1
|
Rodrigues KE, Pontes MHB, Cantão MBS, Prado AF. The role of matrix metalloproteinase-9 in cardiac remodeling and dysfunction and as a possible blood biomarker in heart failure. Pharmacol Res 2024; 206:107285. [PMID: 38942342 DOI: 10.1016/j.phrs.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Heart failure (HF) is the leading cause of morbidity and mortality in cardiovascular diseases, being responsible for many hospitalizations annually. HF is considered a public health problem with significant economic and social impact, which makes searches essential for strategies that improve the ability to predict and diagnose HF. In this way, biomarkers can help in risk stratification for a more personalized approach to patients with HF. Preclinical and clinical evidence shows the participation of matrix metalloproteinase 9 (MMP-9) in the HF process. In this review, we will demonstrate the critical role that MMP-9 plays in cardiac remodeling and dysfunction. We will also show its importance as a blood biomarker in acute and chronic HF patients.
Collapse
Affiliation(s)
- Keuri Eleutério Rodrigues
- Biodiversity and Biotechnology Post Graduate Program - BIONORTE, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Maria Helena Barbosa Pontes
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Pharmacology and Biochemistry Post Graduate Program - FARMABIO, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Manoel Benedito Sousa Cantão
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Pharmacology and Biochemistry Post Graduate Program - FARMABIO, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Alejandro Ferraz Prado
- Biodiversity and Biotechnology Post Graduate Program - BIONORTE, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Pharmacology and Biochemistry Post Graduate Program - FARMABIO, Institute of Biological Sciences, Federal University of Para, Belem, Brazil.
| |
Collapse
|
2
|
Ryan F, Francos-Quijorna I, Hernández-Mir G, Aquino C, Schlapbach R, Bradbury EJ, David S. Tlr4 Deletion Modulates Cytokine and Extracellular Matrix Expression in Chronic Spinal Cord Injury, Leading to Improved Secondary Damage and Functional Recovery. J Neurosci 2024; 44:e0778232023. [PMID: 38326029 PMCID: PMC10860514 DOI: 10.1523/jneurosci.0778-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 02/09/2024] Open
Abstract
Toll-like receptors (TLRs) play an important role in the innate immune response after CNS injury. Although TLR4 is one of the best characterized, its role in chronic stages after spinal cord injury (SCI) is not well understood. We examined the role of TLR4 signaling in injury-induced responses at 1 d, 7 d, and 8 weeks after spinal cord contusion injury in adult female TLR4 null and wild-type mice. Analyses include secondary damage, a range of transcriptome and protein analyses of inflammatory, cell death, and extracellular matrix (ECM) molecules, as well as immune cell infiltration and changes in axonal sprouting and locomotor recovery. Lack of TLR4 signaling results in reduced neuronal and myelin loss, reduced activation of NFκB, and decreased expression of inflammatory cytokines and necroptotic cell death pathway at a late time point (8 weeks) after injury. TLR4 null mice also showed reduction of scar-related ECM molecules at 8 weeks after SCI, accompanied by increase in ECM molecules associated with perineuronal nets, increased sprouting of serotonergic fibers, and improved locomotor recovery. These findings reveal novel effects of TLR4 signaling in chronic SCI. We show that TLR4 influences inflammation, cell death, and ECM deposition at late-stage post-injury when secondary injury processes are normally considered to be over. This highlights the potential for late-stage targeting of TLR4 as a potential therapy for chronic SCI.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada
| | - Isaac Francos-Quijorna
- The Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Gerard Hernández-Mir
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Catharine Aquino
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Elizabeth J Bradbury
- The Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Samuel David
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada
| |
Collapse
|
3
|
Mündermann A, Nüesch C, Herger S, Liphardt AM, Chammartin F, De Pieri E, Egloff C. Load-induced blood marker kinetics in patients with medial knee compartment osteoarthritis are associated with accumulated load and patient reported outcome measures. F1000Res 2024; 12:299. [PMID: 38882712 PMCID: PMC11179051 DOI: 10.12688/f1000research.131702.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 06/18/2024] Open
Abstract
Background This study aimed to quantify the mechanoresponse of 10 blood marker candidates for joint metabolism to a walking stress test in patients with knee osteoarthritis and to determine the association among marker kinetics and with accumulated load and patient reported outcomes. Methods 24 patients with knee osteoarthritis completed questionnaires, and a 30-minute walking stress test with six blood serum samples and gait analysis. Concentrations of cartilage oligomeric matrix protein (COMP), matrix metalloproteinases (MMP)-1, -3, and -9, epitope resulting from cleavage of type II collagen by collagenases (C2C), type II procollagen (CPII), interleukin (IL)-6, proteoglycan (PRG)-4, A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, and resistin were determined by enzyme-linked immunosorbent assays, Joint load (moments and compartmental forces) was estimated using musculoskeletal modeling using gait analysis data. Results COMP and MMP-3 showed an immediate increase after the walking stress followed by a decrease. MMP-9 and resistin showed a delayed decrease below pre-stress levels. ∆COMP correlated with ∆MMP-3 for most time points. ∆MMP-9 correlated with ∆resistin for most time points. The load-induced increase in blood marker levels correlated among blood markers and time points. C2C and resistin correlated positively and C2C/CPII and MMP2 correlated negatively with load during gait. Immediate relative ∆CPII and ∆MMP1 and delayed relative ∆COMP, ∆IL6, ∆C2C, ∆CPII, ∆MMP1 and ∆MMP3 correlated with the load accumulated during the walking stress. Baseline C2C levels correlated with Knee Osteoarthritis Outcome Score (KOOS) subscales and load-induced changes in MMP-3 with KOOS and Short Form 36 quality of life subscores (P<0.05). Conclusions The distinct and differentiated physiological response to the walking stress depends on accumulated load and appears relevant for patient reported osteoarthritis outcome and quality of life and warrants further investigation in the context of disease progression.ClinicalTrials.gov registration: NCT02622204.
Collapse
Affiliation(s)
- Annegret Mündermann
- Department of Clinical Research, University of Basel, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, 4123, Switzerland
- Department of Orthopaedics and Trauamtology, University Hospital Basel, Basel, 4031, Switzerland
| | - Corina Nüesch
- Department of Clinical Research, University of Basel, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, 4123, Switzerland
- Department of Orthopaedics and Trauamtology, University Hospital Basel, Basel, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, 4031, Switzerland
| | - Simon Herger
- Department of Biomedical Engineering, University of Basel, Allschwil, 4123, Switzerland
- Department of Orthopaedics and Trauamtology, University Hospital Basel, Basel, 4031, Switzerland
| | - Anna-Maria Liphardt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, 91054, Germany
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Frédérique Chammartin
- Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen & FAU Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Enrico De Pieri
- Department of Biomedical Engineering, University of Basel, Allschwil, 4123, Switzerland
| | - Christian Egloff
- Department of Orthopaedics and Trauamtology, University Hospital Basel, Basel, 4031, Switzerland
| |
Collapse
|
4
|
Wang Y, Hammer A, Hoefler G, Malle E, Hawkins CL, Chuang CY, Davies MJ. Hypochlorous Acid and Chloramines Induce Specific Fragmentation and Cross-Linking of the G1-IGD-G2 Domains of Recombinant Human Aggrecan, and Inhibit ADAMTS1 Activity. Antioxidants (Basel) 2023; 12:antiox12020420. [PMID: 36829979 PMCID: PMC9952545 DOI: 10.3390/antiox12020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease and a leading cause of mortality. It is characterized by arterial wall plaques that contain high levels of cholesterol and other lipids and activated leukocytes covered by a fibrous cap of extracellular matrix (ECM). The ECM undergoes remodelling during atherogenesis, with increased expression of aggrecan, a proteoglycan that binds low-density-lipoproteins (LDL). Aggrecan levels are regulated by proteases, including a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1). Activated leukocytes release myeloperoxidase (MPO) extracellularly, where it binds to proteins and proteoglycans. Aggrecan may therefore mediate colocalization of MPO and LDL. MPO generates hypochlorous acid (HOCl) and chloramines (RNHCl species, from reaction of HOCl with amines on amino acids and proteins) that damage LDL and proteins, but effects on aggrecan have not been examined. The present study demonstrates that HOCl cleaves truncated (G1-IGD-G2) recombinant human aggrecan at specific sites within the IGD domain, with these being different from those induced by ADAMTS1 which also cleaves within this region. Irreversible protein cross-links are also formed dose-dependently. These effects are limited by the HOCl scavenger methionine. Chloramines including those formed on amino acids, proteins, and ECM materials induce similar damage. HOCl and taurine chloramines inactivate ADAMTS1 consistent with a switch from proteolytic to oxidative aggrecan fragmentation. Evidence is also presented for colocalization of aggrecan and HOCl-generated epitopes in advanced human atherosclerotic plaques. Overall, these data show that HOCl and chloramines can induce specific modifications on aggrecan, and that these effects are distinct from those of ADAMTS1.
Collapse
Affiliation(s)
- Yihe Wang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Astrid Hammer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Clare L. Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christine Y. Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (C.Y.C.); (M.J.D.)
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (C.Y.C.); (M.J.D.)
| |
Collapse
|
5
|
James S, Daffy J, Cook J, Samiric T. Short-Term Exposure to Ciprofloxacin Reduces Proteoglycan Loss in Tendon Explants. Genes (Basel) 2022; 13:genes13122210. [PMID: 36553476 PMCID: PMC9777606 DOI: 10.3390/genes13122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Fluoroquinolone antibiotics are associated with increased risk of tendinopathy and tendon rupture, which can occur well after cessation of treatment. We have previously reported that the fluoroquinolone ciprofloxacin (CPX) reduced proteoglycan synthesis in equine tendon explants. This study aimed to determine the effects of CPX on proteoglycan catabolism and whether any observed effects are reversible. Equine superficial digital flexor tendon explant cultures were treated for 4 days with 1, 10, 100 or 300 µg/mL CPX followed by 8 days without CPX. The loss of [35S]-labelled proteoglycans and chemical pool of aggrecan and versican was studied as well as the gene expression levels of matrix-degrading enzymes responsible for proteoglycan catabolism. CPX suppressed [35S]-labelled proteoglycan and total aggrecan loss from the explants, although not in a dose-dependent manner, which coincided with downregulation of mRNA expression of MMP-9, -13, ADAMTS-4, -5. The suppressed loss of proteoglycans was reversed upon removal of the fluoroquinolone with concurrent recovery of MMP and ADAMTS mRNA expression, and downregulated TIMP-2 and upregulated TIMP-1 expression. No changes in MMP-3 expression by CPX was observed at any stage. These findings suggest that CPX suppresses proteoglycan catabolism in tendon, and this is partially attributable to downregulation of matrix-degrading enzymes.
