures. After a 1-min exposure of [3H]ddDAPR to duck blood, 95% of the compound was converted to ddG. Similarly, [3H]ddDAPR was converted rapidly to ddG in duck hepatocyte primary cultures, with ddG exhibiting resistance to further catabolism. The major pathway of ddG utilization in these cells was phosphorylation, yielding a concentration of 2.1 and 1.9 microM total ddG nucleotides after 5 and 26 hr, respectively, of exposure to 4 microM ddG. Removal of exogenous ddG led to a rapid (T1/2 = 1.6 hr) decrease in the total intracellular ddG nucleotide pools. Duck hepatocytes treated with 4 microM ddC exhibited a time-dependent accumulation of ddC nucleotides, culminating in a maximum intracellular total ddC nucleotide concentration of 1.4 microM after 24-26 hr. The intracellular total ddC nucleotide level decreased with a T1/2 of 4.4 hr following the removal of exogenous ddC. The formation of ddC nucleotides was reduced in the presence of excess 2'-dideoxycytidine implicating deoxycytidine kinase in the initial step of ddC phosphorylation. A 25-fold excess of 2'-deoxycytidine had no effect on ddG phosphorylation in duck hepatocytes. However, a 92% inhibition of ddG nucleotide formation occurred in duck hepatocytes treated for 5 hr with 4 microM [3H]dG + 100 microM adenosine in the presence of the adenosine deaminase inhibitor 2'-deoxycoformycin, suggesting that, in these cells, adenosine kinase is involved in the ddG phosphorylation process.
Collapse
Affiliation(s)
- T E Kitos
- Department of Medical Microbiology and Infectious Diseases, University of Alberta, Edmonton, Canada
| | | |
Collapse
|