Collapse
Affiliation(s)
- Stuart James
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086, Australia
| | - John Daffy
- Department of Infectious Diseases, St Vincent’s Hospital, Melbourne, VIC 3065, Australia
| | - Jill Cook
- Sports and Exercise Medicine Research Centre, La Trobe University, Melbourne, VIC 3086, Australia
| | - Tom Samiric
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
6
|
Structure determinants defining the specificity of papain-like cysteine proteases. Comput Struct Biotechnol J 2022; 20:6552-6569. [DOI: 10.1016/j.csbj.2022.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
|
7
|
Sakashita H, Bando Y, Nagasaka A, Sakiyama K, Onozawa G, Taira F, Ogasawara Y, Owada Y, Sakashita H, Amano O. Spatial and chronological localization of septoclasts in the mouse Meckel's cartilage. Histochem Cell Biol 2022; 157:569-580. [PMID: 35195769 DOI: 10.1007/s00418-022-02085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
Abstract
Meckel's cartilage (MC) in the first branchial arch of mammals is a transient structure that disappears before birth, except for the most anterior and posterior portions. Recent studies reported that some congenital abnormalities in craniofacial regions are linked with the persistence or dysplasia of MC. However, the mechanisms underlying the resorption of MC have not been elucidated. Cartilage resorption in endochondral ossification is performed by multinuclear osteoclasts/chondroclasts as well as mononuclear septoclasts, which were newly added to the list of cartilage phagocytes. Septoclasts located exclusively at the chondro-osseous junction of the growth plate resorb the uncalcified cartilage matrix. We hypothesized that septoclasts participate in the resorption of MC and attempted to clarify the localization and roles of septoclasts in MC of mouse using a specific immunohistochemistry marker, epidermal type-fatty acid-binding protein (E-FABP/FABP5). E-FABP-immunopositive septoclasts were detected for the first time at the beginning of MC resorption and localized along the resorption surface. Septoclasts of MC in embryonic mice possessed several processes that elongated toward the uncalcified cartilage matrix, expressed cathepsin B, and exhibited characteristic pericapillary localization. Additionally, they localized between hypertrophied cartilage and osteoclasts/chondroclasts in the resorption surface. Confocal laser-scanning microscopy revealed a decrease in the numbers of septoclasts and their processes with the progression of MC disappearance before birth. The present study showed that E-FABP-immunopositive septoclasts participated in the disappearance of MC through the resorption of the uncalcified cartilage matrix and that they have different roles from osteoclasts/chondroclasts.
Collapse
Affiliation(s)
- Hide Sakashita
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan.,Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Yasuhiko Bando
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Arata Nagasaka
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Koji Sakiyama
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Go Onozawa
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan.,Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Fuyoko Taira
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan.,Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Yudai Ogasawara
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan.,Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808575, Japan
| | - Hideaki Sakashita
- Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Osamu Amano
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan.
| |
Collapse
|
8
|
Song J, Wu J, Poulet B, Liang J, Bai C, Dang X, Wang K, Fan L, Liu R. Proteomics analysis of hip articular cartilage identifies differentially expressed proteins associated with osteonecrosis of the femoral head. Osteoarthritis Cartilage 2021; 29:1081-1092. [PMID: 33892138 DOI: 10.1016/j.joca.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The cartilage degeneration that accompanies subchondral bone necrosis plays an important role in the development of osteonecrosis of femoral head (ONFH). To better understand the molecular basis of cartilage degradation in ONFH, we compared the proteomic profiles of ONFH cartilage with that of fracture control. DESIGN Hip cartilage samples were collected from 16 ONFH patients and 16 matched controls with femoral neck fracture. Proteomics analysis was conducted using tandem mass tag-based quantitation technique. Gene ontology (GO) analysis, KEGG pathway and protein-protein interaction analysis were used to investigate the functions of the altered proteins and biological pathways. Differentially expressed proteins including alpha-2-HS-glycoprotein (AHSG) and Cytokine-like protein 1 (Cytl1) were validated by Western blot (WB) and immunohistochemistry (IHC). RESULTS 303 differentially expressed proteins were identified in ONFH cartilage with 72 up-regulated and 231 down-regulated. Collagen turnover, glycosaminoglycan biosynthesis, metabolic pathways, and complement and coagulation cascades were significantly modified in ONFH cartilage. WB and IHC confirmed the increased expression of AHSG and decreased expression of Cytl1 in ONFH cartilage. CONCLUSIONS Our results reveal the implication of altered protein expression in the development of ONFH, and provide novel clues for pathogenesis studies of cartilage degradation in ONFH.
Collapse
Affiliation(s)
- J Song
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - J Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China; Department of Orthopaedics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan Province, 471009, PR China.
| | - B Poulet
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, West Derby Road, Liverpool, L7 8TX, UK.
| | - J Liang
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - C Bai
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - X Dang
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - K Wang
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - L Fan
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - R Liu
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, NO.157, Xiwu Road, Xi'an, Shaanxi, 710004, PR China; Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, West Derby Road, Liverpool, L7 8TX, UK.
| |
Collapse
|
9
|
Abstract
Proteases comprise a variety of enzymes defined by their ability to catalytically hydrolyze the peptide bonds of other proteins, resulting in protein lysis. Cathepsins, specifically, encompass a class of at least twenty proteases with potent endopeptidase activity. They are located subcellularly in lysosomes, organelles responsible for the cell’s degradative and autophagic processes, and are vital for normal lysosomal function. Although cathepsins are involved in a multitude of cell signaling activities, this chapter will focus on the role of cathepsins (with a special emphasis on Cathepsin B) in neuronal plasticity. We will broadly define what is known about regulation of cathepsins in the central nervous system and compare this with their dysregulation after injury or disease. Importantly, we will delineate what is currently known about the role of cathepsins in axon regeneration and plasticity after spinal cord injury. It is well established that normal cathepsin activity is integral to the function of lysosomes. Without normal lysosomal function, autophagy and other homeostatic cellular processes become dysregulated resulting in axon dystrophy. Furthermore, controlled activation of cathepsins at specialized neuronal structures such as axonal growth cones and dendritic spines have been positively implicated in their plasticity. This chapter will end with a perspective on the consequences of cathepsin dysregulation versus controlled, localized regulation to clarify how cathepsins can contribute to both neuronal plasticity and neurodegeneration.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
Mündermann A, Vach W, Pagenster G, Egloff C, Nüesch C. Assessing in vivo articular cartilage mechanosensitivity as outcome of high tibial osteotomy in patients with medial compartment osteoarthritis: Experimental protocol. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100043. [DOI: 10.1016/j.ocarto.2020.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/11/2020] [Indexed: 10/24/2022] Open
|
11
|
de Jong JM, Wang P, Oomkens M, Baron W. Remodeling of the interstitial extracellular matrix in white matter multiple sclerosis lesions: Implications for remyelination (failure). J Neurosci Res 2020; 98:1370-1397. [PMID: 31965607 DOI: 10.1002/jnr.24582] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) provides protection, rigidity, and structure toward cells. It consists, among others, of a wide variety of glycoproteins and proteoglycans, which act together to produce a complex and dynamic environment, most relevant in transmembrane events. In the brain, the ECM occupies a notable proportion of its volume and maintains the homeostasis of central nervous system (CNS). In addition, remodeling of the ECM, that is transient changes in ECM proteins regulated by matrix metalloproteinases (MMPs), is an important process that modulates cell behavior upon injury, thereby facilitating recovery. Failure of ECM remodeling plays an important role in the pathogenesis of multiple sclerosis (MS), a neurodegenerative demyelinating disease of the CNS with an inflammatory response against protective myelin sheaths that surround axons. Remyelination of denuded axons improves the neuropathological conditions of MS, but this regeneration process fails over time, leading to chronic disease progression. In this review, we uncover abnormal ECM remodeling in MS lesions by discussing ECM remodeling in experimental demyelination models, that is when remyelination is successful, and compare alterations in ECM components to the ECM composition and MMP expression in the parenchyma of demyelinated MS lesions, that is when remyelination fails. Inter- and intralesional differences in ECM remodeling in the distinct white matter MS lesions are discussed in terms of consequences for oligodendrocyte behavior and remyelination (failure). Hence, the review will aid to understand how abnormal ECM remodeling contributes to remyelination failure in MS lesions and assists in developing therapeutic strategies to promote remyelination.
Collapse
Affiliation(s)
- Jody M de Jong
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peng Wang
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michelle Oomkens
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
ADAMTS4 and ADAMTS5 may be considered as new molecular therapeutic targets for cartilage damages with Kashin-Beck Disease. Med Hypotheses 2019; 135:109440. [PMID: 31734379 DOI: 10.1016/j.mehy.2019.109440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 11/21/2022]
Abstract
There are a pretty number of research demonstrating that ADAMTS4 and ADAMTS5 playing primary roles in the degradation of cartilage during inflammatory joint diseases like osteoarthritis (OA). Because Kashin-Beck Disease (KBD) has been found to own the common pathological changes and symptoms with OA, and is regarded as the specific type of osteoarthritis, it's reasonable to believe that ADAMTS4 and ADAMTS5 may exert an enormous functions on the injury of cartilage of the KBD and may be potential molecular therapeutic targets for KBD.
Collapse
|
13
|
Henriet P, Emonard H. Matrix metalloproteinase-2: Not (just) a "hero" of the past. Biochimie 2019; 166:223-232. [PMID: 31362036 DOI: 10.1016/j.biochi.2019.07.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/22/2019] [Indexed: 01/13/2023]
Abstract
The 72-kDa type IV collagenase or gelatinase A is the second member of the matrix metalloproteinase family, MMP-2. Since the discovery of its first two substrates within components of the extracellular matrix, denatured interstitial type I collagen and native type IV collagen, the roles and various levels of regulation of MMP-2 have been intensively studied, mainly in vitro. Its (over)expression in most if not all tumors was considered a hallmark of cancer aggressiveness and boosted investigations aiming at its inhibition. Unfortunately, the enthusiasm subsided like a soufflé after clinical trial failures, mostly because of insufficient knowledge of in vivo MMP-2 activities and detrimental side effects of broad-spectrum MMP inhibition. Nowadays, MMP-2 remains a major topic of interest in research, the second in the MMP family after MMP-9. This review presents a broad overview of the major features of this protease. This knowledge is crucial to identify diagnostic or therapeutic strategies focusing on MMP-2. In this sense, recent publications and clinical trials underline the potential value of measuring circulating or tissular MMP-2 levels as diagnostic or prognostic tools, or as a useful secondary outcome for therapies against other primary targets. Direct MMP-2 inhibition has benefited from substantial progress in the design of more specific inhibitors but their in vivo application remains challenging but certainly worth the efforts it receives.
Collapse
Affiliation(s)
- Patrick Henriet
- de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Hervé Emonard
- CNRS and Université de Reims Champagne-Ardenne, UMR 7369, 51100, Reims, France.
| |
Collapse
|
14
|
Assis-Ribas T, Forni MF, Winnischofer SMB, Sogayar MC, Trombetta-Lima M. Extracellular matrix dynamics during mesenchymal stem cells differentiation. Dev Biol 2018; 437:63-74. [PMID: 29544769 DOI: 10.1016/j.ydbio.2018.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/05/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are stromal cells that display self-renewal and multipotent differentiation capacity. The repertoire of mature cells generated ranges but is not restricted to: fat, bone and cartilage. Their potential importance for both cell therapy and maintenance of in vivo homeostasis is indisputable. Nonetheless, both their in vivo identity and use in cell therapy remain elusive. A drawback generated by this fact is that little is known about the MSC niche and how it impacts differentiation and homeostasis maintenance. Hence, the roles played by the extracellular matrix (ECM) and its main regulators namely: the Matrix Metalloproteinases (MMPs) and their counteracting inhibitors (TIMPs and RECK) upon stem cells differentiation are only now beginning to be unveiled. Here, we will focus on mesenchymal stem cells and review the main mechanisms involved in adipo, chondro and osteogenesis, discussing how the extracellular matrix can impact not only lineage commitment, but, also, their survival and potentiality. This review critically analyzes recent work in the field in an effort towards a better understanding of the roles of Matrix Metalloproteinases and their inhibitors in the above-cited events.
Collapse
Affiliation(s)
- Thais Assis-Ribas
- NUCEL-NETCEM-Faculdade de Medicina, Departamento de Clínica Médica, Universidade de São Paulo, São Paulo, SP 05360-120, Brazil
| | - Maria Fernanda Forni
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - Mari Cleide Sogayar
- NUCEL-NETCEM-Faculdade de Medicina, Departamento de Clínica Médica, Universidade de São Paulo, São Paulo, SP 05360-120, Brazil; Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Marina Trombetta-Lima
- NUCEL-NETCEM-Faculdade de Medicina, Departamento de Clínica Médica, Universidade de São Paulo, São Paulo, SP 05360-120, Brazil.
| |
Collapse
|
15
|
Origin and development of septoclasts in endochondral ossification of mice. Histochem Cell Biol 2018; 149:645-654. [PMID: 29464321 DOI: 10.1007/s00418-018-1653-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 12/31/2022]
Abstract
Septoclasts are mononuclear spindle-shaped phagocytes with their long processes in uncalcified cartilage matrices and locate adjacent to the capillary endothelium at the chondro-osseous junction of the growth plate. We have previously revealed a selective expression of epidermal-type fatty acid-binding protein (E-FABP/FABP5) in septoclasts. Although, pericytes are known to distribute along capillaries and directly surround their endothelial cells in a situation similar to septoclasts, no clear evidence is available on the relationship between septoclasts and pericytes. We investigated the chronological localization and morphological change of septoclasts during development of the tibia of mice to clarify the development of septoclasts and the immune-localization of pericyte markers in septoclasts to clarify the origin of septoclasts. E-FABP-immunoreactive septoclasts emerged at the perichondrium in the middle of the cartilaginous templates of the tibia in prenatal development. Septoclasts migrated to the surface of the cartilage adjacent to invading blood vessels. Processes of septoclasts became longer and their apexes attached to Von Kossa-negative uncalcified matrices during the formation process of the primary ossification center. Not only platelet-derived growth factor receptor beta, but also neuron-glial antigen 2 was localized in septoclasts of mice from E15 (embryonic day 15) to P6w (postnatal 6 week). Our results suggest that septoclasts are originated from pericytes and involved in the blood vessel invasion during formation of the primary ossification center.
Collapse
|
16
|
MMP-2 as an early synovial biomarker for cranial cruciate ligament disease in dogs. Vet Comp Orthop Traumatol 2017; 27:210-5. [DOI: 10.3415/vcot-13-06-0082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 12/22/2013] [Indexed: 11/17/2022]
Abstract
SummaryObjectives: To measure the activity of matrix metalloproteinases (MMP)-2 and -9 in synovial fluid from the stifle joints of dogs with cranial cruciate ligament (CrCL) rupture and to compare that to values from contralateral stifle joints and dogs with clinically normal stifle joints. Additionally, the C-reactive protein (CRP) levels were also measured.Methods: Fourteen large breed dogs with unilateral CrCL rupture and 11 large breed normal dogs were included in this prospective clinical study. Synovial fluid was collected from CrCL-ruptured stifle joints, contralateral clinically normal stifle joints of the same dogs, and stifle joints of normal dogs. Serum was also collected. Synovial fluid activities of MMP-2 and MMP-9 and serum CRP level were measured.Results: The MMP-2 activity in synovial fluid was significantly higher in CrCL-ruptured joints compared to contralateral joints and to stifles from normal dogs. There was no significant difference in activity of MMP-2 in contralateral joints of CrCL-ruptured dogs compared to normal dogs. Both serum CRP level and MMP-9 activity did not differ significantly between the studied conditions.Clinical significance: It was confirmed that MMP-2 activity is significantly related to CrCL rupture, but there was a failure to demonstrate any significant increase in the contralateral joints compared to the stifle joints of normal dogs. The MMP-2 involvement in progressing CrCL disease still has to be defined.
Collapse
|
17
|
Morgese G, Cavalli E, Müller M, Zenobi-Wong M, Benetti EM. Nanoassemblies of Tissue-Reactive, Polyoxazoline Graft-Copolymers Restore the Lubrication Properties of Degraded Cartilage. ACS NANO 2017; 11:2794-2804. [PMID: 28273419 DOI: 10.1021/acsnano.6b07847] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Osteoarthritis leads to an alteration in the composition of the synovial fluid, which is associated with an increase in friction and the progressive and irreversible destruction of the articular cartilage. In order to tackle this degenerative disease, there has been a growing interest in the medical field to establish effective, long-term treatments to restore cartilage lubrication after damage. Here we develop a series of graft-copolymers capable of assembling selectively on the degraded cartilage, resurfacing it, and restoring the lubricating properties of the native tissue. These comprise a polyglutamic acid backbone (PGA) coupled to brush-forming, poly-2-methyl-2-oxazoline (PMOXA) side chains, which provide biopassivity and lubricity to the surface, and to aldehyde-bearing tissue-reactive groups, for the anchoring on the degenerated cartilage via Schiff bases. Optimization of the graft-copolymer architecture (i.e., density and length of side chains and amount of tissue-reactive functions) allowed a uniform passivation of the degraded cartilage surface. Graft-copolymer-treated cartilage showed very low coefficients of friction within synovial fluid, reestablishing and in some cases improving the lubricating properties of the natural cartilage. Due to these distinctive properties and their high biocompatibility and stability under physiological conditions, cartilage-reactive graft-copolymers emerge as promising injectable formulations to slow down the progression of cartilage degradation, which characterizes the early stages of osteoarthritis.
Collapse
Affiliation(s)
- Giulia Morgese
- Laboratory for Surface Science and Technology, Department of Materials, and ‡Cartilage Engineering + Regeneration Laboratory, Department of Health Sciences and Technology, ETH Zürich , Zürich, Switzerland
| | - Emma Cavalli
- Laboratory for Surface Science and Technology, Department of Materials, and ‡Cartilage Engineering + Regeneration Laboratory, Department of Health Sciences and Technology, ETH Zürich , Zürich, Switzerland
| | - Mischa Müller
- Laboratory for Surface Science and Technology, Department of Materials, and ‡Cartilage Engineering + Regeneration Laboratory, Department of Health Sciences and Technology, ETH Zürich , Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Laboratory for Surface Science and Technology, Department of Materials, and ‡Cartilage Engineering + Regeneration Laboratory, Department of Health Sciences and Technology, ETH Zürich , Zürich, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, Department of Materials, and ‡Cartilage Engineering + Regeneration Laboratory, Department of Health Sciences and Technology, ETH Zürich , Zürich, Switzerland
| |
Collapse
|
18
|
Li K, Li Y, Xu B, Mao L, Zhao J. Sesamin inhibits lipopolysaccharide-induced inflammation and extracellular matrix catabolism in rat intervertebral disc. Connect Tissue Res 2016; 57:347-59. [PMID: 27128308 DOI: 10.1080/03008207.2016.1182998] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intervertebral disc (IVD) degeneration contributes to most spinal degenerative diseases, while treatment inhibiting IVD degeneration is still in the experimental stage. Sesamin, a bioactive component extracted from sesame, has been reported to exert chondroprotective and anti-inflammatory effects. Here, we analyzed the anti-inflammatory and anti-catabolic effects of sesamin on rat IVD in vitro and ex vivo. Results show that sesamin significantly inhibits the lipopolysaccharide (LPS)-induced expression of catabolic enzymes (MMP-1, MMP-3, MMP-13, ADAMTS-4, ADAMTS-5) and inflammation factors (IL-1β, TNF-α, iNOS, NO, COX-2, PGE2) in a dose-dependent manner in vitro. It is also proven that migration of macrophages induced by LPS can be inhibited by treatment with sesamin. Organ culture experiments demonstrate that sesamin protects the IVD from LPS-induced depletion of the extracellular matrix ex vivo. Moreover, sesamin suppresses LPS-induced activation of the mitogen-activated protein kinase (MAPK) pathway through inhibiting phosphorylation of JNK, the common downstream signaling pathway of LPS and IL-1β, which may be the potential mechanism of the effects of sesamin. In light of our results, sesamin protects the IVD from inflammation and extracellular matrix catabolism, presenting positive prospects in the treatment of IVD degenerative diseases.
Collapse
Affiliation(s)
- Kang Li
- a Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yan Li
- a Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Bo Xu
- a Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Lu Mao
- a Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jie Zhao
- a Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
19
|
Alfakry H, Malle E, Koyani CN, Pussinen PJ, Sorsa T. Neutrophil proteolytic activation cascades: a possible mechanistic link between chronic periodontitis and coronary heart disease. Innate Immun 2016; 22:85-99. [PMID: 26608308 DOI: 10.1177/1753425915617521] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular diseases are chronic inflammatory diseases that affect a large segment of society. Coronary heart disease (CHD), the most common cardiovascular disease, progresses over several years and affects millions of people worldwide. Chronic infections may contribute to the systemic inflammation and enhance the risk for CHD. Periodontitis is one of the most common chronic infections that affects up to 50% of the adult population. Under inflammatory conditions the activation of endogenous degradation pathways mediated by immune responses leads to the release of destructive cellular molecules from both resident and immigrant cells. Matrix metalloproteinases (MMPs) and their regulators can activate each other and play an important role in immune response via degrading extracellular matrix components and modulating cytokines and chemokines. The action of MMPs is required for immigrant cell recruitment at the site of inflammation. Stimulated neutrophils represent the major pathogen-fighting immune cells that upregulate expression of several proteinases and oxidative enzymes, which can degrade extracellular matrix components (e.g. MMP-8, MMP-9 and neutrophil elastase). The activity of MMPs is regulated by endogenous inhibitors and/or candidate MMPs (e.g. MMP-7). The balance between MMPs and their inhibitors is thought to mirror the proteolytic burden. Thus, neutrophil-derived biomarkers, including myeloperoxidase, may activate proteolytic destructive cascades that are involved in subsequent immune-pathological events associated with both periodontitis and CHD. Here, we review the existing studies on the contribution of MMPs and their regulators to the infection-related pathology. Also, we discuss the possible proteolytic involvement and role of neutrophil-derived enzymes as an etiological link between chronic periodontitis and CHD.
Collapse
Affiliation(s)
- Hatem Alfakry
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Chintan N Koyani
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Pirkko J Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
20
|
Li K, Li Y, Ma Z, Zhao J. Crocin exerts anti-inflammatory and anti-catabolic effects on rat intervertebral discs by suppressing the activation of JNK. Int J Mol Med 2015; 36:1291-9. [PMID: 26648423 PMCID: PMC4601741 DOI: 10.3892/ijmm.2015.2359] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022] Open
Abstract
As intervertebral disc (IVD) degeneration has been proven to contribute to low back pain (LBP), drug treatment aiming at attenuating IVD degeneration may prove to be benefiical. Crocin, a bioactive component of saffron, has been found to exert anti-inflammatory effects on cartilage. In the present study, the anti-inflammatory and anti-catabolic effects of crocin on rat IVDs were analyzed in vitro and ex vivo. Nucleus pulposus (NP) cells were isolated from the lumbar IVDs of Sprague-Dawley rats. The NP cells were first treated with various concentrations of crocin, and then stimulated with lipopolysaccharide (LPS) to induce inflammation. Subsequently, RT-qPCR and enzyme-linked immunosorbent assay were carried out to measure the expression levels of catabolic enzymes, pro-inflammatory factors and the components of the extracellular matrix (ECM). In addition, western blot analysis was also used to investigate the related signaling pathways. The whole spinal motion segment (vertebra-IVD-vertebra section) of the rats was isolated and cultured in the presence or absence of LPS and crocin for 7 days. The ex vivo effects of crocin on the ECM of the IVD structures were determined by histological and biochemical analysis. In vitro, crocin significantly inhibited the LPS-induced overexpression of catabolic enzymes [matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif (ADAMTS)-4 and ADAMTS‑5], pro-inflammatory factors [interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6 and inducible nitric oxide synthase (iNOS)] and Toll-like receptor (TLR)‑2 in a concentration-dependent manner. Notably, crocin partly prevented the downregulation of aggrecan and type II collagen (collagen‑II). Moreover, crocin suppressed the LPS-induced activation of the mitogen-activated protein kinase (MAPK) pathway by inhibiting the phosphorylation of c-Jun N-terminal kinase (JNK). Ex vivo experiments demonstrated that crocin protected the rat IVDs from the LPS-induced depletion of the ECM components, including proteoglycan and collagen-II. In conclusion, crocin effectively suppressed the degeneration-related inflammation and catabolism in rat IVDs in vitro and ex vivo, suggesting that crocin has potential for use as a therapuetic strategy in the treatment of LBP.
Collapse
Affiliation(s)
- Kang Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yan Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
21
|
LeBert DC, Squirrell JM, Rindy J, Broadbridge E, Lui Y, Zakrzewska A, Eliceiri KW, Meijer AH, Huttenlocher A. Matrix metalloproteinase 9 modulates collagen matrices and wound repair. Development 2015; 142:2136-46. [PMID: 26015541 DOI: 10.1242/dev.121160] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/01/2015] [Indexed: 12/15/2022]
Abstract
Acute and chronic injuries are characterized by leukocyte infiltration into tissues. Although matrix metalloproteinase 9 (Mmp9) has been implicated in both conditions, its role in wound repair remains unclear. We previously reported a zebrafish chronic inflammation mutant caused by an insertion in the hepatocyte growth factor activator inhibitor gene 1 (hai1; also known as spint1) that is characterized by epithelial extrusions and neutrophil infiltration into the fin. Here, we performed a microarray analysis and found increased inflammatory gene expression in the mutant larvae, including a marked increase in mmp9 expression. Depletion of mmp9 partially rescued the chronic inflammation and epithelial phenotypes, in addition to restoring collagen fiber organization, as detected by second-harmonic generation imaging. Additionally, we found that acute wounding induces epithelial cell mmp9 expression and is associated with a thickening of collagen fibers. Interestingly, depletion of mmp9 impaired this collagen fiber reorganization. Moreover, mmp9 depletion impaired tissue regeneration after tail transection, implicating Mmp9 in acute wound repair. Thus, Mmp9 regulates both acute and chronic tissue damage and plays an essential role in collagen reorganization during wound repair.
Collapse
Affiliation(s)
- Danny C LeBert
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jayne M Squirrell
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Julie Rindy
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth Broadbridge
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuming Lui
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna Zakrzewska
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
22
|
Khan YA, Umar S, Abidi SMA. Somatic antigens of tropical liver flukes ameliorate collagen-induced arthritis in wistar rats. PLoS One 2015; 10:e0126429. [PMID: 25992888 PMCID: PMC4436316 DOI: 10.1371/journal.pone.0126429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/02/2015] [Indexed: 12/15/2022] Open
Abstract
Parasitic helminths polarize immune response of their vertebrate hosts towards anti-inflammatory Th2 type and therefore it is hypothesized that they may suppress the inflammatory conditions in autoimmune disorders. The present study was undertaken to investigate in vivo immunomodulatory and therapeutic potential of somatic antigens (Ag) of liver infecting digenetic trematodes [Fasciola gigantica (Fg) and Gigantocotyle explanatum (Ge)] in collagen-induced arthritic (CIA) Wistar rats. The CIA rats were administered subcutaneously with different doses (50 μg, 100 μg and 150 μg) of somatic antigens of Fg and Ge, daily for 21 days, the time period required to establish infection in natural host (Bubalus bubalis). Thereafter, the control, diseased and treated rats were compared for different parameters viz. hind paw thickness; serum interleukins, IL-4 and IL-10, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ); expression level of matrix metalloproteinases (MMPs) -2, -9, -13 and nitric oxide (NO) in knee joints and patellar morphology. The CIA rats treated with different antigens, Fg-Ag and Ge-Ag, show significant amelioration of the disease by down regulation of serum TNF-α and IFN-γ (p< 0.05) and upregulation of IL-4 and IL-10 cytokines (p< 0.05); inhibition (p< 0.05) of MMPs (-2,-9,-13) and NO in knee joints and improved patellar morphology with decreased synovial hypertrophy and reduced infiltration of ploymorphonuclear cells. The activity of pro as well as active MMPs (-2 and -9) and active MMP-13 in knee joints of CIA rats was very high compared to the control and treatment groups, suggesting the extent of collagen degradation in CIA rats. Interestingly, the highest dose (150 μg) of Ge-Ag almost wiped out MMP-13 expression. The overall findings suggest that the somatic proteins of Ge-Ag appeared to be therapeutically more effective than Fg-Ag, reflecting interspecific molecular differences which could contribute to the ability of these worms to successfully ameliorate the pathology of CIA.
Collapse
Affiliation(s)
- Yasir Akhtar Khan
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Sadiq Umar
- Department of Pharmaceutical Science, Collage of Pharmacy, Washington State University, Spokane, Washinton, United States of America
| | - Syed M. A. Abidi
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India
- * E-mail:
| |
Collapse
|
23
|
Lord MS, Farrugia BL, Rnjak-Kovacina J, Whitelock JM. Current serological possibilities for the diagnosis of arthritis with special focus on proteins and proteoglycans from the extracellular matrix. Expert Rev Mol Diagn 2014; 15:77-95. [DOI: 10.1586/14737159.2015.979158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Satkunananthan PB, Anderson MJ, De Jesus NM, Haudenschild DR, Ripplinger CM, Christiansen BA. In vivo fluorescence reflectance imaging of protease activity in a mouse model of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2014; 22:1461-9. [PMID: 25278057 PMCID: PMC4185155 DOI: 10.1016/j.joca.2014.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/10/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Joint injuries initiate a surge of inflammatory cytokines and proteases that contribute to cartilage and subchondral bone degeneration. Detecting these early processes in animal models of post-traumatic osteoarthritis (PTOA) typically involves ex vivo analysis of blood serum or synovial fluid biomarkers, or histological analysis of the joint. In this study, we used in vivo fluorescence reflectance imaging (FRI) to quantify protease, matrix metalloproteinase (MMP), and Cathepsin K activity in mice following anterior cruciate ligament (ACL) rupture. We hypothesized that these processes would be elevated at early time points following joint injury, but would return to control levels at later time points. DESIGN Mice were injured via tibial compression overload, and FRI was performed at time points from 1 to 56 days after injury using commercially available activatable fluorescent tracers to quantify protease, MMP, and cathepsin K activity in injured vs uninjured knees. PTOA was assessed at 56 days post-injury using micro-computed tomography and whole-joint histology. RESULTS Protease activity, MMP activity, and cathepsin K activity were all significantly increased in injured knees relative to uninjured knees at all time points, peaking at 1-7 days post-injury, then decreasing at later time points while still remaining elevated relative to controls. CONCLUSIONS This study establishes FRI as a reliable method for in vivo quantification of early biological processes in a translatable mouse model of PTOA, and provides crucial information about the time course of inflammation and biological activity following joint injury. These data may inform future studies aimed at targeting these early processes to inhibit PTOA development.
Collapse
Affiliation(s)
- Patrick B. Satkunananthan
- University of California-Davis Medical Center, Department of Orthopaedic Surgery,University of California-Davis, Biomedical Engineering Graduate Group
| | - Matthew J. Anderson
- University of California-Davis Medical Center, Department of Orthopaedic Surgery
| | - Nicole M. De Jesus
- University of California-Davis, Biomedical Engineering Graduate Group,University of California-Davis Medical Center, Department of Pharmacology
| | - Dominik R. Haudenschild
- University of California-Davis Medical Center, Department of Orthopaedic Surgery,University of California-Davis, Biomedical Engineering Graduate Group
| | - Crystal M. Ripplinger
- University of California-Davis, Biomedical Engineering Graduate Group,University of California-Davis Medical Center, Department of Pharmacology
| | - Blaine A. Christiansen
- University of California-Davis Medical Center, Department of Orthopaedic Surgery,University of California-Davis, Biomedical Engineering Graduate Group
| |
Collapse
|
25
|
Myocardial matrix metalloproteinase-2: inside out and upside down. J Mol Cell Cardiol 2014; 77:64-72. [PMID: 25261607 DOI: 10.1016/j.yjmcc.2014.09.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/19/2014] [Accepted: 09/10/2014] [Indexed: 12/31/2022]
Abstract
Since their inaugural discovery in the early 1960s, matrix metalloproteinases (MMPs) have been shown to mediate multiple physiological and pathological processes. In addition to their canonical function in extracellular matrix (ECM) remodeling, research in the last decade has highlighted new MMP functions, including proteolysis of novel substrates beyond ECM proteins, MMP localization to subcellular organelles, and proteolysis of susceptible intracellular proteins in those subcellular compartments. This review will provide a comparison of the extracellular and intracellular roles of MMPs, illustrating that MMPs are far more interesting than the one-dimensional view originally taken. We focus on the roles of MMP-2 in cardiac injury and repair, as this is one of the most studied MMPs in the cardiovascular field. We will highlight how understanding all dimensions, such as localization of activity and timing of interventions, will increase the translational potential of research findings. Building upon old ideas and turning them inside out and upside down will help us to better understand how to move the MMP field forward.
Collapse
|
26
|
Sivan SS, Wachtel E, Roughley P. Structure, function, aging and turnover of aggrecan in the intervertebral disc. Biochim Biophys Acta Gen Subj 2014; 1840:3181-9. [PMID: 25065289 DOI: 10.1016/j.bbagen.2014.07.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/11/2014] [Accepted: 07/18/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Aggrecan is the major non-collagenous component of the intervertebral disc. It is a large proteoglycan possessing numerous glycosaminoglycan chains and the ability to form aggregates in association with hyaluronan. Its abundance and unique molecular features provide the disc with its osmotic properties and ability to withstand compressive loads. Degradation and loss of aggrecan result in impairment of disc function and the onset of degeneration. SCOPE OF REVIEW This review summarizes current knowledge concerning the structure and function of aggrecan in the normal intervertebral disc and how and why these change in aging and degenerative disc disease. It also outlines how supplementation with aggrecan or a biomimetic may be of therapeutic value in treating the degenerate disc. MAJOR CONCLUSIONS Aggrecan abundance reaches a plateau in the early twenties, declining thereafter due to proteolysis, mainly by matrix metalloproteinases and aggrecanases, though degradation of hyaluronan and non-enzymic glycation may also participate. Aggrecan loss is an early event in disc degeneration, although it is a lengthy process as degradation products may accumulate in the disc for decades. The low turnover rate of the remaining aggrecan is an additional contributing factor, preventing protein renewal. It may be possible to retard the degenerative process by restoring the aggrecan content of the disc, or by supplementing with a bioimimetic possessing similar osmotic properties. GENERAL SIGNIFICANCE This review provides a basis for scientists and clinicians to understand and appreciate the central role of aggrecan in the function, degeneration and repair of the intervertebral disc.
Collapse
Affiliation(s)
- Sarit Sara Sivan
- Department of Biotechnology Engineering, ORT Braude College, Karmiel 21982 Israel.
| | - Ellen Wachtel
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Peter Roughley
- Shriners Hospital for Children, Genetics Unit, 1529 Cedar Avenue, Montreal, Quebec H3G 1A6, Canada
| |
Collapse
|
27
|
Roughley PJ, Mort JS. The role of aggrecan in normal and osteoarthritic cartilage. J Exp Orthop 2014; 1:8. [PMID: 26914753 PMCID: PMC4648834 DOI: 10.1186/s40634-014-0008-7] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/22/2014] [Indexed: 01/13/2023] Open
Abstract
Aggrecan is a large proteoglycan bearing numerous chondroitin sulfate and keratan sulfate chains that endow articular cartilage with its ability to withstand compressive loads. It is present in the extracellular matrix in the form of proteoglycan aggregates, in which many aggrecan molecules interact with hyaluronan and a link protein stabilizes each interaction. Aggrecan structure is not constant throughout life, but changes due to both synthetic and degradative events. Changes due to synthesis alter the structure of the chondroitin sulfate and keratan sulfate chains, whereas those due to degradation cause cleavage of all components of the aggregate. These latter changes can be viewed as being detrimental to cartilage function and are enhanced in osteoarthritic cartilage, resulting in aggrecan depletion and predisposing to cartilage erosion. Matrix metalloproteinases and aggrecanases play a major role in aggrecan degradation and their production is upregulated by mediators associated with joint inflammation and overloading. The presence of increased levels of aggrecan fragments in synovial fluid has been used as a marker of ongoing cartilage destruction in osteoarthritis. During the early stages of osteoarthritis it may be possible to retard the destructive process by enhancing the production of aggrecan and inhibiting its degradation. Aggrecan production also plays a central role in cartilage repair techniques involving stem cell or chondrocyte implantation into lesions. Thus aggrecan participates in both the demise and survival of articular cartilage.
Collapse
Affiliation(s)
- Peter J Roughley
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada.
| | - John S Mort
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
28
|
Haro H, Nishiga M, Ishii D, Shimomoto T, Kato T, Takenouchi O, Koyanagi S, Ohba T, Komori H. Experimental chemonucleolysis with recombinant human matrix metalloproteinase 7 in human herniated discs and dogs. Spine J 2014; 14:1280-90. [PMID: 24295797 DOI: 10.1016/j.spinee.2013.11.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 10/11/2013] [Accepted: 11/21/2013] [Indexed: 02/09/2023]
Abstract
BACKGROUND CONTEXT Chemonucleolysis has been proposed as a less invasive technique than surgery for patients with lumbar disc herniation. Once chymopapain had been approved as a chemonucleolysis drug, it was withdrawn because of serious complications. A novel agent with fewer complications would be desirable. PURPOSE The purpose of this study was to investigate the effects of recombinant human matrix metalloproteinase 7 (rhMMP-7) in experimental chemonucleolysis in vitro and in vivo and examine its effects on tissue damage. STUDY DESIGN The study design is the experimental study using human herniated discs and enzyme substrates in vitro and dogs in vivo. METHODS The effects of rhMMP-7 on the degradation of human herniated discs were examined by measuring the wet weight in vitro. The correlations between the decrease in wet weight by rhMMP-7 and the conditions associated with herniated discs were also analyzed. The effects of rhMMP-7 on the proteoglycan and water contents were respectively examined with alcian blue staining and T2-weighted magnetic resonance imaging at 7 days after intradiscal injection in dogs. The distribution of [125I]-labeled rhMMP-7 was investigated by autoradioluminography at 7 days after intradiscal injection in dogs. An epidural injection study with rhMMP-7 was performed to evaluate the effects on the tissue damage around the discs at 1 and 13 weeks after the treatment in dogs. The Type 1 and 2 collagen cleavage rates were measured and compared with those of aggrecan in vitro. RESULTS Recombinant human matrix metalloproteinase 7 concentration dependently decreased the wet weight of herniated discs in vitro. The decrease in wet weight of the discs by rhMMP-7 did not significantly correlate with the conditions associated with herniated discs. Intradiscal injection of rhMMP-7 reduced the proteoglycan and water contents, with an increase in the serum keratan sulfate levels. Radioactivity of [125I]-labeled rhMMP-7 was detected in the nucleus pulposus and annulus fibrosus but not in the muscle. Epidural injection of rhMMP-7 had no effect on the injection site or the nerve tissues. The Type 1 and 2 collagen cleavage rates of rhMMP-7 were 1,000-fold weaker than those of aggrecan. CONCLUSIONS This study demonstrated experimental chemonucleolysis with rhMMP-7 in vitro and in vivo. The effects of rhMMP-7 were not affected by the conditions associated with herniated discs. The epidural injection study together with the autoradioluminography and in vitro enzyme assay suggests that intradiscal injection of rhMMP-7 may not induce tissue damage around the discs because of its distribution and substrate selectivity. Recombinant human matrix metalloproteinase 7 may be a novel and promising chemonucleolysis agent.
Collapse
Affiliation(s)
- Hirotaka Haro
- Department of Orthopaedic Surgery, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Miyuki Nishiga
- Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Tokyo, Japan
| | - Daisuke Ishii
- Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Tokyo, Japan
| | - Takasumi Shimomoto
- Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Tokyo, Japan
| | - Tsuyoshi Kato
- Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osami Takenouchi
- Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Tokyo, Japan
| | - Satoshi Koyanagi
- The Chemo-Sero-Therapeutic Research Institute (Kaketsuken), Kumamoto, Japan
| | - Tetsuro Ohba
- Department of Orthopaedic Surgery, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Hiromichi Komori
- Department of Orthopaedic Surgery, Yokohama City Minato Red Cross Hospital, Kanagawa, Japan
| |
Collapse
|
29
|
Grindel BJ, Martinez JR, Pennington CL, Muldoon M, Stave J, Chung LW, Farach-Carson MC. Matrilysin/matrix metalloproteinase-7(MMP7) cleavage of perlecan/HSPG2 creates a molecular switch to alter prostate cancer cell behavior. Matrix Biol 2014; 36:64-76. [PMID: 24833109 DOI: 10.1016/j.matbio.2014.04.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/17/2023]
Abstract
Perlecan/HSPG2, a large heparan sulfate (HS) proteoglycan, normally is expressed in the basement membrane (BM) underlying epithelial and endothelial cells. During prostate cancer (PCa) cell invasion, a variety of proteolytic enzymes are expressed that digest BM components including perlecan. An enzyme upregulated in invasive PCa cells, matrilysin/matrix metalloproteinase-7 (MMP-7), was examined as a candidate for perlecan proteolysis both in silico and in vitro. Purified perlecan showed high sensitivity to MMP-7 digestion even when fully decorated with HS or when presented in native context connected with other BM proteins. In both conditions, MMP-7 produced discrete perlecan fragments corresponding to an origin in immunoglobulin (Ig) repeat region domain IV. While not predicted by in silico analysis, MMP-7 cleaved every subpart of recombinantly generated perlecan domain IV. Other enzymes relevant to PCa that were tested had limited ability to cleave perlecan including prostate specific antigen, hepsin, or fibroblast activation protein α. A long C-terminal portion of perlecan domain IV, Dm IV-3, induced a strong clustering phenotype in the metastatic PCa cell lines, PC-3 and C4-2. MMP-7 digestion of Dm IV-3 reverses the clustering effect into one favoring cell dispersion. In a C4-2 Transwell® invasion assay, perlecan-rich human BM extract that was pre-digested with MMP-7 showed loss of barrier function and permitted a greater level of cell penetration than untreated BM extract. We conclude that enzymatic processing of perlecan in the BM or territorial matrix by MMP-7 as occurs in the invasive tumor microenvironment acts as a molecular switch to alter PCa cell behavior and favor cell dispersion and invasiveness.
Collapse
Affiliation(s)
- B J Grindel
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, 77005, USA
| | - J R Martinez
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, 77005, USA
| | - C L Pennington
- Shared Equipment Authority, Rice University, Houston, TX 77005
| | - M Muldoon
- Strategic Diagnostics Inc, Newark, DE, 19702, USA
| | - J Stave
- Strategic Diagnostics Inc, Newark, DE, 19702, USA
| | - L W Chung
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - M C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
30
|
Fonović M, Turk B. Cysteine cathepsins and extracellular matrix degradation. Biochim Biophys Acta Gen Subj 2014; 1840:2560-70. [PMID: 24680817 DOI: 10.1016/j.bbagen.2014.03.017] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/16/2014] [Accepted: 03/22/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cysteine cathepsins are normally found in the lysosomes where they are involved in intracellular protein turnover. Their ability to degrade the components of the extracellular matrix in vitro was first reported more than 25years ago. However, cathepsins were for a long time not considered to be among the major players in ECM degradation in vivo. During the last decade it has, however, become evident that abundant secretion of cysteine cathepsins into extracellular milieu is accompanying numerous physiological and disease conditions, enabling the cathepsins to degrade extracellular proteins. SCOPE OF VIEW In this review we will focus on cysteine cathepsins and their extracellular functions linked with ECM degradation, including regulation of their activity, which is often enhanced by acidification of the extracellular microenvironment, such as found in the bone resorption lacunae or tumor microenvironment. We will further discuss the ECM substrates of cathepsins with a focus on collagen and elastin, including the importance of that for pathologies. Finally, we will overview the current status of cathepsin inhibitors in clinical development for treatment of ECM-linked diseases, in particular osteoporosis. MAJOR CONCLUSIONS Cysteine cathepsins are among the major proteases involved in ECM remodeling, and their role is not limited to degradation only. Deregulation of their activity is linked with numerous ECM-linked diseases and they are now validated targets in a number of them. Cathepsins S and K are the most attractive targets, especially cathepsin K as a major therapeutic target for osteoporosis with drugs targeting it in advanced clinical trials. GENERAL SIGNIFICANCE Due to their major role in ECM remodeling cysteine cathepsins have emerged as an important group of therapeutic targets for a number of ECM-related diseases, including, osteoporosis, cancer and cardiovascular diseases. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia.
| |
Collapse
|
31
|
Abstract
Abstract Progressive degradation of the extracellular matrix (ECM) of articular cartilage and bone by enhanced activities of proteinases is an essential step for joint destruction in rheumatoid arthritis (RA) and osteoarthritis (OA). Among the proteinases, matrix-degrading metalloproteinases play a key role in joint destruction. Recent studies have indicated that these metalloproteinases comprise members of the matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase (ADAM) gene families. The MMP family is composed of 19 different members and classified into five subgroups of collagenases, gelatinases, stromelysins, membrane-type MMPs, and other MMPs. They have the ability to digest almost all ECM components in human tissues when they act in concert. Their prospective roles in RA and OA joint destruction have been well established. On the other hand, the ADAM family members are classified into ADAM metalloproteinases and catalytically inactive nonproteolytic homologues. The ADAM metalloproteinases contain ADAM with a transmembrane domain (membrane-type ADAM) and ADAM with thrombospondin motifs (ADAMTS). Although members in both groups are known to degrade ECM components, ADAMTS species may be especially important for the aggrecan (cartilage proteoglycan) degradation of articular cartilage in RA and OA, since aggrecanases-1 and -2 are included in this group. This review outlines the characters of the MMP and ADAM gene family members and their roles in joint destruction in RA and OA.
Collapse
Affiliation(s)
- Y Okada
- Department of Pathology, School of Medicine, Keio University , 35 Shinanomachi, Shinjuku-ku, Tokyo 160-0016 , Japan
| |
Collapse
|
32
|
Xing EM, Knox VW, O'Donnell PA, Sikura T, Liu Y, Wu S, Casal ML, Haskins ME, Ponder KP. The effect of neonatal gene therapy on skeletal manifestations in mucopolysaccharidosis VII dogs after a decade. Mol Genet Metab 2013; 109:183-93. [PMID: 23628461 PMCID: PMC3690974 DOI: 10.1016/j.ymgme.2013.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 12/27/2022]
Abstract
Mucopolysaccharidosis (MPS) VII is a lysosomal storage disease due to deficient activity of β-glucuronidase (GUSB), and results in glycosaminoglycan accumulation. Skeletal manifestations include bone dysplasia, degenerative joint disease, and growth retardation. One gene therapy approach for MPS VII involves neonatal intravenous injection of a gamma retroviral vector expressing GUSB, which results in stable expression in liver and secretion of enzyme into blood at levels predicted to be similar or higher to enzyme replacement therapy. The goal of this study was to evaluate the long-term effect of neonatal gene therapy on skeletal manifestations in MPS VII dogs. Treated MPS VII dogs could walk throughout their lives, while untreated MPS VII dogs could not stand beyond 6 months and were dead by 2 years. Luxation of the coxofemoral joint and the patella, dysplasia of the acetabulum and supracondylar ridge, deep erosions of the distal femur, and synovial hyperplasia were reduced, and the quality of articular bone was improved in treated dogs at 6 to 11 years of age compared with untreated MPS VII dogs at 2 years or less. However, treated dogs continued to have osteophyte formation, cartilage abnormalities, and an abnormal gait. Enzyme activity was found near synovial blood vessels, and there was 2% as much GUSB activity in synovial fluid as in serum. We conclude that neonatal gene therapy reduces skeletal abnormalities in MPS VII dogs, but clinically-relevant abnormalities remain. Enzyme replacement therapy will probably have similar limitations long-term.
Collapse
Affiliation(s)
- Elizabeth M Xing
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Upadhyay J, Baker SJ, Rajagovindan R, Hart M, Chandran P, Hooker BA, Cassar S, Mikusa JP, Tovcimak A, Wald MJ, Joshi SK, Bannon A, Medema JK, Beaver J, Honore P, Kamath RV, Fox GB, Day M. Pharmacological modulation of brain activity in a preclinical model of osteoarthritis. Neuroimage 2012; 64:341-55. [PMID: 22982372 DOI: 10.1016/j.neuroimage.2012.08.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/30/2012] [Indexed: 01/09/2023] Open
Abstract
The earliest stages of osteoarthritis are characterized by peripheral pathology; however, during disease progression chronic pain emerges-a major symptom of osteoarthritis linked to neuroplasticity. Recent clinical imaging studies involving chronic pain patients, including osteoarthritis patients, have demonstrated that functional properties of the brain are altered, and these functional changes are correlated with subjective behavioral pain measures. Currently, preclinical osteoarthritis studies have not assessed if functional properties of supraspinal pain circuitry are altered, and if these functional properties can be modulated by pharmacological therapy either by direct or indirect action on brain systems. In the current study, functional connectivity was first assessed in order to characterize the functional neuroplasticity occurring in the rodent medial meniscus tear (MMT) model of osteoarthritis-a surgical model of osteoarthritis possessing peripheral joint trauma and a hypersensitive pain state. In addition to knee joint trauma at week 3 post-MMT surgery, we observed that supraspinal networks have increased functional connectivity relative to sham animals. Importantly, we observed that early and sustained treatment with a novel, peripherally acting broad-spectrum matrix metalloproteinase (MMP) inhibitor (MMPi) significantly attenuates knee joint trauma (cartilage degradation) as well as supraspinal functional connectivity increases in MMT animals. At week 5 post-MMT surgery, the acute pharmacodynamic effects of celecoxib (selective cyclooxygenase-2 inhibitor) on brain function were evaluated using pharmacological magnetic resonance imaging (phMRI) and functional connectivity analysis. Celecoxib was chosen as a comparator, given its clinical efficacy for alleviating pain in osteoarthritis patients and its peripheral and central pharmacological action. Relative to the vehicle condition, acute celecoxib treatment in MMT animals yielded decreased phMRI infusion responses and decreased functional connectivity, the latter observation being similar to what was detected following chronic MMPi treatment. These findings demonstrate that an assessment of brain function may provide an objective means by which to further evaluate the pathology of an osteoarthritis state as well as measure the pharmacodynamic effects of therapies with peripheral or peripheral and central pharmacological action.
Collapse
Affiliation(s)
- Jaymin Upadhyay
- Translational Sciences, Advanced Technology, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
MMP proteolysis of the human extracellular matrix protein aggrecan is mainly a process of normal turnover. Biochem J 2012; 446:213-23. [DOI: 10.1042/bj20120274] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although it has been shown that aggrecanases are involved in aggrecan degradation, the role of MMP (matrix metalloproteinase) aggrecanolysis is less well studied. To investigate MMP proteolysis of human aggrecan, in the present study we used neoepitope antibodies against MMP cleavage sites and Western blot analysis to identify MMP-generated fragments in normal and OA (osteoarthritis/osteoarthritic) cartilage, and in normal, knee injury and OA and SF (synovial fluid) samples. MMP-3 in vitro digestion showed that aggrecan contains six MMP cleavage sites, in the IGD (interglobular domain), the KS (keratan sulfate) region, the border between the KS region and CS (chondroitin sulfate) region 1, the CS1 region, and the border between the CS2 and the G3 domain, and kinetic studies showed a specific order of digestion where the cleavage between CS2 and the G3 domain was the most preferred. In vivo studies showed that OA cartilage contained (per dry weight) 3.4-fold more MMP-generated FFGV fragments compared with normal cartilage, and although aggrecanase-generated SF-ARGS concentrations were increased 14-fold in OA and knee-injured patients compared with levels in knee-healthy reference subjects, the SF-FFGV concentrations did not notably change. The results of the present study suggest that MMPs are mainly involved in normal aggrecan turnover and might have a less-active role in aggrecan degradation during knee injury and OA.
Collapse
|
35
|
Phitak T, Pothacharoen P, Settakorn J, Poompimol W, Caterson B, Kongtawelert P. Chondroprotective and anti-inflammatory effects of sesamin. PHYTOCHEMISTRY 2012; 80:77-88. [PMID: 22704650 DOI: 10.1016/j.phytochem.2012.05.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 08/07/2011] [Accepted: 05/14/2012] [Indexed: 05/26/2023]
Abstract
Osteoarthritis (OA) is a major disability of elderly people. Sesamin is the main compound in Sesamun indicum Linn., and it has an anti-inflammatory effect by specifically inhibiting Δ5-desaturase in polyunsaturated fatty acid biosynthesis. The chondroprotective effects of sesamin were thus studied in a porcine cartilage explant induced with interleukin-1beta (IL-1β) and in a papain-induced osteoarthritis rat model. With the porcine cartilage explant, IL-1β induced release of sulfated-glycosaminoglycan (s-GAG) and hydroxyproline release, and this induction was significantly inhibited by sesamin. This ability to inhibit these processes might be due to its ability to decrease expression of MMP-1, -3 and -13, which can degrade both PGs and type II collagen, both at the mRNA and protein levels. Interestingly, activation of MMP-3 might also be inhibited by sesamin. Moreover, in human articular chondrocytes (HACs), some pathways of IL-1β signal transduction were inhibited by sesamin: p38 and JNK. In the papain-induced OA rat model, sesamin treatment reversed the following pathological changes in OA cartilage: reduced disorganization of chondrocytes in cartilage, increased cartilage thickness, and decreased type II collagen and PGs loss. Sesamin alone might increase formation of type II collagen and PGs in the cartilage tissue of control rats. These results demonstrate that sesamin efficiently suppressed the pathological processes in an OA model. Thus, sesamin could be a potential therapeutic strategy for treatment of OA.
Collapse
Affiliation(s)
- Thanyaluck Phitak
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | | | | | | |
Collapse
|
36
|
Recent findings on the role of gelatinases (matrix metalloproteinase-2 and -9) in osteoarthritis. Adv Orthop 2012; 2012:834208. [PMID: 22900195 PMCID: PMC3412089 DOI: 10.1155/2012/834208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 05/27/2012] [Indexed: 01/08/2023] Open
Abstract
Several studies dealing with the pathomechanisms of OA refer to MMP-1, -3, -7, -8, and -13 whereas a smaller number of investigations have pointed out the pathogenic role of gelatinases in OA. These gelatinases are best known for their involvement in pulmonary, myocardial, and neoplastic disease but they are emerging as important proteases implicated in the OA progression. This paper highlights the role of the gelatinases as emerging factors in OA pathogenesis through the regulation of subchondral bone resorption and microvascular invasion. The most significant new findings over the last year that add to our knowledge of the activity of these proteins in OA have been reported.
Collapse
|
37
|
Abstract
Aggrecan is essential for the normal function of articular cartilage and intervertebral disc, where it provides the ability for the tissues to withstand compressive loading. This property depends on both the high charge density endowed by its numerous chondroitin sulfate and keratan sulfate chains and its ability to form large molecular aggregates via interaction with hyaluronan. Degradation of aggrecan via the action of proteases takes place throughout life and the degradation products accumulate in the tissue and impair its function. Such degradation is exacerbated in degenerative or inflammatory joint disorders. The use of antibodies recognizing the various regions of aggrecan and the neoepitopes generated upon proteolytic cleavage has shown that matrix metalloproteinases and aggrecanases, members of the ADAMTS family, are responsible for aggrecan degradation, both throughout life and in disease. By using immunoblotting techniques, it is possible to determine the extent of aggrecan degradation and to identify the degradation products that have accumulated in the tissue, and immunohistochemistry allows the location of the aggrecan degradation to be established.
Collapse
|
38
|
Howell MD, Gottschall PE. Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment. Neuroscience 2012; 217:6-18. [PMID: 22626649 DOI: 10.1016/j.neuroscience.2012.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 01/18/2023]
Abstract
The extracellular matrix (ECM) in the central nervous system actively orchestrates and modulates changes in neural structure and function in response to experience, after injury, during disease, and with changes in neuronal activity. A component of the multi-protein, ECM aggregate in brain, the chondroitin sulfate (CS)-bearing proteoglycans (PGs) known as lecticans, inhibit neurite outgrowth, alter dendritic spine shape, elicit closure of critical period plasticity, and block target reinnervation and functional recovery after injury as the major component of a glial scar. While removal of the CS chains from lecticans with chondroitinase ABC improves plasticity, proteolytic cleavage of the lectican core protein may change the conformation of the matrix aggregate and also modulate neural plasticity. This review centers on the roles of the lecticans and the endogenous metalloproteinase families that proteolytically cleave lectican core proteins, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), in neural plasticity. These extracellular metalloproteinases modulate structural neural plasticity-including changes in neurite outgrowth and dendritic spine remodeling-and synaptic plasticity. Some of these actions have been demonstrated to occur via cleavage of the PG core protein. Other actions of the proteases include cleavage of non-matrix substrate proteins, whereas still other actions may occur directly at the cell surface without proteolytic cleavage. The data convincingly demonstrate that metalloproteinases modulate physiological and pathophysiological neural plasticity.
Collapse
Affiliation(s)
- M D Howell
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, AR 72205, USA
| | | |
Collapse
|
39
|
Biniossek ML, Nägler DK, Becker-Pauly C, Schilling O. Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. J Proteome Res 2011; 10:5363-73. [PMID: 21967108 DOI: 10.1021/pr200621z] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cysteine cathepsins mediate proteome homeostasis and have pivotal functions in diseases such as cancer. To better understand substrate recognition by cathepsins B, L, and S, we applied proteomic identification of protease cleavage sites (PICS) for simultaneous profiling of prime and non-prime specificity. PICS profiling of cathepsin B endopeptidase specificity highlights strong selectivity for glycine in P3' due to an occluding loop blocking access to the primed subsites. In P1', cathepsin B has a partial preference for phenylalanine, which is not found for cathepsins L and S. Occurrence of P1' phenylalanine often coincides with aromatic residues in P2. For cathepsin L, PICS identifies 845 cleavage sites, representing the most comprehensive PICS profile to date. Cathepsin L specificity is dominated by the canonical preference for aromatic residues in P2 with limited contribution of prime-site selectivity determinants. Profiling of cathepsins B and L with a shorter incubation time (4 h instead of 16 h) did not reveal time-dependency of individual specificity determinants. Cathepsin S specificity was profiled at pH 6.0 and 7.5. The PICS profiles at both pH values display a high degree of similarity. Cathepsin S specificity is primarily guided by aliphatic residues in P2 with limited importance of prime-site residues.
Collapse
Affiliation(s)
- Martin L Biniossek
- Institute for Molecular Medicine and Cell Research, University of Freiburg, Germany
| | | | | | | |
Collapse
|
40
|
Troeberg L, Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:133-45. [PMID: 21777704 DOI: 10.1016/j.bbapap.2011.06.020] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 12/21/2022]
Abstract
Osteoarthritis is a common joint disease for which there are currently no disease-modifying drugs available. Degradation of the cartilage extracellular matrix is a central feature of the disease and is widely thought to be mediated by proteinases that degrade structural components of the matrix, primarily aggrecan and collagen. Studies on transgenic mice have confirmed the central role of Adamalysin with Thrombospondin Motifs 5 (ADAMTS-5) in aggrecan degradation, and the collagenolytic matrix metalloproteinase MMP-13 in collagen degradation. This review discusses recent advances in current understanding of the mechanisms regulating expression of these key enzymes, as well as reviewing the roles of other proteinases in cartilage destruction. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Linda Troeberg
- The Kennedy Institute of Rheumatology Division, Imperial College London, London, UK.
| | | |
Collapse
|
41
|
Karetko-Sysa M, Skangiel-Kramska J, Nowicka D. Disturbance of perineuronal nets in the perilesional area after photothrombosis is not associated with neuronal death. Exp Neurol 2011; 231:113-26. [PMID: 21683696 DOI: 10.1016/j.expneurol.2011.05.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/26/2011] [Accepted: 05/22/2011] [Indexed: 11/28/2022]
Abstract
Perineuronal nets (PNNs) are a condensed form of extracellular matrix that covers the surface of a subset of neurons. Their presence limits neuronal plasticity and may protect neurons against harmful agents. Here we analyzed the relationship between spatiotemporal changes in PNN expression and cell death markers after focal cortical photothrombotic stroke in rats. We registered a substantial decrease in PNN density using Wisteria floribunda agglutinin staining and CAT-315 and brevican immunoreactivity; the decrease occurred not only in the lesion core but also in the perilesional and remote cortex as well as in homotopic contralateral cortical regions. Fluoro Jade C and TUNEL staining in perilesional and remote areas, however, showed a low density of dying cells. Our results suggest that the PNN reduction was not a result of cellular death and could be considered an attempt to create conditions favorable for synaptic remodeling.
Collapse
Affiliation(s)
- Magdalena Karetko-Sysa
- Department of Molecular and Cellular Neurobiology, The Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | |
Collapse
|
42
|
Durigova M, Nagase H, Mort JS, Roughley PJ. MMPs are less efficient than ADAMTS5 in cleaving aggrecan core protein. Matrix Biol 2011; 30:145-53. [PMID: 21055468 PMCID: PMC3057330 DOI: 10.1016/j.matbio.2010.10.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/12/2010] [Accepted: 10/20/2010] [Indexed: 01/19/2023]
Abstract
Aggrecan degradation in articular cartilage occurs predominantly through proteolysis and has been attributed to the action of members of the matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) families. Both families of enzymes cleave aggrecan at specific sites within the aggrecan core protein. One cleavage site within the interglobular domain (IGD), between Glu(373-374)Ala and five additional sites in the chondroitin sulfate-2 (CS-2) region of aggrecan were characterized as "aggrecanase" (ADAMTS) cleavage sites, while cleavage between Ser(341-342)Phe within the IGD of bovine aggrecan is attributed to MMP action. The objective of this study was to assess the cleavage efficiency of MMPs relative to ADAMTS and their contribution to aggrecan proteolysis in vitro. The analysis of aggrecan IGD degradation in bovine articular cartilage explants treated with catabolic cytokines over a 19-day period showed that MMP-mediated degradation of aggrecan within the IGD can only be observed following day 12 of culture. This delay is associated with the lack of activation of proMMPs during the first 12 days of culture. Analysis of MMP1, 2, 3, 7, 8, 9, 12, 13 and ADAMTS5 efficiencies at cleaving within the aggrecan IGD and CS-2 region in vitro was carried out by the digestion of bovine aggrecan with the various enzymes and Western blot analysis using aggrecan anti-G1 and anti-G3 antibodies. Of these MMPs, MMP12 was the most efficient at cleaving within the aggrecan IGD. In addition to cleavage in the IGD, MMP, 3, 7, 8 and 12 were also able to degrade the aggrecan CS-2 region. MMP3 and MMP12 were able to degrade aggrecan at the very C-terminus of the CS-2 region, cleaving the Glu(2047-2048)Ala bond which was previously shown to be cleaved by ADAMTS5. However, in comparison to ADAMTS5, MMP3 was about 100 times and 10 times less efficient at cleaving within the aggrecan IGD and CS-2 regions, respectively. Collectively, our results showed that the delayed activation of proMMPs and the relatively low cleavage efficiency of MMPs can explain the minor contribution of these enzymes to aggrecan catabolism in vivo. This study also uncovered a potential role for MMPs in the C-terminal truncation of aggrecan.
Collapse
Affiliation(s)
- Michaela Durigova
- Genetics Unit, Shriners Hospital for Children, 1529 Cedar Avenue, Montreal, H3G 1A6 Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology, Imperial College London, London, W6 8L, United Kingdom
| | - John S. Mort
- Genetics Unit, Shriners Hospital for Children, 1529 Cedar Avenue, Montreal, H3G 1A6 Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Peter J. Roughley
- Genetics Unit, Shriners Hospital for Children, 1529 Cedar Avenue, Montreal, H3G 1A6 Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Swearingen CA, Chambers MG, Lin C, Marimuthu J, Rito CJ, Carter QL, Dotzlaf J, Liu C, Chandrasekhar S, Duffin KL, Mitchell PG, Durham TB, Wiley MR, Thirunavukkarasu K. A short-term pharmacodynamic model for monitoring aggrecanase activity: injection of monosodium iodoacetate (MIA) in rats and assessment of aggrecan neoepitope release in synovial fluid using novel ELISAs. Osteoarthritis Cartilage 2010; 18:1159-66. [PMID: 20633676 DOI: 10.1016/j.joca.2010.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 01/27/2010] [Accepted: 02/06/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To develop a short-term in vivo model in rats, with an enzyme-linked immunosorbent assay (ELISA) readout for specific aggrecanase-cleaved aggrecan fragments, to facilitate testing of aggrecanase inhibitors. METHODS Monosodium iodoacetate (MIA), a metabolic inhibitor, was injected into the right knee joint of male Lewis rats and the release of aggrecanase-cleaved fragments of aggrecan containing the NITEGE or ARGN neoepitope was measured in the synovial fluid at 7 days post MIA injection using novel ELISAs. The ELISAs utilize a commercial antibody directed against the hyaluronic-acid binding region (HABR) of aggrecan, in combination with either an alpha-NITEGE antibody (NITEGE ELISA) or an alpha-ARGS/BC3 antibody (ARGS ELISA), to detect aggrecanase-cleavage of aggrecan within the interglobular domain (IGD). Aggrecan fragments present in in vitro digests, in cytokine-treated cartilage explant culture supernatants and in rat synovial fluid lavage samples were detected and quantified using the two ELISAs. Small molecule inhibitors of aggrecanase activity were dosed orally on days 3-7 to determine their ability to inhibit MIA-induced generation of the NITEGE and ARGN neoepitopes measured in the rat synovial fluid. RESULTS The NITEGE assay was shown to specifically detect the N-terminal fragment of aggrecan comprising the G1 domain and the NITEGE neoepitope sequence. This assay can readily measure aggrecanase-cleaved bovine, human and rat aggrecan without the need for deglycosylation. The ARGS assay specifically detects C-terminal fragments of aggrecan comprising the ARGS/ARGN neoepitope and the G2 domain. Keratan sulfate (KS) residues of aggrecan interfere with this ELISA, and hence this assay works well with native rat articular cartilage aggrecan (that lacks KS residues) and with deglycosylated bovine and human aggrecan. Injection of MIA into the rat knee joints resulted in a time-dependent increase in the release of aggrecanase-cleaved aggrecan fragments into the synovial fluid and treatment with an aggrecanase inhibitor resulted in a dose-dependent inhibition of the generation of these neoepitopes. CONCLUSIONS We have established a short-term in vivo model in rats that involves measurement of synovial fluid biomarkers that are dependent on aggrecanase activity in the joint. The short duration of the model combined with the mechanistic biomarker readout makes it very useful for the initial in vivo screening of aggrecanase inhibitors prior to testing them in time and resource-intensive disease models of osteoarthritis (OA).
Collapse
Affiliation(s)
- C A Swearingen
- Musculoskeletal Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Buttle DJ, Bramwell H, Hollander AP. Proteolytic mechanisms of cartilage breakdown: a target for arthritis therapy? Mol Pathol 2010; 48:M167-77. [PMID: 16696000 PMCID: PMC407956 DOI: 10.1136/mp.48.4.m167] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- D J Buttle
- Institute for Bone & Joint Medicine, Department of Human Metabolism & Clinical Biochemistry, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX
| | | | | |
Collapse
|
45
|
Brown CJ, Rahman S, Morton AC, Beauchamp CL, Bramwell H, Buttle DJ. Inhibitors of collagenase but not of gelatinase reduce cartilage explant proteoglycan breakdown despite only low levels of matrix metalloproteinase activity. Mol Pathol 2010; 49:M331-9. [PMID: 16696099 PMCID: PMC408083 DOI: 10.1136/mp.49.6.m331] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aims-To investigate the level of matrix metalloproteinase activity during the time-course of cartilage explant proteoglycan breakdown; to determine the effects of selective small-molecule inhibitors of matrix metalloproteinases on proteoglycan degradation.Methods-The levels of matrix metalloproteinase activity in cartilage explant cultures and conditioned media were monitored by use of a quenched fluorescent substrate. The constants for inhibition of certain matrix metalloproteinases by a series of synthetic inhibitors were determined. Bovine and human cartilage explant cultures were treated with interleukin-1, tumor necrosis factor or retinoic acid and the amount of proteoglycan released into the culture medium in the absence and presence of the inhibitors was quantified. Control experiments, examining the inhibition of other proteinases, and investigating possible toxic or non-specific effects of the inhibitors, were carried out.Results-The profile of inhibition of proteoglycan release suggested the involvement of interstitial collagenase-like, rather than gelatinase- or possibly stromelysin-like, proteinases. No evidence was found for toxic or non-specific mechanisms of inhibition. Very low levels of activity of the known matrix metalloproteinases were present during the time-course of aggrecan breakdown.Conclusions-A novel collagenase-like proteinase(s) may be involved in cartilage proteoglycan breakdown. Gelatinase-type matrix metalloproteinases do not seem to be involved in this process. Specific collagenase inhibitors may be therapeutically efficacious in the treatment of arthritis.
Collapse
Affiliation(s)
- C J Brown
- Institute for Bone and Joint Medicine, Department of Human Metabolism and Clinical Biochemistry, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX
| | | | | | | | | | | |
Collapse
|
46
|
Waldman SD, Usprech J, Flynn LE, Khan AA. Harnessing the purinergic receptor pathway to develop functional engineered cartilage constructs. Osteoarthritis Cartilage 2010; 18:864-72. [PMID: 20346406 DOI: 10.1016/j.joca.2010.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 02/15/2010] [Accepted: 03/04/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Mechanical stimulation is a widely used method to enhance the formation and properties of tissue-engineered cartilage. While this approach can be highly successful, it may be more efficient and effective to harness the known underlying mechanotransduction pathways responsible. With this aim, the purpose of this study was to assess the effect of directly stimulating the purinergic receptor pathway through exogenous adenosine 5'-triphosphate (ATP) in absence of externally applied forces. METHODS Isolated bovine articular chondrocytes were seeded in high density, 3D culture and supplemented with varying doses of ATP for up to 4 weeks. The effects on biosynthesis, extracellular matrix accumulation and mechanical properties were then evaluated. Experiments were also conducted to assess whether exogenous ATP elicited any undesirable effects, such as: inflammatory mediator release, matrix turn-over and mineralization. RESULTS Supplementation with ATP had a profound effect on the growth and maturation of the developed tissue. Exogenous ATP (62.5-250 microM) increased biosynthesis by 80-120%, and when stimulated for a period of 4 weeks resulted in increased matrix accumulation (80% increase in collagen and 60% increase in proteoglycans) and improved mechanical properties (6.5-fold increase in indentation modulus). While exogenous ATP did not stimulate the release of inflammatory mediators or induce mineralization, high doses of ATP (250 microM) elicited a 2-fold increase in matrix metalloproteinase-13 expression suggesting the emergence of a catabolic response. CONCLUSIONS Harnessing the ATP-purinergic receptor pathway is a highly effective approach to improve tissue formation and impart functional mechanical properties. However, the dose of ATP needs to be controlled as not to elicit a catabolic response.
Collapse
Affiliation(s)
- S D Waldman
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada.
| | | | | | | |
Collapse
|
47
|
Hao D, Li M, Wu Z, Duan Y, Li D, Qiu G. Synovial fluid level of adiponectin correlated with levels of aggrecan degradation markers in osteoarthritis. Rheumatol Int 2010; 31:1433-7. [PMID: 20464399 DOI: 10.1007/s00296-010-1516-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 04/27/2010] [Indexed: 12/19/2022]
Abstract
The objective of this study was to investigate adiponectin levels in both plasma and synovial fluid of female patients with knee osteoarthritis (OA) and to analyze the correlation between adiponectin and degradation markers of cartilage matrix in synovial fluid. Thirty female patients with knee OA were enrolled in this study. Levels of adiponectin and degradation markers of cartilage matrix were measured using enzyme-linked immunosorbent assay. Adiponectin level in synovial fluid was significantly lower with respect to paired plasma level (0.93 ± 0.64 vs. 7.50 ± 3.29 μg/ml, P < 0.001). Correlation analysis showed that synovial fluid adiponectin significantly correlated with degradation markers of aggrecan, AGG1 (r = 0.441, P = 0.015) and AGG2 (r = 0.445, P = 0.014), but not significantly correlated with degradation marker of collagen II, CTX-II. These findings suggest that adiponectin might involve in the regulation of the degradation of cartilage matrix in OA.
Collapse
Affiliation(s)
- Dongsheng Hao
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Neoepitope antibodies recognize the newly created N or C terminus of protein degradation products but fail to recognize the same sequence of amino acids present in intact or undigested protein. Aggrecan neoepitope antibodies have been pivotal in studies determining the contribution of matrix metalloproteinases (MMPs) and aggrecanases to aggrecanolysis. In particular, an antibody to the A(374)RGSV N terminus was instrumental in the landmark discovery of the aggrecanases, ADAMTS-4 and ADAMTS-5. Antibodies to neoepitopes at the major MMP cleavage site DIPEN(341)/(342)FFGVG helped to distinguish MMP-driven aggrecan loss from aggrecanase-driven aggrecan loss and identified a role for MMPs in late-stage disease. More recently, neoepitope antibodies that recognize cleavage sites in the chondroitin sulphate-rich region of aggrecan have been used to show that aggrecanase cleavage proceeds in a defined manner, beginning at the C terminus and proceeding to the signature cleavage at NITEGE(373)/(374)ARGSV in the interglobular domain. Work with the C-terminal neoepitope antibodies has underscored the need to use a suite of neoepitope antibodies to fully describe aggrecanolysis in vitro. In this chapter, we describe the production of two aggrecan neoepitope antibodies as examples: the monoclonal anti-FFGVG antibody (AF-28) and the polyclonal anti-DIPEN antisera.
Collapse
|
49
|
Sondergaard BC, Schultz N, Madsen SH, Bay-Jensen AC, Kassem M, Karsdal MA. MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation--divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation. Osteoarthritis Cartilage 2010; 18:279-88. [PMID: 19932675 DOI: 10.1016/j.joca.2009.11.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 10/28/2009] [Accepted: 11/04/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Matrix metalloproteinases (MMPs) and aggrecanases are essential players in cartilage degradation. However, the signaling pathways that results in MMP and/or aggrecanase synthesis and activation are not well understood. We investigated the molecular events leading to MMP- and aggrecanase-mediated cartilage degradation. METHODS Cartilage degradation was induced in bovine articular cartilage explants by oncostatin M (OSM) and tumor necrosis factor (TNF), in the presence or absence of specific inhibitors of the mitogen-activated protein kinases (MAPKs) P38, P44/42 and Src family. Toxicity was followed by the AlamarBlue colorimetric assay. MMP-activity was assessed using a fluorescent substrate assay and MMP-9 and -2 activities by gelatinase zymography. MMP-mediated collagen type II degradation and MMP as well as aggrecanase-mediated aggrecan degradation was investigated with specific ELISA and hydroxyproline release by standard methods. The findings were verified by immunohistochemistry and histology. RESULTS Stimulation of cartilage degradation by OSM+TNF resulted in 100-fold induction of CTX-II release (P<0.01). This was dose-dependently inhibited by MAPK P38 inhibitors and by the MAPK P44/42 inhibitors. MMP-activity and expression was significantly decreased, as evaluated by cleavage of fluorescence MMP-substrate and zymography. Immunohistochemistry confirmed these findings. Interestingly, only the P44/42 inhibitors abrogated aggrecanase-mediated aggrecan degradation. CONCLUSION We found that inhibition of MAPK P38, P44/42 and Src family abrogated proteolytic cartilage degradation by blocking MMP synthesis and activity. However, only MAPK P44/42 was essential for aggrecanase-mediated aggrecan degradation. These data suggest that various aspects of cartilage degradation can be targeted independently by inhibiting specific upstream signaling pathway.
Collapse
|
50
|
|